
10 Chapter 1

intro to EJB

you are here 4 11

EJB architecture

Sharpen your pencil

Client object

Client
server

DB

bi
z

in
te

rf
ac

e

A

B

C

Label the three parts in the diagram.1

Describe (briefly) what each of the three things are
responsible for, or how they behave.

2

A

B

C

EJB Object

Container services

the bean

The EJB object is the bodyguard for the bean... it intercepts the calls coming from the client

and passes the request to the Container.

The Container services are the things you’re paying for... the reason you’re using EJB in the

first place - transactions, security, persistence, etc.

The bean has the real business logic. It has the actual functionality (method code) to do
whatever it is this remote service is supposed to do (track your shopping cart, do a big calculate,
update a customer’s address, etc.

www.itbook.store/books/9780596005719

https://itbook.store/books/9780596005719

12 Chapter 1

intro to EJB

you are here 4 13

Sharpen your pencil

�������������

An entity bean IS something.

A session bean DOES something.

Know your bean types.

Look at the problem description on the left, and put
a check mark for the bean type that would best fit
the problem. There isn’t one perfect right answer
for these... you might decide that one bean type will
work if you approach it one way, but another bean
will work if you solve the problem in a different way.

Entity Message-driven Session bean
(circle stateless, stateful, or both)

stateful statelessThe books in a library

stateful statelessOnline expert diagnosis—you describe a
symptom and the system helps you deter-
mine the cause

stateful statelessReceiving submitted expense reports, and
sending them out for approval

stateful statelessDating service match-ups

stateful statelessSearching a product database

stateful statelessA bank account

stateful statelessBooking a ticket for a rock concert

probably stateful because it might have to ask you
several questions in order to complete the process

www.itbook.store/books/9780596005719

https://itbook.store/books/9780596005719

80 Chapter 2

architectural overview

you are here 4 81

Sharpen your pencil

Based on this scenario, draw the classes below into the
appropriate slot for whether they must be on the client, server, or
both (you can reuse a class). The picture is simplified, so you
aren’t seeing all of the players involved.

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

client class
101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

DogTrainerStub

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

DogTrainerImpl
101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

DogTrainer
interface

This sharpen gets you on the one most common
mistake EJB developers make. So don’t skip it!

client
stub

Remote
DogTrainer

Dog
Dog

trainPet(myDog)

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

Dog

EJB architecture

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

Dog

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

DogTrainerStub

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

DogTrainer
interface

the Dog class has to be on the Server as well as the client, because it must be deserialized

when it gets to the server. Both the client and server need the interface (cli
ent won’t even

compile without the interface), but only the server needs
the actual DogTrainerImpl (the

thing that does the remote work on the server). The client needs the stub class, obviously,

but the server usually will too, for plain old RMI, because it’s the server that delivers the

stub object to the client initially. (This isn’t always true for RMI and EJB, but for now

we’ll pretend that it is.)

www.itbook.store/books/9780596005719

https://itbook.store/books/9780596005719

EJB architecture

96 Chapter 2 you are here 4 97

Sharpen your pencil

se
rv

ic
es

client

EJB
object

bean

Home
object

stub

stub 2

In the scenario below, assume the client has previously done a JNDI lookup and
gotten back a stub to the Remote Home object.
Everything in the picture is what happens AFTER the client has the Home stub and
now wants to get a reference to an EJBObject and ultimately call a business method
on the bean.

Number the arrows (using the boxes over the arrows) in the order in which they
occur. These arrows aren’t necessarily direct method calls (although they might be),
but rather arrows pointing to the next THING that happens. Tell a story for what hap-
pens at each arrow. There might be more than one right answer, depending on how
you tell the story. Some arrows are missing; you can add them if you want, or, just
assume some things are happening that you don’t have arrows for.

Relax and take your time.
If you get stuck, flip back through the previous pages and study the diagrams.

1.

2.

3.

4.

5

6.

7.

8.

9.

10.

11.

The stub tells the Home that the client wants
to “create” a bean

EJB Lifecycle:

Client has only a
Home stub but wants
to invoke a business
method on a bean.

1

3

5
4

6
7

8

9 10 11

client calls create() on the Home stub

Home object interacts with the Container services
(or you can think of the Home AS the Container)

EJB object is created for the bean

The bean is created
(note: steps 4 and 5 can be in a different order
depending on the bean type...)

Home returns the EJB object stub to the Home
stub.
The stub is returned to the client
Client calls a business method on the
EJB object stub
Stub contacts the EJB object with informa-
tion about the method call (including any args)
Container services kick in...

Method call goes to the bean

www.itbook.store/books/9780596005719

https://itbook.store/books/9780596005719

108 Chapter 2

architectural overview

you are here 4 109

Organize	your	beans

Uses a pool

Multiple clients can have a reference
to the same bean

Guaranteed to survive a container
crash

Has a client view

Allows asynchronous communication

Represents a process

Represents a “thing” in an underly-
ing persistent store (like a database)

Stateless Session
Beans

Stateful Session
Beans

Entity Beans Message-driven
Beans

Exercise Finish the table by putting in a checkmark (even better if you
add notes) in the boxes corresponding to the labels that apply
to that bean type. We’ve done one of the boxes for you. If you
get stuck, go back through the previous two chapters. You might
have to make your best guess on a few things. That’s OK—
you’ll have it all worked out way before the end of the book. We
believe in you. You can do it. [cue theme song from “Rocky”]

Yes. Since they
don’t keep any
client-specific data,
you don’t need one
per each client.

bean table

Nope. Stateful
beans never have a
pool.

Yes. When an entity
bean is not *being*
a specific entity
(row from DB), it
stays in the pool

Yes. They’re a lot
like stateless session
beans. Any bean of a
particular type is the
same as any other.

No... although one
bean can service
multiple clients, but
only one at a time.

Never! Would you
want someone putting
their shoes in YOUR
shopping cart?

Yes -- there can
be multiple clients
accessing the same
entity (like Fred
#24)

Not applicable...
message-driven beans
don’t have actual
clients

No... although it’s
easy for the client
to re-establish one
that’s identical to
the one they had
before the crash.

No.. You *might*
have a vendor that
provides this, but
don’t count on it.

Yes! The bean
instance itself
doesn’t survive,
but the underlying
entity does.

No.

No.Yes Yes

YesNo. No. No.

Yes Yes YesNo.

Yes No.No.No.

www.itbook.store/books/9780596005719

https://itbook.store/books/9780596005719

the Home interface

118 Chapter 3

the client view

you are here 4 119

import javax.naming.*;
import java.rmi.*;
import javax.rmi.*;
import headfirst.*;
import javax.ejb.*;

public class AdviceClient {

 public static void main(String[] args) {
 new AdviceClient().go();
 }

 public void go() {
 try {
 Context ic = new InitialContext();
 Object o = ic.lookup(“Advisor”);

 AdviceHome home = (AdviceHome) PortableRemoteObject.narrow(o, AdviceHome.class);

 Advice advisor = home.create();

 System.out.println(advisor.getAdvice());

 } catch (RemoteException rex) {
 rex.printStackTrace();
 } catch (CreateException cex) {
 cex.printStackTrace();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

A bunch of imports, we’ll look

at each one individually a
t the

bottom of the page

InitialContext is our entry point
 into the

JNDI naming service, where we do the lookup

on the name “Advisor”
What is THIS??? Why not just a plain old cast?

Call create on the home to get us what we REALLY want — the component interface.

Let’s	take	another	look	at	the	complete	client	code

Sharpen your pencil

Match the class name with
the package it’s from. You can
use the same package name
more than once.

If you’re not sure, make your
best guess.

javax.naming

java.rmi

javax.rmi

headfirst

javax.ejb

InitialContext

AdviceHome

PortableRemoteObject

RemoteException

Advice

CreateException

Not a good way to handle (or

rather, NOT handle) exceptions

here... but we want to show some

of the checked excep
tions...

Package Name Class Name

The point of everything! To call a business
method on the bean (via the EJBObject stub)

www.itbook.store/books/9780596005719

https://itbook.store/books/9780596005719

the Home interface

132 Chapter 3

the client view

you are here 4 133

Sharpen your pencil
Based on the rules for session bean home interfaces, which
statements are true about this interface:

import javax.ejb.EJBHome;
import java.rmi.RemoteException;

public interface CartHome extends EJBHome {

 public Cart create() throws CreateException, RemoteException;

}

❏	CartHome must not be the home of a stateful session bean.

❏	The interface is missing an import statement.

❏	The create method is missing an exception.

❏	Cart must be the class type of the bean.

❏	Cart must be the interface that extends EJBObject.

❏	The object returned from create() must be narrowed.

❏	The object returned from create() does not need a cast.

.

The exam expects you to look at

client, interface, or bean code, and

make inferences about things you

don’t see. You MUST know all of

the rules for home and component

interfaces. And there’s more...

You MUST be

able to look at

code and infer

a lot about it.

it can be either
stateful or stateless

javax.ejb.CreateException

Cart must be the Remote

component interface!

The object coming from create()

already knows its type (Cart), so

no cast or narrow is needed.

www.itbook.store/books/9780596005719

https://itbook.store/books/9780596005719

154 Chapter 3

the client view

you are here 4 155

Sharpen your pencil

❏	The only way to remove a local session bean is through the
component interface

❏	Entity beans can be removed through a local home interface

❏	If you see an isIdentical() call, this must be a local bean

❏	If you see a getHandle() call, this must be a Remote bean

❏	If the client is catching a RemoteException on a home method, the
bean’s home interface must extend EJBLocalHome

❏	If the client is not handling a RemoteException on a business
method, the bean’s component interface must extend EJBObject.

❏	If you see a call to getEJBMetaData(), the bean’s component
interface must extend EJBLocalObject.

❏	If you do a JNDI lookup on a local home, you must narrow the
object returned from JNDI

❏	There are three methods in the EJBLocalObject interface

❏	There are two methods in the EJBLocalHome interface

Based on what you now know about the difference between local
and Remote client interfaces, decide if the following statements
are true or false. You’ll have to make some inferences and smart
guesses for some of them.

Select all that are true:

because session beans don’t have a
primary key, and the only remove in
a local home takes a primary key

Handles always means Remote !! They aren’t
needed for local clients...

RemoteException is REQUIRED
for remote interface methods, but
you must NOT use them with local
interfaces.

EJBMetaData is just for Remote clients

You’ll have to cast it, but not narrow it.
Narrowing is just for Remote stubs.

Turn back to page 154 to see the
interfaces...

www.itbook.store/books/9780596005719

https://itbook.store/books/9780596005719

