
186 Chapter 4

session bean lifecycle

you are here 4 187

Sharpen your pencil

there are noDumb Questions
Q: If it’s so common to leave the methods empty, why don’t
they have adapter classes like they have for event handlers—that
implement all the methods from the interface? Is there any reason
why your bean class can’t extend a class that implements the
SessionBean interface?

A: The API doesn’t have adapter classes for SessionBean
implementations (i.e. a class that implements all of the methods). But
there’s no reason you can’t make one yourself. Keep in mind, though,
that with real-world beans you probably will have code in one or more
of the methods. And you might even be working with a bean-aware IDE
that puts the methods in for you anyway.

Still, it might be handy to make yourself a generic bean that you
typically extend from, that has all of the methods from SessionBean.
With stateless beans, especially, you have to implement ejbActivate() and
ejbPassivate(), even though they’ll never be called! (Stateless beans are
never passivated; you’ll see more on that later in the chapter.)

Q: I just remembered that I read somewhere that enterprise beans
don’t support inheritance! What’s that about?

A: Ah... a common misconception. Well, sort of. EJB supports regular
Java class inheritance, but has no concept of bean inheritance. And now
you’re asking, “What the heck is the difference?” You already know what
class inheritance is, it’s the thing you do in Java when one class extends
another. And you can do that with a bean, just like any other class.

But bean inheritance (if it were supported) would mean that a bean
class could extend another bean class and inherit not just the class’
inheritable members, but also its beanness. What kind of beanness
might be inheritable? (Just in case they do decide to support this in
the future, which is a possibility. Regular old non-enterprise beans do
support bean inheritance.)

One idea might be to have your bean subclass inherit some of the
deployment descriptor settings of its superclass, and then override the
ones it wants to change with a much smaller, incomplete deployment
descriptor. That might be cool; we’re not sure. But right now, it’s just our
little fantasy.

In the meantime, go ahead and let your bean extend another class, if it
makes sense for your OO design.

For the exam, you have to know exactly
which methods are in the SessionBean
interface, so now is a good time to start
memorizing them. See if you can remember
the name of the method that matches the
behavior described. We’ve included some
pretty big hints here because it’s your first
time, but the mock exam questions will be
much less obvious...

1. This method is called when the client tells
the Container that he’s done using a stateful
session bean. The bean is NOT happy:

2. This method is called when the bean
is put to sleep to temporarily conserve
resources:

3. This method is called when the previously-
sleeping bean is called back to active duty
to service a business method:

4. This method is called near the beginning
of the bean’s life, when the Container hands
the bean a reference to the bean’s special
link to the Container:

session beans

ejbRemove()

ejbPassivate()

ejbActivate()

setSessionContext(SessionContext sc)

www.itbook.store/books/9780596005719

https://itbook.store/books/9780596005719

204 Chapter 4

session bean lifecycle

you are here 4 205

Sharpen your pencil

You’re responsible for making sure that when
ejbPassivate() completes, your instance
variables are in one of the states we listed a
couple of pages ago. Don’t look now! See if
you can work out which of these will be safely
passivated...

q reference to a java.net.Socket object

q reference to a javax.sql.DataSource

q reference to a bean’s Remote component
interface

q reference to a bean’s JNDI context

q reference to a java.sql.Connection

q reference to a javax.ejb.SessionContext
object

q a transient variable with a null value

q a non-transient, Serializable variable with
a null value

q a transient variable with a non-null value

q a non-transient, non-Serializable variable
with a null value

q a non-transient, non-Serializable variable
with a non-null value*

You can’t passivate a non-Serializable, non-null
value... so that means no Socket, and no Connection.

A transient non-null value is fine for passivation,
but there is no guarantee that when it comes
BACK from activation it will have default values.
In other words, JUSt using the ‘transient’ modi-
fier without also setting the value to null might
passivate OK, and activate OK, but the value after
activation might be weird! (Moral: go ahead and
use transient, but also set the values to null in
ejbPassivate())

Big explosion here (well, technically, one of the
things the Container IS required to passivate might
not actually be Serializable, but that’s not your
concern. The Container is still required to save
those special things (like bean references, JNDI
context, SessionContext, etc.) as if they WERE
Serializable.

www.itbook.store/books/9780596005719

https://itbook.store/books/9780596005719

session beans

220 Chapter 4

session bean lifecycle

you are here 4 221

Sharpen your pencil

Do the interfaces have to change when it goes from
stateless to stateful?

Look at the two interfaces below, for the stateless version
of the Advice bean. If needed, make any adjustments to
the code in either or both of the interfaces, for what (if any-
thing) needs to change to make this work with the revised
stateful version of the bean.

package headfirst;

import javax.ejb.*;
import java.rmi.RemoteException;

public interface AdviceHome extends EJBHome {
 public Advice create() throws CreateException, RemoteException;
}

package headfirst;

import javax.ejb.*;
import java.rmi.RemoteException;

public interface Advice extends EJBObject {
 public String getAdvice() throws RemoteException;

}

public Advice create(String name) throws CreateException, RemoteException;

Nothing changes with the business method interface

(even though the implementation will change)

www.itbook.store/books/9780596005719

https://itbook.store/books/9780596005719

230 Chapter 4

session bean lifecycle

you are here 4 231

Writing	a	Session	Bean:	
your	job	as	Bean	Provider

You put THREE kinds of methods
in the bean class:

HOME things: ejbCreate() methods1

I have a system when I
sit down to write a Session

bean... I always have to put
in three kinds of things: home
stuff, business methods, and the
SessionBean methods.

Write an ejbCreate() method in the bean to match each
create() method in the home interface.

<<interface>>
AdviceHome

create()

<<interface>>
SessionBean

setSessionContext()
ejbPassivate()
ejbActivate()
ejbRemove()

<<interface>>
Advice

getAdvice()

COMPONENT things: business methods2

Write a business method in the bean to match each
method in your bean’s component interface.

SESSION BEAN things: container callbacks
from the SessionBean interface

3

Implement each of the four methods from the
SessionBean interface, which your bean must implement
in the official Java way (i.e. using the implements
SessionBean declaration either in your bean class or one
of its superclasses)

Sharpen your pencil

Of the three types of methods you
put in your bean, check off the ones
the compiler cares about.

q Methods to match the Home interface

q Methods to match the Component interface

q Methods from the SessionBean interface

Compiler-checked?

writing session beans

www.itbook.store/books/9780596005719

https://itbook.store/books/9780596005719

230 Chapter 4

session bean lifecycle

you are here 4 231

import javax.ejb.*;
import java.rmi.RemoteException;

public interface KennelHome extends EJBHome {
 public Kennel create(String custID) throws CreateException, RemoteException;
}

import javax.ejb.*;
import java.rmi.RemoteException;

public interface Kennel extends EJBObject {
 public KennelLease placePet(Pet p) throws RemoteException;
 public void renewLease(KLease lease) throws RemoteException, ExpiredException;
 public Pet getPet(KLease lease) throws RemoteException, DeadPetException;
}

Sharpen your pencil Given the following interfaces, write the bean class code (you can leave
the method empty) at the bottom of the page. Pay special attention to
the Home create method... what does it take to ‘match’ this in the bean?
Will it have the same return type? Hints are at the bottom of the page.

Write the bean class here:

public class KennelBean implements SessionBean {

 public void ejbCreate(String custID) throws CreateException { }
 public void ejbActivate() { }
 public void ejbPassivate() { }
 public void setSessionContext(SessionContext ctx) { }
 public void ejbRemove() { }

 public KennelLease placePet(Pet p) {
 return new KennelLease();
 }
 public void renewLease(KLease lease) throws ExpiredException { }
 public Pet getPet(KLease lease) throws DeadPetException { }
}

We don’t throw RemoteException,

but it’s a good idea to de
clare

CreateException on your create...

We don’t throw RemoteException, but

we’re assuming that if you really imple-

mented this class, you’d dec
lare and use

these other application-specific exceptions.

But according to plain old J
ava rules,

you don’t have to declare
the exceptions

declared in the interface,
 unless your

method really DOES potentially throw

that exception...

www.itbook.store/books/9780596005719

https://itbook.store/books/9780596005719

238 Chapter 4

session bean lifecycle

you are here 4 239

Who does What?

Bean Provider

Sharpen your pencil

Container

From the list of words below, arrange them in the appropriate lists according to
whether it’s a responsibility of the Bean Provider, the Container, or the Client.

invoking ejbCreate()

Client

implementing the EJBObject class

invoking setSessionContext()

invoking create()

invoking ejbRemove()

implementing the Handle class

implementing SessionBean

creating the home interface

creating the Home object class

implementing the SessionContext class

implementing the create() methodimplementing the ejbCreate() method

implementing the ejbActivate() method invoking ebjPassivate()invoking a business method
on the component interface

www.itbook.store/books/9780596005719

https://itbook.store/books/9780596005719

entity beans

280 Chapter 5

entity bean intro

you are here 4 281

Sharpen your pencil

<<interface>>
CustomerHome

create(String last, String first)
findByPrimaryKey(String key)
findByCity(String city)

getEJBMetaData()
getHomeHandle()
remove(Handle h)
remove(Object key)

<<interface>>
Customer

getLastName()
setLastName(String s)

getFirstName()
setFirstName(String s)

getPrimaryKey()
getEJBHome()
getHandle()
remove()
isIdentical()

For the four database operations (SQL commands) a client might
want to do with an entity bean, list the methods in the bean’s
interface(s) that are related to those database operations. No, you
don’t have to know SQL, but you definitely have to understand the
implications of the four database operations, and you must know
how they correspond to methods in the bean class.

From the list of the methods in the interfaces, fill in the method or
methods that correspond with the database operation.

INSERT:

DELETE:

UPDATE:

SELECT:

create on the home

remove on the home or component interface

the two setters in the component interface

the two finders in the home, and whatever else loads
the bean with data. (You might include the getters here,
although a SELECT isn’t necessarily done each time a
getter is called (depends on the transaction)

www.itbook.store/books/9780596005719

https://itbook.store/books/9780596005719

