
i
i

“Bishop_Ch14” — 2018/10/12 — 17:57 — page 455 — #3

i
i

i
i

i
i

Chapter 14
Design Principles

FALSTAFF: If I had a thousand sons, the
�rst human principle I would teach them should

be, to forswear thin potations and to addict
themselves to sack.

— The Second Part of King Henry the Fourth, IV, iii, 133–136.

Speci�c design principles underlie the design and implementation of mechanisms
for supporting security policies. These principles build on the ideas of simplicity
and restriction. This chapter discusses those basic ideas and design principles.

14.1 Underlying Ideas

Saltzer and Schroeder [1644] describe eight principles for the design and imple-
mentation of security mechanisms; Saltzer and Kaashoek [1643] later re�ned
them. The principles draw on the ideas of simplicity and restriction.

Simplicity makes designs and mechanisms easy to understand. More im-
portantly, simple designs lead to fewer problems, and those that occur are usually
easier to deal with. Minimizing the interaction of system components minimizes
the number of sanity checks on data being transmitted from one component to
another.

EXAMPLE: The program sendmail reads con�guration data from a binary �le.
System administrators generated the binary �le by “freezing,” or compiling, a text
version of the con�guration �le. This created three interfaces: the mechanism used
to edit the text �le, the mechanism used to freeze the �le, and the mechanism
sendmail used to read the frozen �le. The second interface required manual
intervention and was often overlooked. To minimize this problem, sendmail
checked that the frozen �le was newer than the text �le. If not, it warned the user
to update the frozen con�guration �le.

455
Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.

Reproduction of any sort without permission from the publisher is strictly prohibited.

www.itbook.store/books/9780321712332

https://itbook.store/books/9780321712332

i
i

“Bishop_Ch14” — 2018/10/12 — 17:57 — page 456 — #4

i
i

i
i

i
i

456 Chapter 14 Design Principles

The security problem lies in the assumptions that sendmail made. For
example, the compiler would check that a particular option had an integer value.
However, sendmail would not recheck this; it assumed that the compiler had done
the checking. Errors in the compiler checks, or sendmail’s assumptions being
inconsistent with those of the compiler, could produce security problems. If the
compiler allowed the default UID to be a user name (say, daemon with a UID
of 1), but sendmail assumed that it was an integer UID, then sendmail would
scan the string “daemon” as though it were an integer. Most input routines would
recognize that this string is not an integer and would default the return value to 0.
Thus, sendmail would deliver mail with the root UID rather than with the desired
daemon UID.

Simplicity also reduces the potential for inconsistencies within a policy or
set of policies.

EXAMPLE: A college rule requires any teaching assistant who becomes aware of
cheating to report it. A different rule ensures the privacy of student �les. A TA
contacts a student, pointing out that some �les for a program were not submitted.
The student tells the TA that the �les are in the student’s directory, and asks the
TA to get the �les. The TA does so, and while looking for the �les notices two
sets, one with names beginning with “x” and the other set not. Unsure of which
set to use, the TA takes the �rst set. The comments show that they were written
by a second student. The TA gets the second set, and the comments show that
they were written by the �rst student. On comparing the two sets, the TA notes
that they are identical except for the names in the comments. Although concerned
about a possible countercharge for violation of privacy, the TA reports the student
for cheating. As expected, the student charges the TA with violating his privacy
by reading the �rst set of �les. The rules con�ict. Which charge or charges should
be sustained?

Restriction minimizes the power of an entity. The entity can access only
information it needs.

EXAMPLE: Government of�cials are denied access to information for which they
have no need (the “need to know” policy). They cannot communicate that which
they do not know.

Entities can communicate with other entities only when necessary, and in
as few (and narrow) ways as possible.

EXAMPLE: All communications with prisoners are monitored. Prisoners can
communicate with people on a list (given to the prison warden) through personal
visits or mail, both of which are monitored to prevent the prisoners from receiving
contraband such as �les for cutting through prison bars or weapons to help
them break out. The only exception to the monitoring policy is when prisoners
meet with their attorneys. Such communications are privileged and so cannot be
monitored.Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.

Reproduction of any sort without permission from the publisher is strictly prohibited.

www.itbook.store/books/9780321712332

https://itbook.store/books/9780321712332

i
i

“Bishop_Ch14” — 2018/10/12 — 17:57 — page 457 — #5

i
i

i
i

i
i

14.2 Principles of Secure Design 457

“Communication” is used in its widest possible sense, including that of
imparting information by not communicating.

EXAMPLE: Bernstein and Woodward, the reporters who broke the Watergate
scandal, describe an attempt to receive information from a source without the
source’s directly answering the question. They suggested a scheme in which
the source would hang up if the information was inaccurate and remain on the
line if the information was accurate. The source remained on the line, con�rming
the information [178].

14.2 Principles of Secure Design

The principles of secure design discussed in this section express common-sense
applications of simplicity and restriction in terms of computing. We will discuss
detailed applications of these principles throughout the remainder of Part V and
in Part VIII, “Practicum.” However, this chapter mentions speci�c examples.

14.2.1 Principle of Least Privilege

This principle restricts how privileges are granted.

De�nition 14–1. The principle of least privilege states that a subject should
be given only those privileges that it needs in order to complete its task.

If a subject does not need an access right, the subject should not have that
right. Furthermore, the function of the subject (as opposed to its identity) should
control the assignment of rights. If a speci�c action requires that a subject’s access
rights be augmented, those extra rights should be relinquished immediately on
completion of the action. This is the analogue of the “need to know” rule: if the
subject does not need access to an object to perform its task, it should not have
the right to access that object. More precisely, if a subject needs to append to an
object, but not to alter the information already contained in the object, it should
be given append rights and not write rights.

In practice, most systems do not have the granularity of privileges and
permissions required to apply this principle precisely. The designers of security
mechanisms then apply this principle as best they can. In such systems, the
consequences of security problems are often more severe than the consequences
for systems that adhere to this principle.

EXAMPLE: The UNIX operating system does not apply access controls to the
user root. That user can terminate any process and read, write, or delete any �le.
Thus, users who create backups can also delete �les. The administrator account
on Windows has the same powers.Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.

Reproduction of any sort without permission from the publisher is strictly prohibited.

www.itbook.store/books/9780321712332

https://itbook.store/books/9780321712332

i
i

“Bishop_Ch14” — 2018/10/12 — 17:57 — page 458 — #6

i
i

i
i

i
i

458 Chapter 14 Design Principles

This principle requires that processes should be con�ned to as small a
protection domain as possible.

EXAMPLE: A mail server accepts mail from the Internet and copies the messages
into a spool directory; a local server will complete delivery. The mail server needs
the rights to access the appropriate network port, to create �les in the spool
directory, and to alter those �les (so it can copy the message into the �le, rewrite the
delivery address if needed, and add the appropriate “Received” lines). It should
surrender the right to access the �le as soon as it has �nished writing the �le
into the spool directory, because it does not need to access that �le again. The
server should not be able to access any user’s �les, or any �les other than its own
con�guration �les.

14.2.1.1 Principle of Least Authority
Closely related to the principle of least privilege is the principle of least author-
ity [1349]. The two are often treated as meaning the same. However, some authors
make a distinction between “permission” and “authority.” They treat permission
as determining what actions a process can take on objects directly, and authority
as determining that effects a process may have on an object, either directly (as
with permission) or indirectly through its interactions with other processes or
subsystems.

Miller and Shapiro [1349] give a good example from the Take-Grant
Protection Model. In that model, the rights would represent actions that subjects
could take over objects, and so represent permissions. But the de facto rules of
that model, which govern information transfer, show how information can �ow
from a subject to an object that is not directly connected to the subject. Hence the
subject does not have permission to write information into the object, but it does
have permission to pass the information to a second subject, and that subject can
write the information into the object.1

De�nition 14–2. The principle of least authority states that a subject should
be given only the authority that it needs in order to complete its task.

If one reads the principle of least privilege as speaking to permissions, then
this principle is somewhat different. But if it speaks to authority, the two are the
same.

14.2.2 Principle of Fail-Safe Defaults

This principle restricts how privileges are initialized when a subject or object is
created.

1This is the �nd rule described by Bishop and Snyder [213, 233].

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

www.itbook.store/books/9780321712332

https://itbook.store/books/9780321712332

i
i

“Bishop_Ch14” — 2018/10/12 — 17:57 — page 459 — #7

i
i

i
i

i
i

14.2 Principles of Secure Design 459

De�nition 14–3. The principle of fail-safe defaults states that, unless a
subject is given explicit access to an object, it should be denied access to
that object.

This principle requires that the default access to an object is none. Whenever
access, privileges, or some security-related attribute is not explicitly granted, it
should be denied. Moreover, if the subject is unable to complete its action or task,
it should undo those changes it made to the security state of the system before it
terminates. This way, even if the program fails, the system is still safe.

EXAMPLE: If the mail server is unable to create a �le in the spool directory,
it should close the network connection, issue an error message, and stop. It
should not try to store the message elsewhere or to expand its privileges to
save the message in another location, because an attacker could use that ability
to overwrite other �les or �ll up other disks (a denial of service attack). The
protections on the mail spool directory itself should allow create and write access
only to the mail server and read and delete access only to the local server. No other
user should have access to the directory.

In practice, most systems will allow an administrator access to the mail
spool directory. By the principle of least privilege, that administrator should be
able to access only the subjects and objects involved in mail queueing and delivery.
As we have seen, this constraint minimizes the threats if that administrator’s
account is compromised. The mail system can be damaged or destroyed, but
nothing else can be.

Because many users do not change default access control permissions, this
rule applies to the default settings for both the system and for users.

14.2.3 Principle of Economy of Mechanism

This principle simpli�es the design and implementation of security mechanisms.

De�nition 14–4. The principle of economy of mechanism states that security
mechanisms should be as simple as possible.

If a design and an implementation are simple, fewer possibilities exist for
errors. The checking and testing process is less complex, because fewer compo-
nents and cases need to be tested. Complex mechanisms often make assumptions
about the system and environment in which they run. If these assumptions are
incorrect, security problems may result.

EXAMPLE: The ident protocol [1807] sends the user name associated with a
process that has a TCP connection to a remote host. A mechanism on host nob that
allows access based on the results of an ident protocol result makes the assumption

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

www.itbook.store/books/9780321712332

https://itbook.store/books/9780321712332

i
i

“Bishop_Ch14” — 2018/10/12 — 17:57 — page 460 — #8

i
i

i
i

i
i

460 Chapter 14 Design Principles

that the originating host is trustworthy. If host toad�ax decides to attack host
nob, it can connect and then send any identity it chooses in response to the ident
request. This is an example of a mechanism making an incorrect assumption
about the environment (speci�cally, that host toad�ax can be trusted).

Interfaces to other modules are particularly suspect, because modules often
make implicit assumptions about input or output parameters or the current
system state; should any of these assumptions be wrong, the module’s actions
may produce unexpected and erroneous results. Interaction with external entities,
such as other programs, systems, or humans, ampli�es this problem.

EXAMPLE: The �nger protocol transmits information about a user or system
[2106]. Many client implementations assume that the server’s response is well-
formed. However, if an attacker were to create a server that generated an in�nite
stream of characters, and a �nger client were to connect to it, the client would
print all the characters. As a result, log �les and disks could be �lled up, resulting
in a denial of service attack on the querying host. This is an example of incorrect
assumptions about the input to the client.

14.2.4 Principle of Complete Mediation

This principle restricts the caching of information, which often leads to simpler
implementations of mechanisms.

De�nition 14–5. The principle of complete mediation requires that all
accesses to objects be checked to ensure that they are allowed.

Whenever a subject attempts to read an object, the operating system should
mediate the action. First, it determines if the subject is allowed to read the object.
If so, it provides the resources for the read to occur. If the subject tries to read
the object again, the system should check that the subject is still allowed to read
the object. Most systems would not make the second check. They would cache the
results of the �rst check and base the second access on the cached results.

EXAMPLE: When a UNIX process tries to read a �le, the operating system
determines if the process is allowed to read the �le. If so, the process receives a �le
descriptor encoding the allowed access. Whenever the process wants to read the
�le, it presents the �le descriptor to the kernel. The kernel then allows the access.

If the owner of the �le disallows the process permission to read the �le after
the �le descriptor is issued, the kernel still allows access. This scheme violates the
principle of complete mediation, because the second access is not checked. The
cached value is used, resulting in the denial of access being ineffective.

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

www.itbook.store/books/9780321712332

https://itbook.store/books/9780321712332

i
i

“Bishop_Ch14” — 2018/10/12 — 17:57 — page 461 — #9

i
i

i
i

i
i

14.2 Principles of Secure Design 461

The mediator should check that the request comes from the claimed source
(authenticity) and that it has not been tampered with (integrity). After those are
validated, the access should be granted if, and only if, the access is authorized.
Failure to check authenticity and integrity can cause security problems.

EXAMPLE: The Domain Name Service (DNS) caches information mapping host
names into IP addresses. If an attacker is able to “poison” the cache by implanting
records associating a bogus IP address with a name, one host will route connec-
tions to another host incorrectly. Section 15.6.1.2 discusses this in more detail.

14.2.5 Principle of Open Design

This principle suggests that security should not depend solely on secrecy.

De�nition 14–6. The principle of open design states that the security
of a mechanism should not depend on the secrecy of its design or
implementation.

Designers and implementers of a program must not depend on secrecy of
the details of their design and implementation to ensure security. Others can ferret
out such details either through technical means, such as disassembly and analysis,
or through nontechnical means, such as searching through garbage receptacles for
source code listings (called “dumpster-diving”). If the strength of the program’s
security depends on the ignorance of the user, a knowledgeable user can defeat
that security mechanism. The term “security through obscurity” captures this
concept exactly.

This is especially true of cryptographic software and systems. Because cryp-
tography is a highly mathematical subject, companies that market cryptographic
software or use cryptography to protect user data frequently keep their algorithms
secret. Experience has shown that such secrecy adds little if anything to the
security of the system. Worse, it gives an aura of strength that is all too often
lacking in the actual implementation of the system.

Keeping cryptographic keys and passwords secret does not violate this
principle, because a key is not an algorithm. However, keeping the enciphering
and deciphering algorithms secret would violate it.

Issues of proprietary software and trade secrets complicate the application
of this principle. In some cases, companies may not want their designs made
public, lest their competitors use them. The principle then requires that the design
and implementation be available to people barred from disclosing it outside the
company.

EXAMPLE: The Content Scrambling System (CSS) is a cryptographic algorithm
that protects DVD movie disks from unauthorized copying. The DVD disk has
an authentication key, a disk key, and a title key. The title key is enciphered

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

www.itbook.store/books/9780321712332

https://itbook.store/books/9780321712332

i
i

“Bishop_Ch14” — 2018/10/12 — 17:57 — page 462 — #10

i
i

i
i

i
i

462 Chapter 14 Design Principles

ka

hash(kd)

E(kd , kp1)

· · ·

E(kd , kpn)

E(kt, kd)

Figure 14–1 DVD key lay-
out. ka is the authentication
key, kt the title key, kd the
disk key, and kpi the key for
DVD player i .

with the disk key. A block on the DVD contains
several copies of the disk key, each enciphered by
a different player key, and a checksum of the disk
key. When a DVD is inserted into a DVD player,
the algorithm reads the authentication key and
then authenticates the device (presumably to verify
it is allowed to read the following keys). It then
deciphers the disk keys using the DVD player’s
unique key. When it �nds a deciphered key with
the correct hash, it uses that key to decipher the
title key, and it uses the title key to decipher the
movie [1824]. (Figure 14–1 shows the layout of
the keys.)

The authentication and disk keys are not
located in the �le containing the movie, so if one
copies the �le, one still needs the DVD disk in the
DVD player to be able to play the movie.

In 1999, a group in Norway acquired
a (software) DVD playing program that had an
unenciphered key. They also derived an algorithm
completely compatible with the CSS algorithm
from the software. This enabled them to decipher
any DVD movie �le. Software that could perform
these functions rapidly became available throughout the Internet, much to the
discomfort of the DVD Copyright Control Association, which promptly sued
to prevent the code from being made public [643, 1465]. As if to emphasize the
problems of providing security by concealing algorithms, the plaintiff ’s lawyers
�led a declaration containing the source code of an implementation of the
CSS algorithm. When they realized this, they requested that the declaration be
sealed from public view. By then, the declaration—with the source code—had
been posted on several Internet sites, including one that had more than 21,000
downloads of the declaration before the court sealed it [1278].

14.2.5.1 Minimize Secrets
The principle of open design implies that the designer should minimize secrets.
Secrets can leak no matter how con�dential one thinks they are—and mistakes
do occur that sometimes reveal them, as in the above example. Protecting the con-
�dentiality of a few secrets is typically simpler than protecting the con�dentiality
of many secrets.

This rule also suggests that designers should plan for the compromise of any
secrets. When a secret is compromised, it should be simple and quick to restore
the system to a state where the (formerly) secret data has no value. Minimizing
the number of secrets reduces the number of these contingency plans, simplifying
management.

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

www.itbook.store/books/9780321712332

https://itbook.store/books/9780321712332

i
i

“Bishop_Ch14” — 2018/10/12 — 17:57 — page 463 — #11

i
i

i
i

i
i

14.2 Principles of Secure Design 463

14.2.6 Principle of Separation of Privilege

This principle is restrictive because it limits access to system entities.

De�nition 14–7. The principle of separation of privilege states that a system
should not grant permission based on a single condition.

This principle is equivalent to the separation of duty principle discussed in
Section 6.1. Company checks for more than $75,000 must be signed by two of�cers
of the company. If either does not sign, the check is not valid. The two conditions
are the signatures of both of�cers.

Similarly, systems and programs granting access to resources should do so
only when more than one condition is met. This provides a �ne-grained control
over the resource as well as additional assurance that the access is authorized.

EXAMPLE: On Berkeley-based versions of the UNIX operating system, the pro-
gram su, which enables users to change from their accounts to the root account,
requires two conditions to be met. The �rst condition is that the user knows the
root password. The second condition is that the user is in the wheel group (the
group with GID 0). Meeting either condition is not suf�cient to acquire root
access; meeting both conditions is required.

14.2.7 Principle of Least Common Mechanism

This principle is restrictive because it limits sharing.

De�nition 14–8. The principle of least common mechanism states that
mechanisms used to access resources should not be shared.

Sharing resources provides a channel along which information can be
transmitted, and so such sharing should be minimized. In practice, if the operating
system provides support for virtual machines, the operating system will enforce
this privilege automatically to some degree (see Chapter 18, “Con�nement Prob-
lem”). Otherwise, it will provide some support (such as a virtual memory space)
but not complete support (because the �le system will appear as shared among
several processes).

EXAMPLE: A website provides electronic commerce services for a major company.
Attackers want to deprive the company of the revenue it obtains from that website.
They �ood the site with messages and tie up the electronic commerce services.
Legitimate customers are unable to access the website and, as a result, take their
business elsewhere.

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

www.itbook.store/books/9780321712332

https://itbook.store/books/9780321712332

i
i

“Bishop_Ch14” — 2018/10/12 — 17:57 — page 464 — #12

i
i

i
i

i
i

464 Chapter 14 Design Principles

Here, the sharing of the Internet with the attackers’ sites caused the attack
to succeed. The appropriate countermeasure would be to restrict the attackers’
access to the segment of the Internet connected to the website. Techniques for
doing this include proxy servers such as the Purdue SYN intermediary [1695]
or traf�c throttling (see Section 7.4, “Availability and Network Flooding”). The
former targets suspect connections; the latter reduces the load on the relevant
segment of the network indiscriminately.

Minimizing the number of shared mechanisms also reduces the scope of an
attack that compromises such a mechanism. If all versions of an operating system
use the same program, then compromising that single program enables attackers
to compromise any system of that type. But if the systems each use a slightly
different version of the program, then compromise becomes more dif�cult.

EXAMPLE: Attack tools assume an underlying structure or con�guration of a
system or program. In order to invalidate this assumption, researchers have
studied how to inject arti�cial diversity effectively into programs and systems.
Then the attack tools will not work properly.

Object code obfuscation tools scramble the �ow of execution and the
placement of data in memory. For example, many attacks target the return address
for function calls, which is stored on a stack and thus in a predictable location.
Adding a layer of indirection requires changing the function call and return
sequence. Then an attempt to overwrite the return address will change the index
into the table instead. By appropriately constraining that value and obscuring
how the actual return addresses are stored, the attacker will be unlikely to guess
the actual location of the return address, defeating this class of attacks [381].
Other techniques randomize the order of variables and functions in memory
or introduce random gaps between formerly contiguous areas of storage, and
locations of memory regions. This renders ineffective attack tools that rely on
the memory layout of the program [193].

14.2.8 Principle of Least Astonishment

This principle recognizes the human element in computer security.

De�nition 14–9. The principle of least astonishment states that security
mechanisms should be designed so that users understand the reason that the
mechanism works the way it does and that using the mechanism is simple.

This principle requires security mechanisms to use a model that the target
audience (users and system administrators, typically) can easily understand. If
the audience’s mental model is too different than that used by the designers and
implementers, then their confusion may undermine the security mechanisms.

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

www.itbook.store/books/9780321712332

https://itbook.store/books/9780321712332

i
i

“Bishop_Ch14” — 2018/10/12 — 17:57 — page 465 — #13

i
i

i
i

i
i

14.2 Principles of Secure Design 465

Thus, con�guring and executing a program should be as easy and as
intuitive as possible, and any output should be clear, direct, and useful. If security-
related software is too complicated to con�gure, system administrators may
unintentionally set up the software in a nonsecure manner. Similarly, security-
related user programs must be easy to use and must output understandable
messages. If a user is changing a password, and the proposed password is rejected,
the password changing program should state why it was rejected rather than giving
a cryptic error message. If a con�guration �le has an incorrect parameter, the error
message should describe the proper parameter.

EXAMPLE: The ssh program [131, 2058] allows a user to set up a public key
mechanism for enciphering communications between systems. The installation
and con�guration mechanisms for the UNIX version allow one to arrange that
the public key be stored locally without any password protection. In this case,
one need not supply a password to connect to the remote system, but will still
obtain the enciphered connection. This mechanism satis�es the principle of least
astonishment.

On the other hand, security requires that the messages impart no unneces-
sary information.

EXAMPLE: When a user supplies the wrong password during login, the system
should reject the attempt with a message stating that the login failed. If it were to
say that the password was incorrect, the user would know that the account name
was legitimate. If the “user” were really an unauthorized attacker, she would then
know the name of an account for which she could try to guess a password.

Balancing the needs of security and the mental models of users requires
that the designers and implementers take into account the environment in which
the security mechanisms are used.

EXAMPLE: A mainframe system allows users to place passwords on �les.
Accessing the �les requires that the program supply the password. Although this
mechanism violates the principle as stated, it is considered suf�ciently minimal to
be acceptable. On an interactive system, where the pattern of �le accesses is more
frequent and more transient, this requirement would be too great a burden to be
acceptable.

14.2.8.1 Psychological Acceptability
The principle of least astonishment is similar to one of Saltzer’s and Schroeder’s
original principles, the principle of psychological acceptability. That principle
stated that that security mechanisms should not make the resource more dif�cult
to access than if the security mechanisms were not present. The difference
between that principle and the principle of least astonishment is that the former
expressed an ideal, whereas the latter recognizes that security mechanisms may

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

www.itbook.store/books/9780321712332

https://itbook.store/books/9780321712332

i
i

“Bishop_Ch14” — 2018/10/12 — 17:57 — page 466 — #14

i
i

i
i

i
i

466 Chapter 14 Design Principles

add additional steps to accessing the resource. The question is whether those
additional steps are unnecessarily dif�cult to take to the particular population
of users of the system.

14.3 Summary

The design principles discussed in this chapter are fundamental to the design
and implementation of security mechanisms. They encompass not only technical
details but also human interaction. Several principles come from nontechnical
environments, such as the principle of least privilege. Each principle involves
the restriction of privilege according to some criterion, or the minimization of
complexity to make the mechanisms less likely to fail.

14.4 Research Issues

These principles pervade all research touching on the design and implementation
of secure systems. The principle of least privilege raises the issue of granularity of
privilege. Is a “write”privilege suf�cient, or should it be fragmented—for example,
into “write” and “write at the end” or “append,” or into the ability to write to
speci�c blocks? How does the multiplicity of rights affect system administration
and security management? How does it affect architecture and performance? How
does it affect the user interface and the user’s model of the system?

Least common mechanism problems arise when dealing with denial of
service attacks, because such attacks exploit shared media. The principle of least
common mechanism plays a role in handling covert channels, which are discussed
further in Chapter 18.

Separation of privilege arises in the creation of user and system roles.
How much power should administrative accounts have? How should they work
together? These issues arise in role-based access control, which is discussed in
Section 8.4.

The principle of complete mediation runs counter to the philosophy of
caching. One caches data to keep from having to retrieve the information when it is
next needed, but complete mediation requires the retrieval of access permissions.
How are these con�icting forces balanced in practice?

Research in software and systems design and implementation studies the
application of the principle of economy of mechanism. How can interfaces be
made simple and consistent? How can the various design paradigms lead to better-
crafted, simpler software and systems?

Whether “open source” software (software the source of which is publicly
available) is more secure than other software is a complex question. Analysts

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

www.itbook.store/books/9780321712332

https://itbook.store/books/9780321712332

i
i

“Bishop_Ch14” — 2018/10/12 — 17:57 — page 467 — #15

i
i

i
i

i
i

14.5 Further Reading 467

can check open source software for security problems more easily than they can
software for which no source is available. Knowing that one’s coding will be
available for public scrutiny should encourage programmers to write better, tighter
code. On the other hand, attackers can also look at the source code for security
�aws, and various pressures (such as time to market) weigh against careful coding.
Furthermore, the debate ignores security problems introduced by miscon�gured
software, or software used incorrectly.

Experimental data for the debate about the ef�cacy of open source software
is lacking. An interesting research project would be to design an experiment that
would provide evidence either for or against the proposition that if source code
for software is available, then that software has (or causes) fewer security problems
than software for which source code is not available. Part of the research would
be to determine how to make this question precise, what metrics and statistical
techniques should be used to analyze the data, and how the data should be
collected.

An understanding of people’s world views, and mental models of how
computers and security should work, are the basis for applying the principle of
least astonishment. The user interface of many security mechanisms, and the
details that users must master, differ from their real-world counterparts for a
variety of reasons. Thus, understanding how to communicate security issues to
people, and tailoring mechanisms to interpret user commands properly, is an area
of active research in both the security and human factors communities.

14.5 Further Reading

Many papers discuss the application of these principles to security mechanisms.
Succeeding chapters will present references for this aspect of the principles. Other
papers present different sets of principles. These papers are generally specializa-
tions or alternative views of the principles in this chapter, tailored for particular
environments. Abadi and Needham [4] and Anderson and Needham [60] discuss
principles for the design of cryptographic protocols; Syverson discusses their
limits [1847], and Moore [1377] and Abadi [2] describe problems in cryptographic
protocols. Wood [2019, 2020] discusses principles for secure systems design with
an emphasis on groupware. Shapiro and Hardy elaborate on a set of principles
underlying the design of the operating system EROS [1729]. Bonyun [268] focuses
on architectural principles. Landwehr and Goldschlag [1135] consider Internet
security. Other examples are for authentication protocols used in the infrastruc-
ture of the power grid [1049], for designing privacy constraints into systems [367],
and for computer forensics [1506].

Principles for interacting with people are also under study. Yee discusses
principles for user interfaces for secure systems [2051]. Peisert et al. [1510]
identify principles of authentication that correspond to physical validation of
identity. Stajano and Wilson [1808] present some principles underlying successful

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

www.itbook.store/books/9780321712332

https://itbook.store/books/9780321712332

i
i

“Bishop_Ch14” — 2018/10/12 — 17:57 — page 468 — #16

i
i

i
i

i
i

468 Chapter 14 Design Principles

computer scams, and from them derive principles for protecting people. Motiee
et al. [1387] examine user considerations about the use of the principle of least
privilege.

14.6 Exercises

1. The PostScript language [18] describes page layout for printers. Among its
features is the ability to request that the interpreter execute commands on the
host system.

a. Describe a danger that this feature presents when the language inter-
preter is running with administrative or root privileges.

b. Explain how the principle of least privilege could be used to ameliorate
this danger.

2. A common technique for inhibiting password guessing is to disable an account
after three consecutive failed login attempts (see Section 13.4.2).

a. Discuss how this technique might prevent legitimate users from access-
ing the system. Why is this action a violation of the principle of least
common mechanism?

b. One can argue that this is an example of fail-safe defaults, because by
blocking access to an account under attack, the system is defaulting to a
known, safe state. Do you agree or disagree with this argument? Justify
your answer.

3. Kernighan and Plauger [1041] argue a minimalist philosophy of tool building.
Their thesis is that each program should perform exactly one task, and more
complex programs should be formed by combining simpler programs. Discuss
how this philosophy �ts in with the principle of economy of mechanism. In
particular, how does the advantage of the simplicity of each component of a
software system offset the disadvantage of a multiplicity of interfaces among
the various components?

4. Design an experiment to determine the performance impact of checking
access permissions for each �le access (as opposed to once at the �le’s
opening). If you have access to a system on which you can modify the �le
access mechanism, run your experiment and determine the impact.

5. A company publishes the design of its security software product in a manual
that accompanies the executable software.

a. In what ways does this satisfy the principle of open design? In what ways
does it not?

b. Given that the design is known, what advantages does keeping the
source code unavailable give the company and those who purchase the
software? What disadvantages does it cause?Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.

Reproduction of any sort without permission from the publisher is strictly prohibited.

www.itbook.store/books/9780321712332

https://itbook.store/books/9780321712332

i
i

“Bishop_Ch14” — 2018/10/12 — 17:57 — page 469 — #17

i
i

i
i

i
i

14.6 Exercises 469

6. Assume that processes on a system share no resources. Is it possible for one
process to block another process’s access to a resource? Why or why not? From
your answer, argue that denial of service attacks are possible or impossible.

7. Given that the Internet is a shared network, discuss whether preventing denial
of service attacks is inherently possible or not possible. Do systems connected
to the Internet violate the principle of least common mechanism?

8. A program called lsu [219] gives access to role accounts. The user’s access
rights are checked, and the user is required to enter her password. If access
rules allow the change and the user’s password is correct, lsu allows the change.
Given that Mary uses lsu from her account, why does lsu require her to enter
her password? Name the principles involved, and why they require this.

9. Recall the S/Key one-time password algorithm discussed in Section 13.5.1.
When a user prints a list of S/Key passwords for future use, the system encodes
each hash value as a set of six short words and prints them. Why does it not
merely print out the hash values?

10. The program su enables a UNIX user to access another user’s account. Unless
the �rst user is the superuser, su requires that the password of the second
user be given. A (possibly apocryphal) version of su would ask for the user’s
password and, if it could not determine if the password was correct because
the password �le could not be opened, immediately grant superuser access so
that the user could �x the problem. Discuss which of the design principles this
approach meets, and which ones it violates.

11. Among the design principles Yee [2051] identi�es is the principle of expected
ability, which says that the interface must not lead the user to believe it is
possible to do something that cannot be done. Which of the design principles
in this chapter support this principle?

Excerpt from Computer Security, 2/E, by Matthew Bishop (ISBN: 9780321712332). Copyright © 2019 Pearson Education, Inc.
Reproduction of any sort without permission from the publisher is strictly prohibited.

www.itbook.store/books/9780321712332

https://itbook.store/books/9780321712332

