
247

Chapter 7 CHAPTER 7

Command Pattern7

To command is to serve, nothing more and nothing
less.

—Andre Malraux
When you do the common things in life in an

uncommon way, you will command the attention of
the world.

—George Washington Carver
Create like a god, command like a king, work like a

slave.
—Constantin Brancusi

What Is the Command Pattern?
The command pattern allows a client to issue requests to an object without making
any assumptions about the request, or the receiving object. Think of the request as a
command sent to an object to engage in a known behavior. The straightforward way
to do this would be to create an instance of the object, and call the method that
implements the required command (or behavior). For example, let’s assume that
we’re building a house that allows computer control of many of its components such
as lights, doors, heating, etc. Let’s look at the code that would turn on a light bulb.
The Light class implements a method called on() that turns on a light. A client
would execute the following code to turn the light on.

var light = new Light();
light.on();

Let’s look at another command to open a door. In this case, the receiver of the com-
mand is an instance of the Door class, which implements a method called open() that
opens the front door.

var frontdoor = new Door();
frontdoor.open();

,ch07.29809 Page 247 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

248 | Chapter 7: Command Pattern

Notice the tight coupling between the client and the receivers. By coupling, we mean
the degree to which one section of code relies on another section. The client is tightly
bound not only to the receiver classes (Light and Door), but to particular methods
(on() and open()) in those classes as well. This is not a good situation if we want to
have a flexible system that allows future expansion.

What would happen if we replace our ordinary front door with a new sliding door?
What if the new class that controls the door is called SlidingDoor, and the method in
the class that opens the door is called slideOpen()? We have to modify the code in
the client to refer to the new receiver class. Avoid getting into situations that require
modifying existing code. In addition, this new situation can require modifications in
multiple places. For example, if the front door was controlled from two locations, a
wall mounted control panel with buttons assigned to each controlled device and a
handheld remote control (like a TV remote), changing the receiver class for the front
door would require code changes in both control devices. Also, you couldn’t reas-
sign the buttons on the control to a different layout, as the control code is hard-
coded to each button.

To have a flexible and extensible system, commands need to be assigned to buttons
on the controls without explicitly specifying the receiver or the specific method in the
receiver. This would decouple the client from the receiver, but how can we do this? It
seems counterintuitive at first, but we need to encapsulate both the receiver and the
receiving method in a command object. By encapsulation, we mean hiding the
receiver and its method from where they’re called. Let’s look at a non-technical
example to figure out what a command object looks like.

Mom Needs to Issue Some Commands
Parents assign household chores for children to keep them occupied in their younger
years. Getting children to do their fair share of household work is a good thing any-
way. Asking the children to do something is easy to do – just ask them. However,
whether they do the assigned task is a different matter altogether. In our example,
we’re dealing with a model bunch of kids who are really conscientious and do their
assigned tasks without raising a fuss. Let’s assume that mom assigns the tasks for
each person in the household. However, mom has to leave for a day on a business
trip, and won’t be around to assign tasks verbally. Mom needs to formalize a proce-
dure to assign daily tasks for this and future instances when she will be away. This is
a good opportunity to implement a command pattern structure.

Mom has several household chores in mind. She decides to write short notes for each
task and assign them to a child. Dad will be the person who looks at each note and
conveys what needs to be done to each child. Because Dad is notorious for losing
reminders and notes, Mom makes the task notes more official and portable by put-
ting each note into an envelope. This is analogous to a command interface, which is
simply an interface that declares a method (generally called execute) that does some

,ch07.29809 Page 248 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

What Is the Command Pattern? | 249

task. Figure 7-1 shows the household equivalent of a command interface. Mom’s
command interface is a note with the operative word “do,” which will eventually
describe what chore needs to be done, and who will do it.

Mom creates several concrete commands that conform to the command interface for
the household tasks that need to be done while she is away. She puts notes, assigning
each task to a different person, inside four envelopes. When the envelopes are sealed,
it’s not possible to tell which kid’s responsibility it is to do the tasks, or even what
tasks are enclosed in the envelopes. All we know is that the envelope contains a task.
Therefore, the receiver and the task are hidden or encapsulated within the envelope.

Figure 7-2 shows Mom’s concrete commands that implement her command inter-
face declared in Figure 7-1. The four concrete commands: John will load the dish-
washer, Jane will walk the dog, Jack will do the laundry, and Dad will clean the garage
(Dad won’t know what hit him). Mom has assigned each task to the person most
appropriate to carry it out. She knows that Jane is the best person to walk the dog, as
Brutus is on his best behavior when Jane is around. Dad is the best person to clean
the garage, as it is his mess in the first place, and so on and so forth.

Figure 7-1. Mom’s command interface

Figure 7-2. Household equivalent of concrete commands

,ch07.29809 Page 249 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

250 | Chapter 7: Command Pattern

Each envelope encapsulates a particular behavior that’s assigned to a particular
receiver. The envelopes, being very portable objects, can be simply given to someone
(Dad) who will ask the assigned person to execute the indicated task. Mom hands
the sealed envelopes to Dad, who will perform the task of invoker. He will hang on to
each envelope until it’s time to execute the tasks. Dad doesn’t know what tasks the
envelopes contain or who will execute the tasks or how they will do it. All he knows
to do is open the sealed envelop and read the do instructions -"John do load the dish-
washer” and “Jack do the laundry,” etc. We have now decoupled the receiver and the
methods that execute the task in the receiver by encapsulating both within a
command object that is a sealed envelope. The command object is the envelope that
hides both the receiver and the task.

It’s time to do the assigned tasks when Dad brings the kids home from school. He
opens each envelope, calls out the assigned tasks to each child, and then goes on to
do his assigned task (mumbling to himself). Dad has no idea how the kids are doing
their assigned tasks. Jane rides her bike while walking the dog. John asks his friend
Mike to help him load the dishwasher. How each receiver executes its job is not the
concern of the invoker.

Key Features of the Command Pattern
The primary usefulness of the command pattern is the flexibility and extensibility it
affords when defining behavior in applications.

• The command pattern encapsulates behavior in a portable command object.

• The command pattern decouples the classes and which methods in those classes
execute required behavior from the location where the behavior is called.

• The command pattern allows a client to dynamically create new behavior by cre-
ating new command objects and assigning them to invokers at runtime.

• The command pattern allows for straightforward implementation of command
chaining, undo, redo and logging features into an application.

Class Diagram of the Command Pattern
The Command class (Figure 7-3) is an interface that declares, at a minimum, a single
method called execute(). The ConcreteCommand classes implement the Command inter-
face. There can be multiple concrete commands. Concrete commands usually have
parameterized constructors that take an instance of a receiver class to implement the
required behavior. The client instantiates a Receiver object and passes it to the
ConcreteCommand constructor when creating a new concrete command.

The ConcreteCommand references the receiver and delegates to it when implementing
the execute() method.

,ch07.29809 Page 250 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

Minimalist Example of a Command Pattern | 251

The client assigns each ConcreteCommand instance to specific triggers in invokers.
Invokers are where the commands are called from. They hold on to the
ConcreteCommand objects and call their execute() methods when it’s time to execute
the command. You’ll clearly see how this is implemented in ActionScript 3.0 in the
minimalist application.

Minimalist Example of a Command Pattern
This example implements the command pattern class diagram in Figure 7-3. The
command pattern consists of the command interface, concrete commands that imple-
ment the command interface, invokers that call the execute() method in concrete
commands, receivers that implement the behavior required of commands, and clients
that create concrete commands and pass them on to invokers.

Code examples Examples 7-1 through 7-5 show the minimalist implementation of
the command pattern.

The Command Interface
Example 7-1 shows the ICommand class that defines the interface for commands. It
defines a single method called execute().

The Concrete Command
Example 7-2 shows the ConcreteCommand class that implements the ICommand inter-
face. The parameterized constructor takes a Receiver class instance and assigns it to
the receiver property. The execute() command is implemented by delegating to the
receiver instance by calling its action() method. Note that, because the receiver

Figure 7-3. Command pattern class diagram

Example 7-1. ICommand.as

package
{
 public interface ICommand {
 function execute():void;
 }
}

Client

receiverReceiver
action()

ConcreteCommand
execute() receiver->action()

Command
execute()

Invoker

,ch07.29809 Page 251 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

252 | Chapter 7: Command Pattern

instance is passed to the constructor, the ConcreteCommand class and Receiver class
are loosely coupled, allowing a subclass of Receiver to be passed if needed.

The Receiver
Example 7-3 shows the Receiver class. It implements a method called action().
Receiver classes implement required command behavior in the command pattern.
The only elements that know about the receivers in the command pattern are the
concrete commands and the client. Receivers are hidden from invokers.

The Invoker
Example 7-4 shows the Invoker class. It has a method called setCommand() that takes
a concrete command instance, which is saved in the currentCommand property. The
executeCommand() method calls the execute() method in the concrete command
instance. Note that the invoker does not refer to the receiver, and has no idea about
its type.

Example 7-2. ConcreteCommand.as

package
{
 class ConcreteCommand implements ICommand
 {
 var receiver:Receiver;

 public function ConcreteCommand(rec:Receiver):void
 {
 this.receiver = rec;
 }

 public function execute():void
 {
 receiver.action();
 }
 }
}

Example 7-3. Receiver.as

package
{
 class Receiver
 {
 public function action()
 {
 trace("Receiver: doing action");
 }
 }
}

,ch07.29809 Page 252 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

Minimalist Example of a Command Pattern | 253

The Client
Example 7-5 shows the Main class (also the document class for the Flash document)
that represents the client. The client does several tasks. It first creates an instance of
the receiver (line 9) and passes it as a parameter when creating a ConcreteCommand
instance (line 10). The instance of ConcreteCommand is called a command object. The
client then creates an instance of the Invoker class (line 12) and passes the command
object to it (line 13). Finally, the client executes the command by calling the
execute() method on the command object.

The output from the minimalist application will be the following trace from the
receiver object indicating that its action() method has been called:

Receiver: doing action

Example 7-4. Invoker.as

package
{
 class Invoker
 {
 var currentCommand:ICommand;

 public function setCommand(c:ICommand):void
 {
 this.currentCommand = c;
 }

 public function executeCommand()
 {
 currentCommand.execute();
 }
 }
}

Example 7-5. Main.as

1 package
2 {
3 import flash.display.MovieClip;
4
5 public class Main extends MovieClip
6 {
7 public function Main()
8 {
9 var rec:Receiver = new Receiver();

10 var concCommand:ICommand = new ConcreteCommand(rec);
11
12 var invoker:Invoker = new Invoker();
13 invoker.setCommand(concCommand);
14 concCommand.execute(); // execute command
15 }
16 }
17 }

,ch07.29809 Page 253 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

254 | Chapter 7: Command Pattern

Setting a Trigger to Invoke the Command
In most situations, the client does not call the execute() method in the command
object. You wouldn’t need to have an invoker if this were the case. Invokers hang on
to command objects until it’s time to execute them. There can be many triggers such
as user events, and timers that would do this.

To make our minimalist example reflect the true nature of the invoker, we can imple-
ment a timer event that invokes the command. Example 7-6 shows the TimedInvoker
class that extends the Invoker class (see Example 7-4). It implements the setTimer()
method, which creates a timer that dispatches a timer event every second (1000 ticks
equal 1 second) 5 times (line 10). It then registers the onTimerEvent() listener
method to intercept timer events (line 11) and starts the timer. The onTimerEvent()
method calls the executeCommand() method in the superclass.

Replace lines 12 through 14 in the Main class (see Example 7-5) with the following
statements to use the new timed invoker.

var invoker:TimedInvoker = new TimedInvoker();
invoker.setCommand(concCommand);
invoker.setTimer();

This will cause the command to be executed every second for 5 seconds based on
timer events. This is a more accurate representation of the command pattern where
the invoker executes commands based on different triggers, independent of the client.

Example 7-6. TimedInvoker.as

1 package {
2
3 import flash.events.Event;
4 import flash.events.TimerEvent;
5 import flash.utils.Timer;
6
7 class TimedInvoker extends Invoker {
8
9 public function setTimer() {

10 var timer:Timer = new Timer(1000, 5);
11 timer.addEventListener(TimerEvent.TIMER, this.onTimerEvent);
12 timer.start();
13 }
14
15 public function onTimerEvent(evt:TimerEvent):void {
16 this.executeCommand();
17 }
18 }
19 }

,ch07.29809 Page 254 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

Minimalist Example: Macro Commands | 255

Key OOP Concepts in the Command Pattern
The key concept in the command pattern is encapsulation. Encapsulation is basi-
cally information hiding. You want to hide implementation details of parts of a pro-
gram that are most likely to change from other parts.

Command objects, which are instances of concrete commands, embed behavior.
However, which classes execute that behavior and which methods in those classes
implement that behavior are hidden from where the behavior is called. This informa-
tion is encapsulated within the command object.

We saw in the minimalist example that nowhere in the invoker (Example 7-4) is the
type of the receiver mentioned. The invoker only knows what’s implemented in the
command interface (Example 7-1). It only knows that the command object has a
method called execute(). All the invoker knows is to call that method in the com-
mand object when it’s time to do it.

This decouples the invoker from the receiver. If it becomes necessary to use a differ-
ent receiver to implement a required behavior, we can modify the concrete com-
mand to delegate to a different receiver. The invoker won’t know that anything has
changed; it’ll keep calling the execute() command in the same command object,
oblivious to the fact that its behavior is now implemented using a different receiver.

Minimalist Example: Macro Commands
Macro commands are useful extensions of concrete commands. They allow the cre-
ation of composite commands that run several sub-commands in sequence. Con-
sider what happens when you quit or exit an application. If there are open unsaved
documents the application will ask if you want to save changes. The quit command
is then a macro command that does several housekeeping tasks before quitting.
These tasks are themselves commands, but are referred to as subcommands when
invoked by a macro command.

Macro commands need to implement more functionality than a simple command
does because they need to define interfaces to add and remove subcommands. We
will extend the original command interface to fit the new requirements.

The Macro Command Interface
Example 7-7 shows the IMacroCommand interface. It extends the ICommand interface
(Example 7-1) and declares the add() and remove() methods.

,ch07.29809 Page 255 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

256 | Chapter 7: Command Pattern

Two Concrete Subcommands
To demonstrate a macro command, we will implement two concrete command
classes (ConcreteCommand1 and ConcreteCommand2) that use two receiver classes
(Receiver1 and Receiver2). These are shown in Example 7-8 through Example 7-11.

Example 7-7. IMacroCommand.as

package
{
 public interface IMacroCommand extends ICommand {
 function add(c:ICommand):void;
 function remove(c:ICommand):void;
 }
}

Example 7-8. ConcreteCommand1.as

package {
 class ConcreteCommand1 implements ICommand
 {
 var receiver:Receiver1;

 public function ConcreteCommand1(rec:Receiver1):void
 {
 this.receiver = rec;
 }

 public function execute():void
 {
 receiver.action1();
 }
 }
}

Example 7-9. ConcreteCommand2.as

package {
 class ConcreteCommand2 implements ICommand
 {
 var receiver:Receiver2;

 public function ConcreteCommand2(rec:Receiver2):void
 {
 this.receiver = rec;
 }

 public function execute():void
 {
 receiver.action2();
 }
 }
}

,ch07.29809 Page 256 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

Minimalist Example: Macro Commands | 257

The Concrete Macro Command
We will now develop a macro command that implements the IMacroCommand inter-
face. The implementation is straightforward as Example 7-12 shows; it pushes com-
mands into the commandObjectList array in the add() method, and executes them in
sequence in the execute() method.

Example 7-10. Receiver1.as

package {

 class Receiver1 {

 public function action1() {
 trace("Receiver 1: doing action 1");
 }
 }
}

Example 7-11. Receiver2.as

package {

 class Receiver2 {

 public function action2() {
 trace("Receiver 2: doing action 2");
 }
 }
}

Example 7-12. ConcreteMacroCommand.as

package
{
 class ConcreteMacroCommand implements IMacroCommand
 {
 var commandObjectList:Array;

 public function ConcreteMacroCommand()
 {
 this.commandObjectList = new Array();
 }

 public function add(c:ICommand):void
 {
 commandObjectList.push(c);
 }

 public function remove(c:ICommand):void
 {
 for (var i:int = 0; i < commandObjectList.length; i++)
 {

,ch07.29809 Page 257 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

258 | Chapter 7: Command Pattern

A Macro Command Object Created from the Client
The client first creates the two subcommands. It then creates a new macro command
and adds the two subcommands to it. Finally, it creates an invoker and sets it to exe-
cute the macro command. Example 7-13 shows how to create the macro command.

Note that macro commands do not delegate to receivers to implement required
behavior. The primary purpose is to execute sub-commands. Since they implement
the ICommand interface, invokers are indistinguishable from other command objects.

Example: Number Manipulator
The invoker in the previous examples can hold only one command object. However,
in real applications, invokers need to hold multiple commands. For example, take
the File menu of any application. It is a good example of an invoker. The File menu

 if (commandObjectList[i] === c)
 {
 commandObjectList.splice(i, 1);
 break;
 }
 }
 }

 public function execute():void
 {
 for (var i:int = 0; i < commandObjectList.length; i++)
 {
 commandObjectList[i].execute();
 }
 }
 }
}

Example 7-13. Client code to create a macro command

var command1:ICommand = new ConcreteCommand1(new Receiver1());
var command2:ICommand = new ConcreteCommand2(new Receiver2());

// create a macro command and add commands
var macroCommand:IMacroCommand = new ConcreteMacroCommand();
macroCommand.add(command1);
macroCommand.add(command2);

var invoker:TimedInvoker = new TimedInvoker();
// assign macro command to the invoker
invoker.setCommand(macroCommand);
// invoke commands on timer events
invoker.setTimer();

Example 7-12. ConcreteMacroCommand.as (continued)

,ch07.29809 Page 258 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

Example: Number Manipulator | 259

has Open, Save, and Save As menu items. Each of these menu items can be a com-
mand container that calls the execute() method of the embedded command object
when triggered by the user. Toolbars in applications are also invokers. They gener-
ally consist of button icons that execute particular commands to manipulate ele-
ments in an application or document.

In the Number Manipulator application (Figure 7-4), we will create an invoker that
contains buttons onto which command objects can be attached. When the button’s
clicked, the attached command will be executed. The example application will con-
sist of two buttons and a text field. The two buttons will have embedded command
objects that will increment and decrement the numerical value in the text field.

We could have used the built-in Button component in Flash CS3 for
the buttons in our application. However, we will implement our own
button class to illustrate how easily you can create custom buttons
with ActionScript 3.0. Use of components is demonstrated in
Chapter 12, where we build an application that has several user inter-
face elements to illustrate the Model-View-Controller pattern.

A Utility Button Class
First we need to create a button class that can be reused in subsequent examples.
Example 7-14 shows the TextButton class that subclasses the built-in SimpleButton
class in ActionScript 3.0. The TextButton constructor takes one parameter that
defines the text on the button. The TextButton.as file contains an embedded class
called TextButtonState that subclasses Sprite to draw required button states. The
TextButtonState constructor takes two parameters: button state color, and button
text. It creates a new text field with the passed text and draws a filled rounded rect-
angle around it, using the passed color. A new sprite is created and assigned to the
up, down, and over states of TextButton.

Figure 7-4. Number manipulator example

,ch07.29809 Page 259 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

260 | Chapter 7: Command Pattern

Triggering an Invoker by Button Clicks
Now that we have a button, let’s use it to create a multibutton invoker. Example 7-15
shows the InvokerPanel class that contains buttons with commands assigned to them.
Two arrays, commandList and buttonList, are declared to hold the button instances
and corresponding command objects. The public setCommand() method takes two

Example 7-14. TextButton.as

package
{
 import flash.display.*;
 import flash.events.*;

 public class TextButton extends SimpleButton
 {
 public var selected:Boolean = false;

 public function TextButton(txt:String)
 {
 upState = new TextButtonState(0xFFFFFF, txt);
 downState = new TextButtonState(0x999999, txt);
 overState = new TextButtonState(0xCCCCCC, txt);
 hitTestState = upState;
 }
 }
}

import flash.display.*;
import flash.text.TextFormat;
import flash.text.TextField;
import flash.text.TextFieldAutoSize;

class TextButtonState extends Sprite
{
 public function TextButtonState(color:uint, labelText:String)
 {
 var label = new TextField();
 label.autoSize = TextFieldAutoSize.LEFT;
 label.text = labelText;
 label.x = 2;
 var format:TextFormat = new TextFormat("Verdana");
 label.setTextFormat(format);
 var buttonWidth:Number = label.textWidth + 10;
 var background:Shape = new Shape();
 background.graphics.beginFill(color);
 background.graphics.lineStyle(2, 0x000000);
 background.graphics.drawRoundRect(0, 0, buttonWidth, 18, 4);
 addChild(background);
 addChild(label);
 }
}

,ch07.29809 Page 260 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

Example: Number Manipulator | 261

parameters, a slot position and command object (line 17), and assigns the command
to the requested slot position in the commandList array. The setButton() method takes
two parameters, a slot position as before, and button text (line 22). The setButton()
method creates a new TextButton instance, and assigns it to the requested location on
the buttonList array. It then draws the button, assigns an event handler to intercept
mouse clicks, and adds it to the display list. The mouse click is the trigger for the but-
ton and its assigned command object. When there’s a click on the button, the event is
intercepted by the buttonClicked() method, which traverses the buttonList array to
find the button clicked. And when the originating button is found, it executes the cor-
responding command object from the commandList array.

Example 7-15. InvokerPanel.as

1 package
2 {
3 import flash.display.*;
4 import flash.events.*;
5
6 class InvokerPanel extends Sprite
7 {
8 var commandList:Array;
9 var buttonList:Array;

10
11 public function InvokerPanel()
12 {
13 this.commandList = new Array(5);
14 this.buttonList = new Array(5);
15 }
16
17 public function setCommand(nSlot:int, c:ICommand):void
18 {
19 this.commandList[nSlot] = c;
20 }
21
22 public function setButton(nSlot:int, sName:String):void
23 {
24 var btn:TextButton = new TextButton(sName);
25 this.buttonList[nSlot] = btn;
26 btn.x = nSlot * 100;
27 btn.addEventListener(MouseEvent.CLICK, this.buttonClicked);
28 this.addChild(btn);
29 }
30
31 private function buttonClicked(e:Event)
32 {
33 for (var i:int = 0; i < buttonList.length; i++)
34 {
35 if (buttonList[i] === e.target)
36 {
37 this.commandList[i].execute();
38 break;
39 }
40 }

,ch07.29809 Page 261 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

262 | Chapter 7: Command Pattern

The Increment and Decrement Commands
Now that our InvokerPanel is complete, we can develop the command classes to
increment and decrement a value in a text field. Examples 7-16 and 7-17 show the
IncrementCommand and DecrementCommand classes, both of which implement the
ICommand interface (Example 7-1). Note that the receiver is the built-in TextField
class and the text in the field is assigned using its text property. The execute()
method gets the text value from the receiver, casts it to a Number, and assigns the
manipulated value back to the receiver.

41 }
42 }
43 }

Example 7-16. IncrementCommand.as

package {

 import flash.text.TextField;

 class IncrementCommand implements ICommand {

 var receiver:TextField;

 public function IncrementCommand(rec:TextField):void {
 this.receiver = rec;
 }

 public function execute():void {
 receiver.text = String(Number(receiver.text) + 1);
 }
 }
}

Example 7-17. DecrementCommand.as

package {

 import flash.text.TextField;

 class DecrementCommand implements ICommand {

 var receiver:TextField;

 public function DecrementCommand(rec:TextField):void {
 this.receiver = rec;
 }

 public function execute():void {
 receiver.text = String(Number(receiver.text) – 1);

Example 7-15. InvokerPanel.as (continued)

,ch07.29809 Page 262 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

Example: Number Manipulator | 263

The Client
The only remaining task is to develop the client code to create the command objects
and assign them to the buttons on the invoker. Example 7-18 shows how the client
first creates the receiver, which is a built-in text field (line 2), and assigns the num-
ber 100 to it. The receiver is then positioned and added to the display list (line 8).
The client then creates two concrete commands to increment and decrement the
receiver (lines 11-12). Next, the client creates the invoker button panel, and two but-
tons. Finally, the command objects are assigned to the proper button slots (lines 23-
24). Note that the button slots are numbered from 0 through 4.

Running the number manipulator example will produce a text field with the number
100 and two buttons labeled “+1” and “–1” (see Figure 7-4).

 }
 }
}

Example 7-18. Client code for number manipulator

1 // create new receiver
2 var numDisplayField:TextField = new TextField();
3 numDisplayField.autoSize = TextFieldAutoSize.LEFT;
4 numDisplayField.text = '100'; // default value
5 numDisplayField.border = true;
6 numDisplayField.x = 50;
7 numDisplayField.y = 50;
8 this.addChild(numDisplayField);
9

10 // concrete command objects
11 var incCommand:ICommand = new IncrementCommand(numDisplayField);
12 var decCommand:ICommand = new DecrementCommand(numDisplayField);
13
14 // create invoker button panel
15 var panel:InvokerPanel = new InvokerPanel();
16 panel.setButton(0,"+1");
17 panel.setButton(1,"-1");
18 panel.x = 50;v
19 panel.y = 100;
20 this.addChild(panel);
21
22 // add commands to invoker buttons
23 panel.setCommand(0, incCommand);
24 panel.setCommand(1, decCommand);

Example 7-17. DecrementCommand.as (continued)

,ch07.29809 Page 263 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

264 | Chapter 7: Command Pattern

Extended Example: Sharing Command Objects
Portability is a significant advantage of command objects. They’re portable because
they encapsulate everything that’s needed to execute a particular command. They’re
not tightly coupled to either the receiver or the invoker, and conform to a stable
interface. Any code segment can execute a command by just calling the execute()
method on a command object. Why is portability such a good thing?

Let’s go back to our File menu example. We know that a File menu can be an invoker
where the menu items are attached to command objects that can be executed. How
about keyboard shortcuts for the File menu? The keyboard shortcut Ctrl-O on the PC
and Command-O on a Mac will perform the same behavior as selecting the Open
menu item. Ctrl-S on the PC and Command-S on a Mac will save a file exactly the
same way as choosing the Save menu item. So, the keyboard shortcuts are invokers
too, but do we need to create a whole new set of command objects for it? Not at all,
we can create a single command object and share it with multiple invokers.

Triggering an Invoker by Key Presses
Let’s extend our number manipulator example and add keyboard shortcuts to incre-
ment and decrement the number in the text field. The first step is to develop a new
invoker to handle keyboard input. Example 7-19 shows the InvokerKeyboard class.
Structurally, it’s similar to previous multibutton invokers. However, unlike the
InvokerPanel class, InvokerKeyboard does not have to subclass Sprite because it’s not
going to be added to the display list. The Stage instance is passed to InvokerKeyboard
as the onKeyPress listener has to be registered with the stage. This is essential to inter-
cept all key down events.

Two arrays, keyList and commandList, hold the shortcut key code and correspond-
ing command objects. The public setCommand() method takes two parameters, a key
code value and command object, and pushes them in tandem to the keyList and
commandList arrays. If there is a key press and the keyList array contains the keycode
for the key pressed, the corresponding command from the commandList array will be
executed.

Example 7-19. InvokerKeyboard.as

package
{
 import flash.events.*;
 import flash.display.Stage;

 class InvokerKeyboard
 {
 var commandList:Array;
 var keyList:Array;

,ch07.29809 Page 264 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

Extended Example: Sharing Command Objects | 265

Sharing Command Objects from the Client
Now that the keyboard invoker has been implemented, we can add the following at
the end of the client code shown in Example 7-18. This creates a new
InvokerKeyboard instance, and assigns the same command objects to it that were
used for the InvokerPanel.

var kb:InvokerKeyboard = new InvokerKeyboard(this.stage);
// add commands to keyboard shortcut invoker
kb.setCommand(Keyboard.RIGHT, incCommand);
kb.setCommand(Keyboard.LEFT, decCommand);
kb.setCommand(Keyboard.NUMPAD_ADD, incCommand);
kb.setCommand(Keyboard.NUMPAD_SUBTRACT, decCommand);

The keyboard right arrow key and the plus key on the numeric keypad should per-
form the increment command. Conversely, the left arrow key and negative key on
the numeric keypad should perform the decrement command.

Command sharing is a powerful feature of the command pattern and makes extend-
ing applications much easier to manage. For example, if we decide to use a different
receiver, we just need to pass an instance of the new receiver when creating the com-
mand object. Because the same command object is used in multiple invokers, the

 public function InvokerKeyboard(stageTarget:Stage)
 {
 this.commandList = new Array();
 this.keyList = new Array();
 stageTarget.addEventListener(KeyboardEvent.KEY_DOWN,
 this.onKeyPress);
 }

 public function setCommand(keycode:int, c:ICommand):void
 {
 this.keyList.push(keycode);
 this.commandList.push(c);
 }

 private function onKeyPress(event:KeyboardEvent)
 {
 for (var i:int = 0; i < keyList.length; i++)
 {
 if (keyList[i] === event.keyCode)
 {
 this.commandList[i].execute();
 break;
 }
 }
 }
 }
}

Example 7-19. InvokerKeyboard.as (continued)

,ch07.29809 Page 265 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

266 | Chapter 7: Command Pattern

changes are seamlessly spread through the application. If command objects were not
used and receivers were called directly from multiple invokers, code changes in mul-
tiple locations would be necessary.

Extended Example: Implementing Undo
Another powerful feature of the command pattern is the clear-cut means it provides
for implementing undo, redo, queuing, and logging features. We all know how valu-
able the undo feature is in any productivity application, including games. Because
the command object encapsulates execution of commands, it can just as easily
encapsulate an undo() command to reverse itself and go back to its previous state.

We need to expand the command interface to declare an undo() command. How-
ever, before we proceed, let’s stop and think about how to implement this feature.
To implement undo, we need to keep track of executed commands using a com-
mand stack. A stack is a data structure that’s based on the last-in-first-out (LIFO)
principle. Stacks implement push() and pop() operations that store and retrieve
items from it. The pop operation always retrieves the last item pushed. This is
exactly what we need to implement undo, as it simply reverses the last command.
Whenever a command is executed, its command object should be pushed into a
stack. Ideally there should be only one command stack per application. When the
user wants to undo the last command, the stack should be popped, and the undo()
command of the popped command object should be executed.

An Abstract Interface for Commands
Instead of declaring a pure interface, we will declare an abstract interface for com-
mands that support undo. We’ll do this to implement the command stack feature
within the command class. Example 7-20 shows the abstract interface for the
CommandWithUndo class that implements this. Arrays in ActionScript support the push
and pop operations. The command stack is a static array called aCommandHistory
that’ll hold the command objects that have already been executed. The default
implementation for the execute() method is to push the current command object
into the command stack. The undo() method has been declared as an abstract
method requiring implementation by subclasses.

Note that ActionScript 3.0 language does not support abstract classes. It is up to the
programmer to make sure that classes that need to behave as abstract are sub-
classed, and abstract methods implemented.

Example 7-20. CommandWithUndo.as

package
{
 // ABSTRACT Class (should be subclassed and not instantiated)
 public class CommandWithUndo implements ICommand

,ch07.29809 Page 266 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

Extended Example: Implementing Undo | 267

Concrete Commands that Implement Undo
Now we will re-implement the increment and decrement concrete commands to the
abstract interface declared by CommandWithUndo. The two new concrete command
classes are IncrementCommandWithUndo (Example 7-21) and DecrementCommandWithUndo
(Example 7-22). To implement the undo feature, we primarily need to push all exe-
cuted command objects into the command stack. The execute() method does this
by calling the execute() method in the superclass in the last statement (line 17), and
implementing the undo() method. The undo() method simply reverses the effects of
the execute() method (line 20).

 {
 internal static var aCommandHistory:Array = new Array();

 public function execute():void
 {
 aCommandHistory.push(this);
 }

 // ABSTRACT Method (must be overridden in a subclass)
 public function undo():void {}
 }
}

Example 7-21. IncrementCommandWithUndo.as

1 package
2 {
3 import flash.text.TextField;
4
5 class IncrementCommandWithUndo extends CommandWithUndo
6 {
7 var receiver:TextField;
8
9 public function IncrementCommandWithUndo(rec:TextField):void

10 {
11 this.receiver = rec;
12 }
13
14 override public function execute():void
15 {
16 receiver.text = String(Number(receiver.text) + 1);
17 super.execute();
18 }
19
20 override public function undo():void
21 {

Example 7-20. CommandWithUndo.as (continued)

,ch07.29809 Page 267 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

268 | Chapter 7: Command Pattern

The DecrementCommandWithUndo class is similar, and shown in Example 7-22.

We also need a new command object that’ll be attached to an undo button on the
invoker. Example 7-23 shows the UndoLastCommand class that will undo the last opera-
tion. The execute() method first checks if the aCommandHistory array contains any
command objects, and pops the array to get the most recently executed command. It
then proceeds to call the undo() method on the popped command object. Note that
the undo command does not push itself into the command stack. It also throws an
IllegalOperationError exception if its undo() method is called.

22 receiver.text = String(Number(receiver.text) – 1);
23 }
24 }
25 }

Example 7-22. DecrementCommandWithUndo.as

package
{
 import flash.text.TextField;

 class DecrementCommandWithUndo extends CommandWithUndo
 {

 var receiver:TextField;

 public function DecrementCommandWithUndo(rec:TextField):void
 {
 this.receiver = rec;
 }

 override public function execute():void
 {
 receiver.text = String(Number(receiver.text) – 1);
 super.execute();
 }

 override public function undo():void
 {
 receiver.text = String(Number(receiver.text) + 1);
 }
 }
}

Example 7-23. UndoLastCommand.as

package
{
 import flash.errors.IllegalOperationError;

 class UndoLastCommand extends CommandWithUndo

Example 7-21. IncrementCommandWithUndo.as

,ch07.29809 Page 268 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

Extended Example: Implementing Undo | 269

Undoable Commands Assigned from the Client
In Example 7-24, the client can be modified to create command objects using the
concrete commands that support undo (lines 11–13). A new “Undo” button is added
(line 19), and the corresponding command object is attached to it (line 27).

 {
 override public function execute():void
 {
 if (aCommandHistory.length)
 {
 var lastCommand:CommandWithUndo = aCommandHistory.pop();
 lastCommand.undo();
 }
 }

 override public function undo():void
 {
 throw new IllegalOperationError("undo operation not supported
 on this command");
 }
 }
}

Example 7-24. Client code for undoable number manipulator

1 // create new receiver
2 var numDisplayField:TextField = new TextField();
3 numDisplayField.autoSize = TextFieldAutoSize.LEFT;
4 numDisplayField.text = '100'; // default value
5 numDisplayField.border = true;
6 numDisplayField.x = 50;
7 numDisplayField.y = 50;
8 this.addChild(numDisplayField);
9

10 // create concrete commands
11 var incCommand:CommandWithUndo = new IncrementCommandWithUndo(numDisplayField);
12 var decCommand:CommandWithUndo = new DecrementCommandWithUndo(numDisplayField);
13 var undo:CommandWithUndo = new UndoLastCommand();
14
15 // create invoker button panel
16 var panel:InvokerPanel = new InvokerPanel();
17 panel.setButton(0,"+1");
18 panel.setButton(1,"-1");
19 panel.setButton(2,"Undo");
20 panel.x = 50;
21 panel.y = 100;
22 this.addChild(panel);
23
24 // add commands to invoker
25 panel.setCommand(0, incCommand);

Example 7-23. UndoLastCommand.as (continued)

,ch07.29809 Page 269 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

270 | Chapter 7: Command Pattern

The example application will look like Figure 7-4 with an additional “Undo” button.
Command “redo” functionality including logging features can be implemented in
similar ways. Logging features are useful when the commands executed need to be
saved on disk. For example, saving the installation command objects on disk when a
new application is installed will facilitate an uninstall by loading the logged com-
mands and undoing them in reverse order.

Example: Podcast Radio
This example implements a classic car radio with a twist. Instead of programming
the push buttons to tune to a radio station, they will be attached to command objects
that will download and play the latest episode from a podcast. Think of this as a
futuristic car radio when long-range Wi-Fi becomes a reality. You can listen to the
NPR hourly news summary on demand without waiting for the top of the hour.
Figure 7-5 shows the screen layout of the application. It consists of labeled buttons
that indicate the genre of the podcast assigned to each button, and a text field that
displays the title of the podcast item that is currently playing.

What Is a Podcast?
A podcast is a media file that is distributed over the Internet. Podcasts are distrib-
uted using a syndication feed, which is a standard way of distributing content that is
regularly updated. The feed is an XML file just like a syndicated news feed that lists
news stories with the most recent one first. The difference between news feeds and

26 panel.setCommand(1, decCommand);
27 panel.setCommand(2, undo);

Figure 7-5. Screenshot of podcast radio

Example 7-24. Client code for undoable number manipulator

,ch07.29809 Page 270 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

Example: Podcast Radio | 271

podcasts is that in podcasts, the story is not text but a URL to a media file. In an
audio podcast, the linked media file is usually in MP3 format. Example 7-25 shows a
fictitious podcast XML feed in RSS syndication format (with many elements deleted
for clarity).

To play an audio podcast, the podcast XML file has to be loaded and parsed to
access the url attribute of the enclosure element that holds the URL to the audio file.
Thereafter, the audio file has to be loaded from the Web and played.

Creating a Package with Utility Classes
First, we need to create two utility classes to create the button and text fields on the
stage. The first is the same TextButton class shown in Example 7-14 that creates but-
tons on the stage. We also develop a class called TextDisplayField that subclasses
TextField to format and display the title of the currently playing podcast item. We
will add both classes into a package called utils.

The TextDisplayField class is shown in Example 7-26. The class is straightforward,
and its main purpose is to set the initial text in the field, set the font size, and show
the text field border.

Example 7-25. Podcast XML feed

<?xml version="1.0" encoding="utf-8"?>
<rss version="2.0">
 <channel>
 <title>10AM ET News Summary</title>
 <item>
 <title>News Summary for Saturday, Nov 18 2006 at 10:00 AM EST</title>
 <pubDate>Sat, 18 Nov 2006 10:16:06 EST</pubDate>
 <enclosure url="http://news.podcasts.org/6507084.mp3">
 </item>
 </channel>
</rss>

Example 7-26. TextDisplayField.as

package utils {

 import flash.text.TextFormat;
 import flash.text.TextField;
 import flash.text.TextFieldAutoSize;

 public class TextDisplayField extends TextField {

 public function TextDisplayField(labelText:String = "",
 fontSize:int = 14,
 showborder:Boolean = true) {
 autoSize = TextFieldAutoSize.LEFT;
 text = labelText;
 border = showborder;

,ch07.29809 Page 271 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

272 | Chapter 7: Command Pattern

Now that the utility classes have been created, we can develop the command pattern
elements for the application.

Creating a Command to Play a Podcast
The command interface will be the same ICommand class defined in Example 7-1. The
concrete command will be the PlayPodcastCommand class shown in Example 7-27. The
constructor takes two parameters, the receiver of type Radio, and the URL of the
podcast as type String.

Developing the Radio Receiver
The receiver class shown in Example 7-28 is called Radio and subclasses Sprite. It
uses the TextDisplayField class (see Example 7-26) from the previously developed
utils package to display a text field to show the currently playing podcast item (lines
20-21). The audioDisplay property references the text field. In addition, it declares a
static property called audioChannel of type SoundChannel (line 15). The reason the
sound channel is declared as static is to make sure that only one podcast plays at a

 var format:TextFormat = new TextFormat("Verdana");
 format.size = fontSize;
 setTextFormat(format);
 }
 }
}

Example 7-27. PlayPodcastCommand.as

package
{
 class PlayPodcastCommand implements ICommand
 {
 var receiver:Radio;
 var podCastURL:String;

 public function PlayPodcastCommand(rec:Radio, url:String):void
 {
 this.receiver = rec;
 this.podCastURL = url;
 }

 public function execute():void
 {
 this.receiver.playPodcast(this.podCastURL);
 }
 }
}

Example 7-26. TextDisplayField.as (continued)

,ch07.29809 Page 272 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

Example: Podcast Radio | 273

given moment, even if there are multiple instances of the Radio class in the applica-
tion. The playPodcast() method loads the XML file for the podcast and registers the
xmlLoaded listener method (line 28) to intercept the Event.COMPLETE event. After the
XML file is loaded, it is parsed using the new E4X features in ActionScript 3.0
(ECMAScript for XML) to get the title element (line 42) and the enclosure attribute
(line 44) of the first item element. The audio file is then loaded and played through
the audioChannel sound channel (lines 46-51).

Example 7-28. Radio.as

1 package
2 {
3
4 import flash.display.*;
5 import flash.events.*;
6 import flash.media.Sound;
7 import flash.media.SoundChannel;
8 import flash.net.*;
9 import utils.*;

10
11 class Radio extends Sprite
12 {
13
14 private var audioDisplay:TextDisplayField;
15 private static var audioChannel:SoundChannel = new SoundChannel();
16 var xmlLoader:URLLoader;
17
18 public function Radio()
19 {
20 audioDisplay = new TextDisplayField("click button to play", 14);
21 this.addChild(audioDisplay);
22 }
23
24 public function playPodcast(url:String)
25 {
26 var xmlURL:URLRequest = new URLRequest(url);
27 this.xmlLoader = new URLLoader(xmlURL);
28 xmlLoader.addEventListener(Event.COMPLETE, xmlLoaded);
29 xmlLoader.addEventListener(IOErrorEvent.IO_ERROR, loadError);
30 }
31
32 private function xmlLoaded(evtObj:Event)
33 {
34 var xml:XML = new XML();
35 xml = XML(xmlLoader.data);
36 // set the default XML namespace to the source
37 if (xml.namespace("") != undefined)
38 {
39 default xml namespace = xml.namespace("");
40 }
41 // set the display field to audio stream name
42 this.audioDisplay.text = xml..item[0].title;
43 // get audio url

,ch07.29809 Page 273 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

274 | Chapter 7: Command Pattern

Push Button Invokers for the Radio
The ControlButtons class shown in Example 7-29 is identical to the InvokerPanel
class (Example 7-15) discussed previously. The only difference is that now the
TextButton class has to be imported from the utils package. Its main function is to
hold push button instances and command objects associated with them, and exe-
cute the corresponding command when a button’s clicked.

44 var url = xml..item[0].enclosure.attribute("url");
45 // load audio and play
46 var request:URLRequest = new URLRequest(url);
47 var audio:Sound = new Sound();
48 audio.addEventListener(IOErrorEvent.IO_ERROR, loadError);
49 audio.load(request);
50 audioChannel.stop(); // stop previous audio
51 audioChannel = audio.play();
52 }
53
54 private function loadError(event:Event):void
55 {
56 trace("Load error " + event);
57 }
58 }
59 }

Example 7-29. ControlButtons.as

package
{
 import flash.display.*;
 import flash.events.*;
 import utils.*;

 class ControlButtons extends Sprite
 {
 var commandList:Array;
 var buttonList:Array;

 public function ControlButtons()
 {
 this.commandList = new Array(5);
 this.buttonList = new Array(5);
 }

 public function setCommand(nSlot:int, c:ICommand):void
 {
 this.commandList[nSlot] = c;
 }

 public function setButton(nSlot:int, sName:String):void
 {

Example 7-28. Radio.as

,ch07.29809 Page 274 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

Example: Podcast Radio | 275

The Client Assigns Podcasts to Push Buttons
In Example 7-30, the client first creates the receiver and adds it to the display list
(lines 1-5). It then creates the push buttons that represent the invoker. The buttons’
labels correspond to the podcast’s genre. Finally, the concrete command objects are
created, and assigned to the corresponding buttons in the invoker (lines 25-29). The
PlayPodcastCommand class constructor takes the podcast URL as a parameter in addi-
tion to the receiver instance. The client code can be run from the document class of
the Flash document.

 var btn:TextButton = new TextButton(sName);
 this.buttonList[nSlot] = btn;
 btn.x = nSlot * 100;
 btn.addEventListener(MouseEvent.CLICK,
 this.buttonClicked);
 this.addChild(btn);
 }

 private function buttonClicked(e:Event)
 {
 for (var i:int = 0; i < buttonList.length; i++)
 {
 if (buttonList[i] === e.target)
 {
 this.commandList[i].execute();
 break;
 }
 }
 }
 }
}

Example 7-30. Client code for the podcast radio

1 // create radio (receiver)
2 var radio:Radio = new Radio();
3 radio.x = 50;
4 radio.y = 50;
5 this.addChild(radio);
6
7 // create control buttons (invoker)
8 var controls:ControlButtons = new ControlButtons();
9 controls.setButton(0,"News");

10 controls.setButton(1,"Music");
11 controls.setButton(2,"Technology");
12 controls.setButton(3,"Business");
13 controls.setButton(4,"Sports");
14 controls.x = 50;
15 controls.y = this.stage.stageHeight - 50;
16 this.addChild(controls);

Example 7-29. ControlButtons.as (continued)

,ch07.29809 Page 275 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

276 | Chapter 7: Command Pattern

Extended Example: Dynamic Command Object
Assignment
Remember the classic car radio with the AM and FM stations? Each push button can
be programmed with an AM and FM station. What’s active depends on the receiver
mode. If you choose AM mode (by pressing the AM button), then the push buttons
will tune the programmed AM stations. Conversely, they will tune to their FM sta-
tions if in FM mode. The buttons are context sensitive. The Properties panel in the
Flash application is a good example of this context sensitive nature of available com-
mands. The available commands on the Properties panel change based on the type of
object selected on the stage. Only the commands that are relevant to the selected
object are active.

Due to the portability of command objects, we can dynamically assign and replace
them at runtime. All the examples we have looked at so far assign commands to
invokers at compile time from the client. When we assigned a command to a button,
it stayed there for the duration and didn’t change. We will extend the podcast radio
example application to dynamically assign command objects to the push buttons.
Figure 7-6 shows the extended application with two podcast genres: Music and
News. It will work very much like the AM and FM mode example described previ-
ously. Command objects will be assigned dynamically to buttons 1 through 3. When
the Music genre button is pressed, station buttons 1 through 3 will play music pod-
casts. Similarly, if the News button is pressed, the station buttons will play news
podcasts.

A Context Sensitive Invoker
To assign commands dynamically in our extended example, the invoker needs to be
mindful of the state of the application. It needs to assign different sets of command

17
18 // attach podcast station commands to invoker buttons
19 var podcastURL_1:String = "http://www.npr.org/rss/podcast.php?id=500005";
20 var podcastURL_2:String = "http://www.npr.org/rss/podcast.php?id=1039";
21 var podcastURL_3:String = "http://www.npr.org/rss/podcast.php?id=1019";
22 var podcastURL_4:String = "http://www.npr.org/rss/podcast.php?id=1095";
23 var podcastURL_5:String = "http://www.npr.org/rss/podcast.php?id=4499275";
24
25 controls.setCommand(0, new PlayPodcastCommand(radio, podcastURL_1));
26 controls.setCommand(1, new PlayPodcastCommand(radio, podcastURL_2));
27 controls.setCommand(2, new PlayPodcastCommand(radio, podcastURL_3));
28 controls.setCommand(3, new PlayPodcastCommand(radio, podcastURL_4));
29 controls.setCommand(4, new PlayPodcastCommand(radio, podcastURL_5));

Example 7-30. Client code for the podcast radio (continued)

,ch07.29809 Page 276 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

Extended Example: Dynamic Command Object Assignment | 277

objects to the podcast radio station buttons based on the state of the application, or,
in this case, the selected podcast genre.

The DynamicControlButtons class, shown in Example 7-31, extends the
ControlButtons class from Example 7-29. It keeps track of the selected genre in the
property currentGenre (line 7). The two podcast genres are defined by the static con-
stants NEWS and MUSIC (lines 5-6). It also declares and initializes two arrays (lines 9-10)
to hold the command objects assigned to the news and music genres for the three
station buttons.

The setGenre() method sets the genre by setting the currentGenre property (lines 18-
27). The setGenreCommand() method (lines 29-38) assigns the passed commands to
the two arrays that hold the news and music command objects. After any changes to
the state of the application, the updateCommandButtons() method is called to dynami-
cally assign the command objects for the chosen genre to the station buttons (posi-
tions 1-3 on the commandList array).

Figure 7-6. Podcast radio with music and news genre buttons

Example 7-31. DynamicControlButtons.as

1 package
2 {
3 class DynamicControlButtons extends ControlButtons
4 {
5 public static const NEWS:uint = 0;
6 public static const MUSIC:uint = 1;
7 var currentGenre:uint = NEWS;
8
9 var newsPodcastCommands:Array;

10 var musicPodcastCommands:Array;
11
12 public function DynamicControlButtons()
13 {
14 this.newsPodcastCommands = new Array(3);

,ch07.29809 Page 277 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

278 | Chapter 7: Command Pattern

Commands to Dynamically Assign Command Objects
To dynamically assign command objects, we need to create two new concrete com-
mands to set the podcast genre to either music or news. This is accomplished by the
SetToMusicGenreCommand (Example 7-32) and SetToNewsGenreCommand (Example 7-33)
classes.

15 this.musicPodcastCommands = new Array(3);
16 }
17
18 public function setGenre(genre:uint)
19 {
20 if (genre == NEWS)
21 {
22 this.currentGenre = NEWS;
23 } else if (genre == MUSIC) {
24 this.currentGenre = MUSIC;
25 }
26 this.updateCommandButtons();
27 }
28
29 public function setGenreCommand(nSlot:int, c:ICommand, genre:uint):void
30 {
31 if (genre == NEWS)
32 {
33 this.newsPodcastCommands[nSlot] = c;
34 } else if (genre == MUSIC) {
35 this.musicPodcastCommands[nSlot] = c;
36 }
37 this.updateCommandButtons();
38 }
39
40 private function updateCommandButtons()
41 {
42 for (var i:int = 0; i < 3; i++)
43 {
44 if (currentGenre == NEWS)
45 {
46 this.commandList[i] = this.newsPodcastCommands[i];
47 } else if (currentGenre == MUSIC) {
48 this.commandList[i] = this.musicPodcastCommands[i];
49 }
50 }
51 }
52 }
53 }

Example 7-32. SetToMusicGenreCommand.as

package
{

Example 7-31. DynamicControlButtons.as

,ch07.29809 Page 278 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

Extended Example: Dynamic Command Object Assignment | 279

Note that the receiver for both these commands is of type DynamicControlButtons,
which is the invoker. Here the invoker is also the receiver for the commands that set
the podcast genre.

Dynamic Command Assignment Setup from the Client
The client has to specify command objects for both the music and news genres to the
station buttons (the first three buttons), and the commands to change the genre (to
the last two buttons). The dynamic assignment of command objects to the station
buttons takes place in the invoker. The client essentially programs the buttons on the

 class SetToMusicGenreCommand implements ICommand
 {
 var receiver:DynamicControlButtons;

 public function SetToMusicGenreCommand(
 rec:ControlButtons):void
 {
 this.receiver = rec;
 }

 public function execute():void
 {
 this.receiver.setGenre(
 DynamicControlButtons.MUSIC);
 }
 }
}

Example 7-33. SetToNewsGenreCommand.as

package
{
 class SetToNewsGenreCommand implements ICommand
 {
 var receiver:DynamicControlButtons;

 public function SetToNewsGenreCommand(
 rec:ControlButtons):void
 {
 this.receiver = rec;
 }

 public function execute():void
 {
 this.receiver.setGenre(DynamicControlButtons.NEWS);
 }
 }
}

Example 7-32. SetToMusicGenreCommand.as (continued)

,ch07.29809 Page 279 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

280 | Chapter 7: Command Pattern

radio, very much like someone programming actual push buttons on a car radio to
specific stations.

The client first creates the receiver and adds it to the display list. It then creates the
invoker, assigns labels to each of the five buttons, and adds it to the display list. Pod-
cast URLs are then assigned to variables (three URLs for each genre). Next, the cli-
ent does the important job of creating PlayPodcastCommand command objects and
assigning them to them to the station buttons for each genre. Finally, the client cre-
ates and assigns the genre selection command objects to the corresponding buttons
on the invoker. Example 7-34 shows the setup.

Example 7-34. Client code for the extended podcast radio

// create radio (receiver)
var radio:Radio = new Radio();
radio.x = 50;
radio.y = 50;
this.addChild(radio);

// create control buttons (invoker)
var controls:DynamicControlButtons = new DynamicControlButtons();
controls.setButton(0,"1");
controls.setButton(1,"2");
controls.setButton(2,"3");
controls.setButton(3,"News");
controls.setButton(4,"Music");
controls.x = 50;
controls.y = this.stage.stageHeight - 50;
this.addChild(controls);

// podcast URLs
var podcastNewsURL_1:String =
 "http://www.npr.org/rss/podcast.php?id=500005";
var podcastNewsURL_2:String =
 "http://rss.cnn.com/services/podcasting/newscast/rss.xml";
var podcastNewsURL_3:String =
 "http://www.npr.org/rss/podcast.php?id=510053";
var podcastMusicURL_1:String =
 "http://www.npr.org/rss/podcast.php?id=510019";
var podcastMusicURL_2:String =
 "http://www.npr.org/rss/podcast.php?id=510026";
var podcastMusicURL_3:String =
 "http://minnesota.publicradio.org/tools/podcasts/
 new_classical_tracks.xml";

// add station commands to invoker buttons
controls.setGenreCommand(0, new PlayPodcastCommand(radio,
 podcastNewsURL_1), DynamicControlButtons.NEWS);
controls.setGenreCommand(1, new PlayPodcastCommand(radio,
 podcastNewsURL_2), DynamicControlButtons.NEWS);
controls.setGenreCommand(2, new PlayPodcastCommand(radio,
 podcastNewsURL_3), DynamicControlButtons.NEWS);

,ch07.29809 Page 280 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

Summary | 281

Summary
The command pattern is a very powerful example of encapsulation or information
hiding, and shows its utility in many situations common to software design.

In essence, the command pattern embeds behavior in command objects. Commands
are executed by calling the execute() method in the command object. What classes
are delegated to when executing that behavior, and which methods in those classes
implement that behavior, are hidden from where the behavior is called. This essen-
tially decouples the code that invokes the behavior from the code that implements
the behavior.

This decoupling makes command objects extremely portable, and it is this portabil-
ity that supports its wide applicability in many situations. A single command object
can be shared between several invokers. For example, a single instance of a com-
mand object can be used by different code sections in an application. This makes it
easy to extend or change application behavior.

One of the most useful characteristics of command objects is that they can be
assigned to invokers at runtime. This enables behavior to be changed based on state,
a very useful feature in making applications context sensitive.

In addition, the command pattern allows applications to implement some common
features required in many applications, such as: command chaining (macro com-
mands), undo, redo, and logging.

controls.setGenreCommand(0, new PlayPodcastCommand(radio,
 podcastMusicURL_1), DynamicControlButtons.MUSIC);
controls.setGenreCommand(1, new PlayPodcastCommand(radio,
 podcastMusicURL_2), DynamicControlButtons.MUSIC);
controls.setGenreCommand(2, new PlayPodcastCommand(radio,
 podcastMusicURL_3), DynamicControlButtons.MUSIC);

// add genre selection commands to invoker buttons
controls.setCommand(3, new SetToNewsGenreCommand(controls));
controls.setCommand(4, new SetToMusicGenreCommand(controls));

Example 7-34. Client code for the extended podcast radio (continued)

,ch07.29809 Page 281 Friday, October 26, 2007 12:06 PM

www.itbook.store/books/9780596528461

https://itbook.store/books/9780596528461

