
3

CHAP T ER

      Essentials of Spreadsheet

Application Development

          IN THIS CHAPTER  

   Discovering the basic steps involved in spreadsheet application development

 Determining end users ’  needs

 Planning applications to meet users ’  needs

 Developing and testing your applications

 Documenting your development efforts and writing user documentation

  What Is a Spreadsheet Application?
 For the purposes of this book, a spreadsheet application  is a spreadsheet fi le (or group of related
fi les) that is designed so that someone other than the developer can perform specifi c tasks without 
extensive training. According to this defi nition, most of the spreadsheet fi les that you ’ ve developed
probably don ’ t qualify as spreadsheet applications. You may have dozens or hundreds of spreadsheet 
fi les on your hard drive, but it ’ s a safe bet that most of them aren ’ t designed for others to use.

 A good spreadsheet application does the following:

■   Enables the end user to perform a task that he or she probably would not be able to do 
otherwise. 

■  Provides the appropriate solution to the problem. (A spreadsheet environment isn ’ t always
the optimal approach.)

■  Accomplishes what it is supposed to do. This prerequisite may be obvious, but it ’ s not at all 
uncommon for applications to fail this test.

■  Produces accurate results and is free of bugs.
■  Uses appropriate and effi cient methods and algorithms to accomplish its job. 
■  Traps errors before the user is forced to deal with them.
■  Does not allow the user to delete or modify important components accidentally (or 

intentionally).

CO
PYRIG

HTED
 M

ATERIA
L

www.itbook.store

https://itbook.store


Part I: Introduction to Excel VBA

4

■  Has a clear and consistent user interface so that the user always knows how
to proceed.

■  Has well-documented formulas, macros, and user interface elements that allow for 
subsequent changes, if necessary. 

■  Is designed so that it can be modifi ed in simple ways without making major 
changes. A basic fact is that a user ’ s needs change over time. 

■  Has an easily accessible help system that provides useful information on at least
the major procedures.

■  Is designed to be portable and to run on any system that has the proper software 
(in this case, a copy of a supported version of Excel).   

 It should come as no surprise that it is possible to create spreadsheet applications for many
different usage levels, ranging from a simple fi ll-in-the-blank template to an extremely 
complex application that uses a custom interface and may not even look like a spreadsheet.  

  Steps for Application Development
 There is no simple, surefi re recipe for developing an effective spreadsheet application.
Everyone has his or her own style for creating such applications. In addition, every project
is different and therefore requires its own approach. Finally, the demands and technical
expertise of the people with whom (or for whom) you work also play a role in how the 
development process proceeds. 

 Spreadsheet developers typically perform the following activities:

■   Determine the needs of the user(s)
■  Plan an application that meets these needs 
■  Determine the most appropriate user interface 
■  Create the spreadsheet, formulas, macros, and user interface 
■  Test and debug the application 
■  Attempt to make the application bulletproof 
■  Make the application aesthetically appealing and intuitive 
■  Document the development effort 
■  Develop user documentation and Help systems
■  Distribute the application to the user
■  Update the application when necessary   

 Not all of these steps are required for each application, and the order in which these activ-
ities are performed varies from project to project. We describe each of these activities in
the pages that follow. For most of these items, we cover the technical details in subse-
quent chapters.

www.itbook.store

https://itbook.store


Chapter 1: Essentials of Spreadsheet Application Development

5

1

  Determining User Needs 
 When you undertake a new Excel project, one of your fi rst steps is to identify exactly what 
the end users require. Failure to assess the end users ’  needs thoroughly early on often
results in additional work later when you have to adjust the application so that it does
what it was supposed to do in the fi rst place.

 In some cases, you ’ ll be intimately familiar with the end users—you may even be an end 
user yourself. In other cases (for example, if you ’ re a consultant developing a project for a 
new client), you may know little or nothing about the users or their situations.

 How do you determine the needs of the user? If you ’ ve been asked to develop a spreadsheet
application, it ’ s a good idea to meet with the end users and ask specifi c questions. Better 
yet, get everything in writing, create fl ow diagrams, pay attention to minor details, and do
anything else to ensure that the product you deliver is the product that is needed. 

 Here are some guidelines that may help make this phase easier:

■   Don ’ t assume that you know what the user needs. Second-guessing at this stage
almost always causes problems later. 

■  If possible, talk directly to the end users of the application, not just their supervi-
sor or manager.

■  Learn what, if anything, is currently being done to meet the users ’  needs. You 
might be able to save some work by simply adapting an existing application. 
At the very least, looking at current solutions will familiarize you with the 
operation. 

■  Identify the resources available at the users ’  site. For example, try to determine 
whether you must work around any hardware or software limitations. 

■  If possible, determine the specifi c hardware systems that will be used. If your 
application will be used on slow systems, you need to take that into account.

■  Identify which versions of Excel are in use. Keep in mind that users can have ver-
sions of Excel running on macOS, mobile platforms, and Windows. These have to be
taken into account when planning an automated Excel solution. Although Microsoft 
does everything in its power to urge users to upgrade to the latest version of the
software, the majority of Excel users don ’ t. 

■  Understand the skill levels of the end users. This information will help you design 
the application appropriately. 

■  Determine how long the application will be used and whether any changes are
anticipated during the lifetime of the project. Knowing this information may
infl uence the amount of effort that you put into the project and help you plan 
for changes.

 Finally, don ’ t be surprised if the project specifi cations change before you complete the 
application. This occurrence is common, and you ’ re in a better position if you expect 

www.itbook.store

https://itbook.store


Part I: Introduction to Excel VBA

6

changes rather than being surprised by them. Just make sure that your contract (if you 
have one) addresses the issue of changing specifi cations.  

  Planning an Application That Meets User Needs 
 After you determine the end users ’  needs, it ’ s tempting to jump right in and start fi ddling
around in Excel. Take it from those who suffer from this problem: try to restrain yourself. 
Builders don ’ t construct a house without a set of blueprints, and you shouldn ’ t build a 
spreadsheet application without some type of plan. The formality of your plan depends on 
the scope of the project and your general style of working, but you should spend at least 
some  time thinking about what you ’ re going to do and coming up with a plan of action.

 Before rolling up your sleeves and settling down at your keyboard, you ’ ll benefi t by taking 
some time to consider the various ways that you can approach the problem. This planning 
period is where a thorough knowledge of Excel pays off. Avoiding blind alleys rather than 
stumbling into them is always a good idea. 

 If you ask a dozen Excel experts to design an application based on precise specifi cations, 
chances are that you ’ ll get a dozen different implementations of the project that meet
those specifi cations. Of those solutions, some will be better than the others because Excel
often provides several options to accomplish a task. If you know Excel inside and out, you ’ ll
have a good idea of the potential methods at your disposal, and you can choose the one
most appropriate for the project at hand. Often, a bit of creative thinking yields an unusual 
approach that ’ s vastly superior to other methods.

 Consider some general options at the beginning stage of this planning period, such as the
following:

File structure      Think about whether you want to use one workbook with multiple
sheets, several single-sheet workbooks, or a template fi le.  

Data structure      You should always consider how your data will be structured and also 
determine whether you will be using external database fi les, data sources stored on
the cloud, or storing everything in worksheets.

Add-in or workbook fi le      In some cases, an add-in may be the best choice for your
fi nal product, or perhaps you might use an add-in with a standard workbook.  

Version of Excel      Will your Excel application be used with Excel 2019 only, or will
your application also need to run on earlier versions of Excel? What about versions
of Excel running on other platforms, such as macOS or mobile devices? These consid-
erations are important because each new version of Excel adds features that aren ’ t 
available in previous versions.  

Error handling      Error handling is a major issue with applications. You need to deter-
mine how your application will detect and deal with errors. For example, if your 
application performs pivot table operations on the active sheet, you need to be able 
to handle a case in which a pivot table does not exist on the sheet that is active.  

www.itbook.store

https://itbook.store


Chapter 1: Essentials of Spreadsheet Application Development

7

1

Use of special features      If your application needs to summarize a lot of data, you 
may want to consider using Excel ’ s pivot table feature, or you may want to use
Excel ’ s data validation feature as a check for valid data entry.

Performance issues      The time to start thinking about increasing the speed and effi -
ciency of your application is in the development stage, not when the application is 
complete and users are complaining.

Level of security      As you may know, Excel provides several protection options to 
restrict access to particular elements of a workbook. For example, you can lock 
cells so that formulas cannot be changed, and you can assign a password to prevent 
unauthorized users from viewing or accessing specifi c fi les. Determining up front 
exactly what you need to protect—and what level of protection is necessary—will
make your job easier.

 You ’ ll probably have to deal with many other project-specifi c considerations in this phase. 
Consider all options, and don ’ t settle on the fi rst solution that comes to mind.

 Another design consideration is remembering to plan for change. You ’ ll do yourself a favor 
if you make your application as generic as possible. For example, don ’ t write a procedure 
that works with only a specifi c range of cells. Rather, write a procedure that accepts any
range as an argument. When the inevitable changes are requested, such a design makes it
easier for you to carry out the revisions. Also, you may fi nd that the work that you do for
one project is similar to the work that you do for another. Keep reusability in mind when 
you are planning a project. 

 Avoid letting the end user completely guide your approach to a problem. For example, sup-
pose that you meet with a manager who tells you that the department needs an application
to write text fi les that will be imported into another application. Don ’ t confuse the user ’ s 
need with the solution. The user ’ s real need is to share data. Using an intermediate text
fi le to do it is just one possible solution; better ways to approach the problem may exist.
In other words, don ’ t let the users defi ne their problem by stating it in terms of a solution
approach. Determining the best approach is your  job.  r

  Determining the Most Appropriate User Interface 
 When you develop spreadsheets that others will use, you need to pay special attention to the
user interface. By  user interface , we mean the method by which the user interacts with 
the application and executes your VBA macros. 

 NOTE 
 Be aware that Excel ’ s protection features aren ’ t 100 percent effective—far from it. If you desire complete and 

absolute security for your application, Excel probably isn ’ t the best platform. 

www.itbook.store

https://itbook.store


Part I: Introduction to Excel VBA

8

 Since the introduction of Excel 2007, some of these user interface decisions are irrelevant. 
Custom menus and toolbars are, for all intents and purposes, obsolete. Consequently, devel-
opers must learn how to work with the Ribbon.

 Excel provides several features that are relevant to user interface design:

■   Ribbon customization 
■  Shortcut menu customization
■  Shortcut keys 
■  Custom dialog boxes (UserForms) 
■  Message boxes and input boxes
■  Controls (such as a  ListBox  or a CommandButton ) placed directly on a worksheet   n

 We discuss these features briefl y in the following sections and cover them more thoroughly
in later chapters. 

  Customizing the Ribbon
 As a developer, you have a fair amount of control over the Ribbon including which tabs 
and commands are available when your Excel application opens. Although Excel allows end
users to modify the Ribbon, making UI changes via code isn ’ t a simple task.    

   Customizing shortcut menus
 Excel allows the VBA developer to customize the right-click shortcut menus. Right-click 
menus can offer users a way to trigger an action easily without having to move too far 
from the range in which they are working. Figure   1.1   illustrates a customized shortcut 
menu that appears when a cell is right-clicked.

 FIGURE 1.1 

   A customized shortcut menu 

 See Chapter   17  , “Working with the Ribbon,” for information about working with the Ribbon. 

 Chapter   18  , “Working with Shortcut Menus,” describes how to work with shortcut menus using VBA, 

including some limitations due to the single document interface introduced in Excel 2013. 

www.itbook.store

https://itbook.store


Chapter 1: Essentials of Spreadsheet Application Development

9

1

  Creating shortcut keys
 Another user interface option at your disposal is a custom shortcut key. Excel lets you
assign a Ctrl key (or Shift+Ctrl key) combination to a macro. When the user presses the key 
combination, the macro executes. 

 There are two caveats, however. First, make it clear to the user which keys are active and 
what they do. Second, do not assign a key combination that ’ s already used for something 
else. A key combination that you assign to a macro takes precedence over the built-in
shortcut keys. For example, Ctrl+S is a built-in Excel shortcut key used to save the current
fi le. If you assign this key combination to a macro, you lose the capability to save the fi le
with Ctrl+S. Remember that shortcut keys are case sensitive, so you can use a combination
such as Ctrl+Shift+S.  

  Creating custom dialog boxes
 Anyone who has used a personal computer for any length of time is undoubtedly familiar
with dialog boxes. Consequently, custom Excel dialog boxes can play a major role in the
user interfaces that you design for your applications. Figure   1.2   shows an example of a
custom dialog box.     

  A custom dialog box is known as a UserForm . A UserForm can solicit user input, get a user ’ s 
options or preferences, and direct the fl ow of your entire application. The elements that 
make up a UserForm (buttons, drop-down lists, check boxes, and so on) are called  controls—
more specifi cally,  ActiveX controls  . Excel provides a standard assortment of ActiveX controls, 
and you can also incorporate third-party controls. 

 After adding a control to a dialog box, you can link it to a worksheet cell so that it doesn ’ t 
require any macros (except a simple macro to display the dialog box). Linking a control to a 
cell is easy, but it ’ s not always the best way to get user input from a dialog box. Most of the 
time, you want to develop VBA macros that work with your custom dialog boxes.     

 FIGURE 1.2

   A dialog box created with Excel ’ s UserForm feature 

 We cover UserForms in detail in Part III. 

www.itbook.store

https://itbook.store


Part I: Introduction to Excel VBA

10

   Using   ActiveX   controls on a worksheet  
 Excel also lets you add UserForm ActiveX controls to a worksheet ’ s drawing layer  (an invis-r
ible layer on top of a sheet that holds pictures, charts, and other objects). Figure   1.3   shows 
a simple worksheet model with several UserForm controls inserted directly in the work-
sheet. This sheet contains the following ActiveX controls: a  CheckBox , a ScrollBar , and r
two sets of  OptionButton s. This workbook uses no macros. Rather, the controls are linked
to worksheet cells.     

       Perhaps the most common control is a  CommandButton . By itself, a CommandButton  
doesn ’ t do anything, so you need to attach a macro to each CommandButton . 

 Using dialog box controls directly in a worksheet often eliminates the need for custom
dialog boxes. You can often greatly simplify the operation of a spreadsheet by adding a few 
ActiveX controls (or form controls) to a worksheet. These ActiveX controls let the user make 
choices by operating familiar controls rather than making entries in cells. 

 Access these controls by using the Developer ➪ Controls ➪ Insert command (see Figure   1.4  ).
If the Developer tab isn ’ t on the Ribbon, add it by using the Customize Ribbon tab of the 
Excel Options dialog box.

 FIGURE 1.3

   You can add UserForm controls to worksheets and link them to cells. 

 ON THE WEB 
 This workbook is available on this book ’ s website. The fi le is named worksheet  controls.xlsx . 

www.itbook.store

https://itbook.store


Chapter 1: Essentials of Spreadsheet Application Development

11

1

  The controls come in two types: form controls and ActiveX controls. Both sets of con-
trols have their advantages and disadvantages. Generally, form controls are easier to
use, but ActiveX controls are a bit more fl exible. Table   1.1   summarizes these two classes
of controls.     

 FIGURE 1.4 

   Using the Ribbon to add controls to a worksheet

 TABLE 1.1   ActiveX Controls versus Form Controls

ActiveX Controls Form Controls    

Excel versions 97, 2000, 2002, 2003, 2007, 2010, 
2013, 2016, 2019

5, 95, 97, 2000, 2002, 2003, 2007,
2010, 2013, 2016, 2019  

Controls
available

CheckBox ,  TextBox ,  Command
Button ,  OptionButton , ListBox , 
ComboBox ,  ToggleButton ,  Spin
Button ,  ScrollBar ,  r Label ,  Image
(and others can be added)

GroupBox , Button ,  Check
Box ,  OptionButton ,  List-
Box ,  DropDown (ComboBox) , 
ScrollBar ,  r Spinner   

Macro
code storage

In the code module for the sheet In any standard VBA module

Macro name Corresponds to the control name
(for example,  CommandButton1_
Click )

Any name you specify  

Correspond to UserForm controls Pre–Excel 97 dialog
sheet controls

Customization Extensive, using the Properties box Minimal  

Respond to events Yes Click or Change events only

www.itbook.store

https://itbook.store


Part I: Introduction to Excel VBA

12

    Executing the development effort
 After you identify user needs, determine the approach you ’ ll take to meet those needs, and 
decide on the components that you ’ ll use for the user interface. Next, it ’ s time to get down
to the nitty-gritty and start creating the application. This step, of course, constitutes a 
great deal of the total time you spend on a particular project. 

 How you go about developing the application depends on your personal style and the
nature of the application. Except for simple fi ll-in-the-blanks template workbooks, your
application will probably use macros. Creating macros in Excel is easy, but creating  good 
macros is diffi cult.

  Concerning Yourself with the End User 
 In this section, we discuss the important development issues that surface as your applica-
tion becomes more and more workable and as the time to package and distribute your work
grows nearer. 

  Testing the application
 How many times have you used a commercial software application, only to have it 
bomb out on you at a crucial moment? Most likely, the problem was caused by insuffi cient
testing that didn ’ t catch all of the bugs. All nontrivial software has bugs, but in the best 
software, the bugs are simply more obscure. As you ’ ll see, you sometimes must work around 
the bugs in Excel to get your application to perform properly.

 After you create your application, you need to test it. Testing is one of the most crucial 
steps; it ’ s not uncommon to spend as much time testing and debugging an application as you 
did creating it. Actually, you should be doing a great deal of testing during the development 
phase. After all, whether you ’ re writing a VBA routine or creating formulas in a worksheet, 
you want to make sure that the application is working the way it ’ s supposed to work.

 Like standard compiled applications, spreadsheet applications that you develop are prone to 
bugs. A  bug  can be defi ned as (1) something that does happen but shouldn ’ t happen while 
a program (or application) is running, or (2) something that doesn ’ t happen when it should
happen. Both species of bugs are equally nasty, and you should plan on devoting a good 
portion of your development time to testing the application under all reasonable conditions
and fi xing any problems that you fi nd.

 It ’ s important to test thoroughly any spreadsheet application that you develop for others.
And depending on its eventual audience, you may want to make your application bullet-
proof. In other words, try to anticipate all the errors and screw-ups that could possibly
occur and make concerted efforts to avoid them—or, at least, to handle them gracefully.
This foresight not only helps the end user but also makes it easier on you and protects your
reputation. Also, consider using beta testing—your end users are likely candidates because 
they ’ re the ones who will be using your product. (See the upcoming sidebar “What about 
beta testing?”) 

www.itbook.store

https://itbook.store


Chapter 1: Essentials of Spreadsheet Application Development

13

1

 Although you can ’ t conceivably test for all possibilities, your macros should be able to han-
dle common types of errors. For example, what if the user enters a text string instead of a
numeric value? What if the user tries to run your macro when a workbook isn ’ t open? What
if the user cancels a dialog box without making any selections? What happens if the user
presses Ctrl+F6 and jumps to the next window? When you gain experience, these types of 
issues become very familiar, and you account for them without even thinking.

        Making the application bulletproof 
 If you think about it, destroying a spreadsheet is fairly easy. Erasing one critical formula 
or value can cause errors throughout the entire worksheet—and perhaps even other depen-
dent worksheets. Even worse, if the damaged workbook is saved, it replaces the good copy
on disk. Unless a backup procedure is in place, the user of your application may be in 
trouble, and you  will probably be blamed for it.

 Obviously, you can easily see why you need to add some protection when users—especially 
novices—will be using your worksheets. Excel provides several techniques for protecting
worksheets and parts of worksheets.

Lock specifi c cells      You can lock specifi c cells (by using the Protection tab in the 
Format Cells dialog box) so that users can ’ t change them. Locking takes effect 
only when the document is protected with the Review ➪ Changes ➪ Protect Sheet
command. The Protect Sheet dialog box has options that allow you to specify which
actions users can perform on a protected sheet (see Figure   1.5  ).

   What about beta testing?
  Software manufacturers typically have a rigorous testing cycle for new products. After extensive 
internal testing, the pre-release product is usually sent to a group of interested users for beta testing . 
This phase often uncovers additional problems that are usually corrected before the product ’ s 
fi nal release. 

 If you ’ re developing an Excel application that more than a few people will use, you may want to con-
sider a beta test. This test enables your intended users to use your application in its proposed setting 
on different hardware (usually). 

 The beta period should begin after you ’ ve completed all of your own testing and you feel that the 
application is ready to distribute. You ’ ll need to identify a group of users to help you. The process 
works best if you distribute everything that will ultimately be included in your application: user doc-
umentation, the installation program, help, and so on. You can evaluate the beta test in a number of 
ways, including face-to-face discussions, email, questionnaires, and phone calls.

 You almost always become aware of problems that you need to correct or improvements that you need 
to make before you undertake a widespread distribution of the application. Of course, a beta-testing 
phase takes additional time, and not all projects can afford that luxury.  

www.itbook.store

https://itbook.store


Part I: Introduction to Excel VBA

14

Hide the formulas in specifi c cells      You can hide the formulas in specifi c cells
(by using the Protection tab in the Format Cells dialog box) so that others can ’ t 
see them. Again, hiding takes effect only when the document is protected by choos-
ing the Review ➪ Changes ➪ Protect Sheet command.  

Protect an entire workbook      You can protect an entire workbook—the structure of 
the workbook, the window position and size, or both. Use the Review ➪ Protect ➪
Protect Workbook command for this purpose.  

Lock objects on the worksheet      Use the Properties section in the task pane to lock 
objects (such as shapes) and prevent them from being moved or changed. To access
this section of the task pane, right-click the object and choose Size and Properties.
Locking objects takes effect only when the document is protected using the Review
➪ Protect ➪ Protect Sheet command. By default, all objects are locked.

Hide rows, columns, sheets, and documents      You can hide rows, columns, sheets, and
entire workbooks. Doing so helps prevent the worksheet from looking cluttered,
and it also provides some modest protection against prying eyes.  

Designate an Excel workbook as read-only recommended      You can designate an
Excel workbook as read-only recommended (and use a password) to ensure that the 
fi le can ’ t be overwritten with any changes. You make this designation in the Gen-
eral Options dialog box. Display this dialog box by choosing File ➪ Save As, choos-
ing a directory, and then clicking the Tools button found on the Save As dialog box.
Choose General Options to specify the appropriate password.  

Assign a password      You can assign a password to prevent unauthorized users from
opening your fi le. Choose File ➪ Info ➪ Protect Workbook ➪ Encrypt with Password.

Use a password-protected add-in      You can use a password-protected add-in, which 
doesn ’ t allow the user to change anything on their worksheets.

 FIGURE 1.5 

   Using the Protect Sheet dialog box to specify what users can and can ’ t do

www.itbook.store

https://itbook.store


Chapter 1: Essentials of Spreadsheet Application Development

15

1

  Making the application aesthetically appealing and intuitive
 If you ’ ve used many different software packages, you ’ ve undoubtedly seen examples of 
poorly designed user interfaces, diffi cult-to-use programs, and just plain ugly screens. If 
you ’ re developing spreadsheets for other people, you should pay particular attention to how
the application looks. 

 How a computer program looks can make all the difference in the world to users, and 
the same is true of the applications that you develop with Excel. Beauty, however, is 
in the eye of the beholder. If your skills lean more in the analytical direction, consider
enlisting the assistance of someone with a more aesthetic sensibility to provide help
with design. 

 End users appreciate a good-looking user interface, and your applications will have a much 
more polished and professional look if you devote additional time to design and aesthetic 
considerations. An application that looks good demonstrates that its developer cared 
enough about the product to invest extra time and effort. Take the following suggestions
into account:

Strive for consistency     When designing dialog boxes, for example, try to emulate the
look and feel of Excel ’ s dialog boxes whenever possible. Be consistent with format-
ting, fonts, text size, and colors.

Keep it simple     A common mistake that developers make is trying to cram too much 
information into a single screen or dialog box. A good rule is to present only one or
two chunks of information at a time.  

Break down input screens     If you use an input screen to solicit information from the
user, consider breaking it up into several, less-crowded screens. If you use a complex 
dialog box, you may want to break it up by using a  MultiPage  control, which lets 
you create a familiar tabbed dialog box.  

Don ’ t overdo color     Use color sparingly. It ’ s easy to overdo color and make the screen 
look gaudy.

Monitor typography and graphics     Pay attention to numeric formats and use consis-
tent typefaces, font sizes, and borders.

 Evaluating aesthetic qualities is subjective. When in doubt, strive for simplicity and clarity.  

   Excel passwords are not foolproof  
  Be aware that Excel passwords can often be easily circumvented using commercially available 
password-breaking programs. Don ’ t think of password protection as foolproof. Sure, it will be 
effective for the casual user. But if someone  really  wants to break your password, he or shey
probably can. 

www.itbook.store

https://itbook.store


Part I: Introduction to Excel VBA

16

  Creating a user Help system
 With regard to user documentation, it ’ s a best practice to provide users with paper-based
documentation or electronic documentation (or both). Providing electronic help is standard 
fare in Windows applications. Fortunately, your Excel applications can also provide help—
even context-sensitive help. Developing help text takes quite a bit of additional effort, but 
for a large project it may be worth it.

 Another point to consider is support for your application. In other words, who gets the
phone call if the user encounters a problem? If you aren ’ t prepared to handle routine ques-
tions, you need to identify someone who is. In some cases, you want to arrange it so that
only highly technical or bug-related issues escalate to the developer.     

  Documenting the development effort 
 Putting a spreadsheet application together is one thing. Making it understandable for other 
people is another. As with traditional programming, it ’ s important that you thoroughly doc-
ument your work. Such documentation helps if you need to go back to it (and you will), and 
it helps anyone else whom you might pass it onto.

 How do you document a workbook application? You can either store the information in a 
worksheet or use another fi le. You can even use a paper document if you prefer. Perhaps the 
easiest way is to use a separate worksheet to store your comments and key information for
the project. For VBA code, use comments liberally. (VBA text preceded with an apostrophe
is ignored because that text is designated as a comment.) Although an elegant piece of VBA 
code can seem perfectly obvious to you today, when you come back to it in a few months, 
your reasoning may be completely obscured unless you use the VBA comment feature.  

  Distributing the application to the user 
 You ’ ve completed your project, and you ’ re ready to release it to the end users. How do you 
go about distributing it? You can choose from many ways to distribute your application, 
and the method that you choose depends on many factors. 

 You could just hand over a download link or thumb drive, scribble a few instructions, and
be on your way. Or, you may want to install the application yourself—but this approach 
isn ’ t always feasible. Another option is to develop an offi cial setup program that performs 
the task automatically. You can write such a program in a traditional programming lan-
guage, purchase a generic setup program, or write your own in VBA.

 Excel incorporates technology to enable developers to sign their applications digitally. 
This process is designed to help end users identify the author of an application, to ensure
that the project has not been altered, and to help prevent the spread of macro viruses or
other potentially destructive code. To sign a project digitally, you fi rst apply for a digital
certifi cate from a formal certifi cate authority (or you can self-sign your project by creating

 In Chapter   19  , “Providing Help for Your Applications,” we discuss several alternatives for providing help for 

your applications.

www.itbook.store

https://itbook.store


Chapter 1: Essentials of Spreadsheet Application Development

17

1

your own digital certifi cate). Refer to the Help system or the Microsoft website for addi-
tional information.  

  Updating the application when necessary 
 After you distribute your application, you ’ re fi nished with it, right? You can sit back, enjoy 
yourself, and try to forget about the problems that you encountered (and solved) during 
development. In rare cases, yes, you may be fi nished. More often, however, the users of 
your application won ’ t be completely satisfi ed. Sure, your application adheres to all of the
original  specifi cations, but things change. Seeing an application working often causes
the user to think of other things that the application could be doing. 

 When you need to update or revise your application, you ’ ll appreciate that you designed it 
well in the fi rst place and that you fully documented your efforts.   

  Other Development Issues 
 You need to keep several other issues in mind when developing an application—especially 
if you don ’ t know exactly who will be using the application. If you ’ re developing an applica-
tion that will have widespread use (a shareware application, for example), you have no way 
of knowing how the application will be used, what type of system it will run on, or what 
other software will be running concurrently. 

  The user ’ s installed version of Excel
 Although Excel 2019 is available, many large corporations are still using earlier versions of 
Excel. Unfortunately, there is no guarantee that an application developed for, say, Excel
2010 will work perfectly with later versions of Excel. If you need your application to work
with a variety of Excel versions, the best approach is to work with the lowest version—and 
then test it thoroughly with all other versions.

 Also, be aware of any security updates or new changes to Excel released with service packs 
(for stand-alone versions of Excel). If some of your users are on Offi ce 365, be aware that 
Microsoft has adopted an agile release cycle, allowing it to release updates to Offi ce 365
practically on a monthly basis. This is great news for those who love seeing new features
added to Excel. It ’ s not so great if you ’ re trying to manage compatibility with your applica-
tion. Although rare, some changes introduced in these releases can cause certain compo-
nents of your application no longer to work as designed.

  Language issues
 Consider yourself fortunate if all of your end users have the English language version of 
Excel. Non-English versions of Excel aren ’ t always 100 percent compatible, so that means

 Compatibility issues are discussed in Chapter   21  , “Understanding Compatibility Issues.” 

www.itbook.store

https://itbook.store


Part I: Introduction to Excel VBA

18

additional testing on your part. In addition, keep in mind that two users can both be using
the English language version of Excel yet use different Windows regional settings. In some 
cases, you may need to be aware of potential problems.     

  System speed
 Although system speed and processing power has become less of an issue on modern PCs 
and devices, testing your application for performance and speed is still a recommended best
practice. A procedure that executes almost instantaneously on your system may take sev-
eral seconds to execute on another system. In the world of computers, several seconds may 
be unacceptable.

  Video modes
 As you probably know, users ’  video displays vary widely. Higher-resolution displays and
even dual displays are becoming increasingly common. Just because you have a super-high-
resolution monitor, you can ’ t assume that everyone else does. 

 Video resolution can be a problem if your application relies on specifi c information being
displayed on a single screen. For example, if you develop an input screen that fi lls the
screen in 1280 × 1024 mode, users with a 1024 × 768 display won ’ t be able to see the whole 
input screen without scrolling or zooming.

 Also, it ’ s important to realize that a  restored  (that is, not maximized or minimized) work-d
book is displayed at its previous window size and position. In the extreme case, it ’ s possible
that a window saved by using a high-resolution display may be completely off the screen
when opened on a system running in a lower resolution.

 Unfortunately, you can ’ t automatically scale things so that they look the same regardless
of the display resolution. In some cases, you can zoom the worksheet (using the Zoom control 
in the status bar), but doing so reliably may be diffi cult. Unless you ’ re certain about the video
resolution that the users of your application will use, you should probably design your appli-
cation so that it works with the lowest common denominator—800 × 600 or 1024 × 768 mode. 

 As you will discover later in the book, you can determine the user ’ s video resolution by
using Windows API calls from VBA. In some cases, you may want to adjust things program-
matically, depending on the user ’ s video resolution.

 We briefl y discuss language issues in Chapter   21  . 

 TIP 
 When you gain more experience with VBA, you ’ ll discover that there are ways to get the job done and there are ways 

to get the job done  fast . It ’ s a good idea to get into the habit of coding for speed. Other chapters in this book can 

certainly help you out in this area. 

www.itbook.store

https://itbook.store

