
this is a new chapter 37

@grandmom please bring me some soda.
I’m so over the milk. #babyrants

iPhone app patterns2

Hello @twitter!

Apps have a lot of moving parts. OK, actually, they don’t have any real

moving parts, but they do have lots of UI controls. A typical iPhone app has more going on

than just a button, and it’s time to build one. Working with some of the more complicated

widgets means you’ll need to pay more attention than ever to how you design your app,

as well. In this chapter, you’ll learn about some of the fundamental design patterns used in

the iPhone SDK, and how to put together a bigger application.

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

38 Chapter 2

mike needs your help again

Mike

Mike is back. He has a great girlfriend, Renee, but
they’ve been having some problems. She thinks that
he doesn’t talk about his feelings enough.

Author’s note:

Head First does not take

any responsibility for
Mike’s

relationship problems.

A Twitter app is the way to go here.
That would be perfect: I can just tweet
about my feelings and then she’ll be happy.

There’s (about to be) an app for that.
Using some solid design and the basic controls
included in the Interface Builder library, you can
have Mike posting to Twitter in no time. But first,
what should his tweets say?

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

you are here 4 39

iPhone app patterns

First we need to figure out
what Mike (really) wants
Mike isn’t a complex guy. He wants an easy interface to
talk to Twitter and he really doesn’t want to have to type
much.

Here’s what Mike
handed you at the
end of the night

App Magnets
Now that we know what Mike wants, what do we need to do? Take
the magnets below and put them in order of the steps you’ll follow
to build his Twitter app.

Determine app layout

Handle the data

Build the GUI

Send outpu
t to Twitt

er

Here’s what I want:

- Not much typing

- Instant communication

- Easy to use

- My tweets like this:
 I’m _____

and feeling _
____ about it.”

Figure out how to use
the controls

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

40 Chapter 2

start with the app layout

App Magnets Solution
Now that we know what Mike wants, what do we need
to do? Take the magnets below and put them in order
of the steps you’ll follow to build his Twitter app.

Determine app layout

Build the GUI

Send outpu
t to Twitt

er

Handle the data

Before you start coding
anything, sketch up what
you’re thinking.

Some people write backend code first - we’re going to go back and forth depending on our project, but to get started, we’ll do the GUI first this time.

Here we need to manage the data coming from the controls...

Q: How do you figure out the app
layout?

A: We’re going to give you a couple to
choose from to get started, but in general,
it’s important to think about what your app
needs to do and focus on those features first.

Q: Are we always going to start with a
sketch?

A: Yes! Good software design starts
with knowing what you’re building and how

the user is going to work with the app. The
app for Mike is going to work with Twitter,
and he’s going to be able to make some
selections for his feelings and thoughts.
That’s it!

Q: How do we talk to Twitter?

A: Don’t worry, we’ll give you some code
to help you to work with that.

Just FYI, though, Twitter has a really well-
documented API. We’ll give you what you
need, but feel free to add more features!

Q: Does every control work differently
than the others?

A: For the most part, no—once you learn
a few basic patterns, you’ll be able to find
your way through most of the SDK. Some
of the controls have a few peculiarities here
and there, but for the most part they should
start to look familiar.

Figure out how to use
the controls

After you’ve landed on
 the

general app design, yo
u need to

get into the documentation a

little and figure out
how to

implement the controls you’v
e

chosen.

We’ll help you out with this last step, too.

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

you are here 4 41

iPhone app patterns

InstaTwit

Send Button

I’m and feeling
hello
worlding

awesome

about it.

App Layout Construction

Here are two designs to evaluate. Based on
aesthetics, usability, and standard iPhone app
behavior, which one is better for Mike?

Twitter
URL here

Text field for
user name

Text field
for password

I’m
and feeling

Send Cancel

InstaTwit

Pre-populated
text, so just
insert a couple
of words

The button will have user info and url preconfigured

Spinning controller
filled in with
activities and
feelings

Labels that
will be part
of the tweet

Option #1 Option #2

Which app is better?

Why? (Be specific.)

Why not the other?

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

42 Chapter 2

keep it simple

App Layout Construction

We’ve given you two designs to evaluate. Based
on aesthetics, usability, and standard iPhone app
behavior, which one is better for Mike?

I’m
and feeling

Send Cancel

InstaTwit

Option #1

Which app is better?

Why? (Be specific.)

Why not the other?

#2.

Option #2 has a lot less typing and fewer fields overall.
Since the user doesn’t need to change his username or password often there’s no reason to put
it on the main view every time he runs the app.

Option #1 has a lot of typing and settings to remember. The buttons are confusing.

Lots of typing in here. This isn’t always bad, but we can do better.

More typing here
for

stuff he probab
ly won’t

change after th
e first

time...
...and again here

.

Cancel what? iPhone apps almost never have “Quit” type buttons. If the user changes his mind, he hits the home button and the app is shut down.

The send button would be

better at the bottom
 of

the page, not stuck b
etween

controls like this.

Your user doesn’t nee
d to know or

care about the Twitter URL. It’s

always the same anyhow, so we can

take care of this for
 him.

Bad

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

you are here 4 43

iPhone app patterns

InstaTwit

Send Button

I’m and feeling
hello
worlding

awesome

about it.

Option #2

This is the one
you’re going to
build for Mike.

App flows cleanly from top to bottom.

Instead of having Mike type in
what he’s doing and his feelings,
we can give him a picker to select
from. This means fewer options
since they’re predetermined, but
is way easier to use and Mike’s a
simple guy after all, right?

Smart send button that

keeps the user tweeting, not

remembering passwords or

URLs.

Q: Do I really need to care about usability and aesthetics so
much?

A: Usability and aesthetics are what made the iPhone a success,
and Apple will defend them to the death. Even more importantly, you
don’t get to put anything on the App Store or on anyone else’s iPhone
without their approval. Apple has sold over a billion apps—if yours
doesn’t fit with the iPhone look and feel or is hard to use, people will
find someone else’s app and never look back.

Q: We got rid of the username, password, and URL fields.
The URL one I understand, but what about the other two?

A: Anytime your app needs configuration information that the user
doesn’t need to change frequently, you should keep it out of the main
task flow. Apple even provides a special place for these called a
Settings bundle that fits in with the standard iPhone settings. We’re
not going to use that in this chapter (we’ll just hardcode the values)
but later we’ll show you how to put stuff in the Settings page. That’s
usually the right place for things like login details.

Q: How am I supposed to know what Apple thinks is good
design or aesthetically pleasing?

A: Funny you should ask... go ahead, turn the page.

Good!

Common text is shown as a

label - Mike doesn’t have

to try to move the cursor

around it.

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

44 Chapter 2

what’s your (app) type?

App design rules—the iPhone HIG
The iPhone Human Interface Guide (HIG) is a document that Apple
distributes for guidance in developing iPhone Apps for sale on the App
Store. You can download it at http://developer.apple.com/iphone. This
isn’t just something nice they did to help you out; when you submit an
app for approval, you agree that your app will conform to the HIG.

We can’t overstate this: you have to follow the HIG, as Apple’s
review process is thorough and they will reject your application if it
doesn’t conform. Complain, blog with righteous anger, then conform.
Now let’s move on.

Apple also distributes a few other guides and tutorials, including the
iPhone Application Programming Guide. This is another great source of
information and explains how you should handle different devices, like
the iPhone and the iPod Touch. Not paying attention to the iPod Touch
is another great way to get your app rejected from the App Store.

Application types
The HIG details three main types of applications that are commonly
developed for the iPhone. Each type has a different purpose and
therefore offers a different kind of user experience. Figuring out what
type of application you’re building before you start working on the
GUI helps get you started on the road to good interface design.

Help manage information and complete tasks. Info is hierarchical, and you navigate by drilling down into more levels of detail.

Get a specific
set of info

to the user w
ith as little

interaction o
r settings

configuration
 as possible.

Note: While the author
s

do not suggest
 testing

these methods of bein
g

rejected from the App

Store, we can speak with

authority that
 they work.

Productivity Apps Utility Apps

Usually have more

interface desig
n than a

productivity ap
p, and are

expected to st
ay very

consistent with the HIG.

Immersive Apps

Games are a classic example, but like this simulated level, all immersive apps require a very custom interface that allows the user to interact with the device. As a result, HIG guidelines aren’t as crucial in this case.

www.itbook.store/books/9780596803544

http://developer.apple.com/iphone
https://itbook.store/books/9780596803544

you are here 4 45

iPhone app patterns

Type of App App Description

Below are a bunch of different application ideas. For each one, think about what kind
of app it really is and match it to the app types on the right.

InstaTwit 1.0: Allows you to tweet
with minimal typing.

News Reader: Gives you a list of
the news categories and you can
get the details on stories you
choose.

Marble Game: A marble rolling
game that uses the accelerometer
to drive the controls.

Stopwatch Tool: Gives you a
stopwatch that starts and stops by
touching the screen

Recipe Manager: A meal listing
that allows you to drill down and
look at individual recipes.

Immersive Application

Utility Application

Productivity Application

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

46 Chapter 2

who does what solution

Type of App App Description

Match each app description to its application type.

InstaTwit 1.0: Allows you to tweet
with minimal typing.

News Reader: Gives you a list of
the news categories and you can
get the details on stories you
choose.

Marble Game: A marble rolling
game that uses the accelerometer
to drive the controls.

Stopwatch Tool: Gives you a
stopwatch that starts and stops by
touching the screen

Recipe Manager: A meal listing
that allows you to drill down and
look at individual recipes.

Immersive Application

Utility Application

Productivity Application

SOlUTion

Since we have one screen and no typing, InstaTwit is more of a Utility App

Since this App has a list-driven, drill-down interface, it’s Productivity

Using the
accelerometer
as the control
and a big
rolling marble...

We want a
very focused
stopwatch GUI,
no real data to
work through

Lots of data to
work through here:
tables, a drill-down
to recipes—definitely
productivity

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

you are here 4 47

iPhone app patterns

Determine ap
p layout

Handle the data

Build the
 GUI

Send o
utput

to twi
tter

We just finished
with this...

HIG guidelines for pickers and
buttons
The HIG has a section on the proper use of all the standard
controls, including the two that we’ve selected for InstaTwit.
Before you build the view with your controls, it’s a good idea to
take a quick look at the recommendations from Apple. You’ll find
this information in Chapter 9, Application Controls, of the HIG.

Figure out how to use
the widgets

Now let’s move
on to building
the GUI.

The picker only displays a fe
w items

on the screen at a time, so remember

that your user isn’t going t
o be able to

see all the options at once.

The picker’s overall size is fixed, although you can hide it or have it be part of the view (like we do in InstaTwit).

If you have units to display,
they need to be fixed to
the selection bar here.

The rounded rectangle button is pretty straightforward, but keep in mind it should always perform some kind of action.

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

48 Chapter 2

a new view

Create a new View-based project
for InstaTwit
Once you’ve started Xcode, select File → New Project.
Just like iDecide, for InstaTwit we have one screen and we’re
not going to be flipping it or anything fancy, so again choose
the View-based Application and name it Instatwit.

 The new project type is not necessarily the
same as your app type.

For example, a Productivity App can be written as a
View-based Application, a Window-based Application,
Navigation-based Application, or a Tab Bar Application.

Start with the view layout
Now that we have the autogenerated code, we’re going to start working with
the interface. To do that, we’ll be editing the nib (.xib) file. Double-click on
InstatwitViewController.xib in the Resources folder, and launch Interface Builder.

We’ll be working with
these other project
types later in the book.

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

you are here 4 49

iPhone app patterns

w It’s time to build the View. Using drag and drop, pull over
the elements from the Interface Builder library that you
need to build the view.

InstaTwit

Tweet it!

I’m and feeling
hello
worlding

awesome

about it.

Labels

Picker

Round Rect
Button, titled
“Tweet it”

 Find each of the elements (we’ve given them the
proper name for you) in the library and drag and
drop them into the View window.

1

 Select the top label and hit ⌘1. That will
launch the Inspector.

2

Edit label
text here

 Edit the labels and button text for the title,
“I’m”, “and feeling”, and “about it”, as
well as the title for the button. Don’t worry
about the picker values just yet.

3

Once you save it, your
view should look like
this...

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

50 Chapter 2

preview your view

wv The View is all built and ready to go. Here’s what you should
have on your screen now. Once you tweak everything to look
just how you want it, we’ll run InstaTwit.

Your labels may not be this big. By default,

the label will not resize to the f
ont, but

to fit the space. To m
ake it larger, just

resize using the dots
at the edges of the

label field.

Filling in the picker data requires some code, and we’ll get to that in a minute. What you see here are default values.

The inspector for
the button is
slightly different—
the title is
further down in
the window.

Did you notice the blue guidelines in the simulator? They’re in the view when you’re laying out elements to help you center things and keep them lined up with each other.

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

you are here 4 51

iPhone app patterns

Test Drive
Now it’s time to check out InstaTwit in the
Simulator. Save in Interface Builder, go back into
Xcode, and hit Build and Debug from the Build
menu (or ⌘ return).

The picker isn’t
showing up because
there isn’t any
data yet...

To get the picker to show, it needs to have data to
fill it. Where do you think that the code for the data
should go?

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

52 Chapter 2

the view-view controller relationship

The life of a root view
In Chapter 1 we touched on how Interface Builder creates XML
descriptions of your view, called a nib, and that the Cocoa Touch
framework turns that into a real view in your application. Now
that you’ve built a couple apps, let’s take a closer look at what’s
going on under the hood.

Main
Window

Like in most other languages, main(...) gets called first.
When your application is launched by the user, the iPhone provides a
quick animation of your app zooming into the screen (this is actually a
PNG file you can include with your app), then calls your main method.
Main is provided by the templates and you almost never need to touch it.

1

Main kicks off a Cocoa Touch Application.
The standard main(...) kicks off a Cocoa Touch
UIApplicationMain, which uses the information in
your application’s Info.plist file to figure out what nib
to load. With the View template we used, it’s a nib
called MainWindow.xib.

2

MainWindow.xib contains the
connections for our application.
If you look in MainWindow.xib,
you’ll see it has an instance of
our InstaTwitAppDelegate, for its
UIApplicationDelegate and an instance
of our InstaTwitViewController.
When the Cocoa framework loads this
nib, it will create an instance of our
InstaTwitViewController and tell it to
load our InstaTwitViewController.xib.

3

InstaTwitViewController
instantiated from
MainWindow.xib

This is the View Controller. It subclasses UIViewController.

When we built the nib, w
e used the gener

ic proxy File’s

Owner for outlet a
nd action connec

tions. When the nib

is actually loaded
, there’s a real o

bject there to r
eceive

those connection
s. For us, it’s th

e InstaTwitViewController.We’ll talk more about delegates soon, too.

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

you are here 4 53

iPhone app patterns

The Cocoa Touch framework
creates our custom view from the
InstaTwitViewController.xib.
When we constructed the nib, we used the
File’s Owner proxy object to stand in for
the object that owns the nib contents. At
this point the framework is loading the nib
on behalf of our InstaTwitViewController
class so that instance is used for connections.
As the framework creates instances of our
components, they’re connected up to the
instance of InstaTwitViewController.

4

When events occur with components, methods
are invoked on our controller instance.
The actions we associated between the controls and the
File’s Owner in the nib were translated into connections
between the controls and our instance. Now when a
control fires off an event, the framework calls a method
on our InstaTwitViewController instance.

5

The nib file contains serialized instances of objects as we configured them. They are usually control objects like buttons or labels, but can be anything that can be serialized.

Now let’s put this
knowledge to use and add
some data for the picker.

This is our view.

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

54 Chapter 2

no dumb questions

Q: Isn’t good design vs. bad design a
little subjective?

A: Yes and no. Obviously, different
people will have differing opinions about
what UI looks better. However, Apple has
very specific guidelines about how certain
controls should be used and best practices
that should be followed. In general, if you’re
using a common iPhone control, make sure
you’re using it in a way that’s consistent with
existing applications.

Q: How can I run these apps on my
iPhone?

A: To get an app you write installed
on your iPhone you’ll need to sign up for
either the Standard or Enterprise Developer
programs at http://developer.apple.com/
iphone/. Everything in this book is designed
to work with just the Simulator, so don’t feel
like you need to go do that just yet. We’ll talk
more about putting apps on an actual phone
later in the book.

Q: The InstaTwit icon looks horrible.
What can I do?

A: The icon for an application is just
a PNG file in your project. We’ll add and
configure icons later, but for now, just know
that you’ll need a .png file in the resources
directory for that purpose—we’ll hook you up
with some cool icons later.

Q: Do I have to use Interface Builder
for the view?

A: No. Everything that you do in Interface
Builder can be done in code. Interface
Builder makes it a lot easier to get things
started, but sometimes you’ll need that code-
level control of a view to do what you want.
We’ll be switching back and forth depending
on the project and view.

Q: I’m still a little fuzzy on this nib
thing. Do they hold our UI or regular
objects?

A: They can hold both. When you
assemble a view using Interface Builder, it
keeps track of the controls you’re using and
the links to other classes. These controls
are serialized into an XML document; when
you save it out, this is your nib. Interface
Builder is able to serialize non-control
classes, too. That’s how it saves out our
InstaTwitViewController in MainWindow.xib.
When the nib is restored from disk, objects
in the nib are reinstantiated and populated
with the values you gave them in Interface
Builder.

Q: So does Interface Builder save out
the File’s Owner too?

A:No, File’s Owner is a proxy. File’s
Owner represents whatever class is asking
to have this nib loaded. So the File’s Owner
proxy isn’t actually stored in the nib, but
Interface Builder needs that proxy so you
can make association with controls you used
in your view. When the nib is restored (and
the control objects are instantiated), the nib
loading code will make the connections to the
real owning object that asked to load the nib.

www.itbook.store/books/9780596803544

http://developer.apple.com/
https://itbook.store/books/9780596803544

you are here 4 55

iPhone app patterns

First, get the data from Mike
Mike likes what you have put together for the UI, so
now we need a little more information before we fill
the picker.

I like the interface. Here’s my list of
what I do and how I feel about it so you
can fill in the rest. Can’t wait until it’s done
because I’m soooo over talking about it...

Things I do:

sleeping

eating

working

thinking

crying

begging

leaving

shopping

Things I feel:

awesome

sad
happy

ambivalent

nauseous

psyched

confused

hopeful

anxiousGotta add “hello worlding”

This data will be used as part of the picker, but how
do you implement that?

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

56 Chapter 2

when to pick a picker

Use pickers when you want
controlled input
In our case, the picker is the perfect element for our
app. No typing at all, but it allows Mike to have
some input over what gets selected. There’s some
terminology that you need to know about pickers
before we get our data in there.

We want two columns.
The picker calls these
components.

The number of rows, or items, comes from Mike’s list, so 9 for each component.

Remember the screen size issue when building iPhone apps? The longest word needs to fit in a column or it’s going to be abbreviated. There’s not a lot of space to work with.

A picker is a la
rge element

(320 x 216) and the o
verall

size cannot b
e changed.

When in doubt, check out Apple’s API
documentation
By now you’re already thinking about how to implement that
picker. It’s time to get into the API documentation. In Xcode,
go to the Help menu and then the Documentation option.

You’ll need to
 subscribe to

the Apple iPhone OS 3.X

Doc Set to kee
p up to date.

Search for “UIPickerView” and it will pull
up all the information on the class that you
need to implement for the picker.

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

you are here 4 57

iPhone app patterns

Fill the picker rows with
Mike’s data
The picker needs to know how many rows it needs and
how many columns. And that information is tied to the
words that Mike provided.

OK, so we can just set the picker rows
with the values Mike gave us like we did
with the button label, right?

The picker is different.
The picker doesn’t want to be told what
to do, it’s going to ask when it wants your
input. You’re going to see this pattern
show up with controls that could use a lot
of data like pickers and later, table views.
Let’s take a closer look...

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

58 Chapter 2

datasources and delegates

Pickers get their data from a datasource...
Most of the elements in the Cocoa Touch framework have the concept of
datasources and delegates. Each UI control is responsible for how things look
on the screen (the cool spinning dial look, the animation when the user spins
a wheel, etc.), but it doesn’t know anything about the data it needs to show or
what to do when something is selected.

Datasource

Q: Why is the delegate providing the content? That really seems like data.

A: That’s something particular to a picker and it has to do with the fact that the picker delegate can change how the data is shown. In the
simplest form, it can just return strings to the picker. If it wants to get fancy, it can return the entire view (yes, just like the view you built with
Interface Builder, but smaller) to use images or special fonts, whatever.

A delegate is responsible for the behavior of an element. When someone
selects something—or in this case, scrolls the picker to a value—the control
tells the delegate what happened and the delegate figures out what to do in
response. Just like with datasources, different controls need different kinds of
delegates. For the picker, we need a UIPickerViewDelegate.

The datasource provides the bridge between the control and the data it
needs to display. The control will ask the datasource for what it needs and
the datasource is responsible for providing the information in a format
the control expects. In our case, the datasource provides the number of
components (or columns) for the picker and the total number of rows for the
picker. Different controls need different kinds of datasources. For the picker,
we need a UIPickerViewDatasource.

Delegate

Hey - the user just
spun me to row 3.

So how many rows
and components do
I need?

What’s the word
for row 3?

...and tell their delegates when something happens.

Picker
control

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

you are here 4 59

iPhone app patterns

There’s a pattern for that
You’re going to see this Control-Datasource-
Delegate pattern show up throughout the rest of
this book. Nearly all of the complex controls use it. If
you squint a little, even the View-View Controller
relationship we’ve been using follows this pattern (minus
the datasource).

Datasource

Control

Delegate

A datasource works with the databases, plists, images, or general information that your app will need.

A control represents the GUI
that your user will interact
with. Generally, it will be
assembled with Interface
Builder, but it can be built in
code, too. Each approach has
benefits and drawbacks, and
sometimes you’ll use both on
the same project.

The delegate contains t
he logic that

controls the flow of information. It

saves and displays info
rmation and

controls which view is seen when. Even

our views follow this pattern - their

delegate is the ViewController.

Each control has specific needs for its datasource and delegate and
we’ll talk about how that’s handled in Objective-C in a minute.
However, it’s important to realize that while the responsibilities are
split between the datasource and the delegate in the pattern, they
don’t necessarily have to be implemented in different classes. The control
wants a delegate and a datasource—it doesn’t care whether they’re
provided by the same object or not: it’s going to ask the datasource
for datasource-related things and the delegate for delegate-related
things.

Let’s take a closer look at how the UIPicker uses its datasource and
delegate to get an idea of how all of this fits together.

Controls have their own specific
datasources and delegates

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

60 Chapter 2

picking apart the picker

Head First: Hello Picker, thanks for joining us.

Picker: My pleasure. I don’t usually get to talk to
anyone but my datasource and delegate so this is a
real treat.

Head First: I’m glad you brought those up. So
we’ve worked with controls like buttons and labels,
but they just have properties. What’s going on with
this delegate and datasource business?

Picker: Well, to be clear, I have properties too—
there just isn’t too much exciting going on there.
What makes me different is that I could be working
with a lot of data. I might only have one row or
I might have a hundred; it just depends on the
application.

Head First: Ah, OK. A label only has one string in
it, so there can be a property that holds that string.
No problem.

Picker: Exactly! So, instead of trying to cram all of
the data into me directly, it’s cleaner to just let me ask
for what I need when I need it.

Head First: But you need to ask for it in a specific
way, right?

Picker: That’s the beauty of my setup. I ask for
what I need to know in a specific way—that’s why
there’s a UIPickerDatasource—but I don’t care
where my datasource gets its information. For
example, I need to know how many rows I need to
show, so I ask my datasource. It could be using an
array, a database, a plist, whatever—I don’t care. All
I need to know is how many rows.

Head First: That’s really nice—so you could be
showing data coming from just about anything, and

as long as your datasource knows how to answer
your questions, you don’t care how it stores the data
internally.

Picker: You got it. Now the delegate is a little
different. I can draw the wheels and all that, but I
don’t know what each application wants to do when
someone selects a row, so I just pass the buck to my
delegate.

Head First: So whichever one implements the
delegate, it codes things so that when you tell it what
happened, it performs the right action, like saving
some value or setting a clock or whatever....

Picker: That’s it. Now, I have to confess I have one
little oddity going on...

Head First: Oh, I was waiting for this... this is
where you ask the delegate for the value to show in a
row, right?

Picker: Yeah—other controls ask their datasource.
I could come up with a lot of excuses, but... well, we
all have our little quirks, right?

Head First: I appreciate your honesty. It’s not all
bad, though; your delegate can do some neat things
with each row, can’t it?

Picker: Oh yeah! When I ask the delegate for a
particular row, it can give me back a full view instead
of just a string. Sometimes they have icons in them
or pictures—really, anything you can cram in a view,
I can display.

Head First: That’s great. Well, we’re out of time,
but thanks again for stopping by.

Picker: My pleasure! Now I’m off to take my new
datasource for a spin...

The Picker Exposed
This week’s interview:
How to avoid spinning out of
control...

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

you are here 4 61

iPhone app patterns

Delegate or datasource?Picker characteristic (or method)

Match each picker characteristic to where it belongs—the delegate or
the datasource. You’ll need to go digging in the API to figure out where
the three methods go.

Delegate

Datasource
pickerView:titleForRow:forComponent

numberOfComponentsInPickerView

Directions for drawing the view
for the items

The number of components

The row values (strings or views)

Working together, the delegate
and the datasource provide what
is needed to render the picker.

pickerView:numberOfRowsInComponent

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

62 Chapter 2

picker parts

Delegate or datasource?Picker characteristic (or method)

Match each picker characteristic to where it belongs—the delegate
or the data source. You’ll need to go digging in the API to figure out
where the three methods go.

pickerView:titleForRow:forComponent

pickerView:numberOfRowsInComponent

numberOfComponentsInPickerView

Directions for drawing the
rectangles for the items

The number of components

The row values (strings or views)

Delegate

Datasource

SOlUTion

Part of the UIPickerViewDelegate protocol;

returns a title for one entry in
 the picker.

A required part of the UIPickerViewDataSource
Protocol; returns the number of components.

A required part of the UIPickerViewDataSource
Protocol that returns the number of rows.

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

you are here 4 63

iPhone app patterns

Hang on—there are protocols in both the datasource
and the delegate?

Protocols define what messages the datasource
and delegates need respond to.
Pickers (and other controls that use delegates and datasources)
have specific messages to which their supporting classes need to
respond. These messages are defined in protocols. Protocols are
Objective-C’s idea of a pure interface. When your class can speak
a particular protocol, you’re said to conform to it.

Whatever class
we use as

the delegate
for our picke

r

has to confor
m to the

UIPickerViewDelegate proto
col.

Protocols typically have some required methods to implement and others that
are optional. For example, the UIPickerViewDatasource protocol has a required
method named pickerView:numberOfRowsInComponent; it has to be in
the datasource for the picker to work. However, UIPickerViewDelegate protocol has
an optional method named pickerView:titleForRow:forComponent, so
it doesn’t need to be in the delegate unless you want it.

So how do you know what protocols you need to worry about? The documentation
for an element will tell you what protocols it needs to talk to. For example, our
UIPickerView needs a datasource that speaks the UIPickerDataSource protocol and
a delegate that speaks the UIPickerDelegate protocol. Click on the protocol name
and you’ll see the documentation for which messages are optional and which are
required for a protocol. We’ll talk more about how to implement these in the next
chapter; for now, we’ll provide you the code to get started.

Protocols tell you what methods
(messages) you need to implement

Datasource

Delegate

Hey - the user just
spun me to “row 3”.

So how many rows
and components do
you need?

What’s the word
for row 3?

Likewise, whatever class
we use for

our datasourc
e needs to co

nform to

the UIPickerViewDatasource pro
tocol. Remember - these d

on’t hav
e to

be diffe
rent ob

jects; t
here ar

e

just tw
o differ

ent pro
tocols w

e

need to
 worry ab

out.

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

64 Chapter 2

sometimes it’s okay to conform

Next, add Mike’s activities and feelings to the implementation file
Now we’re into InstatwitViewController.m file, the actual implementation. We’ll need to add
some methods to implement the required methods from the protocols, but we’ll get back to that in
a second. First, let’s add the list from Mike. We’re going to use the two arrays we declared in the
header to store the words that Mike gave us.

First, declare that the controller conforms to both
protocols
Now that you know what you need to make the picker work, namely a delegate and a datasource,
let’s get back into Xcode and create them. Under Classes you have two files that need to be edited:
InstatwitViewController.h and InstatwitViewController.m. Both files were created when you started the
project.

The .h and .m files work together, with the header file (.h) declaring the class’s interface, variable
declarations, outlets, and actions, etc.; the implementation file (.m) holds the actual implementation
code. We need to update the header file to state that our InstatwitViewController conforms to both the
UIPickerViewDataSource and the UIPickerViewDelegate protocols.

#import <UIKit/UIKit.h>

@interface InstatwitViewController : UIViewController
<UIPickerViewDataSource, UIPickerViewDelegate> {
 NSArray* activities;

 NSArray* feelings;

 }

@end We’re going to set up two arrays for Mike:
one for activities and one for feelings.

Here’s where we say our
class will conform to the
UIPickerViewDataSource
and UPickerViewDelegate
protocols.

Go ahead and add

what’s bolded.

#import “InstatwitViewController.h”

@implementation InstatwitViewController

The break here skips commented out default code that we’re not using.

All implementation code go
es

after @implementation. Here

we indicate that
we’re realizing

the InstatwitViewController

interface we defined in the

header.

InstatwitViewController.h

InstatwitViewController.m

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

you are here 4 65

iPhone app patterns

 -
(void)dealloc {

 [activities release];

 [feelings release];

 [super dealloc];

}

@end

Remove the /* marks that were here and then add the code.
This method gets called on your view controller after the view
is loaded from the .xib file. This is where you can do some
initialization and setup for the view.

// Implement
viewDidLoad to do additional setup after loading the view,
typically from a nib.

 - (void)viewDidLoad {

 [super viewDidLoad];

 activities = [[NSArray alloc] initWithObjects:@”sleeping”,
@”eating”, @”working”, @”thinking”, @”crying”, @”begging”,
@”leaving”, @”shopping”, @”hello worlding”, nil];

 feelings = [[NSArray alloc] initWithObjects:@”awesome”,
@”sad”, @”happy”, @”ambivalent”, @”nauseous”, @”psyched”,
@”confused”, @”hopeful”, @”anxious”, nil];

}

Here we
establish the
arrays with
Mike’s lists.
We’ll call them
in a bit to fill
in the picker.

You need to release all of these
objects to clean up the memory, as an
iPhone is small (so not much memory).
We’ll talk about memory a lot more in
Chapter 3.

Now we just need the protocols...

The “@” before those strings tells the compiler to make them NSStrings instead of char*. NSStrings are real Objective-C classes, as opposed to a simple C-style character pointer. Most Objective-C classes use NSStrings instead of char*’s.
InstatwitViewController.m

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

66 Chapter 2

how many rows?

 - (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)
pickerView {

 return 2;

 }

 - (NSInteger)pickerView:(UIPickerView *)
pickerViewnumberOfRowsInComponent :(NSInteger)component {

 if (component == 0) {

 return [activities count];

 }

 else {

 return [feelings count];

 }

}

Here’s the
two required
methods for
the picker.

How many
components?

How many rows in each
component? They come
from different arrays,
so we need to treat
them seperately.

The datasource protocol has two required
methods
Let’s focus on the datasource protocol methods first. We said
in the header file that InstatwitViewController conforms to the
UIPickerViewDatasource protocol. That protocol has two required
methods, numberOfComponentsInPickerView:pickerView and
pickerView:numberOfRowsInComponent. Since we know we want
two wheels (components) in our view, we can start by putting that method in
our implementation file:

Our second method needs to return the number of rows for each
component. The component argument will tell us which component
the picker is asking about, with the first component (the activities) being
component 0. The number of rows in each component is the just the
number of items in the appropriate array.

Now that we have the methods implemented,
let’s wire it up to the picker.

InstatwitViewController.m

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

you are here 4 67

iPhone app patterns

Connect the datasource just like actions
and outlets
Now that the datasource protocol is implemented, the data is in place and
it’s just a matter of linking it to the picker. Hop back into Interface Builder
to make that connection:

A list of everything in your view, plus it’s class name.
 Right-click on the Picker in the view to bring
up the picker connections box.

1

 Notice that the File’s Owner for this view is
our InstatwitViewController, which realizes the
datasource and delegate protocols we need. You
need to connect the picker’s dataSource to our
controller, the File’s Owner. To do that, click
inside the circle next to the dataSource, and drag
over the to File’s Owner.

2

 If you don’t save in Interface Builder,
it won’t work!

Xcode will run the last saved version, not
anything else. On to the delegate...

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

68 Chapter 2

getting to a specific row

There’s just one method for the
delegate protocol
The UIPickerViewDelegate protocol only has one required
method (well, technically there are two optional methods,
and you have to implement one of them). We’re going to use
pickerView:titleForRow:forComponent. This method has
to return an NSString with the title for the given row in the
given component. Again, both of these values are indexed
from 0, so we can use the component value to figure out
which array to use, and then use the row value as an index.

 - (NSString *)pickerView:(UIPickerView *)pickerView
titleForRow:(NSInteger)row forComponent:(NSInteger)component {

 switch (component) {

 case 0:

 return [activities objectAtIndex:row];

 case 1:

 return [feelings objectAtIndex:row];

 }

 return nil;

}

 - (void)viewDidUnload {

 // Release any retained subviews of the main view.

 // e.g. self.myOutlet = nil;

}

Our choice of two methods, one of
which needs to be implemented.

The signature for these messages comes right out of the UIPickerViewDelegate and UIPickerViewDataSource documentation. Just cut and paste it if you want.

Return the string in the array at the
appropriate location - row 0 is the
first string, row 1 second, etc.

This gets called as your app is being shut down
and the view is unloaded. We don’t need it for
now, so leave it as it was in the template.

Now back to Interface Builder to wire up the delegate...

InstatwitViewController.m

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

you are here 4 69

iPhone app patterns

Test Drive
Save your work in Interface Builder, go back into Xcode and save
that, and Build and Run (⌘ return). When the Simulator pops up,
you should see everything working!

Spin those dials - they’re all the things on Mike’s list and they work great!

 Right-click on the picker in the Picker again
and bring up the connections window.

1

 The File’s Owner realizes the delegate protocol
as well. Click inside the circle next to the
delegate, and drag over the to File’s Owner.

2

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

70 Chapter 2

protocol options

Q: What happens if I don’t implement
a required method in a protocol?

A: Your project will compile, but you’ll
get a warning. If you try to run your
application, it will almost certainly crash with
an “unrecognized selector” exception when
a component tries to send your class the
missing required message.

Q: What if I don’t implement an
optional method in a protocol?

A: That’s fine. But whatever functionality
that it would provide isn’t going to be there.
You do need to be a little careful in that
sometimes Apple marks a couple of methods

as optional but you have to implement at
least one of them. That’s the case with
the UIPickerViewDelegate. If you don’t
implement at least one of the methods
specified in the docs, your app will crash
with an error when you try to run it.

Q: Are there limits to the number of
protocols a class can realize?

A: Nope. Now, the more you realize, the
more code you’re going to need to put in
that class, so there’s a point where you
really need to split things off into different
classes to keep the code manageable. But
technically speaking, you can realize as
many as you want.

Q: I’m still a little fuzzy, what’s the
difference between the interface we put in
a header file and a protocol?

A: An interface in a header file is how
Objective-C declares the properties, fields,
and messages a class responds to. It’s
like a header file in C++ or the method
declarations in a Java file. However,
you have to provide implementation for
everything in your class’s interface. A
protocol on the other hand is just a list of
messages—there is no implementation.
It’s the class that realizes the protocol that
has to provide implementation. These are
equivalent to interfaces in Java and pure
virtual methods in C++.

 � The picker needs a delegate and a data-
source to work.

 � In a picker, each dial is a component.

 � In a picker, each item is a row.

 � Protocols define the messages your class
must realize—some of them might be
optional.

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

you are here 4 71

iPhone app patterns

OK, that’s great and all. It looks really
nice. But the “Tweet it!” button doesn’t do
anything yet...

Now let’s get that button talking to
Twitter...
We got the picker working, but if you try out
the “Tweet it!” button, nothing happens when
something’s selected. We still need to get the button
responding to Mike and then get the whole thing to
talk to Twitter.

Think about what we need to do to get the
button working. What files will we use? What will
the button actually do?

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

72 Chapter 2

an action-packed button

The button needs to be
connected to an event
We need to wire up the button like we did in Chapter
1. Once Mike has selected what he’s doing and
feeling, he’ll hit “Tweet it!” Then we need to get his
selections out of the picker and send them to Twitter.

All that, in one little button...

So we just need to go back to IB and wire
up the TouchUpInside event again, right?

Yes, but what will we wire that event to?

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

you are here 4 73

iPhone app patterns

Without an action, your
button won’t work!
We learned about actions in Chapter 1, and without
one there won’t be anything in the connections
window to wire up in Interface Builder.

- (IBAction) buttonPressed:(id)sender;

This is the name of the method that will get called. The name can be anything, but the method must have one argument of type (id).

IB = Interface
Builder

All IBAction messages

take one argument: the

sender of the message.

This is the element that

triggered the acti
on.

Here’s the action we created for the button press in Chapter 1:

w to cre We need to change both the header and implementation
files for the InstatwitViewController.

1

Then provide an implementation for that method in our .m file, and
write a message to the log so you know it worked before sending to
Twitter

2

Start with the header and add an IBAction named sendButtonTapped.

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

74 Chapter 2

add an action

wv

Now go back and hook it up with Interface Builder...

#import <UIKit/UIKit.h>

@interface InstatwitViewController : UIViewController
<UIPickerViewDataSource, UIPickerViewDelegate> {

 NSArray* activities;

 NSArray* feelings;

}

- (IBAction) sendButtonTapped: (id) sender;

Declare your IBAction here so we can use it
in the .m file and Interface Builder knows
we have an action available.

 - (void)didReceiveMemoryWarning {

 // Releases the view if it doesn’t have a superview.

 [super didReceiveMemoryWarning];

 // Release any cached data, images, etc that aren’t in use.

}

 - (IBAction) sendButtonTapped: (id) sender {

 NSLog(@”Tweet button tapped!”);

}

This will give you the
output on the console..

Same method declaration as the .h

The IBAction is what allows the code
to respond to a user event, remember...

Declare your IBAction in the header file and
provide the implementation in the .m file.

1

2

InstatwitViewController.m

InstatwitViewController.h

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

you are here 4 75

iPhone app patterns

Save, then Build and Run. You should get the “Tweet
button tapped!” message in the console. Test Drive

So now we need to get the data
from that picker, right? Would an IBOutlet

be the right thing for that?

Yes! An IBOutlet provides a reference to
the picker.
In Chapter 1, we used an outlet to access and change
the text field value on the button. Now, to gather up the
actual message to send to Twitter, we need to extract
the values chosen from the picker, then create a string
including the label text.

So far the picker has been calling us when it needed
information; this time, when Mike hits the “Tweet it”
button, we need to get data out of the picker. We’ll use
an IBOutlet to do that.

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

76 Chapter 2

getting the data from the picker

Here’s our outlet
declaration. This lets
Interface Builder
know you have
something to connect
to. IBOutlets are
actually #defined to
nothing; they’re just
there for Interface
Builder.

 #import <UIKit/UIKit.h>

 @interface InstatwitViewController : UIViewController
<UIPickerViewDataSource, UIPickerViewDelegate> {

 IBOutlet UIPickerView *tweetPicker;

 NSArray* activities;

 NSArray* feelings;

 }

 @property (nonatomic, retain) UIPickerView* tweetPicker;

 - (IBAction) sendButtonTapped: (id) sender;

 @end

Here we declare a field in
the class called tweetPicker.
The type is a pointer to a
UIPickerView.

The property for tweetPicker has some
memory management options that we’ll
explain more in Chapter 3.

Add the IBOutlet and property to
our view controller
In addition to declaring the IBOutlet, we’ll declare a property
with the same name. We’ll talk more about properties in the
next chapter, but in short, that will get us proper memory
management and let the Cocoa Touch framework set our
tweetPicker field when our nib loads.

InstatwitViewController.h

Start with the header file...

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

you are here 4 77

iPhone app patterns

#import “InstatwitViewController.h”

@implementation InstatwitViewController

@synthesize tweetPicker;

 - (void)dealloc {

 [tweetPicker release];

 [activities release];

 [feelings release];

 [super dealloc];

}

@end

@ synthesize goes along
 with the

@property declaration
in the .h

file. See Chapter 3 for more info...

The last thing you need to do with tweetPicker is release our reference to it - another memory thing. We’ll come back to the memory management in Chapter 3, we promise.

InstatwitViewController.m

...and then add the implementation.

What’s next?

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

78 Chapter 2

connect the outlet to the code

Connect the picker to our outlet
You’re probably expecting this by now! Back into Interface Builder to
make the connection from the UIPickerView to the IBOutlet in our
view controller. Right-click on the UIPickerView, grab the circle next
to the “New Referencing Outlet,” and drop it on File’s Owner—our
InstatwitViewController sporting its new tweetPicker outlet.

When you click and drag up to
File’s Owner, you will be able to
connect it to the tweetPicker
outlet you just created.

What do you need to do now to get the data out of
the picker and into your Twitter message? Think
about the “Tweet it!” button press action and how
that will need to change...

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

you are here 4 79

iPhone app patterns

Use our picker reference to pull
the selected values
Now all that’s left is to use our reference to the picker to get
the actual values Mike selects. We need to reimplement the
sendButtonTapped method to pull the values from the
picker. Looking at the UIPickerView documentation, the
method we need is selectedRowInComponent:. That
method returns a row value, which, just like before, we can
use as an index into our arrays.

 - (IBAction) sendButtonTapped: (id) sender {

 NSString* themessage = [NSString stringWithFormat:@”I’m %@ and feeling %@
about it.”,

 [activities objectAtIndex:[tweetPicker selectedRowInComponent:0]],

 [feelings objectAtIndex:[tweetPicker selectedRowInComponent:1]]];

 NSLog(themessage);

 NSLog(@”Tweet button tapped!”);

}
Pull this log message out and put in one to see
what the final Twitter message will be.

Here’s the implementation for our callb
ack. We

need to create a strin
g and fill in the value

s from

the picker. the “%@” in the string format get

replaced with the values we pass in.

To figure out what Mike chose on the picker, we need to ask the picker what row is selected, and get the corresponding string from our arrays.

We’re just going to log this message to the console so we can see
the string we’re building, and then we’ll send this to Twitter in
just a minute. Let’s make sure we implemented this correctly first
before tweeting to the whole world...

InstatwitViewController.mWe want to build a new string with the full tweet text

in it, so we’ll use NSString’s stringWithFormat method to

create a templated string. There are lots of othe
r options

you could use with a string format, like characters, in
tegers,

etc., but for now we just need to insert
the two selected

strings, so we’ll use %@.

www.itbook.store/books/9780596803544

mailto:%25@.We%E2%80%99re
mailto:%25@.We%E2%80%99re
https://itbook.store/books/9780596803544

80 Chapter 2

ready to tweet

Test Drive
OK, try it out. You should get a convincing tweet in the
console:

Once we add the Twitter info, this is

what will actually show up in your feed

as a tweet.

All that’s left is to talk to Twitter—
we’ll help you with that.

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

you are here 4 81

iPhone app patterns

Ready Bake
Code

//TWITTER BLACK MAGIC

 NSMutableURLRequest *theRequest=[NSMutableURLRequest requestWithURL:[NSURL
URLWithString:@”http://YOUR_TWITTER_USERNAME:YOUR_TWITTER_PASSWORD@twitter.com/
statuses/update.xml”]

 cachePolicy:NSURLRequestUseProtocolCachePolicy

 timeoutInterval:60.0];

 [theRequest setHTTPMethod:@”POST”];

 [theRequest setHTTPBody:[[NSString stringWithFormat:@”status=%@”,
themessage] dataUsingEncoding:NSASCIIStringEncoding]];

 NSURLResponse* response;

 NSError* error;

 NSData* result = [NSURLConnection sendSynchronousRequest:theRequest
returningResponse:&response error:&error];

 NSLog(@”%@”, [[[NSString alloc] initWithData:result
encoding:NSASCIIStringEncoding] autorelease]);

// END TWITTER BLACK MAGIC

To post to Twitter, we’re going to use their API. Rather than
go into a Twitter API tutorial, we’ll give you the code you
need to tweet the string. Type the code you see below into the
InstatwitViewController.m, just below the NSLog with the
Twitter message in the sendButtonTapped method.

Your username and password
need to go in here.

 If you don’t have a Twitter account,
just go get one!

Just go to twitter.com and register. Once
you do that, you can enter your username

and password, and this will work like a charm.

After adding that code, you can just save, build and go. It will
now show up on your Twitter feed. Go ahead, try it out!

InstatwitViewController.m

www.itbook.store/books/9780596803544

http://YOUR_TWITTER_USERNAME:YOUR_TWITTER_PASSWORD@twitter.com/
https://itbook.store/books/9780596803544

82 Chapter 2

mike’s feeling great about your app

That is great! Now, Renee is happy and feels
included and I don’t actually have to talk out loud
about my feelings. At all. Ever.

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

you are here 4 83

iPhone app patterns

iPhonecross
Flex your vocab skills with this crossword.

Untitled Puzzle
Header Info 1
Header Info 2

etc...

1 2

3 4

5

6

7 8

9

10

11

Across
3. This typically handles the information itself in the app.
6. This is the document Apple uses to evaluate apps for
 the App Store.
7. You see this listed in the view and it controls the view.
9. This component allows for controlled input from several

selections.
10. This type of app is typically one screen, and gives you the

basics with minimal interaction.
11. These define to which messages the datasource and

delegate respond.

Down
1. This typically contains the logic that controls the flow of

information in an app.
2. The best way to figure out what protocols you need to worry

about is to check the ____________.
4. This app type typically involves hierarchical data.
5. This app type is mostly custom controllers and graphics.
8. The other name for an *.xib file.

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

84 Chapter 2

more app types

We’ve listed a couple of descriptions of a some different
apps. Using the app description, sketch out a rough view
and answer the questions about each one.

Generic giant button app
There are several of these currently up for sale
on the app store. This app consists of pushing
a big button and getting some noise out of
your iPhone.

1

What type of app is this?

What are the main concerns in the HIG
about this app type?

Book inventory app
This app’s mission is to keep a list of the books
in your library, along with a quick blurb of
what it’s about and the author.

2

What type of app is this?

What are the main concerns in the HIG
about this app type?

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

you are here 4 85

iPhone app patterns

iPhonecross Solution
Flex your vocab skills with this crossword.

Untitled Puzzle
Header Info 1
Header Info 2

etc...

D1 D2

D3 A T A S O U R C E P4 O
L R C

I5 E O U
H6 U M A N I N T E R F A C E G U I D E M

M A U E
F7 I L E S O W N E R N8 T C N

R P9 I C K E R T T
S B I A

U10 T I L I T Y F V T
V I I I
E L P11 R O T O C O L S

E Y N

Across
3. This typically handles the information itself in the app.

[DATASOURCE]
6. This is the document apple uses to evaluate apps for the

App Store. [HUMANINTERFACEGUIDE]
7. You see this listed in the view and it controls the view.

[FILESOWNER]
9. This component allows for controlled input from several

selections. [PICKER]
10. This type of app is typically one screen, and gives you the

basics with minimal interaction. [UTILITY]
11. These define to which messages the datasource and

delegate respond. [PROTOCOLS]

Down
1. This typically contains the logic that controls the flow of

information in an app. [DELEGATE]
2. The best way to figure out what protocols you need to worry

about is to check the ____________. [DOCUMENTATION]
4. This app type typically involves hierarchical data.

[PRODUCTIVITY]
5. This app type is mostly custom controllers and graphics.

[IMMERSIVE]
8. The other name for an *.xib file. [NIBFILE]

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

86 Chapter 2

exercise solution

We’ve listed a couple of descriptions of a some different apps.
Using the app description, sketch out a rough view and answer
the questions about each one.

Generic giant button app
There are several of these currently up for sale
on the app store. This app consists of pushing
a big button and getting some noise out of
your iPhone.

1

What type of app is this?

What are the main concerns in the HIG
about this app type?

Book inventory app.
This app’s mission is to keep a list of the books
in your library, along with a quick blurb of
what it’s about and the author.

2

What type of app is this?

What are the main concerns in the HIG
about this app type?

Bug button
that you push

Just one view

An immersive app

The big thing Apple cares about is that
controls “provide an internally consistent
experience.” So everything can be custom, it
needs to focused and well organized.

A productivity app

The HIG has many more specific rules about
this app type, because you’ll be using standard
controls. EACH control needs to be checked
out for proper usage.

Another view for details, need to figure
out how to get to it...

Book list

Some navigation stuff here

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

you are here 4 87

iPhone app patterns

Your iPhone Toolbox

You’ve got Chapter 2 under
your belt and now you’ve

added protocols, delegates, and
datasources to your toolbox. For a

complete list of tooltips in the book,
go to http://www.headfirstlabs.com/
iphonedev. CH

AP
T

ER
 2

 � The picker needs a delegate and data-
source to work.

 � In a picker, each dial is a component.

 � In a picker, each item is a row.

 � Protocols define the messages your class
must realize—some of them might be
optional.

Protocols
Define the messages your

datasource and
 delegate must

respond to.

Are declared in
the header (.h

)

file.
Some of them might be optiona

l. Datasource
Provides the b

ridge between the

control and th
e data it need

s to

show.
Works with databases,

plists,

images, and othe
r general info

that your app
will need to disp

lay.

Can be the same object as a

delegate, but h
as its own specific

protocols.

Delegate
Responsible for

the behavior o
f a

UI element..

Contains the log
ic that contro

ls

the flow of information, like

saving or displa
ying data, and

which view is seen when.

Can be in same object as th
e

datasource, bu
t has its own

specific protoc
ols.

www.itbook.store/books/9780596803544

http://www.headfirstlabs.com/
https://itbook.store/books/9780596803544

88 Chapter 2

renee is getting suspicious

This is Renee, Mike’s girlfriend

It’s so great that Mike and I are
communicating now! But I’ve noticed that
Mike’s starting to sound like he’s in a rut, saying
the same thing over and over again! Is there
something we need to talk about?

Sounds like Mike is going
to need some modifications
to InstaTwit to keep his
relationship on solid ground...

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

