
PART I

BASIC DIGITAL CIRCUITS
DEVELOPMENT

CO
PYRIG

HTED
 M

ATERIA
L

www.itbook.store/books/9781119282662

https://itbook.store/books/9781119282662

www.itbook.store/books/9781119282662

https://itbook.store/books/9781119282662

CHAPTER 1

GATE-LEVEL COMBINATIONAL CIRCUIT

HDL (hardware description language) is used to describe and model digital sys-
tems. SystemVerilog is one of the major HDLs. In this chapter, we use a simple
comparator to illustrate the skeleton of a SystemVerilog program. The description
uses only logical operators and represents a gate-level combinational circuit, which
is composed of simple logic gates. In Chapter 3, we cover the remaining operators
and constructs and examine the register-transfer-level combinational circuits, which
are composed of intermediate-sized components, such as adders, comparators, and
multiplexers.

1.1 INTRODUCTION

1.1.1 Brief history of Verilog and SystemVerilog

Verilog is a hardware description language. It was developed in the mid-1980s and
later transferred to the IEEE (Institute of Electrical and Electronics Engineers).
The language is formally defined by IEEE Standard 1364 and the document is
known as the LRM (Language Reference Manual). The standard was ratified in
1995 (known as Verilog-1995) and significantly revised in 2001 (known as Verilog-
2001). A further revision, which contains a few minor changes, was published in
2005. Unless otherwise specified, the term “Verilog” used in the book is referred to
Verilog-2001.

FPGA Prototyping by SystemVerilog Examples, Pong P. Chu
Copyright c⃝ 2018 John Wiley & Sons, Inc.

1

www.itbook.store/books/9781119282662

https://itbook.store/books/9781119282662

2 GATE-LEVEL COMBINATIONAL CIRCUIT

Verilog was developed for gate-level and register-transfer-level design and mod-
eling and it did not include advanced high-level verification features, such as as-
sertions, functional coverage, and constrained random testing. SystemVerilog first
served as an extension of Verilog that supports the verification features. The ex-
tension was ratified by IEEE in 2005 and formally defined by IEEE Standard 1800.
It is referred to as SystemVerilog-2005.

In 2009, Verilog and SystemVerilog were combined into a single standard and
defined by IEEE Standard 1800. The merged languages are called SystemVerilog
and referred to as SystemVerilog-2009. The merge and name selection implies that
Verilog is now part of SystemVerilog and the Verilog language has ceased to exist.

The merge and naming scheme may cause some confusion. SystemVerilog-2005 is
a pure hardware verification language but the newer SystemVerilog (SystemVerilog-
2009 and beyond) is a hardware description and verification language that incor-
porates both design and verification features into a single framework.

Unless otherwise specified, the term “SystemVerilog” used in the book is re-
ferred to SystemVerilog-2009, which includes hardware description portion and is
a “superset” of the original Verilog.

1.1.2 Book coverage

SystemVerilog is an extremely complex language. Only a small subset of the lan-
guage constructs is intended to describe gate-level and register-transfer-level sys-
tems and even a smaller subset can be recognized by the synthesis software tool
and transformed into physical hardware.

The focus of this book is on hardware design rather than on the language. We
introduce the key SystemVerilog synthesis constructs by examining a collection of
examples. Although the syntax of SystemVerilog is somewhat like that of the C lan-
guage, its semantics (i.e., “meaning”) is based on concurrent hardware operation
and is totally different from the sequential execution of C. The subtlety of some lan-
guage constructs and certain inherent nondeterministic behavior of SystemVerilog
can lead to difficult-to-detect errors and can introduce a discrepancy between sim-
ulation and synthesis. The coding of this book follows a “better-safe-than-buggy”
philosophy. Instead of writing quick and short codes, the focus is on style and
constructs that are clear and synthesizable and can accurately describe the desired
hardware. The illustration of the covered language subset is shown in Figure 1.1.
Several advanced synthesis related topics are examined further in Chapter 8 and
more detailed SystemVerilog coverage may be explored through the sources listed
in the bibliographic section at the end of the chapter.

Besides merging the two standards, SystemVerilog-2009 made many enhance-
ments in the “hardware description portion” of the original Verilog-2001 standard.
We use some of these new features in the book. The book occasionally includesVerilog

FYI paragraphs to explain the difference between a new SystemVerilog-2009 feature and
the original Verilog-2001 construct. They are highlighted by a Verilog FYI side
bar, as shown at left. The main purpose of these paragraphs is to help the reader un-
derstand the older Verilog codes. Note that SystemVerilog is backward-compatible
with Verilog-2001 and thus these codes can be accepted by the SystemVerilog syn-
thesis tool as well. The paragraphs with side bars can be skipped without affecting
the subsequent reading.

www.itbook.store/books/9781119282662

https://itbook.store/books/9781119282662

GENERAL DESCRIPTION 3

SystemVerilog

Verilog

synthesizable subset
subset used in the book

Figure 1.1 Subset covered in the book.

Table 1.1 Truth table of 1-bit equality comparator

Input Output
i0 i1 eq

0 0 1
0 1 0
1 0 0
1 1 1

1.2 GENERAL DESCRIPTION

Consider a 1-bit equality comparator with two inputs, i0 and i1, and an output,
eq. The eq signal is asserted when i0 and i1 are equal. The truth table of this
circuit is shown in Table 1.1.

Suppose that we want to use basic logic gates, which include not, and, or, and
xor cells, to implement the circuit. One way to describe the circuit is to use a
sum-of-products format. The logic expression is

eq = i0 · i1 + i0′ · i1′

One possible SystemVerilog code is shown in Listing 1.1. We examine the language
constructs and statements of this code in the following subsections.

Listing 1.1 Gate-level implementation of a 1-bit comparator

module eq1

// I /O por t s
(

input logic i0 , i1,

output logic eq

);

// s i g n a l d e c l a ra t i on
logic p0, p1;

// body
// sum of two product terms
assign eq = p0 | p1;

www.itbook.store/books/9781119282662

https://itbook.store/books/9781119282662

4 GATE-LEVEL COMBINATIONAL CIRCUIT

(not i0) and (not i1)

i0 and i1

p0 or p1

p0

p1

i0

i1

eq

Figure 1.2 Graphical representation of a comparator program.

// product terms
assign p0 = ~i0 & ~i1;

assign p1 = i0 & i1;

endmodule

The best way to understand an HDL program is to think in terms of hardware
circuits. This program consists of three portions. The I/O port portion describes
the input and output ports of this circuit, which are i0 and i1, and eq, respectively.
The signal declaration portion specifies the internal connecting signals, which are
p0 and p1. The body portion describes the internal organization of the circuit.
There are three continuous assignments in this code. Each can be thought of as
a circuit part that performs certain simple logical operations. We examine the
language constructs and statements of this code in the next two sections.

The graphical representation of this program is shown in Figure 1.2. The three
continuous assignments constitute the three circuit parts. The connections among
these parts are specified implicitly by the signal and port names. The order of
the continuous statements is clearly irrelevant and the three statements can be
rearranged arbitrarily.

1.3 BASIC LEXICAL ELEMENTS AND DATA TYPES

1.3.1 Lexical elements

The basic SystemVerilog lexical elements include identifiers, keyword, white space,
and comment.

Identifier An identifier gives a unique name to an object, such as eq, i0, or p0. It
is composed of letters, digits, the underscore character (), and the dollar sign ($).
$ is usually used with a system task or function.

The first character of an identifier must be a letter or underscore. It is a good
practice to give an object a descriptive name. For example, mem addr en is more
meaningful than mae for a memory address enable signal.

SystemVerilog is a case-sensitive language. Thus, data bus, Data bus, and
DATA BUS refer to three different objects. To avoid confusion, we should refrain
from using the case to create different identifiers.

Keyword A Keyword is a predefined identifier that is used to describe language
constructs. In this book, we use boldface type for SystemVerilog keywords, such as
module and logic in Listing 1.1.

www.itbook.store/books/9781119282662

https://itbook.store/books/9781119282662

BASIC LEXICAL ELEMENTS AND DATA TYPES 5

White space White space, which includes the space, tab, and newline characters,
is used to separate identifiers and can be used freely in the SystemVerilog code. We
can use proper white spaces to format the code and make it more readable.

Comments A comment is just for documentation purposes and will be ignored by
software. SystemVerilog has two forms of comments. A one-line comment starts
with //, as in

// This i s a comment .

A multiple-line comment is encapsulated between /* and */, as in

/∗ This i s comment l i n e 1 .
This i s comment l i n e 2 .
This i s comment l i n e 3 . ∗/

In this book, we use italic type for comments, as in the examples above.

1.3.2 Data types used in the book

SystemVerilog supports a rich collection of data types. However, we only use a
very small restricted set in the book to describe the circuit. The set consists of the
following:

1. the logic type
2. the integer type
3. the tri type
4. the user-defined enumerate type

The logic type is the most commonly used data type in design. It represents
the value of a one-bit signal or the content of a one-bit memory element. The logic
type can assume a value from a four-state set :

• 0: for “logic 0”, or a false condition
• 1: for “logic 1”, or a true condition
• z: for the high-impedance state
• x: for an unknown value

The z value corresponds to the output of a tristate buffer. The x value is usually
used in modeling and simulation, representing a value that is not 0, 1, or z, such
as an uninitialized input or output conflict.

When a collection of signals is grouped into a bus or a collection of data bits is
grouped into a word, we can represent it using a one-dimensional array (vector), as
in

log ic [7:0] data1 , data2; // 8− b i t data
log ic [31:0] addr; // 32− b i t addre s s
log ic [0:7] reverse_data; // ascend ing index shou l d be avo ided

The one-dimensional array can be interpreted as a collection of independent bits
or an unsigned binary number. While the index range can be either descending
(as in [7:0]) or ascending (as in [0:7]), the former is preferred since the leftmost
position (i.e., 7) corresponds to the MSB (most significant bit) of a binary number.

A two-dimensional array is sometimes needed to represent a memory. For exam-
ple, a 4-by-32 memory (i.e., a memory has 4 words and each word is 32 bits wide)
can be represented as

www.itbook.store/books/9781119282662

https://itbook.store/books/9781119282662

6 GATE-LEVEL COMBINATIONAL CIRCUIT

…
…mem[0]

mem[1]

mem[2]

mem[3]

03031

Figure 1.3 Illustration of a two-dimensional array.

log ic [31:0] mem [0:3]; // 4−by−32 memory

Note that the outer dimension (i.e., [0:3]) is in ascending order, representing the
memory module depicted in Figure 1.3.

The integer type is a special case of one-dimensional logic array. Its size is
fixed at 32 bits and it is interpreted as a signed binary number. We use the inte-
ger type mainly for constants and parameters to represent threshold values, array
boundaries, etc.

In our book, the tri type is only used to infer the tristate buffer of a bidirectional
port and the user-defined enumerate type is used to represent the symbolic states
of an FSM (finite state machine). These types are discussed in more detail in
Sections 3.1.9 and 5.2.1.

1.3.3 Number representation

The value of a one-dimensional logic array is represented as a constant number.
Its general format is

[sign][size]’[base][value]

The [base] term specifies the base of the number, which can be the following:

• b or B: binary
• o or O: octal
• h or H: hexadecimal
• d or D: decimal

The [value] term specifies the value of the number in the corresponding base.
The underline character () can be included for clarity.

The [size] term specifies the number of bits in a number. It is optional. The
number is known as a sized number when a [size] term exists and is known as an
unsized number otherwise.

A sized number specifies the number of bits explicitly. If the size of the value
is smaller than the [size] term specified, zeros are padded in front to extend the
number, except in several special cases. The z or x value is padded if the MSB of
the value is z or x, and the MSB is padded if the signed data type is used. Several
sized number examples are shown in the top portion of Table 1.2.

An unsized number omits the [size] term. Its actual size depends on the host
computer but must be at least 32 bits. The ’[base] term can also be omitted if
the number is in decimal format. Assume that 32 bits are used in the host machine.
Several unsized number examples are shown in the bottom portion of Table 1.2.

www.itbook.store/books/9781119282662

https://itbook.store/books/9781119282662

PROGRAM SKELETON 7

Table 1.2 Examples of sized and unsized numbers

Number Stored value Comment

5’b11010 11010

5’b11 010 11010 ignored
5’o32 11010

5’h1a 11010

5’d26 11010

5’b0 00000 0 extended
5’b1 00001 0 extended
5’bz zzzzz z extended
5’bx xxxxx x extended
5’bx01 xxx01 x extended
-5’b00001 11111 2’s complement of 00001

’b11010 00000000000000000000000000011010 extended to 32 bits
’hee 00000000000000000000000011101110 extended to 32 bits
1 00000000000000000000000000000001 extended to 32 bits
-1 11111111111111111111111111111111 extended to 32 bits

1.3.4 Operators

SystemVerilog has several dozens operators and only a subset of them can be synthe-
sized. For the gate-level description, we need only the following bitwise operators:
~ (not), & (and), | (or), and ^ (xor). These operators infer basic gate-level cells.
Other operators are discussed in Section 3.1.

1.4 PROGRAM SKELETON

As its name indicates, HDL is used to describe hardware. When we develop or
examine a SystemVerilog code, it is much easier to comprehend if we think in
terms of “hardware organization” rather than “sequential algorithm.” Most HDL
codes in this book follow the basic skeleton shown in Listing 1.1. It consists of three
portions: I/O port declaration, signal declaration, and module body.

1.4.1 Port declaration

The module declaration and port declaration of Listing 1.1 are

module eq1

(

input logic i0 , i1 ,

output logic eq

);

The I/O declaration specifies the modes, data types, and names of the module’s
I/O ports. The simplified syntax is

www.itbook.store/books/9781119282662

https://itbook.store/books/9781119282662

8 GATE-LEVEL COMBINATIONAL CIRCUIT

module [module_name]

(

[mode] [data_type] [port_names],

[mode] [data_type] [port_names],

. . .

[mode] [data_type] [port_names]

);

The [mode] term can be input, output, or inout, which represent the input,
output, or bidirectional port, respectively. Note that there is no comma in the last
declaration. Since the book focuses on design description, we only use the logic
type for the input and output ports and use the tri type for bidirectional port

Verilog-1995 port declaration In Verilog-1995, port names, modes, and data types
are declared separately. For example, the preceding port declaration becomesVerilog

FYI module eq1 (i0 , i1 , eq); // on ly por t names in b r a c k e t s
// d e c l a r e mode
input i0, i1;

output eq;

// d e c l a r e data t ype
log ic i0, i1;

log ic eq;

We do not use this format in this book.

1.4.2 Signal declaration

The declaration portion specifies the internal variables and local parameters used
in the module. Since the variables frequently resemble the interconnecting wires
between the circuit parts, as shown in Figure 1.2, we call them “signals” when
appropriate.

The simplified syntax of signal declaration is

[data_type] [port_names];

Two internal signals are declared in Listing 1.1:

log ic p0, p1;

Note that an identifier does not need to be declared explicitly. The previous
declaration statement is actually optional. If a declaration is omitted, the signal
is assumed to be an implicit net. Although the code is more compact, it may
introduce subtle errors of misspelled identifiers. For clarity and documentation, we
always use explicit declarations in this book.

1.4.3 Program body

The program body of a synthesizable SystemVerilog module can be thought of as
a collection of circuit parts. These parts are operated in parallel and executed
concurrently. There are several ways to describe a part:

• Continuous assignment
• “Always block”
• Module instantiation

www.itbook.store/books/9781119282662

https://itbook.store/books/9781119282662

PROGRAM SKELETON 9

The first way to describe a circuit part is by using a continuous assignment . It
is useful for simple combinational circuits. Its simplified syntax is

assign [signal_name] = [expression];

Each continuous assignment can be thought as a circuit part. The signal on the
left-hand side is the output and the signals used in the right-hand-side expression
are the inputs. The expression describes the function of this circuit. For example,
consider the statement

assign eq = p0 | p1;

It is a circuit that performs the or operation. There are three continuous as-
signments in Listing 1.1 and they correspond to the three circuit parts shown in
Figure 1.2.

The second way to describe a circuit part is by using an always block. More
abstract procedural assignments are used inside the always block and thus it can be
used to describe a more complex circuit operation. The always block is discussed
in Section 3.2.

The third way to describe a circuit part is by using module instantiation. In-
stantiation creates an instance of another module and allows us to incorporate pre-
designed modules as subsystems of the current module. Instantiation is discussed
in Section 1.5.

1.4.4 Concurrent semantics

Although the “appearance” of an HDL program is somewhat like a traditional
programming language, such as C, its semantics is very different. The statements
in a C programs are run on a centralized processor and executed sequentially. The
statements of an HDL program are “autonomous” and executed concurrently. For
example, consider the statement

assign eq = p0 | p1;

It is executed as follows:

1. When a signal on the left-hand-side expression (i.e., p0 or p1) changes, the
statement is activated.

2. The left-hand-side expression (i.e., p0 | p1) is evaluated.
3. The evaluated result is passed to the right-hand signal after a delay (an im-

plicit delta delay or an explicitly specified delay).
4. Repeat the process continuously.

Note that the execution resembles the operation of a circuit.
The continuous assignments can be activated at the same time and run concur-

rently. Its behavior is totally different from a C program statement. We intention-
ally put the assignment

assign eq = p0 | p1;

as the first line of the program body in Listing 1.1. The arrangement will lead to
erroneous result in a traditional programming C language but has no effect on an
HDL program since the order of the continuous assignments.

The execution of always block and component instantiation are more complex
but can be reasoned in a similar way. In summary, the continuous assignment,

www.itbook.store/books/9781119282662

https://itbook.store/books/9781119282662

10 GATE-LEVEL COMBINATIONAL CIRCUIT

always block, and module instantiation can be treated as “concurrent building
constructs.” Each construct runs autonomously and continuously and the overall
operation of the code is executed in parallel.

1.4.5 Another example

We can expand the comparator to 2-bit inputs. Let the input be a and b and the
output be aeqb. The aeqb signal is asserted when both bits of a and b are equal.
The code is shown in Listing 1.2.

Listing 1.2 Gate-level implementation of a 2-bit comparator

module eq2_sop

(

input logic [1:0] a, b,

output logic aeqb

);

// i n t e r na l s i g n a l d e c l a r a t i on
logic p0, p1 , p2, p3;

// sum of product terms
assign aeqb = p0 | p1 | p2 | p3;

// product terms
assign p0 = (~a[1] & ~b[1]) & (~a[0] & ~b[0]);

assign p1 = (~a[1] & ~b[1]) & (a[0] & b[0]);

assign p2 = (a[1] & b[1]) & (~a[0] & ~b[0]);

assign p3 = (a[1] & b[1]) & (a[0] & b[0]);

endmodule

The a and b ports are now declared as a two-element array. Derivation of the
architecture body is similar to that of the 1-bit comparator. The p0, p1, p2, and p3

signals represent the results of the four product terms, and the final result, aeqb,
is the logic expression in the sum-of-products format.

1.5 STRUCTURAL DESCRIPTION

A digital system is frequently composed of several smaller subsystems. This allows
us to build a large system from simpler or predesigned components. SystemVerilog
provides a mechanism, known as module instantiation, to perform this task. This
type of code is called structural description.

An alternative to the design of the 2-bit comparator of Section 1.4.5 is to utilize
previously constructed 1-bit comparators as the building blocks. The diagram is
shown in Figure 1.4, in which two 1-bit comparators are used to check the two
individual bits and their results are fed to an and cell. The aeqb signal is asserted
only when both bits are equal. The corresponding code is shown in Listing 1.3.

Listing 1.3 Structural description of a 2-bit comparator

module eq2

(

input logic [1:0] a, b,

output logic aeqb

);

www.itbook.store/books/9781119282662

https://itbook.store/books/9781119282662

STRUCTURAL DESCRIPTION 11

e0

b(0)

eq_bit0_unit

i0

i1
eqeq1

a(0)

e1

eq_bit1_unit

i0

i1
eqeq1

a(1)

b(1)

aeqb

Figure 1.4 Construction of a 2-bit comparator from 1-bit comparators.

// i n t e r na l s i g n a l d e c l a ra t i on
logic e0, e1;

// body
// i n s t a n t i a t e two 1− b i t comparators
eq1 eq_bit0_unit (.i0(a[0]), .i1(b[0]), .eq(e0));

eq1 eq_bit1_unit (.eq(e1), .i0(a[1]), .i1(b[1]));

// a and b are equa l i f i n d i v i d u a l b i t s are equa l
assign aeqb = e0 & e1;

endmodule

The code includes two module instantiation statements. The simplified syntax
of module instantiation is

[module_name] [instance_name]

(

.[port_name]([signal_name]),

.[port_name]([signal_name]),

. . .

);

The first line of the statement specifies which component is used. The [module name]

term indicates the name of the module and the [instance name] term gives a
unique id for an instance. The remaining portion is port connection, which indi-
cates the connections between the I/O ports of an instantiated module (the lower-
level module) and the external signals used in the current module (the higher-level
module). This form of mapping is known as connection by name. The order of the
port-name and signal-name pairs does not matter.

In Listing 1.3, the first component instantiation statement is

eq1 eq_bit0_unit (.i0(a[0]), .i1(b[0]), .eq(e0));

The eq1 is the module name defined in Listing 1.1. The port mapping reflects the
connections shown in Figure 1.4. The component instantiation statement represents
a circuit that is encompassed in a “black box” whose function is defined in another
module.

This example demonstrates the close relationship between a block diagram and
code. The code is essentially a textual description of a schematic. Although it is
a clumsy way for humans to comprehend the diagram, it puts all representations
into a single HDL framework.

www.itbook.store/books/9781119282662

https://itbook.store/books/9781119282662

12 GATE-LEVEL COMBINATIONAL CIRCUIT

i0_n

i1
eq

i0

i1_n

p0

p1

Figure 1.5 Low-level diagram of a 1-bit comparator.

The port names and signal names are sometimes identical and these mappings
can be represented as “.*” in SystemVerilog. For example, the instantiation state-
ment

eq1 eq_unit (.i0(i0), .i1(i1), .eq(eq));

can be abbreviated as

eq1 eq_unit (.*);

and the instantiation statement

eq1 eq_unit (.i0(i0), .i1(i1), .eq(result));

can be abbreviated as

eq1 eq_unit (.*, .eq(result));

Connection by ordered list An alternative scheme to associate the ports and exter-
nal signals is connection by ordered list (sometimes also known as connection by
position). In this scheme, the port names of the lower-level module are omittedVerilog

FYI and the signals of the higher-level module are listed in the same order as the lower-
level module’s port declaration. With this scheme, the two module instantiation
statements in Listing 1.3 can be rewritten as

eq1 eq_bit0_unit (a[0], b[0], e0);

eq1 eq_bit1_unit (a[1], b[1], e1);

Although this scheme makes the code more compact, it is error prone, especially
for a module with many I/O ports. For example, if we modify the code of the
lower-level module and switch the order of two ports in the port declaration, all
the instantiated modules need to be corrected as well. If this is done accidentally
during code editing, the altered port order may be left undetected during synthesis
and lead to difficult-to-find bugs. We always use the connection-by-name scheme
in this book.

Verilog primitive Verilog includes a set of predefined primitives that can be instan-
tiated as modules. These primitives correspond to simple gate-level function blocks,Verilog

FYI such as the and, or, and not cells. For example, the eq1 circuit can be implemented
by using simple cells, as shown in Figure 1.5. The corresponding primitive-based
code is shown in Listing 1.4.

www.itbook.store/books/9781119282662

https://itbook.store/books/9781119282662

TOP-LEVEL SIGNAL MAPPING 13

Listing 1.4 Implementation with Verilog primitive

module eq1_primitive

(

input logic i0 , i1 ,

output logic eq

);

// i n t e rna l s i g n a l d e c l a ra t i on
logic i0_n , i1_n , p0 , p1;

// p r im i t i v e ga te i n s t a n t i a t i o n s
not unit1 (i0_n , i0); // i0 n = ˜ i0 ;
not unit2 (i1_n , i1); // i1 n = ˜ i1 ;
and unit3 (p0, i0_n , i1_n); // p0 = i0 n & i1 n ;
and unit4 (p1, i0 , i1); // p1 = i0 & i1 ;
or unit5 (eq, p0 , p1); // eq = p0 | p1 ;

endmodule

This form of code is very tedious and can easily be replaced with simple bitwise
logical operators. We do not use primitives in this book.

In addition to the predefined primitives, we can define customized primitives,
known as user-defined primitives (UDPs). For example, we can define a 1-bit Verilog

FYIcomparator circuit in a UDP, as shown in Listing 1.5.

Listing 1.5 UDP of a 1-bit comparator

primitive eq1_udp(eq, i0, i1);

output eq;

input i0, i1;

table
// i0 i1 : eq

0 0 : 1;

0 1 : 0;

1 0 : 0;

1 1 : 1;

endtable
endprimitive

A UDP is essentially a table-based description of a circuit. The same table can
also be described by a case statement (discussed in Section 3.5). We use the latter
approach and do not use UDPs in this book.

1.6 TOP-LEVEL SIGNAL MAPPING

When an HDL program is targeted to a physical device of a prototyping board,
the design is subject to a variety of constraints. One constraint is the locations of
the I/O pins. For example, the switches and LEDs of the board are “pre-wired”
to specific I/O pins of the FPGA device and they cannot be altered. The pin
assignment is defined in a constraint file, which is processed in conjunction with
HDL files.

The designs of this book use a constraint file that specifies the pin assignment
for all the I/O signals on the Nexys 4 DDR prototyping board. To use this file,
the top-level HDL module must have the same predefined I/O signal names. This
can be achieved by creating an HDL file to “wrap” the original design and map

www.itbook.store/books/9781119282662

https://itbook.store/books/9781119282662

14 GATE-LEVEL COMBINATIONAL CIRCUIT

test vector
generator eq2

uut

test_in_0
a aeqb

test_out

monitor
b

test_in_1

Figure 1.6 Testbench for a 2-bit comparator.

its original I/O signals to the prototyping board’s I/O signals. For example, we
name the I/O pins connected to the slide switches and LEDs as sw and led and
specify their pin assignment in the constraint file. For a physical implementation,
the a and b signals of the previous comparator circuit can be connected to the four
switches and the output, aeqb, can be connected to an LED. The corresponding
wrapping code is shown in Listing 1.6.

Listing 1.6 Top-level wrapping circuit

module eq2_top

(

input logic [3:0] sw,

output logic [0:0] led

);

// body
// i n s t a n t i a t e 2− b i t comparator
eq2 eq_unit (.a(sw[3:2]) , .b(sw[1:0]) , .aeqb(led [0]));

endmodule

The code essentially maps the “logical” port names of the comparator to the phys-
ical signals on the prototyping board. Note that the output led signal is defined as
a one-element vector to accommodate future expansion. The procedure to include
the constraint file is demonstrated in Appendix A.2.

1.7 TESTBENCH

After code is developed, it can be simulated in a host computer to verify the correct-
ness of the circuit operation and then synthesized to a physical device. Simulation
is usually performed within the same language framework. We create a special
program, known as a testbench, to mimic a physical lab bench.

The development of testbench and verification are beyond the scope of this book.
We just provide several examples to illustrate the basic concepts. The templates can
be used to simulate and observe inputs and outputs of a simple circuit. The sketch
of a 2-bit comparator testbench is shown in Figure 1.6. The uut segment is the unit
under test, the test vector generator segment generates testing input patterns,
and the monitor segment examines the output responses. A simple testbench for
the 2-bit comparator is shown in Listing 1.7.

www.itbook.store/books/9781119282662

https://itbook.store/books/9781119282662

TESTBENCH 15

Listing 1.7 Testbench for a 2-bit comparator

// The ‘ t ime s c a l e d i r e c t i v e s p e c i f i e s t ha t
// the s imu la t ion time uni t i s 1 ns and
// the s imu la t ion t imes tep i s 10 ps
‘timescale 1 ns/10 ps

module eq2_testbench;

// s i g n a l d e c l a ra t i on
logic [1:0] test_in0 , test_in1;

logic test_out;

// i n s t a n t i a t e the c i r c u i t under t e s t
eq2 uut

(.a(test_in0), .b(test_in1), .aeqb(test_out));

// t e s t vec to r generator
i n i t i a l
begin

// t e s t vec to r 1
test_in0 = 2’b00;

test_in1 = 2’b00;

200;

// t e s t vec to r 2
test_in0 = 2’b01;

test_in1 = 2’b00;

200;

// t e s t vec to r 3
test_in0 = 2’b01;

test_in1 = 2’b11;

200;

// t e s t vec to r 4
test_in0 = 2’b10;

test_in1 = 2’b10;

200;

// t e s t vec to r 5
test_in0 = 2’b10;

test_in1 = 2’b00;

200;

// t e s t vec to r 6
test_in0 = 2’b11;

test_in1 = 2’b11;

200;

// t e s t vec to r 7
test_in0 = 2’b11;

test_in1 = 2’b01;

200;

// s top s imu la t ion
$stop;

end
endmodule

The code consists of a module instantiation statement, which creates an instance
of the 2-bit comparator, and an initial block, which generates a sequence of test pat-
terns. The initial block is a special language construct, which is executed once when
simulation starts. The statements inside an initial block are executed sequentially.
Each test pattern is generated by three statements, as in the test vector 2:

test_in0 = 2’b01;

test_in1 = 2’b00;

200;

www.itbook.store/books/9781119282662

https://itbook.store/books/9781119282662

16 GATE-LEVEL COMBINATIONAL CIRCUIT

Figure 1.7 Simulated waveforms.

The first two statements specify the values for the test in0 and test in1 signals
and the third indicates that the two values will last for 200 time units. The last
statement, $stop, is a system function that stops the simulation and returns the
control to simulation software.

The code has no monitor. We can observe the input and output waveforms
on a simulator’s display, which can be treated as a “virtual logic analyzer.” The
simulated timing diagram of this testbench is shown in Figure 1.7.

Writing code for a comprehensive testbench requires detailed knowledge of Sys-
temVerilog and is beyond the scope of this book. However, this listing can serve
as a testbench template for other simple combinational circuits. We can substitute
the uut instance and modify the test patterns according to the new circuit.

1.8 BIBLIOGRAPHIC NOTES

In this book, a short bibliographic section is included in the end of each chapter to
provide the most relevant references for further exploration. A more comprehensive
bibliography can be found in the end of the book.

SystemVerilog is a very complex language. The standard is specified in IEEE
Standard for SystemVerilog–Unified Hardware Design, Specification, and Verifica-
tion Language, IEEE Std 1364-2001. Logic Design and Verification Using Sys-
temVerilog, by D. Thomas highlights the usage and capability of the language.
SystemVerilog for Design, second ed. by S. Sutherland et al. and SystemVerilog
for Verification by T. Fitzpatrick et al. provide detailed coverage on the design
and modeling portion and the verification portion of the language, respectively.
Derivation of the testbench for a large digital system is a difficult task. Writing
Testbenches Using SystemVerilog by J. Bergeron focuses on this topic.

1.9 SUGGESTED EXPERIMENTS

At the end of each chapter, some experiments are suggested as exercises. The exper-
iments help us better understand the concepts and provide a hands-on opportunity
to design and debug actual circuits.

www.itbook.store/books/9781119282662

https://itbook.store/books/9781119282662

SUGGESTED EXPERIMENTS 17

1.9.1 Code for gate-level greater-than circuit

Develop the HDL codes in Experiment 2.6.1. The code can be simulated and
synthesized after we complete Chapter 2.

1.9.2 Code for gate-level binary decoder

Develop the HDL codes in Experiment 2.6.2. The code can be simulated and
synthesized after we complete Chapter 2.

www.itbook.store/books/9781119282662

https://itbook.store/books/9781119282662

www.itbook.store/books/9781119282662

https://itbook.store/books/9781119282662

