Learn Keras for Deep Neural Networks

A Fast-Track Approach to Modern Deep Learning with Python



Bookstore > Books > Learn Keras for Deep Neural Networks

Price$25.49 - $32.99
Rating
AuthorJojo John Moolayil
PublisherApress
Published2019
Pages182
LanguageEnglish
FormatPaper book / ebook (PDF)
ISBN-101484242394
ISBN-139781484242391
EBook Hardcover Paperback

Learn, understand, and implement deep neural networks in a math- and programming-friendly approach using Keras and Python. The book focuses on an end-to-end approach to developing supervised learning algorithms in regression and classification with practical business-centric use-cases implemented in Keras.

The overall book comprises three sections with two chapters in each section. The first section prepares you with all the necessary basics to get started in deep learning. Chapter 1 introduces you to the world of deep learning and its difference from machine learning, the choices of frameworks for deep learning, and the Keras ecosystem. You will cover a real-life business problem that can be solved by supervised learning algorithms with deep neural networks. You'll tackle one use case for regression and another for classification leveraging popular Kaggle datasets.

Later, you will see an interesting and challenging part of deep learning: hyperparameter tuning; helping you further improve your models when building robust deep learning applications. Finally, you'll further hone your skills in deep learning and cover areas of active development and research in deep learning.

At the end of Learn Keras for Deep Neural Networks, you will have a thorough understanding of deep learning principles and have practical hands-on experience in developing enterprise-grade deep learning solutions in Keras.

Master fast-paced practical deep learning concepts with math- and programming-friendly abstractions; Design, develop, train, validate, and deploy deep neural networks using the Keras framework; Use best practices for debugging and validating deep learning models; Deploy and integrate deep learning as a service into a larger software service or product; Extend deep learning principles into other popular frameworks.





Similar Books


Applied Deep Learning

Applied Deep Learning

by Umberto Michelucci

Work with advanced topics in deep learning, such as optimization algorithms, hyper-parameter tuning, dropout, and error analysis as well as strategies to address typical problems encountered when training deep neural networks. You'll begin by studying the activation functions mostly with a single neuron (ReLu, sigmoid, and Swish), seeing ...

Price:  $31.75  |  Publisher:  Apress  |  Release:  2018

Keras Deep Learning Cookbook

Keras Deep Learning Cookbook

by Rajdeep Dua, Manpreet Singh Ghotra

Keras has quickly emerged as a popular deep learning library. Written in Python, it allows you to train convolutional as well as recurrent neural networks with speed and accuracy.The Keras Deep Learning Cookbook shows you how to tackle different problems encountered while training efficient deep learning models, with the help of the popul...

Price:  $34.99  |  Publisher:  Packt Publishing  |  Release:  2018

Deep Learning with TensorFlow, 2nd Edition

Deep Learning with TensorFlow, 2nd Edition

by Giancarlo Zaccone, Md. Rezaul Karim

Deep learning is a branch of machine learning algorithms based on learning multiple levels of abstraction. Neural networks, which are at the core of deep learning, are being used in predictive analytics, computer vision, natural language processing, time series forecasting, and to perform a myriad of other complex tasks.This book is conce...

Price:  $31.99  |  Publisher:  Packt Publishing  |  Release:  2018

Neural Network Programming with Java

Neural Network Programming with Java

by Alan M.F. Souza, Fabio M. Soares

Vast quantities of data are produced every second. In this context, neural networks become a powerful technique to extract useful knowledge from large amounts of raw, seemingly unrelated data. One of the most preferred languages for neural network programming is Java as it is easier to write code using it, and most of the most popular neu...

Price:  $35.99  |  Publisher:  Packt Publishing  |  Release:  2016

Learning IPython for Interactive Computing and Data Visualization

Learning IPython for Interactive Computing and Data Visualization

by Cyrille Rossant

You already use Python as a scripting language, but did you know it is also increasingly used for scientific computing and data analysis? Interactive programming is essential in such exploratory tasks and IPython is the perfect tool for that. Once you've learnt it, you won't be able to live without it.Learning IPython for Interactive Comp...

Price:  $14.81  |  Publisher:  Packt Publishing  |  Release:  2013

Deep Learning for Natural Language Processing

Deep Learning for Natural Language Processing

by Palash Goyal, Sumit Pandey, Karan Jain

Discover the concepts of deep learning used for natural language processing (NLP), with full-fledged examples of neural network models such as recurrent neural networks, long short-term memory networks, and sequence-2-sequence models.You'll start by covering the mathematical prerequisites and the fundamentals of deep learning and NLP with...

Price:  $25.96  |  Publisher:  Apress  |  Release:  2018

Deep Learning By Example

Deep Learning By Example

by Ahmed Menshawy

Deep learning is a popular subset of machine learning, and it allows you to build complex models that are faster and give more accurate predictions. This book is your companion to take your first steps into the world of deep learning, with hands-on examples to boost your understanding of the topic.This book starts with a quick overview of...

Price:  $31.99  |  Publisher:  Packt Publishing  |  Release:  2018

Hands-On Transfer Learning with Python

Hands-On Transfer Learning with Python

by Dipanjan Sarkar, Raghav Bali, Tamoghna Ghosh

Transfer learning is a machine learning (ML) technique where knowledge gained during training a set of problems can be used to solve other similar problems.The purpose of this book is two-fold; firstly, we focus on detailed coverage of deep learning (DL) and transfer learning, comparing and contrasting the two with easy-to-follow concepts...

Price:  $44.99  |  Publisher:  Packt Publishing  |  Release:  2018