Title: Recording GPS on your CarPC
Equipment needed:

-CarPC

-GPS receiver

Overview:

The Global Positioning System (GPS) can provide VERY accurate location coordinates for anyone that has a GPS receiver. These can sometimes come in standalone units which have LCD screens showing your location by giving coordinates or can even have a map on an LCD screen that shows your location on the map itself. These can come in both the car mounted, handheld, and most recently, the PC attachment variety.

Knowing exactly where you are can be useful for many different applications. In addition to that, being able to store where you have been can even be more useful. Maybe you run a business with automobiles and you just want to be able to store your routes on a daily basis and improve efficiency by examining exactly where you went. Want to keep a journal of your travels? What better to include than the coordinates of the path that you took? Recently I started keeping a journal of the motorcycle trips that I have taken. I wrote software that quickly allowed me to make maps showing where I had been, but in the car, my carpc can automatically generate these maps because it has the coordinates saved from where I have been.

GPS:

The GPS represents coordinates in the same way that coordinates were originally used by the Greeks. The sky was broken into 12 segments and then within those segments split into 30 degrees (12 * 30 = 360). GPS is now much more precise however and in some cases can provide your location within a few feet.

GPS addresses are represented using the standard trigonometric system of Degrees, Minutes, and Seconds. On a computer, Minutes and Seconds are often mathematically combined to one decimal fraction. As an example:

47 Degrees 38 Minutes 12.372 Seconds North Latitude

122 Degrees 7 Minutes 58.8 Seconds West Longitude
(which is a location in the original trigonometric form)

Is represented on the computer as:

47.63677 Latitude

-122.13300 Longitude

(North is positive Latitude, East is positive Longitude)

However, the format that is given by most GPS devices that connect to a computer (and also what you should look for when getting one of these devices) is NMEA 0183. You can find out more information about this standard from the National Marine Electronics Association (NMEA) website: http://www.nmea.org/pub/0183/index.html. There you can purchase a copy of this copyrighted protocol. Using this information, it is trivial to convert locations from the NMEA format to either format listed above.

The basic way that GPS works is that satellites in known locations in space transmit a radio signals to earth which has a Pseudo-Random time code in it. By measuring the time that it takes for four of these signals to reach your location and knowing the precise location of the satellites then you then also know your current location (and the current time). Why four you ask? Why not only three? Well, the reason is that until a GPS receiver gets four signals, it does not know exactly whether its own internal time is correct. For instance, in order to calculate location, a GPS device must calculate its exact distance from the satellites (which it contains a map for their locations internally) by calculating the time that the signal takes to get to it. In order to do this, the device needs to sync its own time with the time on the satellite. This is only possible by reading four satellites at once and solving for any error in position. If you start with an assumed time and calculate position from three satellites, then you can know that you are somewhere on a vertical line directly between each of the satellites (where the error in your time estimate represents the position on that line). A fourth measurement will allow you to measure and correct any assumed error.

The process of finding these four signals as described above can take a variable amount of time depending on: 1. How much information the GPS device has about your most previous position, 2. How accurate this information actually is (did you go far since it was last turned on), 3. The ease with which the device can read the signals (obstructions tend to limit signal strength and limit the number of available satellites). Cold starts (where the device has either no information or bad information about your current coordinates) can take up to 5 minutes to acquire a new location (assuming you have perfect visibility). Warm starts (where the device has remembered where you last were and you happen to still be there) can take very little time from a few seconds to a minute. Many GPS devices only use a capacitor to store information about your previous location, which means that starting the device after an extended period of time would mean that the device has since lost the information it previously had. Battery operated devices (or devices which include a backup battery) can retain this information longer.

GPS devices for the computer talk at 4800 baud (if they follow the NMEA 0183 standard) and speak in ASCII characters over a serial port. Usually even usb GPS devices will present a serial port to the machine. Being able to read from a serial port is a requirement for processing this data. This is usually easily done in any programming or scripting language. In my examples I will be showing Perl on a windows XP machine. The GPS device will most likely output a location every second once it has aquired its location. Until this acquisition has occurred, there will likely be no location output from the device though and only signals telling you which satellites it is seeing and what it is currently doing.

Note to editors, the following section (and code) may contain copyrighted information from the NMEA. I have an outstanding request to them regarding what information is public versus copyrighted. NO information has been copied from any publication of theirs (that would be blatant), I am only referring to the knowledge of how to read and understand basic NMEA-0183 sentences (which I found on a NASA website http://www.grc.nasa.gov/WWW/MAEL/ag/agnmea1.htm. Depending on the outcome of this query, this section may have to be edited to remove information about the NMEA-0183 specification.
Reading GPS:

Assuming that you have your GPS device attached and configured (though usually there is not much configuration necessary other than making sure that the port and speed settings are correct), reading information from the GPS device is very easy since it talks in ASCII and provides data which is close to what is necessary. The device outputs “sentences” where the beginning of a sentence is a code which explains what is in the rest of the sentence. The sentences that tell you your current coordinates start with “$GPGGA”. This will probably be the only sentence that you are interested in. Check the NMEA-0183 standard if you want to know more. The sentence is comma delimited, and you will probably want to know the following information from the sentence:
	Field No.
	Description
	Sample

	1.
	Time that the position was calculated. (hhmmss.ss)
	180432.00

	2.
	Latitude (ddmm.mmmmmm)
	4738.2062

	3.
	Direction of Latitude (N=North / S=South)
	N

	4.
	Longitude (dddmm.mmmmmm)
	12207.98

	5.
	Direction of Longitude (W=West / E=East)
	W

	6.
	GPS Quality (0=invalid, 1=GPS fix, 2=DGPS fix)
	1

	7.
	Number of Satellites used for calculation
	07

	9.
	Altitude above Mean Sealevel
	212.15

	10.
	Units for Altitude (M=meters)
	M

(for information on the other fields, check the NMEA-0183 reference)
Location: In my solution, I make latitude or longitude negative if it is South or West (respectively). I also convert the locations into standard decimal form. To do this, simply remove the first two digits of latitude and three digits of longitude and divide each of the remaining portions by 60. Then add the result back to the digits that were removed. Ex:

4738.2062 is “47” and “38.2062”
38.2062 / 60 = 0.63677 which leads to

47.63677 Latitude
-12207.98 is “-122” and “07.98”

7.98 / 60 = 0.133 which leads to

-122.133 Longitude

Time: This is straight forward and can be saved with the location information if desired. For an added bonus, feel free to adjust your PC’s clock if its off as well (since this time comes from the atomic clocks IN the GPS satellites).

Altitude: You may or may not be interested in these fields, but they are very straight forward.

GPS Quality: You should have your code ONLY save data when this value is greater than 0. Otherwise your data may not be accurate.

Number of Satellites: Again, straight forward. You can use this if you want. Sometimes it can be used to determine accuracy.

Discarding data points:

Once you have read at least one GPS data point as described above, you then have to decide whether or not you want to save it as well as where and how to save it. Lets start with the “whether or not” first. Using the method in the previous section, you will get a data point every second that the GPS device has a fix on your location. That means that if you are sitting at a traffic light or stuck in traffic all that can add up to a lot of wasteful data points. The advantage of course with making decisions like this with GPS is that it tells you where you are. So you can use the data itself to decide to save it or not.

To tell the distance between two GPS points in decimal form, the following equation can be used: (Great Circle Distance Formula)

r * arccos[sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) * cos(lon2 - lon1)]
However, that’s rather complex and really only pertains to when measuring distance across long distances. For my own approximations (since in each case, the distances will probably only be a few meters) I am going to use the following equation:
Sqrt([4774.81 * (lat2 – lat1)2] + [2809 * (lon2 – lon1)2]) = distance in miles
Don’t worry, you won’t have to use this in your program. This will just tell us how far apart we can detect (as well as how far apart we should detect). In my case, I decided that I would simply use this equation to find out exactly how far away I wanted to be before my software decided to save another data point.

One thing that I have found about gps is that while its VERY accurate, it has a tendency to also be inaccurate. Sometimes, I can be sitting still and it will show me moving around slightly. I did not want all of those random points to be saved, so I decided to chose a certain distance before a new point would be recorded. In my case, I randomly picked (ok, not so random, but run with me here…) 45 feet as a distance to travel before recording a new data point. Through the miracle of calculations, this comes out to be about 0.00852272727 miles. Again through the miracle of calculation, I can calculate what the difference in GPS coordinates this is:
Difference in GPS = Sqrt((0.00852272727)2 / 7583.81)

After doing this calculation, the result is around .0000978 which I then further rounded to 0.0001. (see why its not so random () You can use these calculations to easily come up with your own threshold though in the manner that I just described.

In addition to this new threshold that I have, I take one step further in assuring that I accurately record data points. Whenever I read a data point which is within the threshold that I defined, instead of throwing it away, I simply average it with the previous value that I was comparing to. This way, I have a running average of my location while I am not moving anywhere. Additionally, by chosing to write my program in such a way that delays the recording of location data points until you KNOW you have gone 45 feet, I get the added benefit that times where I am sitting still in traffic and my position is moving, much of the errors are averaged out of the final result. I don’t actually record anything until I read a second data point which is past this threshold so the data that gets recorded is the averaged value.
Storing Data Points:

Data storage techniques vary by software, platform, preference, and person. I am not one to discourage any one method as right or wrong. In my solution, I simply output results to a text file that can be parsed later and mapped on to a map in MapPoint. Then I copy this file to a server inside when the car detects that it is home and start over again with a fresh file. This method works well for me, but might not for everyone. Whatever method you choose, keep in mind that this could generate a LOT of data over time, so you should have some mechanism for sorting it all. Note that recording the time from the satellite can work well here (for instance if you want to timestamp the files).

Note to editors, this code works fine (I tested it right before and after pasting the code), but feel free to try it yourself. Additionally, on my machine there is a COM port buffering issue when reading the COM port like I am in windows. I am working on a solution (basically it means that you see the output in real time versus delayed 13 seconds), but I don’t have it ready yet.
Example Code:

I have written my example code in Perl. I have also commented it for people who do not understand Perl. Everything in here is everything that was covered in the sections above. This is just showing how it all comes together. You can use it freely provided that the attribution is intact.

#!/usr/bin/perl

#---

#GPS Device Sample Code by J.P. Stewart (jp@jpstewart.org)

#This Code requires a Serial port GPS device which is NMEA-0183 compliant

#This code can be freely used as long as this section is in tact.

#---

#Used later to calculate current time

use Time::Local;

use IO::Handle;

$|=1;

#Check the first argument to see if a comm port to read from was specified

if ($ARGV[0] !~ m/./i) {

#If no comm port was specified, then print the usage and exit.

print "Usage: gps.pl <COMX> [<output file>]\r\n";

exit;

}

#Set the comm port to be used and confirm to the user that it was recieved

$COMMPORT = $ARGV[0];

print "Reading $COMMPORT...\r\n";

#check the second argument to see if a filename was specified

#NOTE: You may want to do more robust string matching here than I do.

if ($ARGV[1] =~ m/./) {

#Set the output file to be what the user specified and
confirm to the user that it was recieved

$fileparam = $ARGV[1];

print "Storing to $fileparam...\r\n";

}

#Open a handle to the port provided. Or exits with the failure if an error occurs.

#Note: This may only work in Win2000 and higher,
check to see if this will work in your OS.

If not, just replace this line with one that assigns a file handle to a COM port.

Or, alternatively, you can replace with any code that gets string data from the

#
COM port.

If in doubt, see one of these modules:

 GPS::Serial Module:
#

http://search.cpan.org/~srezic/perl-GPS-0.14/Serial.pm

#
 Win32::SerialPort Module:
#

http://search.cpan.org/dist/Win32-SerialPort/lib/Win32/SerialPort.pm

open(PORT, "<$COMMPORT") or die "Can't open $COMMPORT: $!";

#Reads one line at a time from the COMM port in an infinite loop,
you can use CTRL+C to exit

while (<PORT>) {

#Check to see if this "sentence" contains location information,
if so, process it. (checks if the line starts with "$GPGGA".)

if ($_ =~ m/^\$GPGGA/i) {

#Create an array of fields from the Comma Delimited sentence

#See the text for a table of the value definitions.

@info = split(/,/);

#I am only interested in results of 3 or more satellites.

#(This can also be replaced with ($info[6] > 0) if so desired)

if ($info[7] >= 3) {

#Convert the latitude from NMEA-0183 format to decimal
(using decimal place as a reference)

$lat = substr($info[2],0,(index($info[2],"\.") - 2)) +
 (substr($info[2],(index($info[2],"\.") - 2)) / 60.0);

#Convert the llongitude from NMEA-0183 format to decimal
(using decimal place as a reference)

$long = substr($info[4],0,(index($info[4],"\.") - 2)) +
 (substr($info[4],(index($info[4],"\.") - 2)) / 60.0);

#Assign negative values if necessary

$lat = "-".$lat if ($info[3] =~ m/S/i);

$long = "-".$long if ($info[5] =~ m/W/i);

#Convert NMEA-0183 time to current time by converting GMT time
provided by satellite to Local time

@gma = gmtime(time);

($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =

 localtime(timegm(substr($info[1],(index($info[1],"\.") - 2),2),

 substr($info[1],(index($info[1],"\.") - 4),2),

 substr($info[1],0,(index($info[1],"\.") - 4)),

 $gma[3],$gma[4],$gma[5]));

$sec = "0".$sec if ($sec < 10);

$min = "0".$min if ($min < 10);

$mon++;

$year += 1900;

#Check to see if we have a data point already

if ($AveragedLatitude =~ m/./) {

#Found an existing data point, check to see if the new data
point is greater than 45ft in either direction

#Feel free to tweak this link based on the background I
included in the text.

if ((abs($lat - $AveragedLatitude) > 0.0001) ||
 (abs($long - $AveragedLongitude) > 0.0001)) {

#New data point is greater than 45 feet away.

#Check to see if we are logging to a file.

if ($fileparam) {

#If so, open the file for appending and
print out the results.

open(OUT,">>$fileparam");

print OUT "$AveragedTime,".

 "$AveragedLatitude,".

 "$AveragedLongitude,".

 "$AveragedAltitude\r\n";

close(OUT);

} else {

#No file parameter given,
just print out the results.

print "$AveragedTime,".

 "$AveragedLatitude,".

 "$AveragedLongitude,".

 "$AveragedAltitude\r\n";

}

#After the previous data has been saved or printed,
reset the stored datapoint to the new one

$AveragedTime = "$mon/$mday/$year $hour:$min:$sec";

$AveragedLatitude = $lat;

$AveragedLongitude = $long;

$AveragedAltitude = $info[9];

} else {

#The latest datapoint is too close to the last one.

#Uncomment this section to show averaged results.

#print "\<$AveragedTime,".

"$AveragedLatitude,".

"$AveragedLongitude,".

"$AveragedAltitude\>\r\n" if (!($fileparam));

#Average the new data point in with the others
and reset the time.

$AveragedTime = "$mon/$mday/$year $hour:$min:$sec";

$AveragedLatitude =
($AveragedLatitude + $lat) / 2;

$AveragedLongitude =
($AveragedLongitude + $long) / 2;

$AveragedAltitude =
($AveragedAltitude + $info[9]) / 2;

}

} else {

#There is no current datapoint, so save the current values.

$AveragedTime = "$mon/$mday/$year $hour:$min:$sec";

$AveragedLatitude = $lat;

$AveragedLongitude = $long;

$AveragedAltitude = $info[9];

}

}

}

}
