Title: Uploading GPS coordinates to a web page from your CarPC

Equipment needed:

-CarPC

-GPS receiver

-Internet Connection

-Web Server (or Web Hosting)

Knowledge needed:

-Read the CarPC Hack on connecting to the internet

-Read the CarPC Hack on recording GPS

-Minimal knowledge about how web pages work and how to publish content

(The amount required varies depending on the solution implemented.)

Overview:

In this section the goal is to upload GPS coordinates to a web page. I will cover a few variations; however, I will try to talk more generically in the text about the solution to allow others to modify their solution to fit their needs.

So why accomplish this goal? Well there are two main reasons. The first is that you want to let others know where you are or where you have been in a short or even immediate timeframe and the second would be for you to record where you have been for your self. Presumably you have read the hack on GPS recording already, so if you implement that solution, you will probably need some way to get that information off your CarPC. Another secondary goal could be that you want others to know where you have been, but only after editing and polishing the data somehow.

These reasons have their benefits to them as well. If you are a business where you use vehicles frequently and need to know where they are (or better yet let your customers know where they are), then this could work out great for you. If you go on lots of road trips and need or want to catalog your travels, this could also work out well for you.

So, let’s start with a refresher. GPS coordinates are two decimal numbers (or can be) that represent your current location on the planet down to within a few feet. Along with this information, the GPS satellites are nice enough to also provide the exact time at which you were at that position as well. Using this information you can then extrapolate average velocity, travel time between arbitrary points on your routes, and over time an average of trip times for a particular route.

The goal here is to get that information on a web page. I will cover three ways to accomplish this. Two of them require you to be connected to the internet the whole time, and the third only requires an internet at some point (say if you drive by a free access point or arrive home and can connect to your own access point). The first method just shows on a web page whatever your current location is as well as a map that shows where you are as well. This can be either a street map or a view from space. The second method also shows your current location, but also shows your previous locations for the last 24 hours (or whatever other interval you want). The final solution covered shows your locations for the previous upload interval. So whenever you upload more data, it overwrites the existing locations and shows new locations. This can of course be adjusted.
Uploading data to a web page:

There are primarily two methods for uploading data to a web page. The first is that there is a script or application sitting on the web server listening to the data that is passed to it, and the second is there is a way to copy files directly to a folder (either by network shares or via FTP/SCP). In the first case, your application has to be smart about storing the data that you are giving to it. You can either use the same application to also display the location information, or you can just have the application create HTML directly from your input. In my example I will use the former simply because that makes it easy to change the medium in which the data is saved (file vs. database). In the second case, you just need to either modify the application or script that is reading GPS information to generate a HTML page, or write another script or application that can read the output of GPS information and make a HTML page. Then when it detects you are connected to the internet, it can copy the data to the correct location.

Let’s drill in on these two methods more. In the first method, you will need an application that is constantly passing information to your web server about where you are. This can either be a modification to the code you have reading GPS information, or a new application reading the output. In my example I will again show the former, since most of the code for that is already included in another hack and only a small modification would need to be changed. Additionally, the application on the server will need a place to store data. In most cases this will be a database, either SQL or mySQL. For my example, I will simply store to a file, since I am only going to support a certain interval of data and then refresh with all new data after that, so the storage space will only hold a fixed amount of data points at the most. This is only valid for my second example though. My first example does not require much storage at all as it only reports the current location. For these two examples you will also need some code on the web server which looks at the data and presents some kind of map or links to maps (since there are plenty of services out there that will do this). Examples of this are MapPoint, the MapPoint Web Service, or one of a host of other applications and services available and services such as teraserver for satellite imagery to go with your Satellite based location.

In the second method, all the brains are in the client. Since its creating HTML, the client has to create the maps and the links as desired so that when the HTML file is copied to the web server, its all ready to go. Once again, MapPoint (or another object oriented mapping software) is a good candidate to use for me since I am using it in the car already for navigation, so its guaranteed to be running already. If you run some other software (other than streets and trips which has no object model) you may want to consider using it to produce any graphics that get printed. Then because this file just gets copied directly to the web server (or location that the web server reads from) there does not need to be any application running on the web server, just a place to store files.
Receiving and displaying data on a web page:

If you choose to run a script or application on your web server to receive the location(s) that is(are) getting uploaded from the car, then there are a few design decisions to make and a few things to consider. In both cases, if you are uploading data in real time to the web server, I would strongly recommend choosing some other interval to upload the data other than one second (which is as fast as you get it). Depending on how far or how much you drive this interval could be either distance or time based. Choose an interval that’s right for you. If all you want to display is the current position and nothing more, then life is easier and there are less choices to make. You only have to store at least two and possibly three numbers (if you want to include time). While you can store this in a database if you want, it may be easier to store in a file (if you expect hundreds of thousands of visitors to your site a day, then you may want to consider a database for performance reasons, but if you are then you should know how to do that anyways).

If you are displaying the last 24 hours of locations (or some other interval) then there are more problems to deal with. The first is storage. Depending on what interval you chose for uploading data and the timeframe for which that data will be kept, you may only have a small amount of data to store, or a large amount. For instance, if you upload every 2 minutes and store 24 hours of data points then you “could” (however unlikely) be storing up to 720 data points. This is still a manageable number, but the point is that you will need to evaluate your solution and adjust your storage location accordingly. I will only be using a file for storage in the examples, but normally all my web code uses databases for storage since it scales much better than text files. The other issue that you will have with this solution is that instead of the ease of just displaying one data point, you could have several (up to 720 in the example above) to show simultaneously. You may want to consider a default of the previous 10 or so, but allow for more if the user chooses so. In my example I am only going to provide links to locations where you can see maps, but TerraServer-USA provides awesome information about using their photo database on their page and even encourage others to do this. There is information about using only html to get maps here: http://terraserver-usa.com/about.aspx?n=AboutLinktoHtml (more computationally intensive), or you can go the easy route with their web service here: http://terraserver.microsoft.com/webservices.aspx (which requires .net programming). A great example of a site that has done this (and included in my example) is Acme Labs: http://mapper.acme.com/. Depending on the license agreements of other mapping sites such as MSN maps, Yahoo Maps, MapQuest, etc. you may be able to link to them with your location, but always check the acceptable use policy before doing so. The places I mention above both allow for this which is why I am using them as examples.
Example Code:

Note to editors: You can decide whether or not to leave this here, or “retrofit” the code in the previous hack. Either way, I recommend keeping everything from here to the Cut Zone below in tact (of course if actually inserted in the code, you don’t have to leave the part telling where to insert it…).
For the first two examples, the following code can be added to the script given in the previous GPS hack in order to use that code with these first two examples:

#Additional Code to add for uploading your location to a web page

use LWP::Simple;

#This is the interval that locations will be uploaded. (In Minutes)

$uploadinterval = 4;

#Check to see if the specified interval has passed before uploading.

if ((time - $lastuploadtime) > ($uploadinterval * 60)) {

$lastuploadtime = time;

get("http://www.jpstewart.org/cgi-bin/gps/show_my_position.pl?lat=".
$AveragedLatitude."&long=".$AveragedLongitude."&time=".$AveragedTime);

}

#End Upload Code

This code should be inserted directly above the following text in that example:

#After the previous data has been saved or printed,
reset the stored datapoint to the new one
You will need to change the URL in the code above to match the location that the script is being stored at. The arguments (everything after the “?”) should remain the same. This code snip will simply access a web page that matches that URL every 4 minutes (thus passing your current location). You can also change the frequency as well.

End Cut Zone
Example 1:

This example is a server side perl script that will both store location and time information that is sent to it as well as display the same information back. I mention permissions in the comments of the file. This is important since the same script that displays your location is also the one that records it. Many people manage security in their own way. The easiest way would be to have two scripts (just copy this example twice) and disable one of them from writing to the file then put a password on the other one which CAN write to the file. What I have done is put permissions on the location file itself, so that in order for the script to be able to write over it, the user accessing the server has to have the right permissions. Don’t say I didn’t warn you.
#!/usr/bin/perl

#---

#GPS Web Page Sample Code by J.P. Stewart (jp@jpstewart.org)

#This Code requires a perl capable web server as well as write access to a file.

#Additionally, this script will not read from a GPS device directly.

#See the additional sample code I have previously provided to do that.
#The arguments (passed in a get query string) for this script are:

“lat” : This is the latitude component of your location in decimal

“long”: This is the longitude component of your location in decimal

“time”: This is the time in which you were at that position (just a string)
#This code can be freely used as long as this section is in tact.

#---

#You can replace with full path to file as well. Needs write permission for the user

running the script. You should ensure that only you have permission to write to this

file, or only you have permission to access this script.

$LocationStorageFileName = "location.txt";

End of user configurable section

#_________________________________

#Minor security precaution. This should prevent most malicious attacks trying to fill up

your location file.

exit if (length($ENV{'QUERY_STRING'}) > 256);

#Tell the browser the format we are returning

print "Content-type: text/html\n\n";

#Check to see if there are arguments to read in (This code only supports GET arguments)

if (length($ENV{'QUERY_STRING'})>0) {

#This code block takes each argument pair and does work on it before storing it

in a hash table

map {

#Change pluses to spaces

s/\+/ /g;

#Change encoded characters like "%20" to their corresponding characters

#Note: Because this comes first, don’t send "=" encoded and not as a part

of a value or keyword.

s/%([a-fA-F0-9][a-fA-F0-9])/pack("C",hex($1))/ge;

#Determine the keyword and value for thie particular argument

my ($keyword,$value) = split /=/;

#Create a hashtable of all the arguments passed.

$params{$keyword} = $value;

} split(/&/,$ENV{'QUERY_STRING'});

#If the user passed in all of the attributes we are interested in,

then process them.

if ((exists $params{lat}) && (exists $params{long}) && (exists $params{time})) {

#Try to open the file and overwrite it. An error here will print an

error to the client. Note: This is where you will hit most permission

problems if you have any.

open(FILE,">$LocationStorageFileName") or

&errorout("Could not write to the location file. ".

 "Check that you have given write permissions".

 " for the proper user. Error: $!");

#Wait till no one else is using the file

#This "could" lead to deadlock scenarios, ensure your Web Server can

terminate long running scripts or look at using LOCK_NB with flock.

flock FILE, 2;

#Print out the data to the file

print FILE "$params{lat}\n$params{long}\n$params{time}\n";

#Close the file

close(FILE);

#Let everyone else waiting know we are done with the file.

flock FILE, 8;

#Leave the script since we are done

exit;

}

}

#No valid arguments were passed in, so lets print out the location.

#Setup standard HTML layout. This is basic, feel free to use your own.

print "<html>\n<head>\n\t<title>My Current Location</title>\n</head>\n\n<body>\n";

#Check to see if our file contains any data in it to read

if (-s $LocationStorageFileName > 0) {

#There is some data, so attempt to open it for reading.

An error will be printed if we could not read it.

open(FILE,"<$LocationStorageFileName") or

&errorout("Could not read the location file. ".

 "Check that you have given read permissions ".

 "for the proper user.\n</body>\n</html>");

#Request a SHARED lock on the file (since we are in read-only mode)

flock FILE, 1;

#Read in all the contents of the file delimiting by input record separators

(which is CRLF on win32)

@filecontents = <FILE>;

#Close the file

close(FILE);

#Let everyone else waiting know we are done with the file.

flock FILE, 8;

#This prints out the information from the file.

Feel free to play with the format. I have also linked the location to the

Acme Mapper which loads images from TerraServer-USA. In this line I am

explicitly assuming that the file will always be the format written to it

above in this file.

print "<table border=1><tr><td><h2>My Current Location is:
<center>".

 "<a href=\"http://mapper.acme.com/?lat=".

 $filecontents[0]."&long=".$filecontents[1].

 "&scale=10&width=4&height=3&dot=Yes\">$filecontents[0] ".

 "Latitude
$filecontents[1] Longitude</center>
I was at this ".

 "location at this time:
<center>$filecontents[2]".

 "</center></h2></td></tr></table>";

} else {

#If here, then there is no location file, or no content in that file,

so print a generic message saying so.

print "<h2>My Current Location is not available at this time</h2>";

}

#Close the standard HTML page

print "\n</body>\n</html>\n";

#This subroutine is only for errors while trying to read from or write to files.

#It only prints a string sent to it and then exits.

sub errorout {

my $errorstring = $_[0];

print $errorstring;

exit;

}
Example 2:

This script works in the same way that the first does in that there is one script that stores data in a file as well as displays the data out. However, in the second example, more than one location is stored and displayed, and the interval for how many locations are stored is configurable in the file. As before, this is really only a framework and you can make it look much better or fit your needs better.
#!/usr/bin/perl

#---

#GPS Web Page Sample Code by J.P. Stewart (jp@jpstewart.org)

#This Code requires a perl capable web server as well as write access to a file.

#Additionally, this script will not read from a GPS device directly.

#See the additional sample code I have previously provided to do that.

#The arguments (passed in a get query string) for this script are:

“lat” : This is the latitude component of your location in decimal

“long”: This is the longitude component of your location in decimal

“time”: This is the time in which you were at that position

time must be in this format: "mm/dd/yyyy hh:mm:ss"

#This code can be freely used as long as this section is in tact.

#---

#You can replace with full path to file as well. Needs write permission for the user

running the script. You should ensure that only you have permission to write to this

file, or only you have permission to access this script.
$LocationStorageFileName = "locations.txt";

#Interval of location points to keep (In Minutes) (1440 = 24 hours)

$datainterval = 1440;

End of user configurable section

#_________________________________

use Time::Local;

#minor security precaution. This should prevent most malicious attacks trying to fill up

your location file.

exit if (length($ENV{'QUERY_STRING'}) > 256);

#Tell the browser the format we are returning

print "Content-type: text/html\n\n";

#Check to see if there are arguments to read in (This code only supports GET arguments)

if (length($ENV{'QUERY_STRING'})>0) {

#This code block takes each argument pair and does work on it before storing it

in a hash table

map {

#Change pluses to spaces

s/\+/ /g;

#Change encoded characters like "%20" to their corresponding characters

#Note: Because this comes first, dont send "=" encoded and not as a part

of a value or keyword.

s/%([a-fA-F0-9][a-fA-F0-9])/pack("C",hex($1))/ge;

#Determine the keyword and value for thie particular argument

my ($keyword,$value) = split /=/;

#Create a hashtable of all the arguments passed.

$params{$keyword} = $value;

} split(/&/,$ENV{'QUERY_STRING'});

#If the user passed in all of the attributes we are interested in,

then process them.

if ((exists $params{lat}) && (exists $params{long}) && (exists $params{time})) {

#Check to see if our file contains any data initially. This code block

will read through the file and filter out any entries that are too old.

if (-s $LocationStorageFileName > 0) {

#There is some data, so attempt to open it for reading.

An error will be printed if we could not read it.

open(FILE,"<$LocationStorageFileName") or

&errorout("Could not read the location file. ".

 "Check that you have given read permissions ".

 "for the proper user.\n</body>\n</html>");

#Wait till no one else is using the file. This "could" lead to

deadlock scenarios, ensure your Web Server can terminate long

running scripts or look at using LOCK_NB with flock.

flock FILE, 2;

#Used later to see if we have the file locked already.

$locked = 1;

#Reads the entire contents of the file.

@filecontents = <FILE>;

#Close the file

close(FILE);

#Look at each line of the file that was read and parse the time

string into the time it represents. This string is then

compared against the current time using the interval specified

above as a reference.

foreach (@filecontents) {

#Splits out the information from one line in the data

file

my($lat,$long,$time) = split /\|/;

#Splits the date and time from each other with the space

in between them as the delimiter

my($date,$time) = split / /, $time;

#Splits the date into components and changes the values

so that the builtin functions understand.

my($mon,$mday,$year) = split /\//, $date;

$mon--;

$year -= 1900 if $year > 1900;

#splits the time into components

my($hour,$min,$sec) = split /:/, $time;

#Get the time value (seconds since epoch) for the date on

this line in the file.

$time = timelocal($sec,$min,$hour,$mday,$mon,$year);

#If its within the interval specified by the user, then

its ok to push it back out to the file. Note: To get

real fancy, you can compare to the latest supplied time

rather than the system time. (since the current design

has timezone implications)

if (($time + ($datainterval * 60)) > time) {

push @filtered, $_;

}

}

}

#Try to open the file and overwrite it. An error here will print an

error to the client. Note: This is where you will hit most permission

problems if you have any.

open(FILE,">$LocationStorageFileName") or

&errorout("Could not write to the location file. ".

 "Check that you have given write permissions".

 " for the proper user. Error: $!");

#Wait till no one else is using the file only if its not locked already.

#This "could" lead to deadlock scenarios, ensure your Web Server can

terminate long running scripts or look at using LOCK_NB with flock.

flock FILE, 2;

#Add the data that was passed in this time around to the acceptable data

list.

push @filtered, "$params{lat}\|$params{long}\|$params{time}\n";

#Print out the data to the file with one line for each data point.

print FILE $_ foreach (@filtered);

#Close the file

close(FILE);

#Let everyone else waiting know we are done with the file.

flock FILE, 8;

#Leave the script since we are done

exit;

}

}

#Setup standard HTML layout. This is basic, feel free to use your own.

print "<html>\n<head>\n\t<title>My Last Locations</title>\n</head>\n\n<body>\n";

#Check to see if our file contains any data in it to read

if (-s $LocationStorageFileName > 0) {

#There is some data, so attempt to open it for reading.

An error will be printed if we could not read it.

open(FILE,"<$LocationStorageFileName") or

&errorout("Could not read the location file. ".

 "Check that you have given read permissions ".

 "for the proper user.\n</body>\n</html>");

#Request a SHARED lock on the file (since we are in read-only mode)

flock FILE, 1;

#Read in all the contents of the file delimiting by input record seperators

(which is CRLF on win32)

@filecontents = <FILE>;

#Close the file

close(FILE);

#Let everyone else waiting know we are done with the file.

flock FILE, 8;

#Get the latest information from the file to display in the box in large font.

my ($cur_lat,$cur_long,$cur_time) = split /\|/, pop(@filecontents);

#This prints out the information from the file.

Feel free to play with the format. I have also linked the location to the

Acme Mapper which loads images from TerraServer-USA. In this line I am

explicitly assuming that the file will always be the format written to it

above in this file.

print "<table border=1><tr><td><h2>My Current Location is:
<center>".

 "<a href=\"http://mapper.acme.com/?lat=".

 $cur_lat."&long=".$cur_long."&scale=10&width=4&height=3&dot=Yes\">".

 "$cur_lat Latitude
$cur_long Longitude</center>
I was at this".

 "location at this time:
<center>$cur_time</center>".

 "</h2></td></tr></table>";

#Set up the list for printing out the rest of the locations stored in the file.

print "
My previous locations over the last ".($datainterval / 60).

 " hour(s):\n
";

#Iterate through the list in reverse order

(will come out on the page as most recent to least recent).

foreach (reverse @filecontents) {

#Split out the coordinates and the time for each data point.

my ($lat,$long,$time) = split /\|/;

#print out the information for each of the old data points as well as

a link to the map.

print "<a href=\"http://mapper.acme.com/?lat=".$lat.

 "&long=".$long."&scale=10&width=4&height=3&dot=Yes\">".

 "$lat, $long \@ $time\n";

}

#finish up the list

print "\n";

} else {

#If here, then there is no location file, or no content in that file, so print a

generic message saying so.

print "<h2>My Current Location is not available at this time</h2>";

}

#Close the standard HTML page

print "\n</body>\n</html>\n";

#This subroutine is only for errors while trying to read from or write to files.

#It only prints a string sent to it and then exits.

sub errorout {

my $errorstring = $_[0];

print $errorstring;

exit;

}
Example 3:

This third example relies on MapPoint 2004 to be on the machine that is recording GPS data. (Though not required) Having visual maps, is quite a benefit over just numbers. If you want to learn more about controlling map point from perl, check out this article: http://www.mp2kmag.com/a100--perl.automate.Win32-OLE.mappoint.html

This code (as all the others are) is more of a shell (hence the term example), and most likely will not completely work for everyone, but you can change it or modify it to suit your needs as well as learn from it and get ideas on your own project.
#!/usr/bin/perl

#---

#GPS Device Sample Code by J.P. Stewart (jp@jpstewart.org)

#This code creates a static web page (as well as 2 other possible files) based on GPS

location input.

#There are two input methods. The first is from a file, and the second is via STDIN.

#The format of the file must be lines like so:

"[time],[latitude],[longitude],[altitude]"

#These lines can then repeat in the same format until the end of the file.

#

#Luckily, this is also the exact format that my initial GPS code outputs.

#This gives you a few options to choose from:

1. You can store the output from the GPS code in a file (see its usage on how to do

that) and then process the file later with this script

#
usage: perl MakeHTML.pl SavedGPSFile.txt

2. You can pipe the output from my initial GPS code directly into this script.

#
usage: perl GPS.pl|perl MakeHTML.pl

3. You can use either method 1. or 2. with your own code provided you follow the format

above.

#

#Additionally, this script will use MapPoint if it is installed to make a map showing

your route and will also output both an image AND a MapPoint ptm file linked in the

HTML.

#You can provide the name of the mappoint PTM file as the second argument to this script.

(The default is the current time)

#If MapPoint is not available, then a static text file which is the same as Example 2

will be created.

#

#In either case, the name of the HTML file to create is stored below. The default is

MyLocations.html.

#

#This code can be freely used as long as this section is in tact.

#---

$HTMLPage = "MyLocations.html";

End of user configurable section

#_________________________________

#Used later to calculate current time

use Time::Local;

#Autoflush STDOUT buffer

$|=1;

#Check the first argument to see if a file to read from was specified

#(Otherwise reads from STDIN).

if ($ARGV[0] =~ m/./i) {

$input = "FILE";

open($input,"<$ARGV[0]");

} else {

$input = "STDIN";

}

#Find the current directory

$currentdir = $ENV{PATH_TRANSLATED};

$currentdir =~ s/$0//i;

#This will attempt to create a MapPoint Object. If it fails, it sets a variable which is

checked everywhere to see if MapPoint is available.

require Win32::OLE or $noole = 1;

$mappoint = Win32::OLE->new("MapPoint.Application") or $nomappoint = 1 if (!($noole));

#If MapPoint IS installed, do some more initialization

if (!($nomappoint)) {

#Check the second argument to see if a map output file was specified (Otherwise

makes [time].ptm where [time] is the current time in seconds in the current

directory).

if ($ARGV[1] =~ m/./i) {

$outputmapfile = "$ARGV[1]";

#Looks to see if a full path was supplied and if not, we specify the

current directory.

$outputmapfile = $currentdir.$outputmapfile if

(($outputmapfile =~ m/\//) || ($outputmapfile =~ m/\\/));

} else {

#The default map output is the current time in the current directory.

$outputmapfile = $currentdir.time.".ptm";

}

#Currently the only way to get a map image from MapPoint is via the clipboard.

use Win32::Clipboard;

$CLIP = Win32::Clipboard();

#This creates a blank map and sets the altitude to 10. You can adjust this if you

want the final images more zoomed in or out.

$map = $mappoint->NewMap();

$map->{Altitude} = 10;

#The image that is saved is currently in BMP form. The name is taken from

whatever the map file is. Just the extension is replaced.

$outputimage = $outputmapfile;

$outputimage =~ s/\.\S+?$/.bmp/;

#This is the master layout for the HTML when MapPoint is installed. Feel free to

adjust this how you like. However, variables like: !!Cur_Long!! etc. MUST

remain in the string.

$HTMLOut = "<html><head><title>My Last Locations</title></head><body>\n".

 "<table border=1><tr><td><h2>My Current Location is:
<center>".

 "<a href=\"http://mapper.acme.com/?lat=!!Cur_Lat!!&long=".

 "!!Cur_Long!!&scale=10&width=4&height=3&dot=Yes\">".

 "!!Cur_Lat!! Latitude
!!Cur_Long!! Longitude</center>
".

 "I was at this location at this time:
<center>!!Cur_Time!!</center>".

 "</h2></td></tr></table>
My previous locations have been:\n
".

 "!!IMAGE!!
MapPoint File containing route".

 "\n</body></html>";

} else {

#This is the master layout for the HTML when there is no MapPoint. Feel free to

adjust this how you like. However, variables like: !!Cur_Long!! etc. MUST

remain in the string.

$HTMLOut = "<html><head><title>My Last Locations</title></head><body>\n".

 "<table border=1><tr><td><h2>My Current Location is:
<center>".

 "<a href=\"http://mapper.acme.com/?lat=!!Cur_Lat!!&long=".

 "!!Cur_Long!!&scale=10&width=4&height=3&dot=Yes\">".

 "!!Cur_Lat!! Latitude
!!Cur_Long!! Longitude</center>
".

 "I was at this location at this time:
<center>!!Cur_Time!!</center>".

 "</h2></td></tr></table>
My previous locations have been:\n
".

 "!!LIST_ITEMS!!\n</body></html>";

}

#This will read one line at a time of either the file or STDIN.

while (<$input>) {

#Parse the comma delimited line into seperate variables.

($time,$lat,$long,$alt) = split(/,/);

#Check to make sure that the two we really want are there.

if (($lat) and ($long)) {

#Check again to see if MapPoint is available

if (!($nomappoint)) {

#Since you have to provide a start AND end when drawing a line in

MapPoint, we need to buffer one location for the next time.

if ($OldMapPointlocation) {

#Pass the coordinates to MapPoint and get a location

object.

$NewMapPointlocation = $map->GetLocation($lat,$long);

#Change the view of the map to focus on the new point.

$NewMapPointlocation->GoTo();

#Draw a line from the previous point to the new point on

the map.

$map->shapes->AddLine(

$OldMapPointlocation,$NewMapPointlocation);

#If we are proccessing from STDIN, we need to save what

we have.

if ($input eq "STDIN") {

#Save the MapPoint file

$map->SaveAs("$outputmapfile",0,false) ;

#Copy an image of the map to the clipboard, get

time image from the clipboard, and write it to

a file.

$map->CopyMap;

$image = $CLIP->GetBitmap();

open(IMAGE,">$outputimage");

binmode IMAGE;

print IMAGE $image;

close(IMAGE);

#Replace the parts of the HTML Layout with the

correct information

$HTMLOut =~ s/!!Cur_Lat!!/$lat/gi;

$HTMLOut =~ s/!!Cur_Long!!/$long/gi;

$HTMLOut =~ s/!!Cur_Time!!/$time/gi;

$HTMLOut =~

 s/!!IMAGE!!//gi;

#Pring the location that was just processed.

print "Processed: $lat,$long\n";

#Write out the HTML file.

open(HTML,">$HTMLPage");

print HTML $HTMLOut;

close(HTML);

}

#Swap the new location to the old location

$OldMapPointlocation = $NewMapPointlocation;

} else {

#This should only get called the first time.

$OldMapPointlocation = $map->GetLocation($lat,$long);

}

} else {

#Else, there is no MapPoint, so make a static HTML file from

text.

#Add the current coordinates and time to an array.

push(@locs,"$lat,$long,$time");

#If we are proccessing from STDIN, we need to save what

we have.

if ($input eq "STDIN") {

#Replace the parts of the HTML Layout with the

correct information

$HTMLOut =~ s/!!Cur_Lat!!/$lat/gi;

$HTMLOut =~ s/!!Cur_Long!!/$long/gi;

$HTMLOut =~ s/!!Cur_Time!!/$time/gi;

#This builds the list of past locations from the array

built above.

$list = "";

foreach (reverse @locs) {

my($ilat,$ilong,$itime) = split /,/;

#Each location has an Acme Mapper Link.

$list = $list."<a href=".

"\"http://mapper.acme.com/?lat=".$ilat.

"&long=".$ilong."&scale=10&width=".

"4&height=3&dot=Yes\">".

"$ilat, $ilong \@ $itime\n";

}

#Replace the previous Unordered List withe the one that

was just built above.

$HTMLOut =~ s/.+?<\/UL>/$list<\/UL>/gis;

#Pring the location that was just processed.

print "Processed: $lat,$long\n";

#Write out the HTML file.

open(HTML,">$HTMLPage");

print HTML $HTMLOut;

close(HTML);

}

}

}

}

close($input);

#In order to save time, when processing a file vs. STDIN, ALL the saving is done at the

end rather than in the middle. This checks to ensure that we are NOT processing from

STDIN

if (!($input eq "STDIN")) {

#Check to see if MapPoint is available.

if (!($nomappoint)) {

#Save the MapPoint file

$map->SaveAs("$outputmapfile",0,false) ;

#Copy an image of the map to the clipboard, get

time image from the clipboard, and write it to

a file.

$map->CopyMap;

$image = $CLIP->GetBitmap();

open(IMAGE,">$outputimage");

binmode IMAGE;

print IMAGE $image;

close(IMAGE);

#Replace the parts of the HTML Layout with the

correct information

$HTMLOut =~ s/!!Cur_Lat!!/$lat/gi;

$HTMLOut =~ s/!!Cur_Long!!/$long/gi;

$HTMLOut =~ s/!!Cur_Time!!/$time/gi;

$HTMLOut =~ s/!!IMAGE!!//gi;

#Otherwise generate plain HTML.

} else {

#Replace the parts of the HTML Layout with the

correct information

$HTMLOut =~ s/!!Cur_Lat!!/$lat/gi;

$HTMLOut =~ s/!!Cur_Long!!/$long/gi;

$HTMLOut =~ s/!!Cur_Time!!/$time/gi;

#This builds the list of past locations from the array built above.

$list = "";

foreach (reverse @locs) {

my($ilat,$ilong,$itime) = split /,/;

#Each location has an Acme Mapper Link.

$list .= "<a href=\"http://mapper.acme.com/?lat=".$ilat.

 "&long=".$ilong."&scale=10&width=4&height=3&dot=Yes\">".

 "$ilat, $ilong \@ $itime\n";

}

#Replace the previous Unordered List withe the one that was just built.

$HTMLOut =~ s/!!LIST_ITEMS!!/$list/gi;

}

#Write out the HTML file.

open(HTML,">$HTMLPage");

print HTML $HTMLOut;

close(HTML);

}
