
3

CHAP T ER

 Starting with Linux

 IN THIS CHAPTER

 Learning what Linux is

 Learning where Linux came from

 Choosing Linux distributions

 Exploring professional opportunities with Linux

 Becoming certifi ed in Linux

 T
he operating systems war is over, and Linux has won. Proprietary operating systems simply
cannot keep up with the pace of improvements and quality that Linux can achieve with its cul-
ture of sharing and innovation. Even Microsoft, whose former CEO Steve Ballmer once referred

to Linux as “a cancer,” now says that Linux ’ s use on its Microsoft ’ s Azure cloud computing service
has surpassed the use of Windows.

 Linux is one of the most important technological advancements of the twenty-fi rst century. Beyond
its impact on the growth of the Internet and its place as an enabling technology for a range of com-
puter-driven devices, Linux development has become a model for how collaborative projects can sur-
pass what single individuals and companies can do alone.

 Google runs thousands upon thousands of Linux servers to power its search technology. Its Android
phones are based on Linux. Likewise, when you download and run Google ’ s Chrome OS, you get a
browser that is backed by a Linux operating system.

 Facebook builds and deploys its site using what is referred to as a LAMP stack (Linux, Apache webk
server, MySQL database, and PHP web scripting language)—all open source projects. In fact, Facebook
itself uses an open source development model, making source code for the applications and tools that
drive Facebook available to the public. This model has helped Facebook shake out bugs quickly, get
contributions from around the world, and fuel its exponential growth.

 Financial organizations that have trillions of dollars riding on the speed and security of their
operating systems also rely heavily on Linux. These include the New York Stock Exchange, Chicago
Mercantile Exchange, and the Tokyo Stock Exchange.

 As cloud continues to be one of the hottest buzzwords today, a part of the cloud groundswell that d
isn ’ t hype is that Linux and other open source technologies continue to be the foundation on which

CO
PYRIG

HTED
 M

ATERIA
L

www.itbook.store

https://itbook.store

Part I: Getting Started

4

today ’ s greatest cloud innovations are being built. Every software component that you need
to build a private or public cloud (such as hypervisors, cloud controllers, network storage,
virtual networking, and authentication) is freely available for you to start using from the
open source world.

 The widespread adoption of Linux around the world has created huge demand for Linux
expertise. This chapter starts you down a path to becoming a Linux expert by helping you
understand what Linux is, where it came from, and what your opportunities are for becoming
profi cient in it.

 The rest of this book provides you with hands-on activities to help you gain that expertise.
Finally, I show you how to apply that expertise to cloud technologies, including automation
tools, such as Ansible, and containerization orchestration technologies, such as Kubernetes
and OpenShift.

 Understanding What Linux Is
Linux is a computer operating system. An operating system consists of the software that x
manages your computer and lets you run applications on it. The features that make up
Linux and similar computer operating systems include the following:

Detecting and preparing hardware : When the Linux system boots up (when you turn
on your computer), it looks at the components on your computer (CPU, hard drive,
network cards, and so on) and loads the software (drivers and modules) needed to
access those particular hardware devices.

Managing processes : The operating system must keep track of multiple processes
running at the same time and decide which have access to the CPU and when.
The system also must offer ways of starting, stopping, and changing the status of
processes.

Managing memory : RAM and swap space (extended memory) must be allocated to
applications as they need memory. The operating system decides how requests for
memory are handled.

Providing user interfaces : An operating system must provide ways of accessing the
system. The fi rst Linux systems were accessed from a command-line interpreter
called a shell . Today, graphical desktop interfaces are commonly available as well.

Controlling fi lesystems : Filesystem structures are built into the operating system (or
loaded as modules). The operating system controls ownership and access to the fi les
and directories (folders) that the fi lesystems contain.

Providing user access and authentication: Creating user accounts and allowing
boundaries to be set between users is a basic feature of Linux. Separate user and
group accounts enable users to control their own fi les and processes.

Offering administrative utilities : In Linux, hundreds (perhaps thousands) of com-
mands and graphical windows are available to do such things as add users, manage

www.itbook.store

https://itbook.store

Chapter 1: Starting with Linux

5

1

disks, monitor the network, install software, and generally secure and manage your
computer. Web UI tools, such as Cockpit, have lowered the bar for doing complex
administrative tasks.

Starting up services : To use printers, handle log messages, and provide a variety
of system and network services, processes called daemon processes run in the
background, waiting for requests to come in. Many types of services run in Linux.
Linux provides different ways of starting and stopping these services. In other
words, while Linux includes web browsers to view web pages, it can also be the com-
puter that serves up web pages to others. Popular server features include web, mail,
database, printer, fi le, DNS, and DHCP servers.

Programming tools : A wide variety of programming utilities for creating applications
and libraries for implementing specialty interfaces are available with Linux.

 As someone managing Linux systems, you need to learn how to work with those features
just described. While many features can be managed using graphical interfaces, an under-
standing of the shell command line is critical for someone administering Linux systems.

 Modern Linux systems now go way beyond what the fi rst UNIX systems (on which Linux
was based) could do. Advanced features in Linux, often used in large enterprises, include
the following:

Clustering : Linux can be confi gured to work in clusters so that multiple systems can
appear as one system to the outside world. Services can be confi gured to pass back
and forth between cluster nodes while appearing to those using the services that
they are running without interruption.

Virtualization : To manage computing resources more effi ciently, Linux can run as a
virtualization host. On that host, you could run other Linux systems, Microsoft
Windows, BSD, or other operating systems as virtual guests. To the outside world,
each of those virtual guests appears as a separate computer. KVM and Xen are two
technologies in Linux for creating virtual hosts.

Cloud computing : To manage large-scale virtualization environments, you can use
full-blown cloud computing platforms based on Linux. Projects such as OpenStack
and Red Hat Virtualization (and its upstream oVirt project) can simultaneously man-
age many virtualization hosts, virtual networks, user and system authentication,
virtual guests, and networked storage. Projects such as Kubernetes can manage con-
tainerized applications across massive data centers.

Real-time computing : Linux can be confi gured for real-time computing, where high-
priority processes can expect fast, predictable attention.

Specialized storage : Instead of just storing data on the computer ’ s hard disk, you
can store it on many specialized local and networked storage interfaces that are
available in Linux. Shared storage devices available in Linux include iSCSI, Fibre
Channel, and Infi niband. Entire open source storage platforms include projects such
as Ceph (https://ceph.io) and GlusterFS (o https://www.gluster.org).g

www.itbook.store

https://itbook.store

Part I: Getting Started

6

 Some of these advanced topics are not covered in this book. However, the features
covered here for using the shell, working with disks, starting and stopping services,
and confi guring a variety of servers should serve as a foundation for working with those
advanced features.

 Understanding How Linux Differs from Other

Operating Systems
 If you are new to Linux, chances are good that you have used a Microsoft Windows or
MacOS operating system. Although MacOS had its roots in a free software operating system,
referred to as the Berkeley Software Distribution (more on that later), operating systems
from both Microsoft and Apple are considered proprietary operating systems. What that
means is the following:

■ You cannot see the code used to create the operating system, and therefore, you
cannot change the operating system at its most basic levels if it doesn ’ t suit your
needs, and you can ’ t use the operating system to build your own operating system
from source code.

■ You cannot check the code to fi nd bugs, explore security vulnerabilities, or simply
learn what that code is doing.

■ You may not be able to plug your own software easily into the operating system if
the creators of that system don ’ t want to expose the programming interfaces you
need to the outside world.

 You might look at those statements about proprietary software and say, “What do I care?
I ’ m not a software developer. I don ’ t want to see or change how my operating system
is built.”

 That may be true. However, the fact that others can take free and open source software
and use it as they please has driven the explosive growth of the Internet (think Google),
mobile phones (think Android), special computing devices (think TiVo), and hundreds of
technology companies. Free software has driven down computing costs and allowed for an
explosion of innovation.

 Maybe you don ’ t want to use Linux—as Google, Facebook, and other companies have done—
to build the foundation for a multi-billion-dollar company. Nonetheless, those companies
and others who now rely on Linux to drive their computer infrastructures need more and
more people with the skills to run those systems.

 You may wonder how a computer system that is so powerful and fl exible has come to be free
as well. To understand how that could be, you need to see where Linux came from. Thus the
next sections of this chapter describe the strange and winding path of the free software
movement that led to Linux.

www.itbook.store

https://itbook.store

Chapter 1: Starting with Linux

7

1

 Exploring Linux History
 Some histories of Linux begin with the following message entitled “What would you like to
see most in minix?” posted by Linus Torvalds to the comp.os.minix newsgroup on August
25, 1991, at

https://groups.google.com/forum/#!msg/comp.os.minix/dlNtH7RRrGA/SwRavCzVE7gJ J

 Linus Benedict Torvalds

 Hello everybody out there using minix -

 I ’ m doing a (free) operating system (just a hobby, won ’ t be big and professional
like gnu) for 386(486) AT clones. This has been brewing since april, and is starting
to get ready. I ’ d like any feedback on things people like/dislike in minix, as my OS
resembles it somewhat (same physical layout of the fi le-system (due to practical
reasons, among other things). . .Any suggestions are welcome, but I won ’ t promise
I ’ ll implement them :-)

 Linus (torvalds@kruuna.helsinki.fi)

 PS. Yes — it ’ s free of any minix code, and it has a multi-threaded fs. It is NOT
protable[sic] (uses 386 task switching etc), and it probably never will support
anything other than AT-harddisks, as that ’ s all I have :-(.

 Minix was a UNIX-like operating system that ran on PCs in the early 1990s. Like Minix,
Linux was also a clone of the UNIX operating system. With few exceptions, such as Micro-
soft Windows, most modern computer systems (including MacOS and Linux itself) were
derived from UNIX operating systems, created originally by AT&T.

 To truly appreciate how a free operating system could have been modeled after a proprie-
tary system from AT&T Bell Laboratories, it helps to understand the culture in which
UNIX was created and the chain of events that made the essence of UNIX possible to
reproduce freely.

 NOTE
 To learn more about how Linux was created, pick up the book Just for Fun: The Story of an Accidental Revolutionary

by Linus Torvalds (Harper Collins Publishing, 2001).

 Free-fl owing UNIX culture at Bell Labs
 From the very beginning, the UNIX operating system was created and nurtured in a
communal environment. Its creation was not driven by market needs but by a desire to
overcome impediments to producing programs. AT&T, which owned the UNIX trademark
originally, eventually made UNIX into a commercial product. By that time, however, many
of the concepts (and even much of the early code) that made UNIX special had fallen into
the public domain.

www.itbook.store

https://itbook.store

Part I: Getting Started

8

 If you are not old enough to remember when AT&T split up in 1984, you may not remember
a time when AT&T was the phone company. Up until the early 1980s, AT&T didn ’ t have to
think much about competition because if you wanted a phone in the United States, you had
to go to AT&T. It had the luxury of funding pure research projects. The mecca for such pro-
jects was the Bell Laboratories site in Murray Hill, New Jersey.

 After a project called Multics failed around 1969, Bell Labs employees Ken Thompson and
Dennis Ritchie set off on their own to create an operating system that would offer an
improved environment for developing software. Up to that time, most programs were writ-
ten on paper punch cards that had to be fed in batches to mainframe computers. In a 1980
lecture on “The Evolution of the UNIX Time-sharing System,” Dennis Ritchie summed up
the spirit that started UNIX:

 What we wanted to preserve was not just a good environment in which to do
programming, but a system around which a fellowship could form. We knew from
experience that the essence of communal computing as supplied by remote-access,
time-shared machines is not just to type programs into a terminal instead of a
keypunch, but to encourage close communication.

 The simplicity and power of the UNIX design began breaking down barriers that, until
this point, had impeded software developers. The foundation of UNIX was set with several
key elements:

The UNIX fi lesystem : Because it included a structure that allowed levels of subdirec-
tories (which, for today ’ s desktop users, look like folders inside of folders), UNIX
could be used to organize the fi les and directories in intuitive ways. Furthermore,
complex methods of accessing disks, tapes, and other devices were greatly simplifi ed
by representing those devices as individual device fi les that you could also access as
items in a directory.

Input/output redirection : Early UNIX systems also included input redirection and
pipes. From a command line, UNIX users could direct the output of a command to
a fi le using a right-arrow key (>). Later, the concept of pipes (> |) was added where
the output of one command could be directed to the input of another command.
For example, the following command line concatenates (cat) fi le1 and fi le2, sorts
(sort) the lines in those fi les alphabetically, paginates the sorted text for printing
(pr), and directs the output to the computer ’ s default printer (r lpr):r

 $ cat file1 file2 | sort | pr | lpr

 This method of directing input and output enabled developers to create their own
specialized utilities that could be joined with existing utilities. This modularity
made it possible for lots of code to be developed by lots of different people. A user
could just put together the pieces they needed.

Portability : Simplifying the experience of using UNIX also led to it becoming extraor-
dinarily portable to run on different computer hardware. By having device drivers
(represented by fi les in the fi lesystem tree), UNIX could present an interface to
applications in such a way that the programs didn ’ t have to know about the details

www.itbook.store

https://itbook.store

Chapter 1: Starting with Linux

9

1

of the underlying hardware. To port UNIX later to another system, developers had
only to change the drivers. The application programs didn ’ t have to change for dif-
ferent hardware!

 To make portability a reality, however, a high-level programming language was needed to
implement the software needed. To that end, Brian Kernighan and Dennis Ritchie created
the C programming language. In 1973, UNIX was rewritten in C. Today, C is still the primary
language used to create the UNIX (and Linux) operating system kernels.

 As Ritchie went on to say in a 1979 lecture (https://www.bell-labs.com/usr/dmr/
www/hist.html):

 Today, the only important UNIX program still written in assembler is the
assembler itself; virtually all the utility programs are in C, and so are most of the
application ’ s programs, although there are sites with many in Fortran, Pascal, and
Algol 68 as well. It seems certain that much of the success of UNIX follows from
the readability, modifi ability, and portability of its software that in turn follows
from its expression in high-level languages.

 If you are a Linux enthusiast and are interested in what features from the early days of
Linux have survived, an interesting read is Dennis Ritchie ’ s reprint of the fi rst UNIX pro-
grammer ’ s manual (dated November 3, 1971). You can fi nd it at Dennis Ritchie ’ s website:
https://www.bell-labs.com/usr/dmr/www/1stEdman.html . The form of this docu-
mentation is UNIX man pages, which is still the primary format for documenting UNIX and
Linux operating system commands and programming tools today .

 What ’ s clear as you read through the early documentation and accounts of the UNIX system
is that the development was a free-fl owing process, lacked ego, and was dedicated to mak-
ing UNIX excellent. This process led to a sharing of code (both inside and outside of Bell
Labs), which allowed rapid development of a high-quality UNIX operating system. It also
led to an operating system that AT&T would fi nd diffi cult to reel back in later.

 Commercial UNIX
 Before the AT&T divestiture in 1984, when it was split up into AT&T and seven “Baby Bell”
companies, AT&T was forbidden to sell computer systems. Companies that would later
become Verizon, Qwest, Nokia, and Alcatel-Lucent were all part of AT&T. As a result of
AT&T ’ s monopoly of the telephone system, the US government was concerned that an unre-
stricted AT&T might dominate the fl edgling computer industry.

 Because AT&T was restricted from selling computers directly to customers before its dives-
titure, UNIX source code was licensed to universities for a nominal fee. This allowed UNIX
installations to grow in size and mindshare among top universities. However, there was
still no UNIX operating system for sale from AT&T that you didn ’ t have to compile yourself.

 Berkeley Software Distribution arrives

 In 1975, UNIX V6 became the fi rst version of UNIX available for widespread use outside of
Bell Laboratories. From this early UNIX source code, the fi rst major variant of UNIX was

www.itbook.store

https://itbook.store

Part I: Getting Started

10

created at University of California, Berkeley. It was named the Berkeley Software Distribu-
tion (BSD).

 For most of the next decade, the BSD and Bell Labs versions of UNIX headed off in separate
directions. BSD continued forward in the free-fl owing, share-the-code manner that was the
hallmark of the early Bell Labs UNIX, whereas AT&T started steering UNIX toward commer-
cialization. With the formation of a separate UNIX Laboratory, which moved out of Murray
Hill and down the road to Summit, New Jersey, AT&T began its attempts to commercialize
UNIX. By 1984, divestiture was behind AT&T and it was really ready to start selling UNIX.

 UNIX Laboratory and commercialization

 The UNIX Laboratory was considered a jewel that couldn ’ t quite fi nd a home or a way to
make a profi t. As it moved between Bell Laboratories and other areas of AT&T, its name
changed several times. It is probably best remembered by the name it had as it began its
spin-off from AT&T: UNIX System Laboratories (USL).

 The UNIX source code that came out of USL, the legacy of which was sold in part to Santa
Cruz Operation (SCO), was used for a time as the basis for ever-dwindling lawsuits by SCO
against major Linux vendors (such as IBM and Red Hat, Inc.). Because of that, I think the
efforts from USL that have contributed to the success of Linux are lost on most people.

 During the 1980s, of course, many computer companies were afraid that a newly divested
AT&T would pose more of a threat to controlling the computer industry than would an
upstart company in Redmond, Washington. To calm the fears of IBM, Intel, Digital Equip-
ment Corporation, and other computer companies, the UNIX Lab made the following com-
mitments to ensure a level playing fi eld:

Source code only : Instead of producing its own boxed set of UNIX, AT&T continued to
sell source code only and to make it available equally to all licensees. Each company
would then port UNIX to its own equipment. It wasn ’ t until about 1992, when the
lab was spun off as a joint venture with Novell (called Univel), and then eventually
sold to Novell, that a commercial boxed set of UNIX (called UnixWare) was produced
directly from that source code.

Published interfaces : To create an environment of fairness and community to its OEMs
(original equipment manufacturers), AT&T began standardizing what different ports
of UNIX had to be able to do to still be called UNIX. To that end, Portable Operating
System Interface (POSIX) standards and the AT&T UNIX System V Interface Defi ni-
tion (SVID) were specifi cations UNIX vendors could use to create compliant UNIX
systems. Those same documents also served as road maps for the creation of Linux.

 NOTE
 In an early email newsgroup post, Linus Torvalds made a request for a copy, preferably online, of the POSIX standard.

I think that no one from AT&T expected someone actually to be able to write their own clone of UNIX from those inter-

faces without using any of its UNIX source code.

www.itbook.store

https://itbook.store

Chapter 1: Starting with Linux

11

1

Technical approach : Again, until the very end of USL, most decisions on the direction
of UNIX were made based on technical considerations. Management was promoted
up through the technical ranks, and to my knowledge there was never any talk of
writing software to break other companies ’ software or otherwise restrict the suc-
cess of USL ’ s partners.

 When USL eventually started taking on marketing experts and creating a desktop UNIX
product for end users, Microsoft Windows already had a fi rm grasp on the desktop market.
Also, because the direction of UNIX had always been toward source-code licensing destined
for large computing systems, USL had pricing diffi culties for its products. For example, on
software that it was including with UNIX, USL found itself having to pay out per-computer
licensing fees that were based on $100,000 mainframes instead of $2,000 PCs. Add to that
the fact that no application programs were available with UnixWare and you can see why
the endeavor failed.

 Successful marketing of UNIX systems at the time, however, was happening with other
computer companies. SCO had found a niche market, primarily selling PC versions of UNIX
running dumb terminals in small offi ces. Sun Microsystems was selling lots of UNIX work-
stations (originally based on BSD but merged with UNIX in SVR4) for programmers and
high-end technology applications (such as stock trading).

 Other commercial UNIX systems were also emerging by the 1980s. This new ownership
assertion of UNIX was beginning to take its toll on the spirit of open contributions. Law-
suits were being initiated to protect UNIX source code and trademarks. In 1984, this new,
restrictive UNIX gave rise to an organization that eventually led the path to Linux: the
Free Software Foundation.

 GNU transitions UNIX to freedom
 In 1984, Richard M. Stallman started the GNU project (https://gnu.org), recursivelyg
named by the phrase GNU is Not UNIX. As a project of the Free Software Foundation (FSF),
GNU was intended to become a recoding of the entire UNIX operating system that could be
freely distributed.

 The GNU Project page (https://gnu.org/gnu/thegnuproject.html) tells the story
of how the project came about in Stallman ’ s own words. It also lays out the problems that
proprietary software companies were imposing on those software developers who wanted to
share, create, and innovate.

 Although rewriting millions of lines of code might seem daunting for one or two people,
spreading the effort across dozens or even hundreds of programmers made the project pos-
sible. Remember that UNIX was designed to be built in separate pieces that could be piped
together. Because they were reproducing commands and utilities with well-known, pub-
lished interfaces, that effort could easily be split among many developers.

 It turned out that not only could the same results be gained by all new code, but in some
cases that code was better than the original UNIX versions. Because everyone could see

www.itbook.store

https://itbook.store

Part I: Getting Started

12

the code being produced for the project, poorly written code could be corrected quickly or
replaced over time.

 If you are familiar with UNIX, try searching the hundreds of GNU software packages, which
contain thousands of commands, for your favorite UNIX command from the Free Software
Directory (https://directory.fsf.org/wiki/GNU). Chances are good that you will fi nd
it there, along with many, many other available software projects.

 Over time, the term free software has been mostly replaced by the term open source soft-
ware . The term free software is preferred by the Free Software Foundation, while open source
software is promoted by the Open Source Initiative (https://opensource.org).g

 To accommodate both camps, some people use the term Free and Open Source Software (FOSS)
instead. An underlying principle of FOSS, however, is that although you are free to use
the software as you like, you have some responsibility to make the improvements that you
make to the code available to others. This way, everyone in the community can benefi t
from your work, as you have benefi ted from the work of others.

 To defi ne clearly how open source software should be handled, the GNU software project
created the GNU Public License, or GPL. Although many other software licenses cover
slightly different approaches to protecting free software, the GPL is the most well known—
and it ’ s the one that covers the Linux kernel itself. The GNU Public License includes the
following basic features:

Author rights : The original author retains the rights to their software.

Free distribution : People can use the GNU software in their own software, changing
and redistributing it as they please. They do, however, have to include the source
code with their distribution (or make it easily available).

Copyright maintained : Even if you were to repackage and resell the software, the
original GNU agreement must be maintained with the software, which means that
all future recipients of the software have the opportunity to change the source
code, just as you did.

 There is no warranty on GNU software. If something goes wrong, the original developer of
the software has no obligation to fi x the problem. However, many organizations, large and
small, offer paid support (often in subscription form) for the software when it is included
in their Linux or other open source software distribution. (See the section “OSI open source
defi nition” later in this chapter for a more detailed defi nition of open source software.)

 Despite its success in producing thousands of UNIX utilities, the GNU project itself failed to
produce one critical piece of code: the kernel. Its attempts to build an open source kernel
with the GNU Hurd project (https://gnu.org/software/hurd/) were unsuccessful at
fi rst, so it failed to become the premier open source kernel.

 BSD loses some steam
 The one software project that had a chance of beating out Linux to be the premier
open source kernel was the venerable BSD project. By the late 1980s, BSD developers at

www.itbook.store

https://itbook.store

Chapter 1: Starting with Linux

13

1

University of California (UC), Berkeley realized that they had already rewritten most of the
UNIX source code they had received a decade earlier.

 In 1989, UC Berkeley distributed its own UNIX-like code as Net/1 and later (in 1991) as
Net/2. Just as UC Berkeley was preparing a complete, UNIX-like operating system that was
free from all AT&T code, AT&T hit them with a lawsuit in 1992. The suit claimed that the
software was written using trade secrets taken from AT&T ’ s UNIX system.

 It ’ s important to note here that BSD developers had completely rewritten the copyright-pro-
tected code from AT&T. Copyright was the primary means AT&T used to protect its rights to
the UNIX code. Some believe that if AT&T had patented the concepts covered in that code,
there might not be a Linux (or any UNIX clone) operating system today.

 The lawsuit was dropped when Novell bought UNIX System Laboratories from AT&T in 1994.
Nevertheless, during that critical period there was enough fear and doubt about the legal-
ity of the BSD code that the momentum that BSD had gained to that point in the fl edgling
open source community was lost. Many people started looking for another open source
alternative. The time was ripe for a college student from Finland who was working on his
own kernel.

 NOTE
 Today, BSD versions are available from three major projects: FreeBSD, NetBSD, and OpenBSD. People generally

characterize FreeBSD as the easiest to use, NetBSD as available on the most computer hardware platforms, and

OpenBSD as fanatically secure. Many security-minded individuals still prefer BSD to Linux. Also, because of its

licensing, BSD code can be used by proprietary software vendors, such as Microsoft and Apple, who don ’ t want to

share their operating system code with others. MacOS is built on a BSD derivative.

 Linus builds the missing piece
 Linus Torvalds started work on Linux in 1991, while he was a student at the University of
Helsinki, Finland. He wanted to create a UNIX-like kernel so that he could use the same
kind of operating system on his home PC that he used at school. At the time, Linus was
using Minix, but he wanted to go beyond what the Minix standards permitted.

 As noted earlier, Linus announced the fi rst public version of the Linux kernel to the
comp.os.minix newsgroup on August 25, 1991, although Torvalds guesses that the fi rst
version didn ’ t actually come out until mid-September of that year.

 Although Torvalds stated that Linux was written for the 386 processor and probably wasn ’ t
portable, others persisted in encouraging (and contributing to) a more portable approach in
the early versions of Linux. By October 5, 1991, Linux 0.02 was released with much of the
original assembly code rewritten in the C programming language, which made it possible to
start porting it to other machines.

 The Linux kernel was the last—and the most important—piece of code that was needed
to complete a whole UNIX-like operating system under the GPL. So when people started

www.itbook.store

https://itbook.store

Part I: Getting Started

14

putting together distributions, the name Linux and not GNU is what stuck. Some
distributions, such as Debian, however, refer to themselves as GNU/Linux distributions.
(Not including GNU in the title or subtitle of a Linux operating system is also a matter of
much public grumbling by some members of the GNU project. See https://gnu.org .)

 Today, Linux can be described as an open source UNIX-like operating system that refl ects
a combination of SVID, POSIX, and BSD compliance. Linux continues to aim toward com-
pliance with POSIX as well as with standards set by the owner of the UNIX trademark, The
Open Group (https://opengroup.org).g

 The nonprofi t Open Source Development Labs, renamed the Linux Foundation after merging
with the Free Standards Group (https://linuxfoundation.org), which employs Linus g
Torvalds, manages the direction today of Linux development efforts. Its sponsors list is like
a Who ’ s Who of commercial Linux system and application vendors, including IBM, Red Hat,
SUSE, Oracle, HP, Dell, Computer Associates, Intel, Cisco Systems, and hundreds of others.
The Linux Foundation ’ s primary charter is to protect and accelerate the growth of Linux by
providing legal protection and software development standards for Linux developers.

 Although much of the thrust of corporate Linux efforts is on enterprise computing, huge
improvements are continuing in the desktop arena as well. The KDE and GNOME desktop
environments continuously improve the Linux experience for casual users. Newer light-
weight desktop environments such as Chrome OS, Xfce, and LXDE now offer effi cient alter-
natives that today bring Linux to thousands of netbook owners.

 Linus Torvalds continues to maintain and improve the Linux kernel.

 NOTE
 For a more detailed history of Linux, see the book Open Sources : Voices from the Open Source Revolution (O ’ Reilly,

1999). The entire fi rst edition is available online at

https://oreilly.com/openbook/opensources/book/

 OSI open source defi nition
 Linux provides a platform that lets software developers change the operating system as
they like and get a wide range of help creating the applications they need. One of the
watchdogs of the open source movement is the Open Source Initiative, or OSI (I https://
opensource.org).g

 Although the primary goal of open source software is to make source code available, other
goals of open source software are also defi ned by OSI in its open source defi nition. Most of
the following rules for acceptable open source licenses serve to protect the freedom and
integrity of the open source code:

Free distribution : An open source license can ’ t require a fee from anyone who resells
the software.

www.itbook.store

https://itbook.store

Chapter 1: Starting with Linux

15

1

Source code : The source code must be included with the software, and there can be no
restrictions on redistribution.

Derived works : The license must allow modifi cation and redistribution of the code
under the same terms.

Integrity of the author ’ s source code : The license may require that those who use
the source code remove the original project ’ s name or version if they change the
source code.

No discrimination against persons or groups : The license must allow all people to be
equally eligible to use the source code.

No discrimination against fi elds of endeavor : The license can ’ t restrict a project
from using the source code because it is commercial, or because it is associated with
a fi eld of endeavor that the software provider doesn ’ t like.

Distribution of license : No additional license should be needed to use and redistribute
the software.

License must not be specifi c to a product : The license can ’ t restrict the source code
to a particular software distribution.

License must not restrict other software : The license can ’ t prevent someone
from including the open source software on the same medium as non-open
source software.

License must be technology neutral : The license can ’ t restrict methods in which the
source code can be redistributed.

 Open source licenses used by software development projects must meet these criteria to be
accepted as open source software by OSI. About 70 different licenses are accepted by OSI to
be used to label software as “OSI Certifi ed Open Source Software.” In addition to the GPL,
other popular OSI-approved licenses include the following:

LGPL : The GNU Lesser General Public License (LGPL) is often used for distributing
libraries that other application programs depend upon.

BSD : The Berkeley Software Distribution License allows redistribution of source code,
with the requirement that the source code keep the BSD copyright notice and not
use the names of contributors to endorse or promote derived software without writ-
ten permission. A major difference from GPL, however, is that BSD does not require
people modifying the code to pass those changes on to the community. As a result,
proprietary software vendors such as Apple and Microsoft have used BSD code in
their own operating systems.

MIT : The MIT license is like the BSD license, except that it doesn ’ t include the endorse-
ment and promotion requirement.

Mozilla : The Mozilla license covers the use and redistribution of source code associ-
ated with the Firefox web browser and other software related to the Mozilla project

www.itbook.store

https://itbook.store

Part I: Getting Started

16

(https://www.mozilla.org/en-US/). It is a much longer license than the others
just mentioned because it contains more defi nitions of how contributors and those
reusing the source code should behave. This includes submitting a fi le of changes
when submitting modifi cations and that those making their own additions to the
code for redistribution should be aware of patent issues or other restrictions associ-
ated with their code.

 The end result of open source code is software that has more fl exibility to grow and fewer
boundaries in how it can be used. Many believe that the fact that numerous people look
over the source code for a project results in higher-quality software for everyone. As open
source advocate Eric S. Raymond says in an often-quoted line, “Given enough eyeballs, all
bugs are shallow.”

 Understanding How Linux Distributions Emerged
 Having bundles of source code fl oating around the Internet that could be compiled and
packaged into a Linux system worked well for geeks. More casual Linux users, however,
needed a simpler way to put together a Linux system. To respond to that need, some of the
best geeks began building their own Linux distributions.

 A Linux distribution consists of the components needed to create a working Linux system
and the procedures needed to get those components installed and running. Technically,
Linux is really just what is referred to as the kernel . Before the kernel can be useful, you
must have other software, such as basic commands (GNU utilities), services that you
want to offer (such as remote login or web servers), and possibly a desktop interface and
graphical applications. Then you must be able to gather all that together and install it on
your computer ’ s hard disk.

 Slackware (http://www.slackware.com) is one of the oldest Linux distributions still m
supported today. It made Linux friendly for less technical users by distributing software
already compiled and grouped into packages. (Those packages of software components were
in a format called tarballs .) Then you would use basic Linux commands to do things like
format your disk, enable swap, and create user accounts.

 Before long, many other Linux distributions were created. Some Linux distributions were
created to meet special needs, such as KNOPPIX (a live CD Linux), Gentoo (a cool customiz-
able Linux), and Mandrake (later called Mandriva, which was one of several desktop Linux
distributions). But two major distributions rose to become the foundation for many other
distributions: Red Hat Linux and Debian.

 Choosing a Red Hat distribution
 When Red Hat Linux appeared in the late 1990s, it quickly became the most popular Linux
distribution for several reasons:

RPM package management : Tarballs are fi ne for dropping software on your computer,
but they don ’ t work as well when you want to update, remove, or even fi nd out

www.itbook.store

https://itbook.store

Chapter 1: Starting with Linux

17

1

about that software. Red Hat created the RPM packaging format so that a software
package could contain not only the fi les to be shared but also information about the
package version, who created it, which fi les were documentation or confi guration
fi les, and when it was created. By installing software packaged in RPM format, you
could store that information about each software package in a local RPM database.
It became easy to fi nd what was installed, update it, or remove it.

Simple installation : The Anaconda installer made it much simpler to install Linux.
As a user, you could step through some simple questions, in most cases accepting
defaults, to install Red Hat Linux.

Graphical administration : Red Hat added simple graphical tools to confi gure printers,
add users, set time and date, and do other basic administrative tasks. As a result,
desktop users could use a Linux system without even having to run commands.

 For years, Red Hat Linux was the preferred Linux distribution for both Linux professionals
and enthusiasts. Red Hat, Inc., gave away the source code, as well as the compiled, ready-
to-run versions of Red Hat Linux (referred to as the binaries). But as the needs of its Linux
community users and big-ticket customers began to move further apart, Red Hat abandoned
Red Hat Linux and began developing two operating systems instead: Red Hat Enterprise
Linux and Fedora.

 Using Red Hat Enterprise Linux

 In March 2012, Red Hat, Inc., became the fi rst open source software company to bring in
more than $1 billion in yearly revenue. It achieved that goal by building a set of products
around Red Hat Enterprise Linux (RHEL) that would suit the needs of the most demand-
ing enterprise computing environments. After expanding its product line to include many
components of hybrid cloud computing, Red Hat was purchased by IBM in July 2019 for
$34 billion.

 While other Linux distributions focused on desktop systems or small business comput-
ing, RHEL worked on those features needed to handle mission-critical applications for big
business and government. It built systems that could speed transactions for the world ’ s
largest fi nancial exchanges and be deployed as clusters and virtual hosts.

 Instead of just selling RHEL, Red Hat offers an ecosystem of benefi ts upon which Linux cus-
tomers could draw. To use RHEL, customers buy subscriptions that they can use to deploy
any version of RHEL that they desire. If they decommission a RHEL system, they can use
the subscription to deploy another system.

 Different levels of support are available for RHEL, depending on customer needs. Customers
can be assured that, along with support, they can get hardware and third-party software
that is certifi ed to work with RHEL. They can get Red Hat consultants and engineers to help
them put together the computing environments they need. They can also get training and
certifi cation exams for their employees (see the discussion of RHCE certifi cation later in
this chapter).

www.itbook.store

https://itbook.store

Part I: Getting Started

18

 Red Hat has also added other products as natural extensions to Red Hat Enterprise Linux.
JBoss is a middleware product for deploying Java-based applications to the Internet or com-
pany intranets. Red Hat Virtualization comprises the virtualization hosts, managers, and
guest computers that allow you to install, run, manage, migrate, and decommission huge
virtual computing environments.

 In recent years, Red Hat has extended its portfolio into cloud computing. Red Hat
OpenStack Platform and Red Hat Virtualization offer complete platforms for running and
managing virtual machines. However, the technology with the biggest impact in recent
years is Red Hat OpenShift , which provides a hybrid cloud suite of software that has Kuber-t
netes, the most popular container orchestration platform project, as its foundation. With
the Red Hat acquisition, IBM has set a goal to containerize most of its applications to run
on OpenShift.

 There are those who have tried to clone RHEL, using the freely available RHEL source code,
rebuilding and rebranding it. Oracle Linux is built from source code for RHEL but currently
offers an incompatible kernel. CentOS is a community-sponsored Linux distribution that is
built from RHEL source code. Recently, Red Hat took over support of the CentOS project.

 I ’ ve chosen to use Red Hat Enterprise Linux for many of the examples in this book because,
if you want a career working on Linux systems, there is a huge demand for those who
can administer RHEL systems. If you are starting out with Linux, however, Fedora can
provide an excellent entry point to the same skills that you need to use and administer
RHEL systems.

 Using Fedora

 While RHEL is the commercial, stable, supported Linux distribution, Fedora is the free, cut-
ting-edge Linux distribution that is sponsored by Red Hat, Inc. Fedora is the Linux system
that Red Hat uses to engage the Linux development community and encourage those who
want a free Linux for personal use and rapid development.

 Fedora includes tens of thousands of software packages, many of which keep up with the
latest available open source technology. As a user, you can try the latest Linux desktop,
server, and administrative interfaces in Fedora for free. As a software developer, you can
create and test your applications using the latest Linux kernel and development tools.

 Because the focus of Fedora is on the latest technology, it focuses less on stability. So,
expect that you might need to do some extra work to get everything working and that not
all the software will be fully baked.

 I recommend that you use Fedora or RHEL for most of the examples in this book for the fol-
lowing reasons:

■ Fedora is used as a proving ground for Red Hat Enterprise Linux. Red Hat tests
many new applications in Fedora before committing them to RHEL. By using
Fedora, you will learn the skills you need to work with features as they are being
developed for Red Hat Enterprise Linux.

www.itbook.store

https://itbook.store

Chapter 1: Starting with Linux

19

1

■ For learning, Fedora is more convenient than RHEL, yet still includes many of the
more advanced, enterprise-ready tools that are in RHEL.

■ Fedora is free, not only as in “freedom,” but also as in “you don ’ t have to
pay for it.”

 Fedora is extremely popular with those who develop open source software. However, in
the past few years, another Linux distribution has captured the attention of many people
starting out with Linux: Ubuntu.

 Choosing Ubuntu or another Debian distribution
 Like Red Hat Linux, the Debian GNU/Linux distribution was an early Linux distribution
that excelled at packaging and managing software. Debian uses the deb packaging format
and tools to manage all of the software packages on its systems. Debian also has a reputa-
tion for stability.

 Many Linux distributions can trace their roots back to Debian. According to DistroWatch
(https://distrowatch.com), more than 130 active Linux distributions can be traced m
back to Debian. Popular Debian-based distributions include Linux Mint, elementary OS,
Zorin OS, LXLE, Kali Linux, and many others. However, the Debian derivative that has
achieved the most success is Ubuntu (https://ubuntu.com). m

 By relying on stable Debian software development and packaging, the Ubuntu Linux dis-
tribution (sponsored by Canonical Ltd.) was able to come along and add those features
that Debian lacked. In pursuit of bringing new users to Linux, the Ubuntu project added a
simple graphical installer and easy-to-use graphical tools. It also focused on full-featured
desktop systems while still offering popular server packages.

 Ubuntu was also an innovator in creating new ways to run Linux. Using live CDs or live USB
drives offered by Ubuntu, you could have Ubuntu up and running in just a few minutes.
Often included on live CDs were open source applications, such as web browsers and word
processors, that actually ran in Windows. This made the transition to Linux from Windows
easier for some people.

 If you are using Ubuntu, don ’ t fear. Most of subject matter covered in this book will work as
well in Ubuntu as it does in Fedora or RHEL.

 Finding Professional Opportunities with Linux Today
 If you want to develop an idea for a computer-related research project or technology com-
pany, where do you begin? You begin with an idea. After that, you look for the tools that
you need to explore and eventually create your vision. Then you look for others to help you
during that creation process.

 Today, the hard costs of starting a company like Google or Facebook include just a com-
puter, a connection to the Internet, and enough caffeinated beverage of your choice to

www.itbook.store

https://itbook.store

Part I: Getting Started

20

keep you up all night writing code. If you have your own world-changing idea, Linux and
thousands of software packages are available to help you build your dreams. The open
source world also comes with communities of developers, administrators, and users who are
available to help you.

 If you want to get involved with an existing open source project, projects are always
looking for people to write code, test software, or write documentation. In those projects,
you will fi nd people who use the software, work on that software, and are usually willing to
share their expertise to help you as well.

 Whether you seek to develop the next great open source software project, or you simply
want to gain the skills needed to compete for the thousands of well-paying Linux admin-
istrator or development jobs, it will help you to know how to install, secure, and maintain
Linux systems.

 In March 2020, more than 60,000 jobs requiring Linux skills were listed at Indeed.com.
Nearly half of those offered pay of $100,000 per year or more. Site such as Fossjobs.net pro-
vide a venue for posting and fi nding jobs associated with Linux and other free and open
source software skills.

 The message to take from these job sites is that Linux continues to grow and create
demands for Linux expertise. Companies that have begun using Linux have continued to
move forward with it. Those using Linux continue to expand its use and fi nd that cost
savings, security, and the fl exibility it offers continue to make Linux a good investment.

 Understanding how companies make money with Linux
 Open source enthusiasts believe that better software can result from an open source soft-
ware development model than from proprietary development models. So, in theory, any
company creating software for its own use can save money by adding its software contribu-
tions to those of others to gain a much better end product for themselves.

 Companies that want to make money by selling software need to be more creative than
they were in the old days. Although you can sell the software you create, which includes
GPL software, you must pass the source code of that software forward. Of course, others
can then recompile that product, basically using and even reselling your product without
charge. Here are a few ways that companies are dealing with that issue:

Software subscriptions : Red Hat, Inc., sells its Red Hat Enterprise Linux products on
a subscription basis. For a certain amount of money per year, you get binary code
to run Linux (so you don ’ t have to compile it yourself), guaranteed support, tools
for tracking the hardware and software on your computer, access to the company ’ s
knowledge base, and other assets.

 Although Red Hat ’ s Fedora project includes much of the same software and is also
available in binary form, there are no guarantees associated with the software or

www.itbook.store

https://itbook.store

Chapter 1: Starting with Linux

21

1

future updates of that software. A small offi ce or personal user might take a risk
on using Fedora (which is itself an excellent operating system), but a big company
that ’ s running mission-critical applications will probably put down a few dollars for
RHEL.

Training and certifi cation : With Linux system use growing in government and big
business, professionals are needed to support those systems. Red Hat offers training
courses and certifi cation exams to help system administrators become profi cient
using Red Hat Enterprise Linux systems. In particular, the Red Hat Certifi ed Engi-
neer (RHCE) and Red Hat Certifi ed System Administrator (RHCSA) certifi cations
have become popular (https://www.redhat.com/en/services/training-
and-certification/why-get-certified). More on RHCE/RHCSA certifi cationsd
later in this chapter.

 Other certifi cation programs are offered by Linux Professional Institute (https://www
.lpi.org) and CompTIA (g wwww..comptia.org /). LPI and CompTIA are profes-
sional computer industry associations.

Bounties : Software bounties are a fascinating way for open source software companies
to make money. Suppose that you are using XYZ software package and you need
a new feature right away. By paying a software bounty to the project itself, or to
other software developers, you can have your required improvements moved to the
head of the queue. The software you pay for will remain covered by its open source
license, but you will have the features you need—probably at a fraction of the cost
of building the project from scratch.

Donations : Many open source projects accept donations from individuals or open
source companies that use code from their projects. Amazingly, many open source
projects support one or two developers and run exclusively on donations.

Boxed sets, mugs, and T-shirts : Some open source projects have online stores where
you can buy boxed sets (some people still like physical DVDs and hard copies of doc-
umentation) and a variety of mugs, T-shirts, mouse pads, and other items. If you
really love a project, for goodness sake, buy a T-shirt!

 This is in no way an exhaustive list, because more creative ways are being invented every
day to support those who create open source software. Remember that many people have
become contributors to and maintainers of open source software because they needed or
wanted the software themselves. The contributions they make for free are worth the return
they get from others who do the same.

 Becoming Red Hat certifi ed
 Although this book is not focused on becoming certifi ed in Linux, it touches on the activ-
ities that you need to be able to master to pass popular Linux certifi cation exams. In

www.itbook.store

https://itbook.store

Part I: Getting Started

22

particular, most of what is covered in the Red Hat Certifi ed Engineer (RHCE) and Red Hat
Certifi ed System Administrator (RHCSA) exams for Red Hat Enterprise Linux 8 is described
in this book.

 If you are looking for a job as a Linux IT professional, RHCSA or RHCE certifi cation is often
listed as a requirement, or at least a preference, for employment. The RHCSA exam (EX200)
provides basic certifi cation, covering such topics as confi guring disks and fi lesystems, add-
ing users, setting up a simple web and FTP server, and adding swap space. The RHCE exam
(EX300) tests for more advanced server confi guration as well an advanced knowledge of
security features, such as SELinux and fi rewalls.

 Those of us who have taught RHCE/RHCSA courses and given exams (as I did for three
years) are not allowed to tell you exactly what is on the exam. However, Red Hat gives
an overview of how the exams work as well as a list of topics that you can expect to see
covered in the exam. You can fi nd those exam objectives on the following sites:

 RHCSA
https://redhat.com/en/services/training/ex200-red-hat-certified-

system-administrator-rhcsa-exam

 RHCE
https://redhat.com/en/services/training/ex294-red-hat-certified-

engineer-rhce-exam-red-hat-enterprise-linux-8

 As the exam objectives state, the RHCSA and RHCE exams are performance based, which
means that you are given tasks to do and you must perform those tasks on an actual Red
Hat Enterprise Linux system, as you would on the job. You are graded on how well you
obtained the results of those tasks.

 If you plan to take the exams, check back to the exam objectives pages often because they
change from time to time. Also keep in mind that the RHCSA is a standalone certifi cation;
however, you must pass the RHCSA and the RHCE exams to get an RHCE certifi cation. Often,
the two exams are given on the same day.

 You can sign up for RHCSA and RHCE training and exams at https://redhat.com/en/
services/training-and-certification . Training and exams are given at major cit-
ies all over the United States and around the world. The skills that you need to complete
these exams are described in the following sections.

 RHCSA topics

 As noted earlier, RHCSA exam topics cover basic system administration skills. These are
the current topics listed for Red Hat Enterprise Linux 8 at the RHCSA exam objectives site
(again, check the exam objectives site in case they change) and where in this book you can
learn about them:

Understand essential tools : You are expected to have a working knowledge of the
command shell (bash), including how to use proper command syntax and do input/

www.itbook.store

https://itbook.store

Chapter 1: Starting with Linux

23

1

output redirection (< > >>). You need to know how to log in to remote and local>
systems. Expect to have to create, edit, move, copy, link, delete, and change permis-
sion and ownership on fi les. Likewise, you should know how to look up information
on man pages and /usr/share/doc . Most of these topics are covered in Chapter 3
and Chapter 4 in this book. Chapter 5 describes how to edit and fi nd fi les.

Operate running systems : In this category, you must understand the Linux boot pro-
cess, and how to shut down, reboot, and change to different targets (previously
called runlevels). You need to identify processes and kill processes as requested. Yous
must be able to fi nd and interpret log fi les. Chapter 15 describes how to change tar-
gets and manage system services. See Chapter 6 for information on managing and
changing processes. Logging is described in Chapter 13 .

Confi gure local storage : Setting up disk partitions includes creating physical volumes
and confi guring them to be used for Logical Volume Management (LVM) or encryp-
tion (LUKS). You should also be able to set up those partitions as fi lesystems or
swap space that can be mounted or enabled at boot time. Disk partitioning and LVM
are covered in Chapter 12 . LUKS and other encryption topics are described in Chap-
ter 23 , “Understanding Advanced Linux Security.”

Create and confi gure fi lesystems : Create and automatically mount different kinds of
fi lesystems, including regular Linux fi lesystems (ext2, ext3, or ext4) and network
fi lesystems (NFS). Create collaborative directories using the set group ID bit feature.
You must also be able to use LVM to extend the size of a logical volume. Filesystem
topics are covered in Chapter 12 . See Chapter 20 for NFS coverage.

Deploy, confi gure, and maintain systems : This covers a range of topics, including
confi guring networking and creating cron tasks. For software packages, you must
be able to install packages from Red Hat Content Delivery Network (CDN), a remote
repository, or the local fi lesystem. The cron facility is described in Chapter 13 .

Manage users and groups : You must know how to add, delete, and change user and
group accounts. Another topic that you should know is password aging, using the
chage command. See Chapter 11 for information on confi guring users and groups.

Manage security : You must have a basic understanding of how to set up a fi rewall
(firewalld , system-config-firewall , or iptables) and how to use SELinux.
You must be able to set up SSH to do key-based authentication. Learn about SELinux
in Chapter 24 . Firewalls are covered in Chapter 25 . Chapter 13 includes a description
of key-based authentication.

 Most of these topics are covered in this book. Refer to Red Hat documentation (https://
access.redhat.com/documentation) under the Red Hat Enterprise Linux heading forn
descriptions of features not found in this book. In particular, the system administration
guides contain descriptions of many of the RHCSA-related topics.

 RHCE topics

 RHCE exam topics cover more advanced server confi guration, along with a variety of secu-
rity features for securing those servers in Red Hat Enterprise Linux 8. Again, check the

www.itbook.store

https://itbook.store

Part I: Getting Started

24

RHCE exam objectives site for the most up-to-date information on topics that you should
study for the exam.

 System confi guration and management

 The system confi guration and management requirement for the RHCE exam covers a range
of topics, including the following:

Firewalls : Block or allow traffi c to selected ports on your system that offer services
such as web, FTP, and NFS, as well as block or allow access to services based on the
originator ’ s IP address. Firewalls are covered in Chapter 25 , “Securing Linux on
a Network.”

Kerberos authentication : Use Kerberos to authenticate users on a RHEL system.

System reports : Use features such as sar to report on system use of memory, disk
access, network traffi c, and processor utilization. Chapter 13 describes how to use
the sar command.

Shell scripting : Create a simple shell script to take input and produce output in var-
ious ways. Shell scripting is described in Chapter 7 .

SELinux : With Security Enhanced Linux in Enforcing mode, make sure that all server
confi gurations described in the next section are properly secured with SELinux.
SELinux is described in Chapter 24 .

Ansible: Understand core Ansible components (inventories, modules, playbooks, and
so on). Be able to install and confi gure an Ansible control node. Work with Ansible
roles and use advanced Ansible features. See Chapter 29 for information on using
Ansible playbooks to install and manage Linux systems.

 Installing and confi guring network services

 For each of the network services in the list that follows, make sure you can go through
the steps to install packages required by the service, set up SELinux to allow access to the
service, set the service to start at boot time, secure the service by host or by user (using
iptables or features provided by the service itself), and confi gure it for basic operation.
These are the services:

Web server : Confi gure an Apache (HTTP/HTTPS) server. You must be able to set up
a virtual host, deploy a CGI script, use private directories, and allow a particu-
lar Linux group to manage the content. Chapter 17 describes how to confi gure a
web server.

DNS server : Set up a DNS server (bind package) to act as a caching-only name server
that can forward DNS queries to another DNS server. No need to confi gure master or
slave zones. DNS is described from the client side in Chapter 14 . For information on
confi guring a DNS server with Bind, see the RHEL Networking Guide at

https://access.redhat.com/documentation/en-us/red_hat_enter-
prise_linux/7/html-single/networking_guide/index

www.itbook.store

https://itbook.store

Chapter 1: Starting with Linux

25

1

NFS server : Confi gure an NFS server to share specifi c directories to specifi c client sys-
tems so they can be used for group collaboration. Chapter 20 covers NFS.

Windows fi le sharing server : Set up Linux (Samba) to provide SMB shares to specifi c
hosts and users. Confi gure the shares for group collaboration. See Chapter 19 to
learn about confi guring Samba.

Mail server : Confi gure postfi x or sendmail to accept incoming mail from outside of
the local host. Relay mail to a smart host. Mail server confi guration is not covered
in this book (and should not be done lightly). See the RHEL System Administrator ’ s
Guide for information on confi guring mail servers at:

https://access.redhat.com/documentation/en-us/red_hat_enter-
prise_linux/7/html-single/system_administrators_guide/index#ch-
Mail_Servers

Secure Shell server : Set up the SSH service (sshd) to allow remote login to your local
system as well as key-based authentication. Otherwise, confi gure the sshd.conf
fi le as needed. Chapter 13 describes how to confi gure the sshd service.

Network Time server : Confi gure a Network Time Protocol server (ntpd) to synchronize
time with other NTP peers.

Database server : Confi gure the MariaDB database and manage it in various ways. Learn
how to confi gure the MariaDB from the MariaDB.org site (https://mariadb
.com/kb/en/library/documentation/).

 Although there are other tasks in the RHCE exam, as just noted, keep in mind that most
of the tasks have you confi gure servers and then secure those servers using any technique
that you need. Those can include fi rewall rules (iptables), SELinux, or any features built
into confi guration fi les for the particular service.

 Summary
 Linux is an operating system that is built by a community of software developers around
the world, which is led by its creator, Linus Torvalds. It is derived originally from the UNIX
operating system but has grown beyond UNIX in popularity and power over the years.

 The history of the Linux operating system can be tracked from early UNIX systems that
were distributed free to colleges and improved upon by initiatives such as the Berkeley
Software Distribution (BSD). The Free Software Foundation helped make many of the com-
ponents needed to create a fully free UNIX-like operating system. The Linux kernel itself
was the last major component needed to complete the job.

 Most Linux software projects are protected by one of a set of licenses that fall under the
Open Source Initiative umbrella. The most prominent of these is the GNU Public License
(GPL). Standards such as the Linux Standard Base and world-class Linux organizations and

www.itbook.store

https://itbook.store

Part I: Getting Started

26

companies (such as Canonical Ltd. and Red Hat, Inc.) make it possible for Linux to con-
tinue to be a stable, productive operating system into the future.

 Learning the basics of how to use and administer a Linux system will serve you well in any
aspect of working with Linux. The remaining chapters provide a series of exercises with
which you can test your understanding. That ’ s why, for the rest of the book, you will learn
best with a Linux system in front of you so that you can work through the examples in
each chapter and complete the exercises successfully.

 The next chapter explains how to get started with Linux by describing how to get and use
a Linux desktop system.

www.itbook.store

https://itbook.store

