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Introduction

The advances and interdisciplinary integration of science and technology are making
modern engineering and computing systems more and more complex. For modern sys-
tems (especially those in, e.g. wireless sensor networks, Internet of Things (IoT), smart
power systems, space explorations, and cloud computing industries), dynamic behav-
ior and dependence are typical characteristics of the systems or products. System load,
operating conditions, stress levels, redundancy levels, and other operating environment
parameters are variables of time, causing dynamic failure behavior of the system com-
ponents as well as dynamic system reliability requirements. In addition, components of
these systems often have significant interactions or dependencies in time or functions.
Effects of these dynamic and dependent behaviors must be addressed for accurate sys-
tem reliability modeling and analysis, which is crucial for verifying whether a system
satisfies desired reliability requirements and for determining optimal design and oper-
ation policies balancing different system parameters like cost and reliability. As a result,
reliability modeling and analysis of modern dynamic systems become more challenging
than ever.

Traditional reliability modeling methods, such as reliability block diagram [1] and fault
tree analysis [2], can define the static logical structure of the system, but they lack the
ability to describe dynamic state transfers of the system, and component fault depen-
dencies and propagations. It is difficult or impossible to accurately reflect the actual
behavior of modern complex fault-tolerant systems using the traditional reliability mod-
els. In other words, failure to address effects of dynamic behavior and dependencies of
modem systems makes the reliability analysis results obtained using the traditional reli-
ability models far from the actual system reliability performance, misleading the system
design, operation, and maintenance efforts.

Different from the traditional static reliability modeling, the dynamic reliability the-
ory considers that a system failure depends not only on the static logical combination of
basic component failure events, but also on the timing of the occurrence of the events,
correlations or interrelationship of the events, and impacts of operating environments.
Therefore, the dynamic system reliability theory can provide a more accurate represen-
tation of actual complex system behavior, more effectively guiding the reliable design of
real-world critical systems. The dynamic system reliability theory is the evolution and
improvement of the traditional reliability modeling theory, and its research will promote
the development and application of complex systems engineering.

This book focuses on dynamic reliability modeling of fault-tolerant systems with
imperfect fault coverage, functional dependence, deterministic or probabilistic
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2 Dynamic System Reliability

common-cause failures, deterministic or probabilistic competing failures, as well as
standby sparing.

Specifically, imperfect fault coverage is an inherent behavior of fault-tolerant systems
designed with redundancies and automatic system recovery or reconfiguration mecha-
nisms [3–5]. Just like any system component, the system recovery mechanisms involving
fault detection, fault location, fault isolation, and fault recovery will likely not be perfect;
they can fail such that the system cannot adequately detect, locate, isolate, or recover
from a fault occurring in the system. The uncovered component fault may propagate
through the system, causing an extensive damage to the system, sometimes failure of
the entire system. Further, it is observed that the extent of the damage from an uncov-
ered component fault occurring in a system with the hierarchical nature may exhibit
multiple levels due to the layered recovery [6]. The traditional imperfect fault coverage
concept has been extended to the modular imperfect fault coverage to model multiple
levels of uncovered failure modes for components in hierarchical systems [7].

Functional dependence occurs in systems where the failure of one component (or, in
general, the occurrence of a certain trigger event) causes other components (referred to
as dependent components) within the same system to become unusable or inaccessible. A
classic example is a computer network where computers can access the Internet through
routers [8]. If the router fails, all computers connected to the router become inaccessible.
It is said that these computers have functional dependence on the router.

In the case of systems with perfect fault coverage, the functional dependence behavior
can be addressed as logic OR relationship [9]. However, for systems with imperfect fault
coverage, the logic OR replacement method can lead to overestimation of system unre-
liability because it allows the disconnected dependent components (in the case of the
trigger event occurring) to contribute to the system uncovered failure probability if they
can fail uncovered. However, since these dependent components were disconnected or
isolated, they could really not generate propagation effect or bring the system down
[10]. New algorithms are required for addressing the coupled functional dependence
and imperfect fault coverage behavior.

In addition to the imperfect fault coverage, common-cause failures are another class
of behavior that can contribute significantly to the overall system unreliability [11–13].
Common-cause failures are defined as “A subset of dependent events in which two or
more component fault states exist at the same time, or in a short time interval, and are
direct results of a shared cause” [11]. Most of the traditional common-cause failure mod-
els assumed the deterministic failure of the multiple components affected by the shared
root cause. Recent studies extended the concept to model probabilistic common-cause
failures, where the occurrence of a root cause results in failures of multiple system com-
ponents with different probabilities [14–16].

As one type of common-cause failures, a propagated failure with global effect (PFGE)
originating from a system component can cause the failure of the entire system [17].
Such a failure can occur due to the imperfect fault coverage or destructive effect of a
component failure on other system components (like overheating, explosion, etc.). How-
ever, PFGE may not always cause the overall system failure in systems with functional
dependence behavior. Specifically, if the trigger event occurs before PFGEs of all the
dependent components, these PFGEs can be isolated deterministically and thus cannot
affect other parts of the system. On the other hand, if PFGE of any dependent compo-
nent occurs before the trigger event, the failure propagation effect takes place, crashing

www.itbook.store

https://itbook.store/


�

� �

�

Introduction 3

the entire system. Therefore, there exist competitions in the time domain between the
failure isolation and failure propagation effects, causing distinct system statuses [18, 19].

The pioneering works on addressing such competing failures in system with func-
tional dependence have focused on deterministic competing failures, where the occur-
rence of the trigger event, as long as it happens first, can cause deterministic or certain
isolation effect to any failures originating from the corresponding dependent compo-
nents. Recent studies [20, 21] have revealed that in some real-world systems, e.g. systems
involving relayed wireless communications, the failure isolation effect can be proba-
bilistic or uncertain. Consider a specific example of a relay-assisted wireless sensor net-
work where some sensors preferably deliver their sensed information to the sink device
through a relay node due to wireless signal attenuation. These sensors have functional
dependence on the relay node. However, unlike in the deterministic competing failure
case, when the relay fails, each sensor is not necessarily isolated because it may increase
transmission power to be wirelessly connected to the sink device with certain proba-
bility dependent on the percentage of remaining energy. A sensor is isolated only when
its remaining energy is not sufficient to enable the direct transmission to the sink node.
Similarly, there exist time-domain competitions between the probabilistic failure iso-
lation effect and the failure propagation effect that can lead to dramatically different
system statuses. The modeling of such probabilistic competing failures is naturally more
complicated than modeling the deterministic competing failure behavior.

Another common dynamic behavior of modern systems, especially life or mission-
critical systems requiring fault-tolerance and high-level of system reliability, is standby
sparing. In the standby sparing systems, one or several units are online and operating
while some redundant units serve as standby spares, which are activated to resume the
system mission in the case of the online unit malfunction occurring [3]. Components in
the standby sparing systems often exhibit dynamic failure behaviors; they have different
failure rates before and after they are activated to replace the failed online component
[22–26].

The above described dynamic behaviors abound in real-world systems, as detailed in
case studies in subsequent chapters. Due to the existence of these dynamic behaviors,
not only the system structure function is seriously affected, but also the system reliability
modeling and analysis become more complicated. Ignoring the dynamic and depen-
dence of failures, or simply performing system reliability analysis under the assumption
that components behave independently of each other, often leads to excessive errors and
even draws wrong conclusions. The following chapters present models and methods to
address effects of the dynamic and dependent behaviors for different types of systems,
covering binary-state and multi-state systems, single-phase, and multi-phase systems.

The traditional reliability models are mostly applicable to binary-state systems in
which both the system and its components assume two and only two states (operation
and failure). However, many practical systems are multi-state systems [27–30], such
as those involving imperfect fault coverage, standby sparing, multiple failure modes
[31], work sharing [32], load sharing [33], performance sharing [34, 35], performance
degradation, and limited repair resources [36]. In these systems, both the system
and its components can exhibit multiple states or performance levels varying from
perfect function to complete failure. The nonbinary property and dependencies among
different states of the same component must be addressed in modeling a multi-state
system.
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In addition to addressing effects of the dynamic behavior for reliability modeling and
analysis of multi-state systems, this book considers multi-phase systems, also known as
phased-mission systems. Traditional system reliability models generally assume that a
system under study performs a single phased mission, during which the system does
not change its task and configuration [37]. Due to an increased use of automation in
diverse industries such as airborne weapon systems, aerospace, nuclear power, and com-
munication networks, phased-mission systems have become a more appropriate and
accurate model for many reliability problems since the 1970s [38, 39]. These systems
perform a mission that involves multiple and consecutive phases with possibly differ-
ent durations. During each phase, the system has to accomplish a specified and often
different task. In addition, the system can be subject to different stress levels, environ-
mental conditions, and reliability requirements. Thus, the system configuration, success
criteria (structure function), and component behavior may vary from phase to phase
[13, 40]. These dynamics as well as statistical dependence across different phases for a
given component make reliability modeling and analysis of multi-phase systems more
difficult than single-phase systems.

In summary, dynamic reliability models and methods are presented in this book to
address effects of single-level or multi-level (modular) imperfect fault coverage, func-
tional dependence, deterministic or probabilistic common-cause failures, determinis-
tic or probabilistic competing failures, standby sparing, multi-state, and multi-phase
behaviors.
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