
ix

table of contents

	 Intro							 xxi

1	 Getting Started: Going mobile					 1

2	 iPhone App Patterns: Hello @twitter				 37

3	 Objective-C for the iPhone: Twitter needs variety	 		 89

4	 Multiple Views: A table with a view		 		 131

5	 plists and Modal Views: Refining your app			 185

6	 Saving, Editing, and Sorting Data: Everyone’s an editor...		 239

7	 Tab Bars and Core Data: Enterprise apps				 303

8	 Migrating and Optimizing with Core Data: Things are changing	 377

9	 Camera, Map Kit, and Core Location: Proof in the real world		 431

i	 Leftovers: The top 6 things (we didn’t cover)			 487

ii	 Preparing Your App for Distribution: Get ready for the App Store	 503

Table of Contents (the real thing)

Your brain on iPhone Development. � Here you are trying to

learn something, while here your brain is doing you a favor by making sure the

learning doesn’t stick. Your brain’s thinking, “Better leave room for more important

things, like which wild animals to avoid and whether naked snowboarding is a

bad idea.” So how do you trick your brain into thinking that your life depends on

knowing enough to develop your own iPhone apps?

Intro

Who is this book for?					 xxii

We know what you’re thinking				 xxiii

Metacognition: thinking about thinking				 xxv

Here’s what YOU can do to bend your brain into submission	 xxvii

Read me							 xxviii

The technical review team					 xxx

Acknowledgments						 xxxi

Table of Contents (Summary)

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

x

table of contents

Going mobile1 The iPhone changed everything.�
It’s a gaming platform, a personal organizer, a full web browser, oh yeah,

and a phone. The iPhone is one of the most exciting devices to come out

in some time, and with the opening of the App Store, it’s an opportunity for

independent developers to compete worldwide with big named software

companies. All you need to release your own app are a couple of software

tools, some knowledge, and enthusiasm. Apple provides the software and

we’ll help you the knowledge; we’re sure you’ve got the enthusiasm covered.

getting started

There’s a lot of buzz and a lot of money tied up in the App Store...	 2

Mobile applications aren’t just ported desktop apps			 3

Anatomy of an iPhone app					 5

Mike can’t make a decision					 6

Make a good first impression					 7

It all starts with the iPhone SDK					 8

Xcode includes app templates to help you get started			 10

Xcode is the hub of your iPhone project...				 12

...and plays a role in every part of writing your app			 13

Build your interface using... Interface Builder				 14

Add the button to your view					 16

The iPhone Simulator lets you test your app on your Mac		 17

What happened?						 22

Use Interface Builder to connect UI controls to code			 23

Interface Builder lists which events a component can trigger		 24

Elements dispatch events when things happen to them			 24

Connect your events to methods					 25

Your iPhone Toolbox						 35

What
should I
do?

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

xi

table of contents

Hello @twitter!
Apps have a lot of moving parts.�
OK, actually, they don’t have any real moving parts, but they do have lots of UI

controls. A typical iPhone app has more going on than just a button, and now it’s time

to build one. Working with some of the more complicated widgets means you’ll need

to pay more attention than ever to how you design your app as well. In this chapter,

you’ll learn how to put together a bigger application and some of the fundamental

design patterns used in the iPhone SDK.

iPhone app patterns

First we need to figure out what Mike (really) wants		 39

App design rules—the iPhone HIG				 44

HIG guidelines for pickers and buttons			 47

Create a new View-based project for Insta-Twit		 48

The life of a root view					 52

First, get the data from Mike				 55

Use pickers when you want controlled input			 56

Fill the picker rows with Mike’s data				 57

Pickers get their data from a datasource...			 58

There’s a pattern for that					 59

First, declare that the controller conforms to both protocols	 64

The datasource protocol has two required methods		 66

Connect the datasource just like actions and outlets		 67

There’s just one method for the delegate protocol		 68

The button needs to be connected to an event			 72

Connect the picker to our outlet				 78

Use our picker reference to pull the selected values		 79

Your iPhone Toolbox					 87

2

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

xii

table of contents

3 Twitter needs variety
We did a lot in Chapter 2, but what language was that?�
Parts of the code you’ve been writing might look familiar, but it’s time you got a sense

of what’s really going on under the hood. The iPhone SDK comes with great tools

that mean that you don’t need to write code for everything, but you can’t write entire

apps without learning something about the underlying language, including properties,

message passing, and memory management. Unless you work that out, all your

apps will be just default widgets! And you want more than just widgets, right?

objective-c for the iPhone

Messages going
here between
textField and
the controller.

Renee is catching on....							 90

Make room for custom input						 91

Header files describe the interface to your class				 93

Auto-generated accessors also handle memory management			 99

To keep your memory straight, you need to remember just two things		 101

But when Mike’s finished typing...						 111

Customize your UITextField 						 113

Components that use the keyboard ask it to appear...				 114

Ask the textField to give up focus 						 115

Messages in Objective-C use named arguments				 117

Use message passing to tell our view controller when the Done button is pressed	 118

Something’s still not right							 122

Your Objective-C Toolbox						 129

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

xiii

table of contents

So, how do these views fit together?				 135

The navigation template pulls multiple views together		 136

The navigation template starts with a table view		 137

A table is a collection of cells				 140

Just a few more drinks					 148

Plists are an easy way to save and load data			 150

Arrays (and more) have built-in support for plists		 153

Use a detail view to drill down into data			 156

A closer look at the detail view				 157

Use the navigation controller to switch between views		 167

Navigation controllers maintain a stack of views		 168

Dictionaries store information as key-value pairs		 172

Debugging—the dark side of iPhone development		 175

First stop on your debugging adventure: the console		 176

Interact with your application while it’s running		 177

Xcode supports you after your app breaks, too			 178

The Xcode debugger shows you the state of your application	 179

What the heck is going on?				 181

Your iPhone Toolbox					 183

4 A table with a view
Most iPhone apps have more than one view.�
We’ve written a cool app with one view, but anyone who’s used an iPhone knows

that most apps aren’t like that. Some of the more impressive iPhone apps out there

do a great job of moving through complex information by using multiple views. We’re

going to start with navigation controllers and table views, like the kind you see in

your Mail and Contact apps. Only we’re going to do it with a twist...

multiple views

Look, I don’t have time for posting to

Twitter. I need to know a ton of drink recipes every

night. Is there an app for that?

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

xiv

table of contents

5 Refining your app
So you have this almost-working app...�
That’s the story of every app! You get some functionality working, decide to add

something else, need to do some refactoring, and respond to some feedback from

the App Store. Developing an app isn’t always ever a linear process, but there’s a lot to

be learned in that process.

plists and modal views

Anatomy of a
crash

Dictionary

name =
Cupid’s
Cocktail
ingredients
= Cherry
liqueur,
peach ...
directions
= Shake

It all started with Sam...					 186

Use the debugger to investigate the crash			 188

Update your code to handle a plist of dictionaries		 191

The detail view needs data				 194

Each dictionary has all the information we need		 195

We have a usability problem				 201

Use a disclosure indicator if your cell leads to more information	 203

Sales were going strong...					 206

Use navigation controller buttons for editing			 211

The button should create a new view			 215

We need a view... but not necessarily a new view		 216

The view controller defines the behavior for the view		 217

A nib file contains the UI components and connections...	 218

You can subclass and extend views like any other class		 219

Modal views focus the user on the task at hand...		 224

Any view can present a modal view				 225

Our view doesn’t have a navigation bar			 230

Create the save and cancel buttons				 232

Write the save and cancel actions				 233

Your iPhone Toolbox					 237

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

xv

table of contents

6 Everyone’s an editor...
Displaying data is nice, but adding and editing information
is what makes an iPhone app really rock.� DrinkMixer is great—it uses

some cell customization, and works with plist dictionaries to display data. It’s a handy

reference application, and you’ve got a good start on adding new drinks. Now, it’s time to

give the user the ability to modify the data—saving, editing, and sorting—to make it more

useful for everyone. In this chapter we’ll take a look at editing patterns in iPhone apps and

how to guide users with the nav controller.

saving, editing, and sorting data

NSNotification
object

Sam is ready to add a Red-Headed School Girl...		 240

...but the keyboard is in the way				 241

We need to wrap our content in a scroll view			 243

The scroll view is the same size as the screen			 245

The keyboard changes the visible area			 248

iPhone notifies you about the keyboard			 250

Register with the default notification center for events		 251

Keyboard events tell you the keyboard state and size		 257

The table view doesn’t know its data has changed		 276

You need to ask the table view to reload its data		 276

The array is out of order, too				 280

Table views have built-in support for editing and deleting	 288

Your iPhone Development Toolbox				 301

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

xvi

table of contents

7 Enterprise apps
Enterprise apps mean managing more data in different
ways.� Companies large and small are a significant market for iPhone apps. A small

handheld device with a custom app can be huge for companies that have staff on

the go. Most of these apps are going to manage lots of data, and iPhone 3.x has

built in Core Data support. Working with that and another new controller, the tab bar

controller, we’re going to build an app for justice!

tab bars and core data

Fugitive

HF bounty hunting						 304

Choose a template to start iBountyHunter				 308

Drawing how iBountyHunter works...				 310

Build the fugitive list view						 316

Next up: the captured view					 318

After a quick meeting with Bob...					 327

Core Data lets you focus on your app				 329

Core Data needs to know what to load				 330

Core Data describes entities with a Managed Object Model		 333

Build your Fugitive entity						 334

Whip up a Fugitive class without writing a line				 341

Use an NSFetchRequest to describe your search			 344

Add the database as a resource					 354

The template sets things up for a SQLite DB				 355

The iPhone’s application structure defines where you can read and write	 358

Copy the database to the correct place				 359

To be continued...						 373

Your Core Data Toolbox						 375

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

xvii

table of contents

8 Things are changing
We have a great app in the works.� iBountyHunter successfully loads the

data that Bob needs and lets him view the fugitives in an easy way. But what about when

the data has to change? Bob wants some new functionality, and what does that do to

the data model? In this chapter you’ll learn how to handle changes to your data model

and how to take advantage of more Core Data features.

migrating and optimizing with core data

captured
- Boolean
- NOT Optional

- NO by default

Bob needs documentation					 378

Everything stems from our object model			 381

The data hasn’t been updated				 384

Data migration is a common problem			 385

We need to migrate the old data into the new model		 386

Xcode makes it easy to version the data model			 387

Core Data can “lightly” migrate data 			 389

Bob has some design input				 394

A quick demo with Bob					 406

Use predicates for filtering data				 408

We need to set a predicate on our NSFetchRequest		 409

Core Data controller classes provide efficient results handling	 416

Time for some high-efficiency streamlining			 417

Next we need to change the search to use the controller...	 417

Refactor viewWillAppear to use the controller			 418

We need to refresh the data				 423

Your Data Toolbox					 429

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

xviii

table of contents

9 Proof in the real world
The iPhone knows where it is and what it sees.� As any iPhone user

knows, the iPhone goes way beyond just managing data: it can also take pictures, figure

out your location, and put that information together for use in your app. The beauty about

incorporating these features is that just by tapping into the tools that iPhone gives you,

suddenly you can import pictures, locations, and maps without much coding at all.

camera, map kit, and core location

For Bob, payment requires proof !			 432

The way to the camera...				 441

There’s a method for checking			 451

Prompt the user with action sheets			 452

Bob needs the where, in addition to the when		 458

Core Location can find you in a few ways		 464

Add a new framework				 466

Just latitude and longitude won’t work for Bob		 472

Map Kit is new with iPhone 3.0			 473

A little custom setup for the map			 474

Annotations require a little more finesse		 479

Your extras Toolbox				 485

It’s been great having you here!			 486

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

xix

table of contents

The top 6 things (we didn’t cover)
appendix i, leftovers

Ever feel like something’s missing? We know what
you mean... �Just when you thought you were done, there’s more.

We couldn’t leave you without a few extra details, things we just couldn’t

fit into the rest of the book. At least, not if you want to be able to carry

this book around without a metallic case and castor wheels on the

bottom. So take a peek and see what you (still) might be missing out on.

#1. Internationalization and Localization	 488

Localizing string resources			 490

#2. UIWebView			 492

#3. Device orientation and view rotation	 494

Handling view rotations 			 495

Handling rotation with two different views	 496

#4. View animations			 497

#5. Accelerometer			 498

Understanding the device acceleration	 499

#6. A word or two about gaming...		 500

Quartz and OpenGL			 501

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

xx

table of contents

Get ready for the App Store
appendix ii, preparing your app for distribution

You want to get your app in the App Store, right? �So

far, we’ve basically worked with apps in the simulator, which is fine. But

to get things to the next level, you’ll need to install an app on an actual

iPhone or iPod Touch before applying to get it in the App Store. And the

only way to do that is to register with Apple as a developer. Even then,

it’s not just a matter of clicking a button in Xcode to get an app you wrote

on your personal device. To do that, it’s time to talk with Apple.

Apple has rules				 504

The Provisioning Profile pulls it all together	 505

Keep track in the Organizer		 506

www.itbook.store/books/9780596803544

https://itbook.store/books/9780596803544

