TensorFlow Machine Learning Projects
10 real-world projects on computer vision, machine translation, chatbots, and reinforcement learning
Price | $34.99 - $39.91
|
Rating | |
Authors | Ankit Jain, Armando Fandango, Amita Kapoor |
Publisher | Packt Publishing |
Published | 2018 |
Pages | 322 |
Language | English |
Format | Paper book / ebook (PDF) |
ISBN-10 | 1789132215 |
ISBN-13 | 9781789132212 |
TensorFlow has transformed the way machine learning is perceived. TensorFlow Machine Learning Projects teaches you how to exploit the benefits - simplicity, efficiency, and flexibility - of using TensorFlow in various real-world projects. With the help of this book, you'll not only learn how to build advanced projects using different datasets but also be able to tackle common challenges using a range of libraries from the TensorFlow ecosystem.
To start with, you'll get to grips with using TensorFlow for machine learning projects; you'll explore a wide range of projects using TensorForest and TensorBoard for detecting exoplanets, TensorFlow.js for sentiment analysis, and TensorFlow Lite for digit classification.
As you make your way through the book, you'll build projects in various real-world domains, incorporating natural language processing (NLP), the Gaussian process, autoencoders, recommender systems, and Bayesian neural networks, along with trending areas such as Generative Adversarial Networks (GANs), capsule networks, and reinforcement learning. You'll learn how to use the TensorFlow on Spark API and GPU-accelerated computing with TensorFlow to detect objects, followed by how to train and develop a recurrent neural network (RNN) model to generate book scripts.
By the end of this book, you'll have gained the required expertise to build full-fledged machine learning projects at work.
- Ankit Jain (2 books)
- Armando Fandango (2 books)
- Amita Kapoor (3 books)
3 5 1
Similar Books
by Xuanyi Chew
Go is the perfect language for machine learning; it helps to clearly describe complex algorithms, and also helps developers to understand how to run efficient optimized code. This book will teach you how to implement machine learning in Go to make programs that are easy to deploy and code that is not only easy to understand and debug, but...
Price: $44.88 | Publisher: Packt Publishing | Release: 2018
by Yoon Hyup Hwang
Machine learning is applied in almost all kinds of real-world surroundings and industries, right from medicine to advertising; from finance to scientifc research. This book will help you learn how to choose a model for your problem, how to evaluate the performance of your models, and how you can use C# to build machine learning models for...
Price: $41.63 | Publisher: Packt Publishing | Release: 2018
by Nick Pentreath
Apache Spark is a framework for distributed computing that is designed from the ground up to be optimized for low latency tasks and in-memory data storage. It is one of the few frameworks for parallel computing that combines speed, scalability, in-memory processing, and fault tolerance with ease of programming and a flexible, expressive, ...
Price: $34.99 | Publisher: Packt Publishing | Release: 2015
TensorFlow Machine Learning Cookbook, 2nd Edition
by Nick McClure
TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach you how to use TensorFlow for complex data computations and allow you to dig deeper and gain more insights into your data than ever before.With the help of this book, you will work with recipes for training models, model...
Price: $34.92 | Publisher: Packt Publishing | Release: 2018
Mastering Azure Machine Learning, 2nd Edition
by Christoph Korner, Marcel Alsdorf
Azure Machine Learning is a cloud service for accelerating and managing the machine learning (ML) project life cycle that ML professionals, data scientists, and engineers can use in their day-to-day workflows. This book covers the end-to-end ML process using Microsoft Azure Machine Learning, including data preparation, performing and logg...
Price: $41.99 | Publisher: Packt Publishing | Release: 2022
Machine Learning on Kubernetes
by Faisal Masood, Ross Brigoli
MLOps is an emerging field that aims to bring repeatability, automation, and standardization of the software engineering domain to data science and machine learning engineering. By implementing MLOps with Kubernetes, data scientists, IT professionals, and data engineers can collaborate and build machine learning solutions that deliver bus...
Price: $44.99 | Publisher: Packt Publishing | Release: 2022
Python Machine Learning Projects
by Lisa Tagliaferri, Michelle Morales, Ellie Birkbeck, Alvin Wan
As machine learning is increasingly leveraged to find patterns, conduct analysis, and make decisions - sometimes without final input from humans who may be impacted by these findings - it is crucial to invest in bringing more stakeholders into the fold. This book of Python projects in machine learning tries to do just that: to equip the d...
Free ebook | Publisher: DigitalOcean | Release: 2019
Machine Learning Projects for .NET Developers
by Mathias Brandewinder
Machine Learning Projects for .NET Developers shows you how to build smarter .NET applications that learn from data, using simple algorithms and techniques that can be applied to a wide range of real-world problems. You'll code each project in the familiar setting of Visual Studio, while the machine learning logic uses F#, a language...
Price: $49.99 | Publisher: Apress | Release: 2015