
www.itbook.store/books/9780134694283

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134694283
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134694283
https://plusone.google.com/share?url=http://www.informit.com/title/9780134694283
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134694283
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134694283/Free-Sample-Chapter
https://itbook.store/books/9780134694283


OpenACCTM for  
Programmers

chandra-color.indb   1 8/13/2017   4:11:52 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


This page intentionally left blank 

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


OpenACCTM for 
Programmers
Concepts and Strategies

Edited by 

Sunita Chandrasekaran 

Guido Juckeland

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town 
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City 
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

chandra-color.indb   3 8/13/2017   4:12:05 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those 
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial 
capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and 
assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or 
arising out of the use of the information or programs contained herein.

OpenACC is a trademark of NVIDIA Corporation.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; 
custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact 
our corporate sales department at corpsales@pearsoned. com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2017945500

Copyright © 2018 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained 
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, 
electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms and the appropriate 
contacts within the Pearson Education Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-469428-3 
ISBN-10: 0-13-469428-7

1  17

chandra-color.indb   4 8/13/2017   4:12:05 PM

www.itbook.store/books/9780134694283

mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearsoned.com/permissions/
corpsales@pearsoned. com
https://itbook.store/books/9780134694283


To all students, programmers, and computational scientists 

 hungry for knowledge and discoveries— 

may their work make this world a more open, tolerant,  

peaceful, livable, and lovable place for all of us,  

regardless of gender, origin, race, or belief!

chandra-color.indb   5 8/13/2017   4:12:05 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


This page intentionally left blank 

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


vii

Contents

Foreword   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   xv

Preface  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  xxi

Acknowledgments  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                    xxiii

About the Contributors   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    xxv

Chapter 1:  OpenACC in a Nutshell   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    1

1.1  OpenACC Syntax  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                     3

1.1.1  Directives   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                      3

1.1.2  Clauses   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  4

1.1.3  API Routines and Environment Variables   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  5

1.2  Compute Constructs   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  6

1.2.1  Kernels  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  6

1.2.2  Parallel   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                       8

1.2.3  Loop   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                         8

1.2.4  Routine   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  9

1.3  The Data Environment   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   11

1.3.1  Data Directives  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                  12

1.3.2  Data Clauses  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                   12

1.3.3  The Cache Directive  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                               13

1.3.4  Partial Data Transfers   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   14

1.4  Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                        15

chandra-color.indb   7 8/13/2017   4:12:05 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


viii

Contents

1.5 Exercises   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                        15

Chapter 2:  Loop-Level Parallelism   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  17

2.1 Kernels Versus Parallel Loops   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   18

2.2 Three Levels of Parallelism   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                             21

2.2.1  Gang, Worker, and Vector Clauses  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   22

2.2.2  Mapping Parallelism to Hardware   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                      23

2.3 Other Loop Constructs   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                24

2.3.1  Loop Collapse   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   24

2.3.2  Independent Clause  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                              25

2.3.3  Seq and Auto Clauses   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   27

2.3.4  Reduction Clause   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                28

2.4 Summary   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                        30

2.5 Exercises   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                        31

Chapter 3:  Programming Tools for OpenACC   .   .   .   .   .   .   .   .   .   .   .  33

3.1 � Common Characteristics of Architectures   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   34

3.2 Compiling OpenACC Code   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   35

3.3 �Performance Analysis of OpenACC Applications  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                 36

3.3.1  Performance Analysis Layers and Terminology   .  .  .  .  .  .  .  .  .  .  .  .  .              37

3.3.2  Performance Data Acquisition   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   38

3.3.3  Performance Data Recording and Presentation   .  .  .  .  .  .  .  .  .  .  .  .  .              39

3.3.4  The OpenACC Profiling Interface   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                       39

3.3.5  Performance Tools with OpenACC Support  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                 41

3.3.6  The NVIDIA Profiler   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                               41

3.3.7 � The Score-P Tools Infrastructure for Hybrid Applications   .  .  .  .  .  .  .        44

3.3.8  TAU Performance System   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                           48

chandra-color.indb   8 8/13/2017   4:12:05 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


		  Contents

ix

3.4 �Identifying Bugs in OpenACC Programs   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                      51

3.5 Summary   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                        53

3.6 Exercises   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                        54

Chapter 4:  Using OpenACC for Your First Program   .   .   .   .   .   .   .    59

4.1 Case Study   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   59

4.1.1  Serial Code   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                    61

4.1.2  Compiling the Code   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                               67

4.2 Creating a Naive Parallel Version  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                          68

4.2.1  Find the Hot Spot   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   68

4.2.2  Is It Safe to Use kernels?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                           69

4.2.3  OpenACC Implementations   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   69

4.3 Performance of OpenACC Programs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                        71

4.4 An Optimized Parallel Version  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   73

4.4.1  Reducing Data Movement   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   73

4.4.2  Extra Clever Tweaks  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   75

4.4.3  Final Result  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   76

4.5 Summary   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                        78

4.6 Exercises   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                        79

Chapter 5:  Compiling OpenACC   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   81

5.1  The Challenges of Parallelism   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   82

5.1.1  Parallel Hardware  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                82

5.1.2  Mapping Loops  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                  83

5.1.3  Memory Hierarchy   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   85

5.1.4  Reductions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                    86

5.1.5  OpenACC for Parallelism  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                            87

chandra-color.indb   9 8/13/2017   4:12:05 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


x

Contents

5.2 Restructuring Compilers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                               88

5.2.1  What Compilers Can Do   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   88

5.2.2  What Compilers Can’t Do  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                           90

5.3 Compiling OpenACC  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                  92

5.3.1  Code Preparation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                92

5.3.2  Scheduling   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                    93

5.3.3  Serial Code  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                    94

5.3.4  User Errors  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                   95

5.4 Summary   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                        97

5.5 Exercises   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                        97

Chapter 6:  Best Programming Practices   .   .   .   .   .   .   .   .   .   .   .   .   .  101

6.1 General Guidelines   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    102

6.1.1  Maximizing On-Device Computation   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    103

6.1.2  Optimizing Data Locality   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                           103

6.2 Maximize On-Device Compute  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                           105

6.2.1  Atomic Operations  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                               105

6.2.2  Kernels and Parallel Constructs   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                      106

6.2.3  Runtime Tuning and the If Clause  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                      107

6.3 Optimize Data Locality   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    108

6.3.1  Minimum Data Transfer   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    109

6.3.2  Data Reuse and the Present Clause   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    110

6.3.3  Unstructured Data Lifetimes   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    111

6.3.4  Array Shaping   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                  111

6.4 A Representative Example  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                             112

6.4.1  Background: Thermodynamic Tables   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    112

6.4.2  Baseline CPU Implementation   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    113

chandra-color.indb   10 8/13/2017   4:12:05 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


		  Contents

xi

6.4.3  Profiling  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                      113

6.4.4  Acceleration with OpenACC   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                          114

6.4.5  Optimized Data Locality   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    116

6.4.6  Performance Study  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                               117

6.5 Summary  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  118

6.6 Exercises   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                        119

Chapter 7:  OpenACC and Performance Portability   .   .   .   .   .   .   .    121

7.1  Challenges   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    121

7.2  Target Architectures   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    123

7.2.1  Compiling for Specific Platforms   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                      123

7.2.2  x86_64 Multicore and NVIDIA   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                        123

7.3  OpenACC for Performance Portability   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                      124

7.3.1  The OpenACC Memory Model    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                        124

7.3.2  Memory Architectures   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                            125

7.3.3  Code Generation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                125

7.3.4  Data Layout for Performance Portability   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    126

7.4 � Code Refactoring for Performance Portability   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                 126

7.4.1  HACCmk  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                     127

7.4.2  Targeting Multiple Architectures   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                      128

7.4.3  OpenACC over NVIDIA K20x GPU   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                      130

7.4.4  OpenACC over AMD Bulldozer Multicore  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                  130

7.5 Summary   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                       132

7.6 Exercises   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                       133

Chapter 8:  Additional Approaches to Parallel Programming    .  135

8.1 Programming Models  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                135

chandra-color.indb   11 8/13/2017   4:12:05 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


xii

Contents

8.1.1  OpenACC   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    138

8.1.2  OpenMP   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                     138

8.1.3  CUDA  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                       139

8.1.4  OpenCL   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    139

8.1.5  C++ AMP  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                     140

8.1.6  Kokkos  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 140

8.1.7  RAJA  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                        141

8.1.8  Threading Building Blocks   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                           141

8.1.9  C++17   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    142

8.1.10  Fortran 2008   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    142

8.2 Programming Model Components   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                        142

8.2.1  Parallel Loops   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                 143

8.2.2  Parallel Reductions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                              145

8.2.3  Tightly Nested Loops   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                              147

8.2.4  Hierarchical Parallelism (Non-Tightly Nested Loops)  .  .  .  .  .  .  .  .  .          149

8.2.5  Task Parallelism  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                 151

8.2.6  Data Allocation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                 152

8.2.7  Data Transfers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                 153

8.3 A Case Study  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                     155

8.3.1  Serial Implementation   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    156

8.3.2  The OpenACC Implementation   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    157

8.3.3  The OpenMP Implementation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                        158

8.3.4  The CUDA Implementation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                          159

8.3.5  The Kokkos Implementation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                         163

8.3.6  The TBB Implementation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                           165

8.3.7  Some Performance Numbers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                         167

chandra-color.indb   12 8/13/2017   4:12:05 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


		  Contents

xiii

8.4 Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                       170

8.5 Exercises   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                       170

Chapter 9:  OpenACC and Interoperability   .   .   .   .   .   .   .   .   .   .   .   .   173

9.1 � Calling Native Device Code from OpenACC  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    174

9.1.1  Example: Image Filtering Using DFTs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                     174

9.1.2  The host_data Directive and the use_device Clause  .  .  .  .  .  .  .  .  .  .           177

9.1.3  API Routines for Target Platforms   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    180

9.2 �Calling OpenACC from Native Device Code   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    181

9.3  Advanced Interoperability Topics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                         182

9.3.1  acc_map_data   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                 182

9.3.2  Calling CUDA Device Routines from OpenACC Kernels   .  .  .  .  .  .  .  .         184

9.4 Summary   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                       185

9.5 Exercises   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                       185

Chapter 10:  Advanced OpenACC   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  187

10.1 Asynchronous Operations .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                             187

10.1.1  Asynchronous OpenACC Programming  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                  190

10.1.2  Software Pipelining   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                             195

10.2 Multidevice Programming .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                             204

10.2.1  Multidevice Pipeline   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                             204

10.2.2  OpenACC and MPI   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                              208

10.3 Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                       213

10.4 Exercises .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                       213

Chapter 11:  Innovative Research Ideas Using OpenACC, Part I    215

11.1 Sunway OpenACC .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                  215

11.1.1  The SW26010 Manycore Processor   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                    216

chandra-color.indb   13 8/13/2017   4:12:06 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


xiv

Contents

11.1.2  The Memory Model in the Sunway TaihuLight   .  .  .  .  .  .  .  .  .  .  .  .  .               217

11.1.3  The Execution Model  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                             218

11.1.4  Data Management   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    219

11.1.5  Summary   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    223

11.2 �Compiler Transformation of Nested Loops for Accelerators .  .  .  .  .  .  .  .         224

11.2.1  The OpenUH Compiler Infrastructure  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                   224

11.2.2  Loop-Scheduling Transformation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                     226

11.2.3  Performance Evaluation of Loop Scheduling   .   .   .   .   .   .   .   .   .   .   .   .   .    230

11.2.4  Other Research Topics in OpenUH  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                    234

Chapter 12:  Innovative Research Ideas Using OpenACC, Part II   237

12.1 � A Framework for Directive-Based High-Performance  
Reconfigurable Computing .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 237

12.1.1  Introduction   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                  238

12.1.2  Baseline Translation of OpenACC-to-FPGA   .   .   .   .   .   .   .   .   .   .   .   .   .   .    239

12.1.3 � OpenACC Extensions and Optimization for Efficient  
FPGA Programming   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                              .  243

12.1.4  Evaluation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                   248

12.1.5  Summary   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    252

12.2 �Programming Accelerated Clusters Using XcalableACC  .  .  .  .  .  .  .  .  .  .           253

12.2.1  Introduction to XcalableMP  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                         254

12.2.2  XcalableACC: XcalableMP Meets OpenACC   .   .   .   .   .   .   .   .   .   .   .   .   .   .    257

12.2.3  Omni Compiler Implementation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                      260

12.2.4  Performance Evaluation on HA-PACS   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    262

12.2.5  Summary   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                   267

Index   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                            269

chandra-color.indb   14 8/13/2017   4:12:06 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


xv

Foreword

In the previous century, most computers used for scientific and technical program-
ming consisted of one or more general-purpose processors, often called CPUs, 
each capable of carrying out a diversity of tasks from payroll processing through 
engineering and scientific calculations. These processors were able to perform 
arithmetic operations, move data in memory, and branch from one operation 
to another, all with high efficiency. They served as the computational motor for 
desktop and personal computers, as well as laptops. Their ability to handle a wide 
variety of workloads made them equally suitable for word processing, computing 
an approximation of the value of pi, searching and accessing documents on the 
web, playing back an audio file, and maintaining many different kinds of data. The 
evolution of computer processors is a tale of the need for speed: In a drive to build 
systems that are able to perform more operations on data in any given time, the 
computer hardware manufacturers have designed increasingly complex proces-
sors. The components of a typical CPU include the arithmetic logic unit (ALU), which 
performs simple arithmetic and logical operations, the control unit (CU), which man-
ages the various components of the computer and gives instructions to the ALU, and 
cache, the high-speed memory that is used to store a program’s instructions and 
data on which it operates. Most computers today have several levels of cache, from 
a small amount of very fast memory to larger amounts of slower memory.

Application developers and users are continuously demanding more compute 
power, whether their goal is to be able to model objects more realistically, analyze 
more data in a shorter time, or for faster high-resolution displays. The growth in 
compute power has enabled, for example, significant advances in the ability of 
weather forecasters to predict our weather for days, even weeks, in the future and 
for auto manufacturers to produce fuel-efficient vehicles. In order to meet that 
demand, the computer vendors were able to shrink the size of the different fea-
tures of a processor in order to configure more transistors, the tiny devices that are 
actually responsible for performing calculations. But as they got smaller and more 
densely packed, they also got hotter and hotter. At some point, it became clear that a 
new approach was needed if faster processing speeds were to be obtained.

chandra-color.indb   15 8/13/2017   4:12:06 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


Foreword

xvi

Thus multicore processing systems were born. In such a system, the actual 
compute logic, or core, of a processor is replicated. Each core will typically have 
its own ALU and CU but may share one or more levels of cache and other memory 
with other cores. The cores may be connected in a variety of different ways and will 
typically share some hardware resources, especially memory. Virtually all of our 
laptops, desktops, and clusters today are built from multicore processors.

Each of the multiple cores in a processor is capable of independently executing all 
of the instructions (such as add, multiply, and branch) that are routinely carried 
out by a traditional, single-core processor. Hence the individual cores may be used 
to run different programs simultaneously, or they can be used collaboratively to 
speed up a single application. The actual gain in performance that is observed by 
an application running on multiple cores in parallel will depend on how well it has 
exploited the capabilities of the individual cores and how efficiently their interac-
tions have been managed. Challenges abound for the application developer who 
creates a multicore program. Ideally, each core contributes to the overall out-
come continuously. For this to (approximately) happen, the workload needs to be 
evenly distributed among cores and organized to minimize the time that any core 
is waiting, possibly because it needs data that is produced on another core. Above 
all, the programmer must try to avoid nontrivial amounts of sequential code, or 
regions where only one core is active. This insight is captured in Amdahl’s law, 
which makes the point that, no matter how fast the parallel parts of a program are, 
the speedup of the overall computation is bounded by the fraction of code that is 
sequential. To accomplish this, an application may in some cases need to be rede-
signed from scratch.

Many other computers are embedded in telephone systems, toys, printers, and 
other electronic appliances, and increasingly in household objects from washing 
machines to refrigerators. These are typically special-purpose computing chips 
that are designed to carry out a certain function or set of functions and have pre-
cisely the hardware needed for the job. Oftentimes, those tasks are all that they are 
able to perform. As the demands for more complex actions grow, some of these 
appliances today are also based on specialized multicore processors, something 
that increases the available compute power and the range of applications for which 
they are well suited.

Although the concept of computer gaming has been around since sometime in the 
1960s, game consoles for home use were first introduced a decade later and didn’t 
take off until the 1980s. Special-purpose chips were designed specifically for them, 
too. There was, and is, a very large market for gaming devices, and considerable 
effort has therefore been expended on the creation of processors that are very 

chandra-color.indb   16 8/13/2017   4:12:06 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


		  Foreword

xvii

efficient at rapidly constructing images for display on a screen or other output 
device. In the meantime, the graphics processing units (GPUs) created for this mar-
ketplace have become very powerful computing devices. Designed to meet a spe-
cific purpose, namely to enable computer gaming, they are both specialized and yet 
capable of running a great variety of games with potentially widely differing con-
tent. In other words, they are not general-purpose computers, but neither are they 
highly tuned for one very specific sequence of instructions. GPUs were designed to 
support, in particular, the rendering of sequences of images as smoothly and real-
istically as possible. When a game scene is created in response to player input—a 
series of images are produced and displayed at high speed—there is a good deal 
of physics involved. For instance, the motion of grass can be simulated in order 
to determine how the individual stalks will sway in the (virtual) wind, and shadow 
effects can be calculated and used to provide a realistic experience. Thus it is not 
too surprising that hardware designed for games might be suitable for some kinds 
of technical computing. As we shall shortly see, that is indeed the case.

Very large-scale applications such as those in weather forecasting, chemistry 
and pharmaceuticals, economics and financing, aeronautics, and digital movies, 
require significant amounts of compute power. New uses of computing that require 
exceptional hardware speed are constantly being discovered. The systems that 
are constructed to enable them are known as high-performance computing (HPC) 
clusters. They are built from a collection of computers, known as nodes, connected 
by a high-speed network. The nodes of many, although not all, such systems are 
built using essentially the same technology as our desktop systems. When multi-
core processors entered the desktop and PC markets, they were also configured as 
nodes of HPC platforms. Virtually all HPC platforms today have multicore nodes.

The developers and operators of HPC systems have been at the forefront of hard-
ware innovation for many decades, and advances made in this area form the back-
drop and motivation for the topic of this book. IBM’s Roadrunner (installed at the 
Department of Energy’s Los Alamos National Laboratory [LANL] in 2008) was the 
first computing system to achieve 1 petaflop/s (1,000 trillion floating-point calcu-
lations per second) sustained performance on a benchmark (the Linpack TOP500) 
that is widely used to assess a system’s speed on scientific application code. Its 
nodes were an example of what is often called a hybrid architecture: They not only 
introduced dual-core processors into the node but also attached Cell processors to 
the multicores. The idea was that the Cell processor could execute certain portions 
of the code much faster than the multicore. However, the code for execution on the 
Cell had to be specifically crafted for it; data had to be transferred from the multi-
core’s memory to Cell memory and the results then returned. This proved to be dif-
ficult to accomplish as a result of the tiny amount of memory available on the Cell.

chandra-color.indb   17 8/13/2017   4:12:06 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


Foreword

xviii

People at large data centers in industry as well as at public institutions had become 
concerned about the rising cost of providing computing services, especially the cost 
of the computers’ electricity consumption. Specialized cores such as the Cell were 
expected to offer higher computational efficiency on suitable application code at a 
very reasonable operating cost. Cores with these characteristics were increasingly 
referred to as accelerators. At LANL they encountered a major challenges with 
respect to the deployment of accelerators in hybrid nodes. The application code had 
to be nontrivially modified in order to exploit the Cell technology. Additionally, the 
cost of transferring data and code had to be amortized by the code speedup.

Titan (installed at the Department of Energy’s Oak Ridge National Laboratory in 
2013) was a landmark computing system. At 20 pflop/s (20,000 trillion calcula-
tions per second, peak) and with more than 18,000 nodes, it was significantly more 
powerful than Roadrunner. Its hybrid nodes, each a powerful computing system in 
its own right, were configured with 16-core AMD processors and an NVIDIA Tesla 
K20 GPU. Thus graphics processing units had entered the realm of high-performance 
computing in particular, and of scientific and technical computing in general. The 
device market had always been concerned with the power consumption of its prod-
ucts, and GPUs promised to deliver particularly high levels of performance with 
comparatively low power consumption. As with the Cell processor, however, the 
application programs required modification in order to be able to benefit from the 
GPUs. Thus the provision of a suitable programming model to facilitate the neces-
sary adaptation was of paramount importance. The programming model that was 
developed to support Titan’s users is the subject of this book.

Today, we are in an era of innovation with respect to the design of nodes for HPC 
systems. Many of the fastest machines on the planet have adopted the ideas pio-
neered by Titan, and hence GPUs are the most common hardware accelerators. 
Systems are emerging that will employ multiple GPUs in each node, sometimes 
with very fast data transfer capabilities between them. In other developments, 
technology has been under construction to enable multicore CPUs to share memory—
and hence data—directly with GPUs without data transfers. Although there will still 
be many challenges related to the efficient use of memory, this advancement will 
alleviate some of the greatest programming difficulties. Perhaps more importantly, 
many smaller HPC systems, as well as desktop and laptop systems, now come 
equipped with GPUs, and their users are successfully exploiting them for scien-
tific and technical computing. GPUs were, of course, designed to serve the gaming 
industry, and this successful adaptation would have been unthinkable without the 
success stories that resulted from the Titan installation. They, in turn, would not 
have been possible without an approachable programming model that meets the 
needs of the scientific application development community.

chandra-color.indb   18 8/13/2017   4:12:06 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


		  Foreword

xix

Other kinds of node architecture have recently been designed that similarly prom-
ise performance, programmability, and power efficiency. In particular, the idea of 
manycore processing has gained significant traction. A manycore processor is one 
that is inherently designed for parallel computing. In other words, and in contrast 
to multicore platforms, it is not designed to support general-purpose, sequential 
computing needs. As a result, each core may not provide particularly high levels 
of performance: The overall computational power that they offer is the result of 
aggregating a large number of the cores and deploying them collaboratively to 
solve a problem. To accomplish this, some of the architectural complexities of 
multicore hardware are jettisoned; this frees up space that can be used to add 
more, simpler cores. By this definition, the GPU actually has a manycore design, 
although it is usually characterized by its original purpose. Other hardware devel-
opers are taking the essential idea behind its design—a large number of cores that 
are intended to work together and are not expected to support the entire generality 
of application programs—and using it to create other kinds of manycore hardware, 
based on a different kind of core and potentially employing different mechanisms 
to aggregate the many cores. Many such systems have emerged in HPC, and inno-
vations in this area continue.

The biggest problem facing the users of Titan, its successor platforms, and other 
manycore systems is related to the memory. GPUs, and other manycores, have 
relatively small amounts of memory per core, and, in most existing platforms, 
data and code that are stored on the multicore host platform must be copied to 
the GPU via a relatively slow communications network. Worse, data movement 
expends high levels of electricity, so it needs to be kept to the minimum neces-
sary. As mentioned, recent innovations take on this problem in order to reduce the 
complexity of creating code that is efficient in terms of execution speed as well as 
power consumption. Current trends toward ever more powerful compute nodes 
in HPC, and thus potentially more powerful parallel desktops and laptops, involve 
even greater amounts of heterogeneity in the kinds of cores configured, new 
kinds of memory and memory organization, and new strategies for integrating 
the components. Although these advances will not lead to greater transparency in 
the hardware, they are expected to reduce the difficulty of creating efficient code 
employing accelerators. They will also increase the range of systems for which 
OpenACC is suitable.

—Dr. Barbara Chapman 

Professor of Applied Mathematics and Statistics,  
and of Computer Science, Stony Brook University 

Director of Mathematics and Computer Science,  
Brookhaven National Laboratory

chandra-color.indb   19 8/13/2017   4:12:06 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


This page intentionally left blank 

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


xxi

Preface

Welcome to OpenACCTM for Programmers. This book reflects a collaborative effort 
from 19 highly established authors, from academia and public research as well as 
industry. It was the common goal of the authors to assemble a collection of chap-
ters that can be used as a systematic introduction to parallel programming using 
OpenACC. We designed the chapters to build on one another so that they would 
be useful in a classroom setting. Hence, it is highly likely that you, dear reader, 
are a student who signed up for this potentially daunting parallel programming 
class. Please rest assured that you made the right choice with this class. Compute 
devices no longer come in nonparallel types, and parallel programming is more 
important than ever.

How This Book Is Organized
It was our goal to introduce OpenACC as one way to express parallelism in small 
incremental steps to not overwhelm you. Here is how the book is organized.

•	 The first three chapters serve as an introduction to the concepts behind 
OpenACC and the tools for OpenACC development.

•	 Chapters 4–7 take you through your first real-world OpenACC programs and 
reveal the magic behind compiling OpenACC programs, thereby introducing 
additional concepts.

•	 Chapter 8–10 cover advanced topics, such as alternatives to OpenACC, low-level 
device interaction, multidevice programming, and task parallelism.

•	 Chapters 11 and 12 serve as a look into the diverse field of research in OpenACC 
implementation of potential new language features.

chandra-color.indb   21 8/13/2017   4:12:06 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


Preface

xxii

Most chapters contain a few exercises at the end to review the chapter contents. 
The solutions as well as the code examples used in the chapters are available 
online at https://github.com/OpenACCUserGroup/openacc_concept_strategies_
book. This URL also presents a slide deck for each chapter to help teachers kick-
start their classes.

Join OpenACC User Group and Register 
on Informit.com

Because it has been our pleasure to work with so many friends from the (extended) 
OpenACC family on this book, we also want to extend an invitation to you to join the 
OpenACC User Group and become a family member as well. You can find access to 
all OpenACC resources at https://www.openacc.org.

Register your copy of OpenACCTM for Programmers at informit.com/register for 
convenient access to downloads, updates, and/or corrections as they become 
available (you must log in or create a new account). Enter the product ISBN 
(9780134694283) and click Submit. Once the process is complete, you will find 
any available bonus content under “Registered Products.” If you would like to 
be notified of exclusive offers on new editions and updates, please check the 
box to receive email from us.

chandra-color.indb   22 8/13/2017   4:12:06 PM

www.itbook.store/books/9780134694283

https://github.com/OpenACCUserGroup/openacc_concept_strategies_book
https://github.com/OpenACCUserGroup/openacc_concept_strategies_book
http://Informit.com
https://www.openacc.org
http://informit.com/register
https://itbook.store/books/9780134694283


xxiii

Acknowledgments

This book would not have been possible without a multitude of people who are not 
listed as contributors. The idea of the book was originated by Duncan Poole, the 
longtime OpenACC president. He wanted to offer not only online material but also 
really old-fashioned printed material so that students and interested readers can 
use this book to uncover the magic of parallel programming with OpenACC. When 
Duncan could not pursue this idea any further, he passed the torch to Sunita and 
Guido, and the result is now finally in all our hands.

We are eternally grateful to our helpers in keeping the flame going:

•	 Pat Brooks and Julia Levites from NVIDIA, for bringing us in contact with pub-
lishers and answering questions that require inside knowledge

•	 Laura Lewin and Sheri Replin—our editors—and production manager Rachel Paul 
and copy editor Betsy Hardinger for guiding us safely through the maze of actu-
ally generating a book

•	 Our chapter reviewers: Mat Colgrove, Rob Faber, Kyle Friedline, Roberto 
Gomperts, Mark Govett, Andreas Herten, Maxime Hugues, Max Katz,  
John Larson, Junjie Li, Sanhu Li, Meifeng Lin, Georgios Markomanolis, James 
Norris, Sergio Pino, Ludwig Schneider, Thomas Schwinge, Anne Severt, and 
Peter Steinbach

Some chapters would not have been possible without assistants to the contrib-
utors. Many thanks to Lingda Li, Masahiro Nakao, Hitoshi Murai, Mitsuhisa Sato, 
Akihiro Tabuchi, and Taisuke Boku!

Have we already thanked our contributors who went with us on this crazy journey, 
never let us down, and kept delivering content on time?

THANK YOU all.

—Sunita Chandrasekaran and Guido Juckeland

chandra-color.indb   23 8/13/2017   4:12:06 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


This page intentionally left blank 

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


xxv

About the Contributors

Randy Allen is director of advanced research in the Embedded Systems 
Division of Mentor Graphics. His career has spanned research, advanced 
development, and start-up efforts centered around optimizing application 
performance. Dr. Allen has consulted on or directly contributed to the devel-
opment of most HPC compiler efforts. He was the founder of Catalytic, Inc. 
(focused on compilation of MATLAB for DSPs), as well as a cofounder of Forte 
Design Systems (high-level synthesis). He has authored or coauthored more 
than 30 papers on compilers for high-performance computing, simulation, 
high-level synthesis, and compiler optimization, and he coauthored the book 
Optimizing Compilers for Modern Architectures. Dr. Allen earned his AB summa 
cum laude in chemistry from Harvard University, and his PhD in mathemati-
cal sciences from Rice University.

James Beyer is a software engineer in the NVIDIA GPU software organization. 
He is currently a cochair of the OpenMP accelerator subcommittee as well as a 
member of both the OpenMP language committee and the OpenACC technical 
committee. Prior to joining NVIDIA, James was a member of the Cray compiler 
optimization team. While at Cray he helped write the original OpenACC spec-
ification. He was also a member of the Cray OpenMP and OpenACC runtime 
teams. He received his PhD in CS/CE from the University of Minnesota.

Sunita Chandrasekaran is an assistant professor and an affiliated faculty with 
the Center for Bioinformatics & Computational Biology (CBCB) at the University 
of Delaware. She has coauthored chapters in the books Programming Models 
for Parallel Computing, published by MIT Press, and Parallel Programming with 
OpenACC, published by Elsevier, 2016. Her research areas include exploring 
high-level programming models and its language extensions, building com-
piler and runtime implementations and validating and verifying implementa-
tions and their conformance to standard specifications. She is a member of the 
OpenMP, OpenACC, and SPEC HPG communities. Dr. Chandrasekaran earned 
her PhD in computer science engineering from Nanyang Technological Univer-
sity (NTU), Singapore, for creating a high-level software stack for FPGAs.

chandra-color.indb   25 8/13/2017   4:12:09 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


About the Contributors

xxvi

Barbara Chapman is a professor of applied mathematics and statistics, and 
of computer science, at Stony Brook University, where she is also affiliated 
with the Institute for Advanced Computational Science. She also directs 
Computer Science and Mathematics Research at the Brookhaven National 
Laboratory. She has performed research on parallel programming inter-
faces and the related implementation technology for more than 20 years 
and has been involved in several efforts to develop community standards for 
parallel programming, including OpenMP, OpenACC, and OpenSHMEM. Her 
group created the OpenUH compiler that enabled practical experimentation 
with proposed extensions and implementation techniques. Dr. Chapman has 
coauthored more than 200 papers and two books. She obtained a BSc with 
1st Class Honours in mathematics from the University of Canterbury, and a 
PhD in computer science from Queen’s University of Belfast.

Robert Dietrich studied information systems technology at the TU Dresden 
and graduated in 2009. His focus as a junior researcher and his diploma 
thesis were about programming of FPGAs in the context of high-performance 
computing. After graduation, he worked as research associate on the support 
of hardware accelerators and coprocessors in known performance tools such 
as Score-P and Vampir. His research interests revolve around programming and 
analysis of scalable heterogeneous applications.

Lin Gan is a postdoctoral research fellow in the Department of Computer 
Science and Technology at Tsinghua University, and the assistant director of 
the National Supercomputing Center in Wuxi. His research interests include 
HPC solutions to geo-science applications based on hybrid platforms such as 
CPUs, FPGAs, and GPUs. Gan has a PhD in computer science from Tsinghua 
University and has been awarded the ACM Gordon Bell Prize (2016), the 
Tsinghua-Inspur Computational Geosciences Youth Talent Award (2016), and 
the most significant paper award by FPL 2015.

David Gutzwiller is a software engineer and head of high-performance com-
puting at NUMECA-USA, based in San Francisco, CA. David joined NUMECA in 
2009 after completion of a graduate degree in aerospace engineering from 
the University of Cincinnati. His graduate research was focused on the auto-
mated structural design and optimization of turbomachinery components. 
Since joining NUMECA, David has worked on the adaptation of the FINE/Turbo 
and FINE/Open CFD solvers for use in a massively parallel, heterogeneous 
environment. In collaboration with industry users, David has constructed 
frameworks for intelligently driven design and optimization leveraging lead-
ership supercomputers at scale.

chandra-color.indb   26 8/13/2017   4:12:10 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


About the Contributors

xxvii

Oscar Hernandez is a staff member of the Computer Science and Mathemat-
ics Division at Oak Ridge National Laboratory. He works on the programming 
environment for the next-generation leadership class machines for NCCS and 
OLCF. His research focuses on programming languages and compilers, static 
analysis tools, performance tools integration, and optimization techniques for 
parallel languages, especially OpenMP and accelerator directives. He rep-
resents ORNL at the OpenACC and OpenMP ARB standard organizations and 
collaborates with the SPEC/HPG effort.

Adrian Jackson is a research architect at EPCC, The University of Edinburgh. 
He leads the Intel Parallel Computing Centre at EPCC and specializes in 
optimizing applications on very large resources and novel computing hard-
ware. He is also active in support and training for high-performance com-
puting, leading the HPC Architectures course in EPCC’s MSc program in HPC 
and running a range of training courses on all aspects of parallel computing 
around the United Kingdom.

Guido Juckeland just founded the Computational Science Group at Helmholtz- 
Zentrum Dresden-Rossendorf (HZDR), Germany. He is responsible for 
designing and implementing end-to-end research IT-workflows together with 
scientists and IT experts at HZDR. His research focuses on better usability 
and programmability for hardware accelerators and application performance 
monitoring as well as optimization. He is the vice-chair of the SPEC High 
Performance Group (HPG), an active member of the OpenACC technical and 
marketing committees, and also contributes to the OpenMP tools working 
group. Guido earned his PhD in computer science from Technische Universi-
tät Dresden, Germany, for his work on trace-based performance analysis for 
hardware accelerators.

Jiri Kraus has more than eight years’ experience in HPC and scientific com-
puting. As a senior developer technology engineer with NVIDIA, he works as a 
performance expert for GPU HPC applications. At the NVIDIA Julich Applica-
tions Lab and the Power Acceleration and Design Center (PADC), Jiri collabo-
rates with developers and scientists from the Julich Supercomputing Centre, 
the Forschungszentrum Julich, and other institutions in Europe. A primary 
focus of his work is multi-GPU programming models. Before joining NVIDIA, 
Jiri worked on the parallelization and optimization of scientific and technical 
applications for clusters of multicore CPUs and GPUs at Fraunhofer SCAI in 
St. Augustin. He holds a Diploma in mathematics (minor in computer science) 
from the University of Cologne, Germany.

chandra-color.indb   27 8/13/2017   4:12:11 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


About the Contributors

xxviii

Jeff Larkin is a software engineer in NVIDIA’s Developer Technology group, 
where he specializes in porting and optimizing HPC applications to acceler-
ated computing platforms. Additionally, Jeff is involved in the development 
and adoption of the OpenMP and OpenACC specifications and has authored 
many book chapters, blog posts, videos, and seminars to advocate use of 
directive-based parallel programming. Jeff lives in Knoxville, TN, with his 
wife and son. Prior to joining NVIDIA, he was a member of the Cray Super-
computing Center of Excellence at Oak Ridge National Laboratory, where he 
worked with many application development teams including two Gordon Bell 
prize-winning teams. He has a Master’s degree in computer science from the 
University of Tennessee, and a Bachelor’s degree in computer science from 
Furman University.

Jinpil Lee received his master’s and PhD degree in computer science from 
University of Tsukuba in 2013, under the supervision of Prof. Mitsuhisa Sato. 
From 2013 to 2015, he was working at KISTI, the national supercomputing 
center in Korea, as a member of the user support department. Since 2015, he 
has worked at Riken AICS in Japan as a member of the programming environ-
ment research team. He has been doing research on parallel programming 
models and compilers for modern cluster architectures such as manycore 
clusters. Currently he is working on developing a programming environment 
for the next flagship Japanese supercomputer.

Seyong Lee is a computer scientist in the Computer Science and Mathematics 
Division at Oak Ridge National Laboratory. His research interests include par-
allel programming and performance optimization in heterogeneous comput-
ing environments, program analysis, and optimizing compilers. He received 
his PhD in electrical and computer engineering from Purdue University, West 
Lafayette, Indiana. He is a member of the OpenACC Technical Forum, and he 
has served as a program committee/guest editor/external reviewer for vari-
ous conferences, journals, and research proposals.

Graham Lopez is a researcher in the Computer Science and Mathematics 
Division at Oak Ridge National Laboratory, where he works on programming 
environments preparation with the application readiness teams for the DOE 
CORAL and Exascale computing projects. Graham has published research 
in the areas of computational materials science, application acceleration 
and benchmarking on heterogeneous systems, low-level communication 
APIs, and programming models. He earned his MS in computer science and 
PhD in physics from Wake Forest University. Prior to joining ORNL, he was 
a research scientist at Georgia Institute of Technology, where he worked on 
application and numerical algorithm optimizations for accelerators.

chandra-color.indb   28 8/13/2017   4:12:12 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


About the Contributors

xxix

Sameer Shende serves as the director of the Performance Research Lab-
oratory at the University of Oregon and the president and director of Para-
Tools, Inc. He has helped develop the TAU Performance System, the Program 
Database Toolkit (PDT), and the HPCLinux distribution. His research interests 
include performance instrumentation, measurement and analysis tools, com-
piler optimizations, and runtime systems for high-performance computing 
systems.

Xiaonan (Daniel) Tian is a GPU compiler engineer at the PGI Compilers and 
Tools group at NVIDIA, where he specializes in designing and implementing 
languages, programming models, and compilers for high-performance com-
puting. Prior to joining NVIDIA, Daniel worked with Dr. Barbara Chapman in 
her compiler research group at the University of Houston, where he received 
a PhD degree in computer science. Prior to his work at the University of 
Houston, Daniel worked on GNU tool-chain porting for a semiconductor com-
pany. His research includes computer architectures, directive-based parallel 
programming models including OpenACC and OpenMP, compiler optimization, 
and application parallelization and optimization.

Christian Trott is a high-performance computing expert with extensive expe-
rience in designing and implementing software for GPU and MIC compute 
clusters. He earned a Dr. rer. nat. from the University of Technology Ilmenau 
in theoretical physics focused on computational material research. As of 2015 
Christian is a senior member of the technical staff at the Sandia National Lab-
oratories. He is a core developer of the Kokkos programming model, with a 
large role in advising applications on adopting Kokkos to achieve performance 
portability for next-generation supercomputers. Additionally, Christian is a 
regular contributor to numerous scientific software projects including  
LAMMPS and Trilinos.

John Urbanic is a parallel computing scientist at the Pittsburgh Supercom-
puting Center, where he spends as much time as possible implementing 
extremely scalable code on interesting machines. These days that means a 
lot of MPI, OpenMP, and OpenACC. He now leads the Big Data efforts, which 
involve such things as graph analytics, machine learning, and interesting file 
systems. John frequently teaches workshops and classes on all of the above 
and is most visible as the lead for the NSF XSEDE Monthly Workshop Series, 
the Summer Boot Camp, and the International HPC Summer School on HPC 
Challenges in Computational Sciences. John graduated with physics degrees 
from Carnegie Mellon University (BS) and Pennsylvania State University (MS) 
and still appreciates working on applications that simulate real physical phe-
nomena. He is an honored recipient of the Gordon Bell Prize but still enjoys 
working on small embedded systems and real-time applications for various 
ventures. Away from the keyboard he swaps into a very different alter ego.

chandra-color.indb   29 8/13/2017   4:12:12 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


This page intentionally left blank 

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


59

Chapter 4

Using OpenACC for Your 
First Program

John Urbanic, Pittsburgh Supercomputing Center

In this chapter, you’ll parallelize real code. You will start with code that does some-
thing useful. Then you’ll consider how you might use OpenACC to speed it up. You 
will see that reducing data movement is key to achieving significant speedup, and 
that OpenACC gives you the tools to do so. By the end of the chapter you will be able 
to call yourself an OpenACC programmer—a fledgling one, perhaps, but on your 
way. Let’s jump right into it.

4.1 Case Study
You are reading a book about OpenACC programming, so it’s a safe bet the authors 
are fans of this approach to parallel programming. Although that’s a perfectly sen-
sible thing, it has its dangers. It is tempting for enthusiasts to cherry-pick examples 
that make it seem as if their favored technology is perfect for everything. Anyone 
with experience in parallel programming has seen this before. We are determined 
not to do that here.

Our example is so generically useful that it has many applications, and it is often 
used to demonstrate programming with other parallel techniques as well, such 
as the somewhat related OpenMP and the very different MPI. So, rest assured, we 
haven’t rigged the game.

chandra-color.indb   59 8/13/2017   4:12:18 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


CHAPTER 4 USING OPENACC FOR YOUR FIRST PROGRAM

60

Another reason we prefer this example is that both the “science” and the numerical 
method are intuitive. Although we will solve the Laplace equation for steady-state 
temperature distribution using Jacobi iteration, we don’t expect that you immedi-
ately know what that means.

Let’s look at the physical problem. You have a square metal plate. It is initially at 
zero degrees. This is termed, unsurprisingly, the initial conditions. You will heat 
two of the edges in an interesting pattern where you heat the lower-right corner (as 
pictured in Figure 4.1A) to 100 degrees. You control the two heating elements that 
lead from this corner such that they go steadily to zero degrees at their farthest 
edge. The other two edges you will hold at zero degrees. These four edges consti-
tute the boundary conditions.

For the metal plate, you would probably guess the ultimate solution should look 
something like Figure 4.1B.

You have a very hot corner, a very cold corner, and some kind of gradient in 
between. This is what the ultimate, numerically solved solution should look like.

If you are wondering whether this is degrees centigrade or Fahrenheit, or maybe 
Kelvin, you are overthinking the problem. If you have a mathematical method or 
numerical background, you should be interested to know that the equation that gov-
erns heat distribution is the Laplace equation:

∇2T = 0

Although this equation has many interesting applications, including electrostat-
ics and fluid flow, and many fascinating mathematical properties, it also has a 
straightforward and intuitive meaning in this context. It simply means that the value 
of interest (in our case, temperature) at any point is the average of the neighbor’s 

Metal 
Plate 

Heating 
Element 

Initial Conditions Final Steady State 

Metal 
Plate 

A B
Figure 4.1 A heated metal plate

chandra-color.indb   60 8/13/2017   4:12:18 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


61

4.1  Case Study

values. This makes sense for temperature; if you have a pebble and you put a cold 
stone on one side and a hot stone on the other, you’d probably guess that the peb-
ble would come to the average of the two. And in general, you would be right.

4.1.1  Serial Code

Let’s represent the metal plate using a grid, which becomes a typical two-dimensional 
array in code. The Laplace equation says that every point in the grid should be the 
average of the neighbors. This is the state you will solve for.

The simulation starting point—the set of initial conditions—is far from this. You 
have zero everywhere except some big jumps along the edges where the heat-
ing elements are. You want to end up with something that resembles the desired 
solution.

There are many ways you can find this solution, but let’s pick a particularly 
straightforward one: Jacobi iteration. This method simply says that if you go over 
your grid and set each element equal to the average of the neighbors, and keep 
doing this, you will eventually converge on the correct answer. You will know when 
you have reached the right answer because when you make your averaging pass, 
the values will already be averaged (the Laplace condition) and so nothing will 
happen. Of course, these are floating-point numbers, so you will pick some small 
error, which defines “nothing happening.” In this case, we will say that when no ele-
ment changes more than one-hundredth of a degree, we are done. If that isn’t good 
enough for you, you can easily change it and continue to a smaller error.

Your serial algorithm looks like this at the core.

for(i = 1; i <= HEIGHT; i++) {
    for(j = 1; j <= WIDTH; j++) {
        Temperature[i][j] = 0.25 * (Temperature_previous[i+1][j]
                                 + Temperature_previous[i-1][j]
                                 + Temperature_previous[i][j+1]
                                 + Temperature_previous[i][j-1]);
    }
}

Here it is in Fortran:

do j=1,width
    do i=1,height
        temperature(i,j) =0.25*(temperature_previous(i+1,j)&
                              + temperature_previous(i-1,j)&
                              + temperature_previous(i,j+1)&
                              + temperature_previous(i,j-1))
    enddo
enddo

chandra-color.indb   61 8/13/2017   4:12:18 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


Chapter 4	 Using OpenACC for Your First Program

62

Note that the C and Fortran code snippets are virtually identical in construction. 
This will remain true for the entire program.

This nested loop is the guts of the method and in some sense contains all the sci-
ence of the simulation. You are iterating over your metal plate in both dimensions 
and setting every interior point equal to the average of the neighbors (i.e., adding 
together and dividing by 4). You don’t change the very outside elements; those are 
the heating elements (or boundary conditions). There are a few other items in the 
main iteration loop as it repeats until convergence. Listing 4.1 shows the C code, 
and Listing 4.2 shows the Fortran code.

Listing 4.1  C Laplace code main loop

while ( worst_dt > TEMP_TOLERANCE ) {

    for(i = 1; i <= HEIGHT; i++) {
        for(j = 1; j <= WIDTH; j++) {
            Temperature[i][j] = 0.25 * (Temperature_previous[i+1][j]
                                 + Temperature_previous[i-1][j]
                                 + Temperature_previous[i][j+1]
                                 + Temperature_previous[i][j-1]);
        }
    }

    worst_dt = 0.0;

    for(i = 1; i <= HEIGHT; i++){
        for(j = 1; j <= WIDTH; j++){
            worst_dt = fmax( fabs(Temperature[i][j]-
                                  Temperature_previous[i][j]),
                             worst_dt);
            Temperature_previous[i][j] = Temperature[i][j];
        }
    }

    if((iteration % 100) == 0) {
        track_progress(iteration);
    }

    iteration++;
}

chandra-color.indb   62 8/13/2017   4:12:18 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


63

4.1  Case Study

Listing 4.2  Fortran Laplace code main loop

do while ( worst_dt > temp_tolerance )

    do j=1,width
       do i=1,height
           temperature(i,j) =0.25*(temperature_previous(i+1,j)&
                                 + temperature_previous(i-1,j)&
                                 + temperature_previous(i,j+1)&
                                 + temperature_previous(i,j-1))
        enddo
    enddo

    worst_dt=0.0

    do j=1,width
       do i=1,height
          worst_dt = max( abs(temperature(i,j) – &
                              temperature_previous(i,j)),&
                          worst_dt )
          temperature_previous(i,j) = temperature(i,j)
       enddo
    enddo

    if( mod(iteration,100).eq.0 ) then
        call track_progress(temperature, iteration)
    endif

    iteration = iteration+1

enddo

The important addition is that you have a second array that keeps the temperature 
data from the last iteration. If you tried to use one array, you would find yourself 
using some updated neighboring elements and some old neighboring elements 
from the previous iteration as you were updating points in the grid. You need to 
make sure you use only elements from the last iteration.

While you are doing this nested loop copy to your backup array (and moving all 
this data around in memory), it’s a good time to look for the worst (most changing) 
element in the simulation. When the worst element changes only by 0.01 degree, 
you know you are finished.

chandra-color.indb   63 8/13/2017   4:12:18 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


Chapter 4	 Using OpenACC for Your First Program

64

It might also be nice to track your progress as you go; it’s much better than star-
ing at a blank screen for the duration. So, every 100 iterations, let’s call a modest 
output routine.

That is all there is to it for your serial Laplace Solver. Even with the initialization 
and output code, the full program clocks in at fewer than 100 lines. (See Listing 4.3 
for the C code, and Listing 4.4 for Fortran.)

Listing 4.3  Serial Laplace Solver in C

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <sys/time.h>

#define WIDTH      1000
#define HEIGHT     1000
#define TEMP_TOLERANCE 0.01

double Temperature[HEIGHT+2][WIDTH+2];
double Temperature_previous[HEIGHT+2][WIDTH+2];

void initialize();
void track_progress(int iter);

int main(int argc, char *argv[]) {

  int i, j;
  int iteration=1;
  double worst_dt=100;
  struct timeval start_time, stop_time, elapsed_time;

  gettimeofday(&start_time,NULL);

  initialize();

  while ( worst_dt > TEMP_TOLERANCE ) {

    for(i = 1; i <= HEIGHT; i++) {
      for(j = 1; j <= WIDTH; j++) {
        Temperature[i][j] = 0.25 * (Temperature_previous[i+1][j]
                                 + Temperature_previous[i-1][j]
                                 + Temperature_previous[i][j+1]
                                 + Temperature_previous[i][j-1]);
      }
    }

    worst_dt = 0.0;

    for(i = 1; i <= HEIGHT; i++){
      for(j = 1; j <= WIDTH; j++){
         worst_dt = fmax( fabs(Temperature[i][j]-
                               Temperature_previous[i][j]),

chandra-color.indb   64 8/13/2017   4:12:18 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


65

4.1  Case Study

                          worst_dt);
         Temperature_previous[i][j] = Temperature[i][j];
      }
    }

    if((iteration % 100) == 0) {
      track_progress(iteration);
    }

    iteration++;
  }

  gettimeofday(&stop_time,NULL);
  timersub(&stop_time, &start_time, &elapsed_time);

  printf("\nMax error at iteration %d was %f\n",
          iteration-1, worst_dt);
  printf("Total time was %f seconds.\n",
          elapsed_time.tv_sec+elapsed_time.tv_usec/1000000.0);
}

void initialize(){

  int i,j;

  for(i = 0; i <= HEIGHT+1; i++){
    for (j = 0; j <= WIDTH+1; j++){
      Temperature_previous[i][j] = 0.0;
    }
  }

  for(i = 0; i <= HEIGHT+1; i++) {
    Temperature_previous[i][0] = 0.0;
    Temperature_previous[i][WIDTH+1] = (100.0/HEIGHT)*i;
  }

  for(j = 0; j <= WIDTH+1; j++) {
    Temperature_previous[0][j] = 0.0;
    Temperature_previous[HEIGHT+1][j] = (100.0/WIDTH)*j;
  }
}

void track_progress(int iteration) {

  int i;

  printf("---------- Iteration number: %d ------------\n",
          iteration);
  for(i = HEIGHT-5; i <= HEIGHT; i++) {
    printf("[%d,%d]: %5.2f  ", i, i, Temperature[i][i]);
  }
  printf("\n");
}

chandra-color.indb   65 8/13/2017   4:12:18 PM

www.itbook.store/books/9780134694283

http://elapsed_time.tv_sec+elapsed_time.tv_usec/1000000
https://itbook.store/books/9780134694283


Chapter 4	 Using OpenACC for Your First Program

66

Listing 4.4  Fortran version of serial Laplace Solver

program serial
  implicit none

  integer, parameter             :: width=1000
  integer, parameter             :: height=1000
  double precision, parameter    :: temp_tolerance=0.01

  integer                        :: i, j, iteration=1
  double precision               :: worst_dt=100.0
  real                           :: start_time, stop_time

  double precision, dimension(0:height+1,0:width+1) :: &
                              temperature, temperature_previous

  call cpu_time(start_time)

  call initialize(temperature_previous)

  do while ( worst_dt > temp_tolerance )

    do j=1,width
      do i=1,height
        temperature(i,j) = 0.25* (temperature_previous(i+1,j)&
                               + temperature_previous(i-1,j)&
                               + temperature_previous(i,j+1)&
                               + temperature_previous(i,j-1))
      enddo
    enddo

    worst_dt=0.0

    do j=1,width
      do i=1,height
        worst_dt = max( abs(temperature(i,j) – &
                            temperature_previous(i,j)),&
                        worst_dt )
        temperature_previous(i,j) = temperature(i,j)
      enddo
    enddo

    if( mod(iteration,100).eq.0 ) then
      call track_progress(temperature, iteration)
    endif

    iteration = iteration+1

  enddo

  call cpu_time(stop_time)

  print*, 'Max error at iteration ', iteration-1, ' was ', &
          worst_dt
  print*, 'Total time was ',stop_time-start_time, ' seconds.'
end program serial

chandra-color.indb   66 8/13/2017   4:12:18 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


67

4.1  Case Study

subroutine initialize( temperature_previous )
  implicit none
  integer, parameter             :: width=1000
  integer, parameter             :: height=1000
  integer                        :: i,j
  double precision, dimension(0:height+1,0:width+1) :: &
                    temperature_previous

  temperature_previous = 0.0

  do i=0,height+1
    temperature_previous(i,0) = 0.0
    temperature_previous(i,width+1) = (100.0/height) * i
  enddo

  do j=0,width+1
    temperature_previous(0,j) = 0.0
    temperature_previous(height+1,j) = ((100.0)/width) * j
  enddo
end subroutine initialize

subroutine track_progress(temperature, iteration)
  implicit none
  integer, parameter             :: width=1000
  integer, parameter             :: height=1000
  integer                        :: i,iteration

  double precision, dimension(0:height+1,0:width+1) :: &
        temperature

  print *, '------- Iteration number: ', iteration, ' ------'
  do i=5,0,-1
    write (*,'("("i4,",",i4,"):",f6.2,"  ")',advance='no') &
              height-i,width-i,temperature(height-i,width-i)
  enddo
  print *
end subroutine track_progress

4.1.2  Compiling the Code

Take a few minutes to make sure you understand the code fully. In addition to the 
main loop, you have a small bit of initialization, a timer to aid in optimizing, and a 
basic output routine. This code compiles as simply as

pgcc laplace.c

Here it is for the PGI compiler:

pgcc laplace.f90

chandra-color.indb   67 8/13/2017   4:12:18 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


Chapter 4	 Using OpenACC for Your First Program

68

We use PGI for performance consistency in this chapter. Any other standard com-
piler would work the same. If you run the resulting executable, you will see some-
thing like this:

. . .

. . .
---------- Iteration number: 3200 ------------
. . . [998,998]: 99.18  [999,999]: 99.56  [1000,1000]: 99.86
---------- Iteration number: 3300 ------------
. . . [998,998]: 99.19  [999,999]: 99.56  [1000,1000]: 99.87

Max error at iteration 3372 was 0.009995
Total time was 21.344162 seconds.

The output shows that the simulation looped 3,372 times before all the elements 
stabilized (to within our 0.01 degree tolerance). If you examine the full output, you 
can see the elements converge from their zero-degree starting point.

The times for both the C and the Fortran version will be very close here and as you 
progress throughout optimization. Of course, the time will vary depending on the 
CPU you are using. In this case, we are using an Intel Broadwell running at 3.0 GHz. 
At the time of this writing, it is a very good processor, so our eventual speedups 
won’t be compared against a poor serial baseline.

This is the last time you will look at any code outside the main loop. You will hence-
forth exploit the wonderful ability of OpenACC to allow you to focus on a small 
portion of your code—be it a single routine, or even a single loop—and ignore the 
rest. You will return to this point when you are finished.

4.2 Creating a Naive Parallel Version
In many other types of parallel programming, you would be wise to stare at your 
code and plot various approaches and alternative algorithms before you even con-
sider starting to type. With OpenACC, the low effort and quick feedback allow you to 
dive right in and try some things without much risk of wasted effort.

4.2.1  Find the Hot Spot

Almost always the first thing to do is find the hot spot: the point of highest numerical 
intensity in your code. A profiler like those you’ve read about will quickly locate and 

chandra-color.indb   68 8/13/2017   4:12:18 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


69

4.2  Creating a Naive Parallel Version

rank these spots. Often, as is the case here, it is obvious where to start. A large loop is 
a big flag, and you have two of them within the main loop. This is where we focus.

4.2.2  Is It Safe to Use kernels?

The biggest hammer in your toolbox is the kernels directive. Refer to Chapter 1 
for full details on kernels. Don’t resist the urge to put it in front of some large, 
nested loop. One nice feature about this directive is that it is safe out of the box; 
until you start to override its default behavior with additional directives, the com-
piler will be able to see whether there are any code-breaking dependencies, and it 
will make sure that the device has access to all the required data.

4.2.3  OpenACC Implementations

Let’s charge ahead and put kernels directives in front of the two big loops. The C 
and Fortran codes become the code shown in Listings 4.5 and 4.6.

Listing 4.5  C Laplace code main loop with kernels directives

while ( worst_dt > TEMP_TOLERANCE ) {

   #pragma acc kernels
   for(i = 1; i <= HEIGHT; i++) {
      for(j = 1; j <= WIDTH; j++) {
         Temperature[i][j] = 0.25 * (Temperature_previous[i+1][j]
                                 + Temperature_previous[i-1][j]
                                 + Temperature_previous[i][j+1]
                                 + Temperature_previous[i][j-1]);
      }
   }

   worst_dt = 0.0;

   #pragma acc kernels
   for(i = 1; i <= HEIGHT; i++){
      for(j = 1; j <= WIDTH; j++){
         worst_dt = fmax( fabs(Temperature[i][j]-
                               Temperature_previous[i][j]),
                          worst_dt);
        Temperature_previous[i][j] = Temperature[i][j];
      }
   }

   if((iteration % 100) == 0) {
      track_progress(iteration);
   }

   iteration++;
}

chandra-color.indb   69 8/13/2017   4:12:18 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


Chapter 4	 Using OpenACC for Your First Program

70

Listing 4.6  Fortran Laplace code main loop with kernels directives

do while ( worst_dt > temp_tolerance )

   !$acc kernels
   do j=1,width
      do i=1,height
         temperature(i,j) =0.25*(temperature_previous(i+1,j)&
                               + temperature_previous(i-1,j)&
                               + temperature_previous(i,j+1)&
                               + temperature_previous(i,j-1))
      enddo
   enddo
   !$acc end kernels

   worst_dt=0.0

   !$acc kernels
   do j=1,width
      do i=1,height
         worst_dt = max( abs(temperature(i,j) – &
                             temperature_previous(i,j)),&
                         worst_dt )
         temperature_previous(i,j) = temperature(i,j)
      enddo
   enddo
   !$acc end kernels

   if( mod(iteration,100).eq.0 ) then
      call track_progress(temperature, iteration)
   endif

   iteration = iteration+1

enddo

The compilation is also straightforward. All you do is activate the directives using, 
for example, the PGI compiler, for the C version:

pgcc –acc laplace.c

Or for the Fortran version:

pgf90 –acc laplace.f90

If you do this, the executable pops right out and you can be on your way. However, you 
probably want to verify that your directives actually did something. OpenACC’s defense 
against compiling a loop with dependencies or other issues is to simply ignore the 
directives and deliver a “correct,” if unaccelerated, executable. With the PGI compiler, 
you can request feedback on the C OpenACC compilation by using this:

pgcc –acc -Minfo=acc laplace.c

chandra-color.indb   70 8/13/2017   4:12:18 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


71

4.3  Performance of OpenACC Programs

Here it is for Fortran:

pgf90 –acc -Minfo=acc laplace.f90

Similar options are available for other compilers. Among the informative output, 
you see the “Accelerator kernel generated” message for both of your kernels- 
enabled loops. You may also notice that a reduction was automatically generated 
for worst_dt. It was nice of the compiler to catch that and generate the reduction 
automatically. So far so good.

If you run this executable, you will get something like this:

. . .

. . .
---------- Iteration number: 3200 ------------
. . .[998,998]: 99.18  [999,999]: 99.56  [1000,1000]: 99.86
---------- Iteration number: 3300 ------------
. . .[998,998]: 99.19  [999,999]: 99.56  [1000,1000]: 99.87

Max error at iteration 3372 was 0.009995
Total time was 35.258830 seconds.

This was executed on an NVIDIA K80, the fastest GPU available at the time of this 
writing. For our efforts thus far, we have managed to slow down the code by about 
70 percent, which is not impressive at all.

4.3 Performance of OpenACC Programs
Why did the code slow down? The first suspect that comes to mind for any experi-
enced GPU programmer is data movement. The device-to-host memory bottleneck 
is usually the culprit for such a disastrous performance as this. That indeed turns 
out to be the case.

You could choose to use a sophisticated performance analysis tool, but in this case, 
the problem is so egregious you can probably find enlightenment with something 
as simple as the PGI environment profiling option:

export PGI_ACC_TIME=1

If you run the executable again with this option enabled, you will get additional 
output, including this:

Accelerator Kernel Timing data
 main  NVIDIA  devicenum=0
  time(us): 11,460,015

chandra-color.indb   71 8/13/2017   4:12:19 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


Chapter 4	 Using OpenACC for Your First Program

72

  31: compute region reached 3372 times
   33: kernel launched 3372 times
    grid: [32x250]  block: [32x4]
     device time(us): total=127,433 max=54 min=37 avg=37
    elapsed time(us): total=243,025 max=2,856 min=60 avg=72
  31: data region reached 6744 times
   31: data copyin transfers: 3372
    device time(us): total=2,375,875 max=919 min=694 avg=704
   39: data copyout transfers: 3372
    device time(us): total=2,093,889 max=889 min=616 avg=620
  41: compute region reached 3372 times
   41: data copyin transfers: 3372
    device time(us): total=37,899 max=2,233 min=6 avg=11
   43: kernel launched 3372 times
    grid: [32x250]  block: [32x4]
     device time(us): total=178,137 max=66 min=52 avg=52
    elapsed time(us): total=297,958 max=2,276 min=74 avg=88
   43: reduction kernel launched 3372 times
    grid: [1]  block: [256]
     device time(us): total=47,492 max=25 min=13 avg=14
    elapsed time(us): total=136,116 max=1,011 min=32 avg=40
   43: data copyout transfers: 3372
    device time(us): total=60,892 max=518 min=13 avg=18
  41: data region reached 6744 times
   41: data copyin transfers: 6744
    device time(us): total=4,445,950 max=872 min=651 avg=659
   49: data copyout transfers: 3372
    device time(us): total=2,092,448 max=1,935 min=616 avg=620

The problem is not subtle. The line numbers 31 and 41 correspond to your two 
kernels directives. Each resulted in a lot of data transfers, which ended up 
using most of the time. Of the total sampled time of 11.4 seconds (everything is in 
microseconds here), well over 10s was spent in the data transfers, and very little 
time in the compute region. That is no surprise given that we can see multiple data 
transfers for every time a kernels construct was actually launched. How did this 
happen?

Recall that the kernels directive does the safe thing: When in doubt, copy any 
data used within the kernel to the device at the beginning of the kernels region, 
and off at the end. This paranoid approach guarantees correct results, but it can be 
expensive. Let’s see how that worked in Figure 4.2.

What OpenACC has done is to make sure that each time you call a device kernels, 
any involved data is copied to the device, and at the end of the kernels region, it is 
all copied back. This is safe but results in two large arrays getting copied back and 
forth twice for each iteration of the main loop. These are two 1,000 × 1,000 double- 
precision arrays, so this is (2 arrays) × (1,000 × 1,000 grid points/array) ×  
(8 bytes/grid point) = 16MB of memory copies every iteration.

chandra-color.indb   72 8/13/2017   4:12:19 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


73

4.4 AN OPTIMIZED PARALLEL VERSION

Note that we ignore worst_dt. In general, the cost of copying an 8-byte scalar 
(non-array) variable is negligible.

4.4 An Optimized Parallel Version
So far we have marked the parallel regions for acceleration. Now it is time to intro-
duce data regions to optimize data transfers.

4.4.1 REDUCING DATA MOVEMENT

Now that you have identified the problem, you know you must apply some data 
directives. OpenACC lets you completely control the residency of the data. It has 
routines to set up data during program initialization, to automatically migrate 
data going into or out of any region or block of code, and to update at any given 
point in the code. So don’t worry about what OpenACC can do. Worry about what 
you want to do.

while (worst_dt > TEMP_TOLERANCE ) {   

#pragma acc kernels 
for(i = 1; i <= HEIGHT; i++) { 
   for(j = 1; j <= WIDTH; j++) { 
        Temperature[i][j] = 0.25 … 

worst_dt > TEMP_TOLERANCE 

Temperature, Temperature_previous 
on host 

Temperature, Temperature_previous 
on host 

#pragma 

Temperature, Temperature_previous  
on device 

        Temperature[i][j] = 0.25 … 

Temperature, Temperature_previous 
on device 

#pragma 
for(i = 1; i <= HEIGHT; i++) { 
#pragma 

Temperature, 

Temperature_previous
4 copies happen 
every iteration of 
the outer while 

loop! Temperature, Temperature_previous 
on host 

Temperature, Temperature_previous 
on host 

Temperature, Temperature_previous  
on device 

Temperature, Temperature_previous  
on device 

the outer while 
loop! 

Temperature, 

Temperature_previous

}   

worst_dt = 0.0; 

#pragma acc kernels 
for(i = 1; i <= HEIGHT; i++) { 
   for(j = 1; j <= WIDTH; j++) { 
      worst_dt = fmax( fabs 
      Temperature-previous[i][j] = Temp… 

Figure 4.2 Multiple data copies per iteration

chandra-color.indb   73 8/13/2017   4:12:20 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


Chapter 4	 Using OpenACC for Your First Program

74

Pause here and see whether you can come up with a strategy to minimize data 
movement. What directives does that strategy translate to? Feel free to experiment 
with the code on your own before reading the answer, which is provided later.

In general, we want the entire simulation to be executed on the device. That is 
certainly the ideal case and eliminates all the data transfer costs. But most of the 
time you can’t achieve that objective; the entire problem may not fit in device mem-
ory, there may be portions of the code that must execute on the host, or IO may be 
required at some point.

But let’s start with that objective in mind. If you load your data onto the device at 
the beginning of the main loop, when do you next need it on the host? Think the first 
iteration through as a start: there is no reason for the two big arrays to return to 
the host between the two kernels. They can stay on the device.

What about worst_dt? It is insignificant in size, so you don’t care what it does as 
long as it is available when needed, as per the default kernels behavior. Once 
you start to use data regions, you uncouple the execution from the data regions 
and could prevent unnecessary data movement. Because there is no real perfor-
mance gain, you won’t override the default by including it in any data directives. 
It will continue to be set to 0 on the host, get to a maximum in the second nested 
loop (actually a reduction from all of the “local maximums” found by each process-
ing element (PE) on the device), and get copied back to the host so that it can be 
checked as the condition to continue the while loop every iteration. Again, this is 
all default kernels behavior, so we don’t worry about the details.

After that, you run into the output routine. It isn’t an issue for the first 100 iterations, 
so let’s ignore it for a moment and continue around the loop for the second itera-
tion. At the start of the second iteration, you would like both big arrays to be on the 
device. That is just where you left them! So it looks as if you can just keep the data 
on the device between iterations of the while loop. The obvious data directives 
would be data copy clauses applied to the while loop.

// C
#pragma acc data copy(Temperature_previous, Temperature)
while ( worst_dt > TEMP_TOLERANCE ) {
. . .

! Fortran
!$acc data copy(temperature_previous, temperature)
do while ( worst_dt > temp_tolerance )
. . .

This is indeed the key. It will significantly speed up the code, and you will get the 
right answer at the end.

chandra-color.indb   74 8/13/2017   4:12:20 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


75

4.4  An Optimized Parallel Version

However, you do need to address that track_progess() output routine that 
gets invoked every 100 iterations. You need for the temperature to be back on the 
host at that point. Otherwise, the host copy of temperature will remain at the 
initial condition of all zeros until the data copy happens at the termination of the 
while loop, which is the end of the data region. Many programmers encounter this 
oversight when they apply the data directives, run the code to a quick completion 
in the expected 3,372 iterations, and assume victory, only to notice that all of their 
printed output has been zeros. Make sure you understand exactly how this hap-
pens, because it is a good example of what can occur when we decouple the data 
and execution regions using data directives.

The fix is easy. You just need an update at that point.

// C
. . .
if((iteration % 100) == 0) {
   #pragma acc update host(Temperature)
   track_progress(iteration);
}
. . .

! Fortran
. . .
if( mod(iteration,100).eq.0 ) then
   !$acc update host(temperature)
   call track_progress(temperature, iteration)
endif
. . .

It is important to realize that all the tools for convenient data management are 
already in OpenACC. Once you decide how you want to manage the data concep-
tually, some combination of data copy, declare, enter/exit, and update 
clauses should allow you to accomplish that as you wish. If you find yourself fight-
ing the scope or blocking of your code to make the directives match your wishes, 
take a breath and ask yourself whether the other clauses will allow you to accom-
plish this more naturally.

4.4.2  Extra Clever Tweaks

There is one more tweak you can apply to the code before you declare victory. If 
you look a little more carefully at the code, you might notice that you don’t actually 
need to copy both big arrays into the while loop. It happens that temperature_
previous is the array that is initialized in the initialization routine, and temperature 
uses these values to set itself in the first iteration. So you don’t need to copy it in. 

chandra-color.indb   75 8/13/2017   4:12:20 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


Chapter 4	 Using OpenACC for Your First Program

76

Continuing with that line of thought, you don’t need for both arrays to exit the while 
loop with the final data; one will suffice. Once again, temperature_previous has the 
correct values so that you can abandon temperature on the device. This means that 
temperature is really just a temporary array used on the device, and there is no need 
to copy it in or out. That is exactly what the data create clause is for.

Note that this last optimization is really not very important. The big win was recog-
nizing that you were copying the large arrays needlessly every iteration. You were 
copying two large arrays into and out of each of the two kernels each loop:

(2 arrays)  ×  (in and out)  × (2 pairs of loops) × (3,372 iterations) = 26,976 copies

Getting rid of all those transfers with a data copy was the big win. Using data 
create instead of copy for the Temperature array saved one copy in at the 
beginning of the entire run, and one copy out at the end. It wasn’t significant. So 
don’t feel bad if you didn’t spot that opportunity.

Likewise, using an update for the track progress routine caused 33 transfers 
over the course of the run. It was a quick fix for the problem. In comparison to the 
original 26,876 copies, having 33 remaining is nothing. However now that you are 
down to one copy in and one copy out for the whole run, it does have an impact on 
the order of 5 percent of the new and significantly reduced total run time. Given the 
huge performance improvement you have achieved, you may not care, but for those 
of you seeking perfection, see Exercise 1 at the end of the chapter.

4.4.3  Final Result

Listing 4.7 shows the final C version of the OpenACC enabled routine, and Listing 
4.8 shows the Fortran version.

Listing 4.7  Final C OpenACC Laplace code main loop

#pragma acc data copy(Temperature_previous), create(Temperature)
while ( worst_dt > TEMP_TOLERANCE ) {

   #pragma acc kernels
   for(i = 1; i <= HEIGHT; i++) {
      for(j = 1; j <= WIDTH; j++) {
         Temperature[i][j] = 0.25 * (Temperature_previous[i+1][j]
                                 + Temperature_previous[i-1][j]
                                 + Temperature_previous[i][j+1]
                                 + Temperature_previous[i][j-1]);
      }
   }

   worst_dt = 0.0;

chandra-color.indb   76 8/13/2017   4:12:20 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


77

4.4  An Optimized Parallel Version

   #pragma acc kernels
   for(i = 1; i <= HEIGHT; i++){
      for(j = 1; j <= WIDTH; j++){
         worst_dt = fmax( fabs(Temperature[i][j]-
                               Temperature_previous[i][j]),
                          worst_dt);
         Temperature_previous[i][j] = Temperature[i][j];
      }
   }

   if((iteration % 100) == 0) {
   #pragma acc update host(Temperature)
      track_progress(iteration);
   }

   iteration++;
}

Listing 4.8  Final Fortran OpenACC Laplace code main loop

!$acc data copy(temperature_previous), create(temperature)
do while ( worst_dt > temp_tolerance )

   !$acc kernels
   do j=1,width
      do i=1,height
         temperature(i,j) =0.25*(temperature_previous(i+1,j)&
                               + temperature_previous(i-1,j)&
                               + temperature_previous(i,j+1)&
                               + temperature_previous(i,j-1))
      enddo
   enddo
   !$acc end kernels

   worst_dt=0.0

   !$acc kernels
   do j=1,width
      do i=1,height
         worst_dt = max( abs(temperature(i,j) – &
                             temperature_previous(i,j)),&
                         worst_dt )
         temperature_previous(i,j) = temperature(i,j)
      enddo
   enddo
   !$acc end kernels

   if( mod(iteration,100).eq.0 ) then
      !$acc update host(temperature)
      call track_progress(temperature, iteration)
   endif

   iteration = iteration+1

enddo
!$acc end data

chandra-color.indb   77 8/13/2017   4:12:20 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


Chapter 4	 Using OpenACC for Your First Program

78

You compile exactly as before. If you again use the compiler verbose information 
option (-Minfo=acc for PGI), you see that the generated copies are now outside 
the while loop, as intended. Here is the result.

. . .

. . .
---------- Iteration number: 3200 ------------
. . .[998,998]: 99.18  [999,999]: 99.56  [1000,1000]: 99.86
---------- Iteration number: 3300 ------------
. . .[998,998]: 99.19  [999,999]: 99.56  [1000,1000]: 99.87

Max error at iteration 3372 was 0.009995
Total time was 1.054768 seconds.

This is much better. Table 4.1 sums it up. With only a handful of directives, you 
have managed to speed up the serial code more than 20 times. But you had to 
think about your data migration in order to get there. This is typical of accelerator 
development.

Table 4.1  Laplace code performance

Optimization Time (seconds) Speedup

Serial 21.3

kernels directive 35.2 0.60

data directives 1.05 20.3

To review, you looked for the large loops and placed kernels directives there. 
Then (prompted by terrible performance) you thought about how the data should 
really flow between the host and the device. Then you used the appropriate data 
directives to make that happen. Further performance improvements are possible 
(see the exercises), but you have achieved the lion’s share of what can be done.

4.5 Summary
Here are all the OpenACC advantages you have used in this chapter.

•	 Incremental optimization. You focused on only the loop of interest here. You have 
not had to deal with whatever is going on in track_progress() or any other 
section of the code. We have not misled you with this approach. It will usually 
remain true for an 80,000-lines of code program with 1,200 subroutines. You 
may be able to focus on a single computationally intense section of the code to 
great effect. That might be 120 lines of code instead of our 20, but it sure beats 
the need to understand the dusty corners of large chunks of legacy code.

chandra-color.indb   78 8/13/2017   4:12:20 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


79

4.6  Exercises

•	 Single source. This code is still entirely valid serial code. If your colleagues down 
the hall are oblivious to OpenACC, they can still understand the program results 
by simply ignoring the funny-looking comments (your OpenACC directives)—as 
can an OpenACC-ignorant compiler. Or a compute platform without accelerators. 
This isn’t guaranteed to be true; you can utilize the OpenACC API instead of direc-
tives, or rearrange your code to make better use of parallel regions; and these 
types of changes will likely break the pure serial version. But it can be true for 
many nontrivial cases.

•	 High level. We have managed to avoid any discussion of the hardware specifics 
of our accelerator. Beyond the acknowledgment that the host-device connection 
is much slower than the local memory connection on either device, we have not 
concerned ourselves with the fascinating topic of GPU architecture at all.

•	 Efficient. Without an uber-optimized low-level implementation of this problem 
using CUDA or OpenCL, you have to take our word on this, but you could not do 
much better even with those much more tedious approaches. You can exploit the 
few remaining optimizations using some advanced OpenACC statements. In any 
event, the gains will be small compared with what you have already achieved.

•	 Portable. This code should run efficiently on any accelerated device. You haven’t 
had to embed any platform-specific information. This won’t always be true for all 
algorithms, and you will read more about this later in Chapter 7, “OpenACC and 
Performance Portability.”

With these advantages in mind, we hope your enthusiasm for OpenACC is growing. 
At least you can see how easy it is to take a stab at accelerating a code. The low 
risk should encourage you to attempt this with your applications.

4.6 Exercises
1.	 We noted that the track_progress routine introduces a penalty for the peri-

odic array copies that it initiates. However, the output itself is only a small por-
tion of the full array. Can you utilize the data directive’s array-shaping options 
to minimize this superfluous copy (see Section 1.3.4)?

2.	 The sample problem is small by most measures. But it lends itself easily to 
scaling. How large a square plate problem can you run on your accelerator? Do 
so, and compare the speedup relative to the serial code for that case.

chandra-color.indb   79 8/13/2017   4:12:20 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


Chapter 4	 Using OpenACC for Your First Program

80

3.	 This code can also be scaled into a 3D version. What is the largest 3D cubic case 
you can accommodate on your accelerator?

4.	 We have focused only on the main loop. Could you also use OpenACC directives 
on the initialize and output routines? What kinds of gains would you expect?

5.	 If you know OpenMP, you may see an opportunity here to speed up the host 
(CPU) version of the code and improve the serial performance. Do so, and com-
pare to the speedup achieved with OpenACC.

chandra-color.indb   80 8/13/2017   4:12:20 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


269

Index

A
Abstraction

abstract thinking required for parallelism, 81
in C++, 137
in Kokkos, 141
TBB as C++ abstraction layer, 141

acc_async_noval, 191
acc_async_sync, 181, 191
acc_device, 5, 124
acc_device_default, 206
acc_device_nvidia, 206
acc_deviceptr, 13, 179, 182
acc_get_cuda_stream, 180–181, 194
acc_get_device_type, 205–206
acc_hosteptr, 180
acc_map_data, 182–184
ACC_MULTICORE environment variable, 129–130
acc_notify, 52, 56
ACC_NUM_CORES=8 environment flag, 130
acc_set_cuda_stream, 180–181, 195
acc_set_device, 206–207
acc_set_device_num, 205–206, 209, 212
acc_set_device_type, 124
Accelerators

affinity, 209
architectural characteristics, 34
calling OpenACC from native device code, 182
compiler transformation of nested loops for, 224
computational fluid dynamics case study, 

114–116
internode communication, 259
multidevice programming, 204
OpenACC support, 177
PGI compiler generating executable for, 123
programming accelerated clusters. See 

XcalableACC (XACC)

Sunway Taihulight memory model, 217–218
tightly coupled, 261–262

Advanced Institute for Computational Science 
(AICS). See XcalableACC (XACC)

Affine memories, of accelerator, 124
Affinity, accelerator devices, 209
AICS (Advanced Institute for Computational 

Science). See XcalableACC (XACC)
Aliasing, compiler limitations, 90–91
align directive, in XMP, 255–256
allgather clause, internode communication in 

XMP, 256–257
Allinea DDT, for debugging, 52–53
Allocations. See Data allocations
Altera Offline compiler (AOC)2, use as backend 

compiler, 242
Altera Stratix V GS D5 FPGA, 248
Amdahl's law, 103
AOC2 (Altera Offline compiler), use as backend 

compiler, 242
API routines

overview of, 5
for target platforms, 180–181

Applications
analysis of OpenACC applications, 36–37
analyzing performance, 196–198
analyzing program performance (Laplace 

Solver), 71–73
creating program and applying OpenACC to it, 

59–61
HeteroIR code of MM program, 240–241
viewing runtime behavior of, 36
viewing temporal evolution of a program, 39

Architectures
common characteristics, 34
portability, 123–124
targeting multiple, 128–130

chandra-color.indb   269 8/13/2017   4:13:29 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


Index

270

Arithmetic units, coordinating functional units of 
hardware, 82–83

Arrays
data clauses, 12–13
data layout for performance portability, 126
iterating over multidimensional, 17
optimization of data locality, 111–112
programming with XACC directives, 258–259
reducing to scalar, 86–87
shaping, 18

async clause
acc_async_noval, 191
acc_async_sync, 181, 191
adding directives to work queues, 191
making pipelining operation asynchronous, 202–204

Asynchronous operations
adding directives to work queues, 191
advanced OpenACC options, 187–190
making pipelining operation asynchronous, 201–204

Asynchronous programming
asynchronous work queues, 190–191
defined, 190
interoperating with CUDA streams, 194–195
joining work queues, 193–194
overview of, 190
wait directive, 191–192

Asynchronous work queues
advanced OpenACC options, 190–191
interoperability with OpenACC, 194–195

atomic directive
for atomic operations, 105–106
types of data management directives, 4

Atomic operations, maximize on-device 
computation, 105–106

auto clause, in loop parallelization, 27–28
Auxiliary induction variable substitution, compiling 

OpenACC, 93
AXPBY (vector addition)

CUDA implementation of MiniFE, 159
OpenACC implementation of MiniFE, 157
OpenMP implementation of MiniFE, 158
serial implementation of MiniFE, 156
TBB implementation of MiniFE, 165

B
Backslash (\), in directive syntax, 3
Bakery counter, dynamic scheduling of workers, 

94–95

Baseline CPU implementation, in CFD case study, 
113

Baseline profiling
analyzing application performance, 196–198
of asynchronous pipelining operation, 203–204
as best practice, 101
of translation of OpenACC to FPGAs, 239–243

bcast directive, communication directives, 259
Benchmarks. See also Baseline profiling

evaluating loop scheduling performance of 
OpenUH, 231

evaluating OpenACC translation to FPGAs, 248
evaluating XACC performance on HA-PACS 

using Himeno, 262–264
evaluating XACC performance on HA-PACS 

using NPB-CG, 264–267
research topics in OpenUH, 234

Best practices, programming
applied to thermodynamic fluid property table, 

112–118
general guidelines, 102–105
maximize on-device computation, 105–108
optimize data locality, 108–112
overview of, 101–102
summary and exercises, 118–119

bisection function, in CFD solver, 113–114
Block recycling, CUDA implementation of MiniFE, 

161
Blocks, of code

blocking data movement, 200–201
blocking the computation, 198–199

Bottlenecks, detecting, 37
Boundary conditions, 60
Branches, removing from code section, 95
Bugs

identifying, 51–53
user errors in compiling OpenACC, 95–97

Bulldozer multicore
running OpenACC over, 130–131
targeting multiple architectures, 129–130

C
C++ AMP

comparing programming models, 136, 143
data allocations, 153
features, 140
mapping simple loop to parallel loop, 145
tightly nested loops, 148

chandra-color.indb   270 8/13/2017   4:13:29 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


		  Index

271

C/C++
abstractions and templates, 137
array shape specification, 112
async clause example, 191
compiling code for Laplace Solver, 70
creating naive parallel version of Laplace  

Solver, 69
OpenACC built on top of, 1, 35
optimized version of Laplace Solver, 76–77
using Jacobi iteration to locate Laplace 

condition, 61–65
wait directive examples, 191–194
XMP code example, 254

C++11, 151–152
C++17

comparing programming models, 136
concept coverage list in comparing 

programming models, 143
mapping simple loop to parallel loop, 145
programming features, 142

C2R (complex-to-real), Discrete Fourier  
Transform, 176

cache directive
overview of, 13–14
types of data management directives, 4

Cache, Sunway Taihulight data management, 221
Call-graph profiles, 39, 102–103
Call-path profiles, 39
CFD solver case study. See Computational fluid 

dynamics (CFD) solver, case study
CG solve. See Conjugate gradient solver (CG solve)
Chief processors, 94–95
Clauses. See also by individual types

categories of, 4–5
data clauses, 12–13

Code
advantages of OpenACC code, 79
blocking data movement, 200–201
blocking the computation, 198–199
calling native device code from OpenACC, 

174–181
calling OpenACC from native device code, 

181–182
compiling code for Laplace Solver, 67–68
creating naive parallel versions, 68–71
creating serial code for Laplace Solver, 61–67
portability, 125–126
preparation for compiling OpenACC, 92–93

removing all branches in section of, 95
Code editors, spotting syntax errors, 33
collapse keyword, loop directive, 24–25
Complex-to-real (C2R), Discrete Fourier  

Transform, 176
Compatibility. See Interoperability
Compilers

compiler transformation of nested loops for 
accelerators, 224

compiling code for Laplace Solver, 67–68, 70–71
compiling code for specific platforms, 123
compiling optimized version of Laplace Solver, 78
directives, 3
identifying bugs, 52
OpenACC supported, 35–36
OpenACC-to-FPGA translation, 242–243
OpenUH. See OpenUH compiler
runtime implementation of XACC, 260–262
viewing runtime behavior of applications, 36
what compilers can do, 88–90
what compilers cannot do, 90–91

Compiling OpenACC
applying OpenACC for parallelism, 87–88
challenges of parallelism, 82
code preparation for, 92–93
coordinating functional units of hardware, 82–83
handling reductions, 86–87
mapping loops, 83–85
memory hierarchy, 85–86
overview of, 81
scheduling, 93–94
serial code, 94–95
summary and exercises, 97–99
user errors, 95–97
what compilers can do, 88–90
what compilers cannot do, 90–91

Complexity, benefits of computers, 81
Components, parallel programming, 142–143
Computation

blocking, 198–199
maximization of on-device computation, 103
offloading, 34

Computational fluid dynamics (CFD) solver, case 
study

acceleration with OpenACC, 114–116
baseline CPU implementation, 113
optimized data locality, 116–117
performance study, 117–118

chandra-color.indb   271 8/13/2017   4:13:29 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


Index

272

Computational fluid dynamics (CFD) solver, case 
study (continued)

profiling, 113–114
thermodynamic tables, 112–113

Compute constructs
directive extension for compute unit replication, 

243–245
evaluating OpenACC translation to FPGAs, 250
kernels directive, 6–7
loop directive, 8–9
overview of, 4, 6
parallel directive, 8
routine directive, 9–11

Computers. See also Supercomputers, 81
Computing processing element (CPE)

Sunway Taihulight data management, 219
Sunway Taihulight execution model, 218–219
Sunway Taihulight memory model, 217–218
in SW26010 manycore CPU, 216–217

Conditions, initial and boundary, 60
Conjugate gradient solver (CG solve)

CUDA implementation of MiniFE, 159
 implementation of MiniFE, 163
OpenMP implementation of MiniFE, 158
overview of, 155
performance comparisons for MiniFE case, 

168–169
temporary vectors required for MiniFE, 156

Constructs, OpenACC, 3
Control flow clauses

checks on user errors, 95
clause categories, 5

copy clause, data clauses, 13, 76, 220, 260
copyin clause, data clauses, 13, 124
copyout clause, data clauses, 124
CORAL benchmark suite, 127–128
CPE. See Computing processing element (CPE)
CPUs. See also Processors

assigning MPI rank to, 209–210
baseline implementation, 113
data layout for performance portability, 126
multicore parallelizations, 127
SW26010 manycore CPU, 216–217

Cray compiler
compiling for specific platforms, 123
OpenACC support, 35–36

create clause, data clauses, 12–13, 76

CUDA
calling CUDA routines from OpenACC, 184–185
comparing programming models, 136, 143
data allocations, 153
data transfers, 154
evaluating loop scheduling performance of 

OpenUH, 231
evaluating performance of MiniFE case, 167
Fast Fourier Transform (FTT) library, 174
features, 139
hierarchical parallelism (nontightly nested 

loops), 150
interoperability with OpenACC, 194–195
mapping OpenACC terminology to, 228–229
mapping simple loop to parallel loop, 144
MiniFE solver case study, 159–162
OpenARC support, 242
OpenCL compared with, 139–140
programming NVIDIA GPUs with, 261
streams, 180–181
tightly nested loops, 148
translating OpenACC offload region into CUDA 

code, 225

D
Data

acquiring performance data, 38–39
blocking data movement, 200–201
clauses, 4, 12–13
events, 40
managing in Sunway Taihulight, 219–222
optimizing locality. See Optimization of data 

locality
portability, 126
recording and presenting performance data, 39
XACC data distribution, 255–256

Data allocations
alignment and, 179–180
comparing parallel programming models, 

152–153
runtime awareness of, 182

data directive
data copy, 76, 220, 260
data create, 76
data distribute, 255–256
enter/exit directives, 4, 111
Laplace code performance, 78
for managing data, 4

chandra-color.indb   272 8/13/2017   4:13:29 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


		  Index

273

reducing data movement, 73–75
shared memory systems and, 124
types of data clauses, 12–13
XACC memory model, 257

Data environment
cache directive, 13–14
data clauses, 12–13
data directive, 12
overview of, 11

Data-flow analysis, scalar precursor of dependency, 
89–90

Data lifetimes
data environment concepts, 11
for unstructured data, 111

Data parallelism. See also Parallelism
comparing programming models, 136
defined, 188

Data regions
creating optimized parallel version of Laplace 

Solver, 73–78
data environment concepts, 11
in OpenACC memory model, 124
structured and unstructured, 12

Data reuse
maximizing, 103
present clause and, 110–111

Data transfer
comparing parallel programming models, 153–155
minimizing, 103–104, 109–110
OpenMP implementation of MiniFE requiring, 

158–159
runtime implementation of XACC, 261
Sunway Taihulight data management, 219, 

221–222
DDT, debugging using Allinea DDT, 52–53
Debugging, 51–53
declare clause, data clauses, 4
delete clause, data clauses, 13
Dependencies

asynchronous work queues exposing, 190
comparing dependent and independent tasks, 

189–190
operations as series of, 188
what compilers can do, 89–90

Descriptive directives, vs. prescriptive, 96–97
device clauses

acc_device, 5, 124
acc_device_default, 206

acc_device_nvidia, 206
acc_deviceptr, 13, 179, 182

Devices
management functions of API routines, 5
maximization of on-device computation, 103

DFT (Discrete Fourier Transform), 174–177
Direct memory access (DMA)

moving data between memories, 124
MPI with, 211–213
MPI without, 210–211
Sunway Taihulight data management, 220
in SW26010 manycore CPU, 216–217

Directive-based high-performance reconfigurable 
computing

baseline translation of OpenACC to FPGAs, 
239–243

evaluating OpenACC translation to FPGAs, 
248–252

OpenACC extensions and optimizations for 
FPGAs, 243–247

overview of, 237–239
summary of OpenACC translation to FPGAs, 252

Directive-based programming models, 1
Directives. See also by individual types

comparing kernels with parallel, 18–21
compilers and, 35
compiling OpenACC, 92
efficiency of, 96
internode communication in XMP, 256–257
OpenACC syntax, 3
prescriptive vs. descriptive, 96
programming with XACC directives, 258–259
types of, 3–4

Discrete Fourier Transform (DFT), 174–177
Discrete memories, types of system memory, 125
distribute directive, data distribution and work 

mapping in XMP, 255–256
Divergence, checks on user errors, 95
DMA. See Direct memory access (DMA)
Dot product

CUDA implementation of MiniFE, 159
OpenACC implementation of MiniFE, 157
reduction example, 86–87
serial implementation of MiniFE, 156
TBB implementation of MiniFE, 166

Dynamic scheduling
scheduling parallel and vector code, 94
of workers using bakery counter, 94–95

chandra-color.indb   273 8/13/2017   4:13:29 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


Index

274

E
EBS (Event-based sampling), supported TAU 

performance system, 49–50
Efficiency

advantages of OpenACC code, 79
directive strategy and, 96

enqueue, events indicating runtime of device  
tasks, 41

enter data directive
data lifetimes and, 111
types of data management directives, 4

Environment variables
ACC_MULTICORE, 129–130
OpenACC specification, 3
overview of, 5

Errors, user errors in compiling OpenACC, 95–97
Event-based instruments, data acquisition for 

performance analysis, 38–39
Event-based sampling (EBS), supported TAU 

performance system, 49–50
Event callbacks, 40
Event categories, 40
Exascale systems. See also Supercomputers

criteria requirements, 238
portability as goal in, 122

Execution model
Sunway Taihulight, 218–219
XMP, 255

Execution policy, C++17, 142
exit data directive

data lifetimes and, 111
types of data management directives, 4

Explicit parallelism, XMP support for, 256
Expressions

storing expression value in temporary, 85
symbolic subscript expressions, 90

Extensions
C++ AMP extension of C++, 136, 140
OpenACC extensions and optimizations for 

FPGAs, 243–247
programming languages, 137

F
Fast Fourier Transforms (FTTs), 174–177
Field-programmable gate arrays (FPGAs)

baseline translation of OpenACC to, 239–243
evaluating OpenACC translation to, 248–252
in high-performance computing, 237–238

OpenACC extensions and optimizations for, 
243–247

summary of OpenACC translation to, 252
FIFO (first-in, first out), work queues, 190
Filtering images, using Discrete Fourier Transform, 

174–177
First-class concepts

 implementation of MiniFE, 164
parallel loops, 143

First-in, first out (FIFO), work queues, 190
firstprivate, variables, 11, 88
Flags, for OpenACC compiler types, 35
Flat function profiles, 39, 102
Floating-point operations (FLOPS), for compute-

bound kernels, 123
Fortran

array shape specification, 112
comparing programming models, 136, 143
compiling code for Laplace Solver, 70–71
creating naive parallel version of Laplace Solver, 

70
mapping simple loop to parallel loop, 145
OpenACC built on top of, 35
optimized version of Laplace Solver, 77
programming features in Fortran 2008, 142
using Jacobi iteration to locate Laplace 

condition, 61–63, 66–67
FPGAs. See Field-programmable gate arrays 

(FPGAs)
FFTs (Fast Fourier Transforms), 174–177
Functional units, coordinating functional units of 

hardware, 82–83

G
gang clause

levels of parallelism, 21–22
mapping parallelism to hardware, 23–24
overview of, 22–23

Gangs
applying OpenACC for parallelism, 87–88
distributing iterations across, 125–126
principles governing loop performance, 96
scheduling parallel loops, 227–230

GCC2, OpenACC support, 36
get clause

acc_get_cuda_stream, 180–181, 194
acc_get_device_type, 205–206

Ghost zone, defined, 200

chandra-color.indb   274 8/13/2017   4:13:29 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


		  Index

275

Global view, XMP, 254
gmove directive, internode communication in  

XMP, 257
GNU compiler, 123
GPUDirect, runtime implementation of XACC, 

261–262
GPUs

assigning MPI rank to, 209–210
CUDA support for NVIDIA GPUs, 139
demonstrating portability using OpenACC, 123
evaluating loop scheduling performance of 

OpenUH, 230
layout for performance portability, 126
mapping parallelism to hardware, 23–24
running OpenACC over NVIDIA K20X GPU, 

130–131
targeting multiple architectures, 128–130

H
HA-PACS

evaluating XACC performance on, 262–267
runtime implementation of XACC, 261

HACCmk microkernel
OpenACC programming model for, 122
overview of, 127–128
targeting multiple architectures, 128–130

Halo, 200
Hardware

coordinating functional units of, 82–83
mapping loops onto parallel hardware, 83–85
mapping parallelism to, 23–24

Hardware description language (HDLs), 239
HeteroIR, 240–241
Hierarchical parallelism (nontightly nested loops), 

148–151
High-performance computing (HPC)

field-programmable gate arrays in, 237
framework for directive-based. See Directive-

based high-performance reconfigurable 
computing

MPI in, 208–209
parallel programming models and, 135
portability as goal in, 121

Himeno, evaluating XACC performance on HA-PACS, 
262–264

host
acc_hosteptr, 180
host_data directive, 177–180, 211–212

Hot spot
finding, 68–69
identifying, 102–103

HPC. See High-performance computing (HPC)

I
IC (integrated circuit), in FPGAs, 239
IDE (integrated development environment), spotting 

syntax errors, 33
if clause, maximize on-device computation, 

107–108
If conversion, removing all branches in section of 

code, 95
Images, filtering using Discrete Fourier Transform, 

174–177
Incremental acceleration and verification, as best 

practice, 101, 104
Independence, comparing dependent and 

independent tasks, 189–190
independent clause, adding to loop directive, 

25–27
Initial conditions, 60
Initialization, functions of API routines, 5
Innovation/research

data management in Sunway Taihulight, 219–222
evaluating loop scheduling performance of 

OpenUH, 230–234
execution model in Sunway Taihulight, 218–219
framework for directive-based HPC. See 

Directive-based high-performance 
reconfigurable computing

loop-scheduling transformation in OpenUH, 
226–230

memory model in Sunway Taihulight, 217–218
OpenUH compiler infrastructure, 224–225
overview of, 215
programming accelerated clusters. See 

XcalableACC (XACC)
research topics related to OpenUH, 234–235
summary of Sunway system, 223
Sunway Taihulight, 215–216
SW26010 manycore CPU, 216–217

Instructions, coordinating functional units of 
hardware, 82–83

int bisection function, in CFD solver, 113–114
int main function, in CFD solver, 113–114
Integrated circuit (IC), in FPGAs, 239

chandra-color.indb   275 8/13/2017   4:13:29 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


Index

276

Integrated development environment (IDE), spotting 
syntax errors, 33

Intermediate representation (IR)
HeteroIR, 240
OpenUH infrastructure, 224

Internode communication, XMP, 256–257, 259
Interoperability

advanced topics, 182–185
calling native device code from OpenACC, 

174–181
calling OpenACC from native device code, 

181–182
with CUDA streams, 194–195
overview of, 173
summary and exercises, 185–186

interpolate method, LookupTable2D class, 
113–114

Interthread block parallelism, in CUDA, 139
IR (intermediate representation)

HeteroIR, 240
OpenUH infrastructure, 224

Iteration. See Loops

J
Jacobi iteration

evaluating XACC performance on HA-PACS, 262
locating Laplace condition, 61–67
solving Laplace equation for steady-state 

temperature distribution, 60

K
Kernel configuration bound check elimination, 

OpenACC extensions and optimizations for 
FPGAs, 243–244

Kernel launch events, 40
Kernel vectorization, OpenACC extensions and 

optimizations for FPGAs, 243–244
kernels directive

analyzing program performance (Laplace 
Solver), 72–73

applying to OpenACC case study (Laplace 
Solver), 69–71

calling CUDA device routines, 184–185
evaluating OpenACC translation to FPGAs, 251
extension for kernel vectorization, 244–245
kernel loop scheduling, 228–230
kernel-pipelining transformation, 245–247
Laplace code performance, 78

mapping parallel regions to hardware, 24
maximize on-device computation, 106–107
overview of, 6–7
parallel directive compared with, 18–21
reduction clause, 28–30
types of compute directives, 4

Knights Landing (KNL), 123–124
comparing programming models, 136, 143
data allocations, 153
data layout for performance portability, 126
data transfers, 155
features, 140–141
hierarchical parallelism (nontightly nested 

loops), 151
mapping simple loop to parallel loop, 145
MiniFE solver case study, 163–165
parallel reductions, 146
performance comparisons for MiniFE case, 167
task parallelism, 151–152
tightly nested loops, 148

L
Languages. See Programming languages
Laplace Solver case study

analyzing program performance, 71–73
compiling code, 67–68, 70–71
creating naive parallel versions, 68–71
creating optimized parallel version, 73–78
creating program and applying OpenACC to it, 

59–61
evaluating loop scheduling performance of 

OpenUH, 231–233
solving Laplace equation for steady-state 

temperature distribution, 60
summary and exercises, 78–80
using Jacobi iteration to locate Laplace 

condition, 61–67
Libraries

passing device pointers to host libraries, 
211–212

routines in OpenACC specification, 3
Local view, XMP, 254
Locality awareness, research topics in OpenUH, 234
Locality of data, optimizing. See Optimization of data 

locality
LookupTable2D class, 113–114
loop directive

adding auto clause to, 27–28

chandra-color.indb   276 8/13/2017   4:13:30 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


		  Index

277

adding independent clause to, 25–27
adding seq clause to, 27
in code generation, 125
collapse keyword, 24–25
combining with parallel for parallelization, 20
data distribution and work mapping in XMP, 

255–256
executing loops on MIMD hardware, 87–88
internode communication in XMP, 256–257
levels of parallelism, 21–22
overview of, 8–9
reduction clause, 28–30
runtime implementation of XACC, 260
types of compute directives, 4
work sharing in XMP, 258

Loop parallelization. See also Parallel loops; 
Parallelism

collapse keyword, 24–25
independent clause, 25–27
kernels vs. parallel loops, 18–21
levels of parallelism, 21–23
loop construct options, 24
mapping parallelism to hardware, 23–24
overview of, 17–18
reduction clause, 28–30
seq and auto clauses, 27–28
summary and exercises, 30–31

Loop unrolling, 243–244, 250
Loops

applying to CFD solver. See Computational fluid 
dynamics (CFD) solver, case study

creating optimized parallel version of Laplace 
Solver, 75–78

distributing iterations across gangs, workers, or 
vectors, 125–126

evaluating loop scheduling performance of 
OpenUH, 230–234

extension for loop unrolling, 244
loop-scheduling transformation in OpenUH, 

226–230
mapping to parallel hardware, 83–85
nontightly nested loops (hierarchical 

parallelism), 148–151
parallel loops, 143–145
principles governing performance of, 96
symbolic loop bounds and steps creating issues 

for compilers, 91
tightly nested loops, 147

using Jacobi iteration to locate Laplace 
condition, 61–67

M
Management processing element (MPE)

Sunway Taihulight execution model, 218–219
Sunway Taihulight memory model, 217–218
in SW26010 manycore CPU, 216–217

map, acc_map_data, 182–184
Mapping

loops onto parallel hardware, 83–85
OpenACC terminology to CUDA, 228–229
parallelism to hardware, 23–24
simple loop to parallel loop, 144–145
work in XACC, 255–256

Matrix multiplication (MM)
evaluating loop scheduling performance of 

OpenUH, 231–233
in OpenACC, 240

Maximize on-device computation
atomic operations, 105–106
as best practice, 101
kernels and parallel constructs, 106–107
overview of, 103
runtime tuning and if clause, 107–108

Memory
hierarchy in compiling OpenACC, 85–86
management functions of API routines, 5

Memory models
portability, 124–125
Sunway Taihulight, 217–218
XACC, 257

Message Passing Interface (MPI)
combining OpenACC with, 187
with direct memory access, 211–213
interprocess communication, 37
overview of, 208–210
runtime implementation of XACC, 261–264
without direct memory access, 210–211

MIMD. See Multiple-instruction multiple data (MIMD)
MiniFE solver case study

CUDA implementation, 159–162
 implementation, 163–165
OpenACC implementation, 157–158
OpenMP implementation, 158–159
overview of, 155
performance comparisons, 167–169

chandra-color.indb   277 8/13/2017   4:13:30 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


Index

278

MiniFE solver case study (continued)
serial implementation, 156–157
TBB implementation, 165–167

MM (Matrix multiplication)
evaluating loop scheduling performance of 

OpenUH, 231–233
in OpenACC, 240

MPE. See Management processing element (MPE)
MPI. See Message Passing Interface (MPI)
Multicore systems

ACC_MULTICORE environment variable, 
129–130

OpenACC programming model for, 122
Multidevice programming

MPI and, 208–210
MPI with direct memory access, 211–213
MPI without direct memory access, 210–211
multidevice pipeline, 204–208
overview of, 204

Multigrid, in performance study of CFD solver. See 
also Processors, 117

Multiple-instruction multiple data (MIMD)
coordinating functional units of hardware, 83
executing loops on MIMD hardware, 87
privatization and, 86
sequential loops and, 84–85

Multithreading, performance analysis, 37

N
NAS parallel benchmarks, evaluating XACC 

performance on HA-PACS, 264–267
Nested loops

compiler transformation for accelerators, 224
iterating over multidimensional array, 17
nontightly nested loops (hierarchical 

parallelism), 148–151
offloading computation intensive, 226
tightly nested loops, 147
using Jacobi iteration to locate Laplace 

condition, 61–67
Non-uniform memory access (NUMA), 23–24
nontightly nested loops (hierarchical parallelism), 

150
notify, acc_notify, 52, 56
NPB-CG kernel, evaluating XACC performance on 

HA-PACS, 264–267
num, ACC_NUM_CORES=8 environment flag, 130
NUMA (non-uniform memory access), 23–24

NVIDIA GPUs
assigning MPI rank to, 210
CUDA support, 139
demonstrating portability using OpenACC, 

123–124
interoperating OpenACC asynchronous work 

queues with CUDA streams, 194–195
programming, 261
running OpenACC over NVIDIA K20X GPU, 

130–131
targeting multiple architectures, 128–130

NVIDIA profilers, 40–43
nvprof, NVIDIA command-line profiler, 41–43
nvvp, NVIDIA Visual Profiler, 41–43

O
Oak Ridge Leadership Computing Facility (OLCF), 

130
Oak Ridge National Laboratory (ORNL), 237
Offloading

computation, 34, 226
performance analysis, 37
translating OpenACC offload region into CUDA 

code, 225
OLCF (Oak Ridge Leadership Computing Facility), 

130
OMNI compiler

runtime implementation of XACC, 260–262
as source-to-source compiler, 259–260

Open Accelerator Research Compiler (Open ARC)
baseline translation of OpenACC to FPGAs, 

240–241
FPGA prototype system built on, 238

OpenACC, advanced options
async clause, 191
asynchronous operations, 187–190
asynchronous work queues, 190–191
blocking data movement, 200–201
blocking the computation, 198–199
interoperating with CUDA streams, 194–195
joining work queues, 193–194
making pipelining operation asynchronous, 

201–204
MPI and, 208–210
MPI with direct memory access, 211–213
MPI without direct memory access, 210–211
multidevice pipeline, 204–208
multidevice programming, 205

chandra-color.indb   278 8/13/2017   4:13:30 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


		  Index

279

overview of, 187
software pipelining, 195–198
summary and exercises, 213
wait clause, 191–192

OpenACC, comparing parallel programming 
languages

concept coverage list, 143
data allocations, 153
data transfers, 154
features, 138
implementation of MiniFE solver, 157–158
mapping simple loop to parallel loop, 144
multidevice image-filtering code, 206–208
nontightly nested loops (hierarchical 

parallelism), 150
overview of, 136
parallel reductions, 146
performance comparisons for MiniFE case, 167
tightly nested loops, 147

OpenACC, specification basics
API routines and environment variables, 5
cache directive, 13–14
clauses, 4–5
compute constructs, 6
data clauses, 12–13
data directives, 12
data environment, 11
directives, 3–4
kernels, 6–7
loop construct, 8–9
overview of, 1–2
parallel directive, 8
routine directive, 9–11
summary and exercises, 14–15
syntax, 3

OpenCL
comparing programming models, 136
data allocations, 153
data transfers, 155
features, 139–140
mapping simple loop to parallel loop, 145
nontightly nested loops (hierarchical 

parallelism), 150
OpenARC support, 242
tightly nested loops, 148

OpenMP
comparing programming models, 136
concept coverage list, 143

data allocations, 153
data transfers, 154
features, 138
implementation of MiniFE solver, 158–159
mapping simple loop to parallel loop, 144
multidevice image-filtering code, 206–208
nontightly nested loops (hierarchical 

parallelism), 150
parallel reductions, 146
performance comparisons for MiniFE case, 167
task parallelism, 151–152
tightly nested loops, 147

OpenUH compiler
evaluating loop scheduling performance, 

230–234
infrastructure, 224–225
loop-scheduling transformation, 226–230
research topics, 234–235

Optimization
advantages of OpenACC code, 79
compiling optimized version of Laplace Solver, 

75–78
incremental optimization as advantage of 

OpenACC code, 78
Optimization of data locality

array shaping, 111–112
as best practice, 101
computational fluid dynamics case study, 

116–117
data lifetimes for unstructured data, 111
data reuse and present clause, 110–111
locality awareness research in OpenUH, 234
minimum data transfer, 109–110
overview of, 103–105, 108

ORNL (Oak Ridge National Laboratory), 237

P
pack/packin/packout, Sunway Taihulight data 

management, 221–222
parallel directive

kernels directive compared with, 18–21
mapping parallel regions to hardware, 24
overview of, 8
reduction clause, 28–30
types of compute directives, 4

Parallel loops
combining with reduction, 145–147

chandra-color.indb   279 8/13/2017   4:13:30 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


Index

280

Parallel loops (continued)
comparing parallel programming models, 

143–145
 implementation of MiniFE, 163
loop-scheduling transformation in OpenUH, 

226–227
making pipelining operation asynchronous, 

202–204
runtime implementation of XACC, 260
TBB implementation of MiniFE, 165
work sharing in XMP, 258

Parallel programming
C++ AMP extension, 140
C++17, 142
case study- MiniFE solver. See MiniFE solver 

case study
components, 142–143
CUDA, 139
data allocations, 152–153
data transfers, 153–155
Fortran, 141
hierarchical parallelism (nontightly nested 

loops), 148–151
OpenACC, 138
OpenCL, 139–140
OpenMP, 138
overview of, 135
parallel loops, 143–145
parallel reductions, 145–147
programming models, 135–137
RAJA, 141
summary and exercises, 170–171
task parallelism, 151–152
Threading Building Blocks (TBB), 141
tightly nested loops, 147

Parallel reductions
comparing parallel programming models, 

145–147
implementation of MiniFE, 164
TBB implementation of MiniFE, 166–167

Parallelism
abstract thinking required for, 81
applying OpenACC for, 87–88
challenges of, 82
effective parallelism, 92
functions of API routines, 5
gang, worker, and vector clauses, 22–23
kernels vs. parallel loops, 18–21

loop-level, 17–18
loop-scheduling transformation in OpenUH, 

227–230
mapping to hardware, 23–24
maximize on-device computation, 106–107
multicore parallelizations, 127
principles governing loop performance, 96
scheduling parallel and vector code, 93–94
three levels of, 21–22
XMP support for explicit parallelism, 256

ParaProf profiler, 48–49, 51
Partially shared memories, types of system 

memory, 125
Partitioned global address space (PGAS) 

programming model, 142
PathScale compiler, 36
PDT, source analysis tool, 48
PEACH2, 261
Pen, holding processors in, 94–95
PerfExplorer, for profile data mining, 48
Performance

acquiring performance data, 38–39
analysis layers and terminology, 37–38
analysis of OpenACC applications, 36–37
comparisons, 167–169
computational fluid dynamics (CFD) case study, 

117–118
evaluating loop scheduling of OpenUH, 230–234
evaluating OpenACC translation to FPGAs, 

248–252
evaluating XACC on HA-PACS, 262–267
NVIDIA profiler, 40–43
profiling interface, 39–40
recording and presenting data, 39
Score-P infrastructure, 44–48
TAU system, 48–51
tools supported by OpenACC, 40

PGAS (partitioned global address space) 
programming model, 142

PGI compiler
analyzing application performance, 196–197
compiling code for Laplace Solver, 67–68, 70–71
compiling optimized version of Laplace Solver, 

78
generating executable for accelerator platforms, 

123
OpenACC support, 35–36

PGI_ACC_TIME environment variable, 36, 71–73

chandra-color.indb   280 8/13/2017   4:13:30 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


		  Index

281

PGPProf profiler
analyzing application performance, 196–198
making pipelining operation asynchronous, 

203–204
timeline for multidevice software pipelined 

image filter, 199
Pipelining. See Software pipelining
Portability

advantages of OpenACC code, 79
challenges, 121–123
code generation for, 125–126
data layout for, 126
HACCmk microkernel, 127–128
memory systems and, 124–125
of OpenACC, 1–2
overview of, 121
refactoring code for, 126
running OpenACC over Bulldozer multicore, 

130–131
running OpenACC over NVIDIA K20X GPU, 130–131
summary and exercises, 132–134
targeting multiple architectures, 128–130
types of target architectures, 123–124

#pragma acc routine, 115
Prescriptive directives, vs. descriptive, 96
present clause

data reuse, 110–111
optimization of data locality, 110–111
overview of, 13

printf, debugging, 51–52
private clause

compiling OpenACC, 92
specifying scalar variables as private, 88
variables, 11

Privatization, simultaneous semantics and, 86
Procedures, uses of routine directive, 9–10
Process parallelization, performance analysis, 37
Processors

baseline CPU implementation, 113
coordinating functional units of hardware, 82–83
holding all but chief processor in a pen, 94–95
mapping parallelism to hardware, 23–24
SW26010 manycore CPU, 216–217

Profiling
analyzing application performance, 196–198
best practices, 102
computational fluid dynamics case study, 

113–114

data recording via, 39
interface supported by OpenACC, 39–40
NVIDIA profiler, 40–43
Score-P performance infrastructure, 44–48
TAU performance system, 48–51
tools supported by OpenACC, 40

Program counters, 82–83
Programming

asynchronous programming, 190
best practices. See Best practices, programming
as series of steps, 187

Programming languages
comparing capabilities of, 136
extensions, 137
XMP. See XcalableMP (XMP)

Programming models
C++ AMP extension, 140
C++17, 142
CUDA, 139
Fortran 2008, 142
OpenACC, 138
OPENCL, 139–140
OPENMP, 138
overview of, 135–137
RAJA, 141
Threading Building Blocks (TBB), 141
XACC. See XcalableACC (XACC)

Programming tools
acquiring performance data, 38–39
architectural characteristics, 34
bug identification, 51–53
compilers, 35–36
NVIDIA profiler, 40–43
overview of, 33
performance analysis layers and terminology, 

37–38
performance analyzers, 36–37
profiling interface, 39–40
recording and presenting performance data, 39
Score-P performance infrastructure, 44–48
summary and exercises, 53–57
TAU performance system, 48–51
tools supported by OpenACC, 40

Programs. See Applications

Q
Queues. See Work queues

chandra-color.indb   281 8/13/2017   4:13:30 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


Index

282

R
R2C (Real-to-complex), Discrete Fourier Transform, 

176
RAJA

comparing programming models, 136, 143
features, 141
mapping simple loop to parallel loop, 145
parallel reductions, 146
tightly nested loops, 148

Real-to-complex (R2C), Discrete Fourier Transform, 
176

reduction clause
adding to kernels, parallel, or loop 

directive, 28–30
compiling OpenACC, 92–93
internode communication in XMP, 256–257

Reductions
communication directives, 259
parallel reductions. See Parallel reductions
of vector or array to scalar, 86–87

Refactoring code, for portability, 126
reflect, communication directives, 259
Research. See Innovation/research
Reuse. See Data reuse
routine directive

acc routine, 115
overview of, 9–11
types of compute directives, 4

Routines
API routines, 5
API routines for target platforms, 180–181
calling CUDA device routines from OpenACC 

kernels, 184–185
identifying hot spots, 102–103
querying/setting device type, 205–206

Runtime tuning, maximize on-device computation, 
107–108

S
Sampling

data acquisition for performance analysis, 38
with TAU performance system, 48

Scalar expansion, simultaneous semantics and, 86
Scalars

data-flow analysis as precursor of dependency, 
89–90

reducing vector or array to, 86–87
specifying variables as private, 88

Scheduling
dynamic scheduling of workers using bakery 

counter, 94–95
evaluating loop scheduling performance of 

OpenUH, 230–234
loop-scheduling transformation in OpenUH, 

226–230
mapping loops, 83–85
parallel and vector code, 93–94

Score-P performance infrastructure, 44–48
Scratch pad memory (SPM)

Sunway Taihulight data management, 219, 221
Sunway Taihulight execution model, 219
Sunway Taihulight memory model, 217–218
in SW26010 manycore CPU, 216–217

Semantics
parallel hardware, 83–84
simultaneous, 84

seq clause
adding to loop directive, 27–28
for sequential execution of loop, 9

Sequential loops
adding seq clause to loop directive, 27–28
executing, 9
vs. simultaneous or parallel loops, 87

Serial code
compiling OpenACC, 94–95
implementation of MiniFE solver, 156–157
using Jacobi iteration to locate Laplace 

condition, 61–67
Serialization, of tasks, 190
set clause

acc_set_cuda_stream, 180–181, 195
acc_set_device, 206–207
acc_set_device_num, 205–206, 209, 212
acc_set_device_type, 124

Shadow elements, arrays, 258
Shared memories

C++17, 142
HACCmk microkernel, 127–128
OpenMP, 138
types of system memory, 125

Shut down, functions of API routines, 5
SIMD (Single-instruction multiple-data), 83
SIMT (Single-instruction multiple-thread), 83
Simultaneous semantics, 84
Single-instruction multiple-data (SIMD), 83
Single-instruction multiple-thread (SIMT), 83

chandra-color.indb   282 8/13/2017   4:13:30 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


		  Index

283

Single-program multiple-data (SPMD), 255
Single source, advantages of OpenACC code, 79
SMs (Streaming multiprocessors), 83
Software pipelining

evaluating OpenACC translation to FPGAs, 251
kernel-pipelining transformation, 245–247
making pipelining operation asynchronous, 

201–204
multidevice pipeline, 204–208
overview of, 195–198
timeline for multidevice software pipelined 

image filter, 199
Source-to-source code translation, in XACC, 

259–260
Sparse matrix vector multiplication (SPMV)

CUDA implementation of MiniFE, 162
 implementation of MiniFE, 164–165
OpenACC implementation of MiniFE, 157–158
OpenMP implementation of MiniFE, 159
performance comparisons for MiniFE case, 168
serial implementation of MiniFE, 156–157

SPM. See Scratch pad memory (SPM)
SPMD (Single-program multiple-data), 255
SPMV. See Sparse matrix vector multiplication 

(SPMV)
Static scheduling, 94
Storage model, Sunway Taihulight memory model, 

218
Streaming multiprocessors (SMs), 83
Streams

CUDA, 180–181
OpenACC interoperating with CUDA streams, 

194–195
Strength reduction, compiling OpenACC, 93
Structured data

data lifetimes for, 111
types of data directives, 12

Subarrays, optimization of data locality, 112
Sunway Taihulight

data management in, 219–222
execution model in, 218–219
memory model, 217–218
overview of, 215–216
summary of, 223
SW26010 manycore CPU, 216–217

Supercomputers. See also Sunway Taihulight
criteria requirements, 238
multiple compute nodes, 253

portability as goal in, 122
SW26010 manycore CPU, 216–217
swap/swapin/swapout, Sunway Taihulight data 

management, 221–222
Switches, in compiler interpretative of directives, 35
SYCL, layout for performance portability, 126
Symbolic loop bounds and steps, what compilers 

cannot do, 91
Symbolic subscript expressions, what compilers 

cannot do, 90
Synchronization

comparing synchronous and asynchronous 
tasks, 189–190

of work queues, 191
Synchronization directives, 4
Syntax

API routines and environment variables, 5
clauses, 4–5
directives, 3–4
overview of, 3
spotting errors, 33

System memory, 125

T
Task parallelism. See also Parallelism

comparing dependent and independent tasks, 
189–190

comparing programming models, 136, 151–152
defined, 188
functions of API routines, 5

TAU performance system, 48–51
TAUdb, performance data management, 48
tau_exec, activating TAU performance 

measurement, 49
TBB. See Threading Building Blocks (TBB)
TCA (Tightly coupled accelerators), 261–262
Templates

C++, 137
XMP execution model, 255

Temporaries, storing expression value in, 85
Tests, runtime tuning and if clause, 107–108
Thermodynamic tables, 112–113
Thread parallelism, comparing programming 

models, 136
Thread safety, refactoring for, 105–106
Threading Building Blocks (TBB)

comparing programming models, 143
data allocations, 153

chandra-color.indb   283 8/13/2017   4:13:30 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


Index

284

Threading Building Blocks (TBB) (continued)
features, 141
mapping simple loop to parallel loop, 145
MiniFE solver case study, 165–167
nontightly nested loops (hierarchical 

parallelism), 151
parallel reductions, 147
performance comparisons for MiniFE case, 167
task parallelism, 151–152
tightly nested loops, 148

Tightly coupled accelerators (TCA), 261–262
Tightly nested loops, in programming models, 147
Timelines, viewing temporal evolution of a program, 

39
TotalView, debugging using, 52–53
Tracing

data recording via, 39
generating with Score-P, 44–46
Vampir trace visualization, 47–48

U
Unstructured data

data lifetimes for, 111
types of data directives, 12

update directive
data update, 4
interoperating OpenACC asynchronous work 

queues with CUDA streams, 194–195
making pipelining operation asynchronous, 

202–204
use in blocking data movement, 200–201
using with MPI routines, 210–211

USE_DEVICE clause, 177–180
User errors, compiling OpenACC, 95–97

V
Vampir, trace visualization, 47–48
Variables

auxiliary induction variable substitution, 93
data clauses, 12–13
private and firstprivate, 11
specifying scalar variables as private, 88

Vector addition. See AXPBY (vector addition)
vector clause

levels of parallelism, 21–22
mapping parallelism to hardware, 23–24

overview of, 22–23
Vectors

directive extension for kernel vectorization, 
244–245

distributing iterations across, 125–126
reducing vector or array to scalar, 86–87
scheduling parallel and vector code, 93–94
scheduling parallel loops, 227–230
temporary vectors required for MiniFE, 156

Verification, incremental acceleration and 
verification, 104

W
wait directive

events indicating runtime of device tasks, 41
joining work queues, 193–194
types of synchronization directives, 4
using with asynchronous operations, 191–192
using with MPI routines, 210–212

while loop, creating optimized parallel version of 
Laplace Solver, 75–78

WHIRL, OpenUH infrastructure, 224
Work distribution clauses, 4
Work mapping, XACC, 255–256
Work queues

advanced OpenACC options, 190–191
interoperating OpenACC asynchronous work 

queues with CUDA streams, 194–195
joining, 193–194

worker clause
levels of parallelism, 21–22
mapping parallelism to hardware, 23–24
overview of, 22–23

Workers
applying OpenACC for parallelism, 87–88
distributing iterations across, 125–126
evaluating OpenACC translation to FPGAs, 

248–249
principles governing loop performance, 96
scheduling parallel loops, 227–230

X
x86_64 multicore, demonstrating portability using 

OpenACC, 123–124
XcalableACC (XACC)

evaluating performance on HA-PACS, 262–267

chandra-color.indb   284 8/13/2017   4:13:30 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283


		  Index

285

implementation of OMNI compiler, 260–262
memory model, 257
overview of, 253
programming with XACC directives, 258–259
source-to-source code translation, 259–260
summary, 267

XcalableMP (XMP)
data distribution and work mapping, 255–256
execution model in, 255
internode communication, 256–257
overview of, 253–254

Xeon E5-2698, 230
Xeon Phi KNL, 123–124

chandra-color.indb   285 8/13/2017   4:13:31 PM

www.itbook.store/books/9780134694283

https://itbook.store/books/9780134694283

	Cover
	Title Page
	Copyright Page
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Contributors
	Chapter 4: Using OpenACC for Your First Program
	4.1 Case Study
	4.1.1 Serial Code
	4.1.2 Compiling the Code

	4.2 Creating a Naive Parallel Version
	4.2.1 Find the Hot Spot
	4.2.2 Is It Safe to Use kernels?
	4.2.3 OpenACC Implementations

	4.3 Performance of OpenACC Programs
	4.4 An Optimized Parallel Version
	4.4.1 Reducing Data Movement
	4.4.2 Extra Clever Tweaks
	4.4.3 Final Result

	4.5 Summary
	4.6 Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X




