
316 Chapter 6

entity bean synchronization

you are here 4 317

<<interface>>
ProductHome

create(String description, String cat, double price, String ID)

findByPrimaryKey(String key)

findByCategory(String category)

getLowStockItems()

<<interface>>
EntityBean

setEntityContext(EntityContext ec)

ejbActivate()

ejbPassivate()

ejbRemove()

unsetEntityContext()

ejbLoad()

ejbStore()

<<interface>>
Product

getCategory()

getID()

getDescription()

setDescription()

getPrice()

setPrice()

Sharpen your pencil Using the interfaces below, write a legal bean class. You don’t have
to write the actual business logic, but at least list all the methods
that you have to write in the class, with their correct declarations.

public abstract class CustomerBeanCMP implements EntityBean {

 public String ejbCreate(String cat, double price, String ID) {
 return null;
 }

 public abstract String getProductCategory();
 public abstract void setProductCategory(String cat);
 public abstract String getProductID();
 public abstract void setProductID(String ID);
 public abstract String getProductDescription();
 public abstract void setProductDescription(String desc);
 public abstract double getProductPrice();
 public abstract void setProductPrice(int price);

 public String getCategory() {
 return this.getProductCategory();
 }

 public void setCategory(String cat) {
 this.setProductCategory(cat);
 }

 public String getID() {
 return this.getProductID();
 }

 public void setID(String ID) {
 this.setProductID(ID);
 }

 public String getDescription() {
 return this.getProductDescription();
 }

 public void setDescription(String desc) {
 this.setProductDescription(desc);
 }

 public double getPrice() {
 return this.getProductPrice();
 }

 public void setPrice(double price) {
 this.setProductPrice(price);
 }

 public void ejbPassivate() { }
 public void ejbActivate() { }
 public void ejbRemove() { }
 public void unsetEntityContext() { }
 public void ejbLoad() { }
 public void ejbStore() { }
 public void setEntityContext(EntityContext ctx) { }

 public void ejbPostCreate(String cat, double price, String ID) { }

 public Collection ejbHomeGetLowStockItems() {
 // return a Collection
 }
}

NOTE: we don’t put the Finder methods in a CMP class!

NOTE: the abstract methods have a different name than the publicly-
exposed methods in the interface. You *can* expose the abstract CMP
field methods directly to the client, but remember -- that’s a really bad
idea. So we didn’t.

www.itbook.store/books/9780596005719

https://itbook.store/books/9780596005719

318 Chapter 6

entity bean synchronization

you are here 4 319

package headfirst;

import javax.ejb.*;

public abstract class CustomerBeanCMP implements EntityBean {

 private EntityContext context;

 public String ejbCreate(String last, String first, String addr) {
 this.setLast(last);
 this.setFirst(first);
 this.setPK(makePK());
 this.setAddress(addr);
 return null;
 }

 public String getLastName() {
 return this.getLast();
 }

 public void setLastName(String name) {
 this.setLast(name);
 }

 public String getFirstName() {
 return this.getFirst();
 }

 public void setFirstName(String name) {
 this.setFirst(name);
 }

 public String getAddress() {
 return this.getCustAddress();
 }

 public void setAddress(String addr) {
 this.setCustAddress(addr);
 }

 public void setEntityContext(EntityContext ctx) {
 context = ctx;
 }

Complete	code	for	the	CustomerBeanCMP	class
(note: we aren’t showing the annotation, even here in the answers. That’s still YOU job.)

CustomerBeanCMP code

H

C

C

C

C

C

C

EB

www.itbook.store/books/9780596005719

https://itbook.store/books/9780596005719

318 Chapter 6

entity bean synchronization

you are here 4 319

 public abstract String getLast();
 public abstract void setLast(String last);
 public abstract String getFirst();
 public abstract void setFirst(String first);
 public abstract String getCustAddress();
 public abstract void setCustAddress(String addr);
 public abstract String getPK();
 public abstract void setPK(String pk);

 public void unsetEntityContext() { }
 public void ejbLoad() { }
 public void ejbStore() { }
 public void ejbActivate() { }
 public void ejbPassivate() { }
 public void ejbRemove() { }

 private String makePK() {
 int rand = (int) (Math.random() * 42);
 return “”+ rand;
 }
}

Sharpen your pencil

Mark each method in the CustomerBeanCMP class with one of the following four
symbols:

based on the reason for that method’s existence in the class. For example, the
ejbCreate() method is required because there’s a matching create() in the home,
so mark an H next to the ejbCreate() method.

1

Put a check mark next to those methods that the compiler cares about. In other
words, if you left a method out and the compiler would complain with an error, then
mark that method with a

2

H C EB VF

Annotate the code yourself with any other details you can think of. For this exercise
(but not the previous two), do as much as you can on your own, then turn back to
earlier pages in this chapter and see if you can add or change anything.

3

VF

EB

this is just our own private
method, so it doesn’t come
from any rule other than our
business logic

www.itbook.store/books/9780596005719

https://itbook.store/books/9780596005719

322 Chapter 6

entity bean synchronization

you are here 4 323

Sharpen your pencil

there are noDumb Questions
Q: It looks like there are TWO ways to move
to the method-ready state: either the client
calls a create() method or the Container calls
ejbActivate(). So does this mean that you can’t
count on ejbActivate() being called each time you
leave the pool?

A: That’s right. A bean can move to the method-
ready state by ONLY those two paths (creation or
activation) but never both at the same time. So, if you
have a design that acquires resources in ejbActivate(),
so that they’ll always be available while the bean is
servicing a business method, you better grab them
in ejbCreate() (or ejbPostCreate()—you’ll see the
difference in a few minutes).

In the real world, it’s much less common in EJB 2.0
to use ejbActivate() for much of anything. We’ll talk
more about this both in this chapter and the last
chapter (patterns and performance), but the short
version is this: it’s usually more efficient to acquire
and release scarce resources just within the business
methods that need them. That way, you’re not
hanging on to them (preventing other beans from
having access) while your bean is active (i.e. not in
the pool), but not actively running a method. Yes, that
means you have some additional overhead in each
business method, as opposed to grabbing the thing
once in ejbActivate(), but in many cases the overhead
of grabbing the resource is minor compared to the
scalability cost of holding resources (we’re thinking...
database connections from the pool) open longer
than you need to access those resources.

Bottom line: You’ll probably find yourself leaving
ejbActivate() empty, in so you won’t have to worry
about missing it when you come out of the pool via
an ejbCreate() call.

For the exam, you have to know exactly
which container callback methods are in the
EntityBean interface, so you need to memorize
these. The tricky part is that some of them
have the same names, but completely different
behavior than their session bean counterparts in
the SessionBean interface. DO NOT LOOK ON
THE OPPOSITE PAGE!

1. The client calls this method to tell the
Container that he (the client) is done using the
bean’s EJB object reference:

2. This method is called when the bean goes
back to the pool, after an entity is deleted from
the database:

3. This method is called immediately after the
bean’s constructor runs:

4. This method is called on the bean when the
bean is in the pool, and the client invokes a
business method on the component interface.
(We’re looking for the first method called in that
scenario)

Ah-hah! There isn’t one! (trick question)

Another trick... ejbRemove() is called
BEFORE the entity is deleted, but
ejbPassivate() is not called after that.

setEntityContext()

ejbActivate() (followed by ejbLoad())

www.itbook.store/books/9780596005719

https://itbook.store/books/9780596005719

360 Chapter 6

entity bean synchronization

you are here 4 361

<<interface>>
ProductHome

create(String ID, String price, String description)

findByPrimaryKey(String key)

getLowInventory(int limit)

<<interface>>
EntityBean

ejbActivate()

ejbRemove()

unsetEntityContext()

<<interface>>
Product

getProductDescription()

getQuantity()

getPrice()

ProductBean

Exercise

Fill in the ProductBean UML-ish box with the methods that YOU must write
in your bean class, given the component and home interfaces. Don’t forget
the container callbacks from EntityBean, although we’ve shown you only
three of the seven. The rest you’ll have to remember and fill in.

getProductDescription()
getQuantity()
getPrice()

ejbActivate()
ejbPassivate()
ejbRemove()
unsetEntityContext()
setEntityContext(EntityContext ctx)
ejbLoad()
ejbStore()

ejbCreate(String ID, String price, String description)
ejbPostCreate(String ID, String price, String description)
ejbHomeGetLowInventory(int limit)

// remember, NO FINDERS in a CMP bean

// plus the abstract getters and setters for the three
fields representing quantity, price, and description. We
can’t really tell from these diagrams whether those are
the actual fields in the database, so we’re just guessing...

methods fr
om the

component in
terface

methods fr
om EntityBean

interface
 (required

 by the

compiler)

requirements from the

home interface (b
ean law)

www.itbook.store/books/9780596005719

https://itbook.store/books/9780596005719

entity bean relationships

390 Chapter 7

entity bean relationships

you are here 4 391

 <relationships>

 <ejb-relation>

 <ejb-relationship-role>

 <ejb-relationship-role-name> </ejb-relationship-role-name>

 <multiplicity> </multiplicity>

 <relationship-role-source>

 <ejb-name>DirectorBean</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name> </cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role>

 <ejb-relationship-role-name>MovieBean</ejb-relationship-role-name>

 <multiplicity> </multiplicity>

 <cascade-delete />

 <relationship-role-source>

 <ejb-name> </ejb-name>

 </relationship-role-source>

 </ejb-relationship-role>

 </ejb-relation>

</relationships>

Director-to-Movie	relationship

Sharpen your pencil

Here’s the relationship DD for Director-to-
Movie, but we’ve left a few things out. See if
you can fill them in correctly without looking
on the previous pages!

Director

Collection getMovies()

0..* 1

Movie

Director getDirector()

Does this mean that when
a bean is in a relationship, it

MUST have a field for the other
bean? What if I want Movie to have
a Trailer, but I don’t want anybody
to use Trailer to get to a Movie?

Relationships	can	be	one-way	
(unidirectional)

You can have a relationship between two
beans, but have a CMR field in only one of
the two beans. For example, if you set up a
relationship between a Movie and its Trailer
(a one-to-one relationship), and you don’t
want clients to use a Trailer to get to a Movie,
just leave the CMR field for Movie out of the
Trailer bean. Simple as that.

In that case, the TrailerBean won’t know
anything about the MovieBean, even though
they’re both partners in a relationship.

 <ejb-relationship-role>
 <ejb-relationship-role-name>TrailerBean</ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <cascade-delete />
 <relationship-role-source>
 <ejb-name>TrailerBean</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name></cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>

Leave the cmr-field out of a relationship role if you don’t want this bean to have a reference to its partner bean.

Trailer

// no reference to Movie

1 1

Movie

Trailer getTrailer()

DirectorBean

One

movies
<cmr-field-type>java.util.Collection</cmr-field-type>

Many

MovieBean

<cmr-field>
<cmr-field-name>director</cmr-field-name>

</cmr-field>

we have to have
this because th

e multi-

plicity of the O
THER partner is Many,

which means the cmr field is a collec-

tion, and we have to say w
hat *type*

of collection (S
et or Collection)

www.itbook.store/books/9780596005719

https://itbook.store/books/9780596005719

480 Chapter 9

EJB transactions

you are here 4 481

 public void test() throws Exception {
 blue();
 UserTransaction ut = ctx.getUserTransaction();
 green();
 ut.begin();
 purple();
 ut.commit();
 red();
 }

 void blue() { green(); }
 void green() { }
 void purple() { red(); }
 void red() { }

test() test()

blue()

test()

blue()

green()

test()

blue()

test() test()

getUserTrans...

test() test()

green()

test() test()

begin()

test()

purple()

test()

purple()

red()

test()test()

purple()

test() test()

commit()

test()

red()

test()

start

end

Sharpen your pencil

Using this code listing, mark the

matching call stack frames with a

checkmark if that frame is currently

in a transaction. We did one in the

middle for you.

BMT transactions

test()

www.itbook.store/books/9780596005719

https://itbook.store/books/9780596005719

496 Chapter 9

EJB transactions

you are here 4 497

Sharpen your pencil
For the exam (and bean developer life in general) you have to know some REALLY
important rules about transactions, and it will be much easier for you if you take
the time now to figure some of this out for yourself. Understanding is much
better than memorizing, and it’s not like you don’t have enough to memorize as
it is. You’ll find all of these questions answered over the next few pages, but you
should really try to do this first.

Of the six transaction attributes, which one (or ones) must NOT be used by
a bean that calls getRollbackOnly() or setRollbackOnly()?

1

Which transaction attribute (or attributes) must NOT be used by a
message-driven bean?

(Hint: remember, a message-driven bean doesn’t have a “client”; the container
invokes the onMessage() method.)

2

Under what circumstances do you think the container should automatically roll
back a transaction?

If the bean gets a runtime exception?

If the bean throws an application exception? (e.g. InsufficientFundsException?)

3

Of the six transaction attributes, three of them can be dangerous, with
one in particular being EXTREMELY risky. Keeping in mind that the
Bean Provider is NOT the one who specifies the attributes for the bean’s
methods, which of the six is potentially the most dangerous?

4

answer to the Attributes sharpen: three and five

Never

Mandatory, Supports, RequiresNew, Never

runtime exception... it’s unexpected!

Mandatory and NotSupported are dangerous, because they throw exceptions, but
Supports is the riskiest.... because it means at runtime you don’t know whether it
will run in a transaction or not.

www.itbook.store/books/9780596005719

https://itbook.store/books/9780596005719

