

Pro AngularJS with a Local Parse Server

Since I wrote the original update for working with Parse.com, Facebook has shut down the service, which means that the

instructions in the replacement chapters will no longer work.

Fortunately, as part of the shutdown process, Facebook were kind enough to make the software open-source so that it can be

used locally. This file contains replacement chapters that describe working with a local Parse server, including instructions for installing

the required software.

I hope you find these replacement chapters helpful, and I wish you every success in your AngularJS projects. Please contact me at

adam@adam-freeman.com if you encounter problems with these chapters.

Adam Freeman, London

Feb 2017

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

C H A P T E R 6

1

SportsStore: A Real Application

In the previous chapters, I built quick and simple AngularJS applications. Small and focused
examples allow me to demonstrate specific AngularJS features, but they can lack context. To
help overcome this problem, I am going to create a simple but realistic e-commerce
application.

My application, called SportsStore, will follow the classic approach taken by online stores
everywhere. I will create an online product catalog that customers can browse by category and
page, a shopping cart where users can add and remove products, and a checkout where
customers can enter their shipping details and place their orders. I will also create an
administration area that includes create, read, update, and delete (CRUD) facilities for
managing the catalog—and I will protect it so that only logged-in administrators can make
changes.

My goal in this chapter and those that follow is to give you a sense of what real AngularJS
development is like by creating as realistic an example as possible. I want to focus on
AngularJS, of course, so I have simplified the integration with external systems, such as the
data store, and have omitted others entirely, such as payment processing.

The SportsStore example is one that I use in a few of my books, not least because it
demonstrates the ways in which different frameworks, languages, and development styles can
be used to achieve the same result. You don’t need to have read any of my other books to
follow this chapter, but you will find the contrasts interesting if you already own my Pro
ASP.NET and Pro ASP.NET MVC books.

The AngularJS features that I use in the SportsStore application are covered in depth in
later chapters. Rather than duplicate everything here, I tell you just enough to make sense for
the example application and refer you to other chapters for in-depth information. You can
either read the SportsStore chapters end to end and get a sense of how AngularJS works or
jump to and from the details chapter to get into the depth. Either way, don’t expect to
understand everything right away—AngularJS has a lot of moving parts and the SportsStore
application is intended to show you how they fit together without diving too deeply into the
details that I spend the rest of the book covering.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

2

UNIT TESTING

One of the reasons that I use the SportsStore application in different books is because it
makes it easy to introduce unit testing early. AngularJS provides some excellent support
for unit testing, but I don’t describe it until the final chapter in the book. That’s because
you really need to understand how AngularJS works before you can write
comprehensive unit tests, and I don’t want to include all of the required information
and then duplicate it throughout the rest of the book.

That’s not to say that unit testing with AngularJS is difficult or that you need to be an
expert in AngularJS to write a unit test. Rather, the features that make unit testing
simple depend on some key concepts that I don’t describe until Parts 2 and 3. You can
skip ahead to Chapter 25 now if you want to get an early start on unit testing, but my
advice is to read the book in sequence so that you understand the foundation on which
the unit test features are built.

Getting Started
There is some basic preparation required before I start on the application. The instructions in
the following sections set up the server that will deliver the data to the SportsStore
application.

Preparing the Database

The first step is to set up the database that will store the SportsStore data. The Parse software
works with MongoDB, so start by visiting https://www.mongodb.com/download-center and
downloading the installer for your platform and run it. There are paid-for versions of MongoDB
available but the open-source Community edition is sufficient for the examples in this book.

At the time of writing, the latest version of MongoDB is 3.4.2 and there are installers for
Windows, macOS and many Linux distributions. If you are a Linux user, there are instructions
on the download page for using a package manager, such as apt, to install MongoDB. If you are
a macOS user, there are instructions for installing using Homebrew.

Caution MongoDB doesn’t secure its data by default, which means that you should not deploy

MongoDB into a production environment until you have configured access controls. See

https://docs.mongodb.com/manual/security for details.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

3

Stating the Database on Windows

Select a convenient location to store the data for the example application and create a new
folder called data. Run the following command in a PowerShell window to start the database,
telling it to use the data directory you just created:

& 'C:\Program Files\MongoDB\Server\3.4\bin\mongod.exe' --dbpath="./data"

Starting the Database on Linux

If you are using Linux, then run the following command to start the database:

sudo service mongod start

Starting the Database on macOS

Select a convenient location to store the data for the example application and create a new
folder called data. Run the following command in a Terminal window to start the database:

mongod --dbpath=./data

Installing the Parse Software

The next step is to install the software that will store the data and make it available to the
Angular application. If you are using Windows, open a PowerShell window with Administrator
privileges (by right-clicking on the PowerShell item in the Start menu and selecting Run as
Administrator) and run the following command:

npm install -g parse-server@2.3.2 parse-dashboard@1.0.23

If you are using Linux or macOS, use the following command instead:

sudo npm install -g parse-server@2.3.2 parse-dashboard@1.0.23

NPM will download the packages and install them so they can be used globally. These
packages have many dependencies, so it can take a while for the download and installation
process to complete.

Starting the Parse Software

To start the web service, run the following commands to start the Parse server (enter the
command on a single line):

parse-server --appId sportsstore --masterKey myMasterSecret
 --restAPIKey=myRestSecret --databaseURI mongodb://localhost/sportsstore

Open another terminal or PowerShell window and run this command to start the Parse
dashboard, which is used to configure the Parse server (enter the command on a single line):

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

4

parse-dashboard --appId sportsstore --masterKey myMasterSecret
 --serverURL "http://localhost:1337/parse" --appName SportsStore

Preparing the Data

The next step is to use the Parse dashboard to set up the backend for the application. Go to
http://localhost:4040 and you will see the dashboard shown in Figure 6-1.

Figure 6-1. The initial dashboard

Click on the SportsStore application in the main part of the display and then click on the
Create a Class button, as shown in Figure 6-2.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

5

Figure 6-2. Creating a Class

Ensure that Custom is selected and enter Products as the name, as shown in Figure 6-3.

Figure 6-3. Creating a Parse.com New Class

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

6

Click the Create Class button and you will see a grid view where the application data will be
displayed. The next step is to add columns to the grid that correspond to the data values that
the SportsStore application will use. Click the Add a New Column button, as shown in Figure 6-4.

Figure 6-4. The Add a New Column Button

Select the String type and enter name into the text field, as shown in Figure 6-5.

Figure 6-5. Creating a Column

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

7

Click the Add Column button and the new column will be displayed in the grid view, along
with the default columns that are defined for all data types. Repeat this process to create all of
the columns shown in Table 6-1.

Table 6-1. The Columns Required for the Products Class

Name Type

name String

description String

category String

price number

The Parse dashboard doesn't display the columns especially well, but if you scroll the page

left-to-right, you will see that all of the columns have been added to the Products class.

Tip Notice that an objectId column has been defined. This will be used to uniquely identify objects

in the database. The Parse server will assign unique values to the objectId property automatically, and I’ll

be relying on these values when I implement the administration functions in Chapter 8.

Adding the Data

Now that I have defined the structure of the objects that Parse will store, I can add details of
the products that the SportsStore will offer to customers. Click the Add Row button and enter
the details from the first row of Table 6-2 into the appropriate columns. Start with the name
column and when you tab to the next column, a value will automatically be generated for
objectId and the other default columns. Repeat this process for all of the products listed in
Table 6-2.

Table 6-2. The Data for the Products Table

Name Description Category Price

Kayak A boat for one person Watersports 275

Lifejacket Protective and fashionable Watersports 48.95

Soccer Ball FIFA-approved size and weight Soccer 19.5

Corner Flags Give your playing field a professional touch Soccer 34.95

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

8

Stadium Flat-packed 35,000-seat stadium Soccer 79500

Thinking Cap Improve your brain efficiency by 75% Chess 16

Unsteady Chair Secretly give your opponent a disadvantage Chess 29.95

Human Chess Board A fun game for the family Chess 75

Bling-Bling King Gold-plated, diamond-studded King Chess 1200

When you have finished entering the data, the Parse dashboard should look like Figure 6-

6. (I edited this figure to emphasize the data that has to be entered and removed the default
columns).

Figure 6-6. Entering the product data into the SportsStore dashboard

Testing the Data

If you are a Windows user, enter the following command into a PowerShell window to check
that the data has been created and that the Parse server is working (enter the command on a
single line):

Invoke-RestMethod http://localhost:1337/parse/classes/Products -Method Get `
 -Headers @{"X-Parse-Application-ID"="sportsstore"; `
 "X-Parse-REST-API-Key"="myRestSecret"} | ConvertTo-Json

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

9

Use this command instead if you are a Linux or macOS user:

curl -X GET \
 -H "X-Parse-Application-Id: sportsstore" \
 -H "X-Parse-REST-API-Key: myRestSecret" \
 http://localhost:1337/parse/classes/Products

Two headers must be included in the HTTP request to get the Parse data. The X-Parse-

Application-Id identifies the application whose data is required and the X-Parse-REST-API-Key
header provides the key required to access the data. The values for these headers correspond
to the command line arguments used to start the server and dashboard earlier in the chapter.

The /parse/classes/Products URL is interpreted by the Parse server as a request for all of the
product data, expressed as a JSON string. You should see a JSON description of the data that
you entered in the previous section, although the values of the built-in columns defined by the
server, such as objectID, will be different):

{"results":[
 {"category":"Watersports","description":"A boat for one person","name":"Kayak",
 "price":275,"createdAt":"2014-04-25T19:39:34.387Z",
 "updatedAt":"2014-04-25T19:42:54.644Z","objectId":"iteixu2Sn9"},
 {"category":"Chess","description":"Improve your brain efficiency by 75%",
 "name":"Thinking Cap","price":16,"createdAt":"2014-04-25T19:41:01.245Z",
 "updatedAt":"2014-04-25T19:43:17.688Z","objectId":"VqJRDzQuoz"},
 {"category":"Chess","description":"A fun game for the family",
 "name":"Human Chess Board","price":75,
 "createdAt":"2014-04-25T19:41:16.841Z","updatedAt":"2014-04-25T19:43:23.729Z",
 "objectId":"fxg7cUQMSn"},
 {"category":"Chess","description":"Gold-plated, diamond-studded King",
 "name":"Bling-Bling King","price":1200, "createdAt":"2014-04-25T19:41:25.036Z",
 "updatedAt":"2014-04-25T19:43:25.562Z","objectId":"r3f6yw6XCz"},
 {"category":"Watersports","description":"Protective and fashionable",
 "name":"Lifejacket","price":48.95,"createdAt":"2014-04-25T19:40:08.548Z",
 "updatedAt":"2014-04-25T19:42:59.741Z","objectId":"0eMdG86DMu"},
 {"category":"Soccer","description":"FIFA-approved size and weight",
 "name":"Soccer Ball","price":19.5,"createdAt":"2014-04-25T19:40:37.757Z",
 "updatedAt":"2014-04-25T19:43:02.694Z","objectId":"N2qLCwAfI2"},
 {"category":"Soccer","name":"Corner Flags","price":34.95,
 "description":"Give your playing field a professional touch",
 "createdAt":"2014-04-25T19:40:48.451Z",
 "updatedAt":"2014-04-25T19:43:09.906Z","objectId":"VauZGeizXR"},
 {"category":"Soccer",
 "description":"Flat-packed 35,000-seat stadium",
 "name":"Stadium","price":79500, "objectId":"m9uc1oV9EX",
 "createdAt":"2014-04-25T19:40:54.911Z","updatedAt":"2014-04-25T19:43:15.352Z"},
 {"category":"Chess", "name":"Unsteady Chair","price":29.95,
 "description":"Secretly give your opponent a disadvantage",
 "createdAt":"2014-04-25T19:41:10.141Z",
 "updatedAt":"2014-04-25T19:43:21.098Z","objectId":"hDdYYN4abc"}
]}

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

10

Preparing the Application

Before I start writing the application, I need to prepare the angularjs folder by creating a
directory structure for the files that will make up the application and downloading the
AngularJS and Bootstrap files that I will need.

Creating the Directory Structure

You can arrange the files that make up an AngularJS application in any way you like. You can
even use predefined templates with some client-side development tools, but I am going to
keep things simple and follow the basic layout that I use for most AngularJS projects. This isn’t
always the layout that I finish with, because I tend to move and regroup files as a project
grows in complexity, but this is where I usually start. Create the directories described in Table
6-4 within the angularjs folder.

Table 6-4. The Folders Required for the SportsStore Application

Name Description

components Contains self-contained custom AngularJS components.

controllers Contains the application’s controllers. I describe controllers in Chapter 13.

filters Contains custom filters. I describe filters in depth in Chapter 14.

ngmodules Contains optional AngularJS modules. I describe the optional modules throughout
this book and will give references for each of them as I apply them to the SportsStore
application.

views Contains the partial views for the SportsStore application. Views contain a mix of
directives and filters, which I described in Chapters 10–17.

Installing the AngularJS and Bootstrap Files

My preference, without any real foundation in reason, is to put the main AngularJS JavaScript
file and the Bootstrap CSS files into the main angularjs directory and put the optional AngularJS
modules that I use into the ngmodules folder. I can’t explain why I do this, but it has become a
habit. Following the instructions in Chapter 1, copy the files I listed in Table 6-5 into the
angularjs folder.

Table 6-5. The Files to Be Installed in the angularjs Folder

Name Description

angular.js The main AngularJS functionality

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

11

bootstrap.css The Bootstrap CSS styles

bootstrap-theme.css The default theme for the Bootstrap CSS files

Not all AngularJS functionality comes in the angular.js file. For the SportsStore application I

will require some additional features that are available in optional modules. These are the files
that I keep in the ngmodules folder. Following the instructions in Chapter 1, download the files
described in Table 6-6 and place them in the angularjs/ngmodules folder.

Table 6-6. The Optional Module Files to Be Installed in the ngmodules Folder

Name Description

angular-route.js Adds support for URL routing. See Chapter 7 for URL routing in the SportsStore
application, and see Chapter 22 for full details of this module.

angular-resource.js Adds support for working with RESTful APIs. See Chapter 8 for REST in the
SportsStore application, and see Chapter 21 for full details of this module.

Building the Basic Outline

I like to start a new AngularJS application by mocking up the basic structure with placeholder
content and then filling in each part in turn. The basic layout of the SportsStore application is
the classic two-column layout that you will find in many web stores—a set of categories in the
first column that is used to filter the set of products displayed in the second column. Figure 6-7
shows the effect I am aiming for.

Figure 6-7. The two-column SportsStore layout

I’ll add some additional features as I build the application, but the figure shows the initial
functionality I will create. The first step is to create the top-level HTML file that will contain the

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

12

structural markup and the script and link elements for the JavaScript and CSS files I will be using.
Listing 6-1 shows the contents of the app.html file, which I created in the angularjs folder.

Listing 6-1. The Contents of the app.html File

<!DOCTYPE html>
<html ng-app="sportsStore">
<head>
 <title>SportsStore</title>
 <script src="angular.js"></script>
 <link href="bootstrap.css" rel="stylesheet" />
 <link href="bootstrap-theme.css" rel="stylesheet" />
 <script>
 angular.module("sportsStore", []);
 </script>
</head>
<body>
 <div class="navbar navbar-inverse">
 SPORTS STORE
 </div>
 <div class="panel panel-default row">
 <div class="col-xs-3">
 Categories go here
 </div>
 <div class="col-xs-8">
 Products go here
 </div>
 </div>
</body>
</html>

This file contains HTML elements that define the basic layout, styled using Bootstrap into a
table structure, as described in Chapter 4. There are two AngularJS-specific aspects to this file.
The first is the script element in which I call the angular.module method, as follows:

...
<script>
 angular.module("sportsStore", []);
</script>
...

Modules are the top-level building block in an AngularJS application, and this method call
creates a new module called sportsStore. I don’t do anything with the module other than create
it at the moment, but I’ll be using it to define functionality for the application later.

The second aspect is that I have applied the ng-app directive to the html element, like this:

...
<html ng-app="sportsStore">
...

The ng-app directive makes the functionality defined within the sportsStore module available
within the HTML. I like to apply the ng-app directive to the html element, but you can be more
specific, and a common alternative is to apply it to the body element instead.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

13

Despite creating and applying an AngularJS module, the contents app.html file are simple
and merely lay out the basic structure of the application, styled using Bootstrap. You can see
how the browser displays the app.html file in Figure 6-8.

Tip To request the app.html file, I asked the browser to display the URL

http://localhost:5000/app.html. I am using the Node.js web server that I introduced in Chapter 1, running

on port 5000 of my local machine.

Figure 6-8. The initial layout of the SportsStore application

It doesn’t look like much at the moment, but the application will start to take shape pretty
quickly once the plumbing is in place and I start using AngularJS to build the application
functionality.

Displaying the (Fake) Product Data
I am going to start by adding support for displaying the product data. I want to focus on one
area of functionality at a time, so I am going to define fake local data initially, which I will then
replace with data obtained from the Parse server in Chapter 7.

Creating the Controller

I need to start with a controller, which, as I explained in Chapter 3, defines the logic and data
required to support a view on its scope. The controller I am going to create will be used
throughout the application—something I refer to as the top-level controller, although this is a

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

14

term of my own invention—and I define this controller in its own file. Later, I’ll start to group
multiple related controllers in a file, but I put the top-level controller in its own file. Listing 6-2
shows the contents of the controllers/sportsStore.js file, which I created for this purpose.

Tip The reason I keep the top-level controller in a separate file is so that I can keep an eye on it

when it changes in a revision control system. The top-level controller tends to change a lot during the

early stages of development, when the application is taking shape, and I don’t want the avalanche of

change notifications to mask when other controllers are being altered. Later in the project, when the

main functionality is complete, the top-level controller changes infrequently, but when it does change,

there is a potential for breaking pretty much everything else in the application. At that point in the

development cycle, I want to know when someone alters the top-level controller so that I can ensure

that the changes have been thought through and fully tested.

Listing 6-2. The Contents of the sportsStore.js File

angular.module("sportsStore")
.controller("sportsStoreCtrl", function ($scope) {

 $scope.data = {
 products: [
 { name: "Product #1", description: "A product",
 category: "Category #1", price: 100 },
 { name: "Product #2", description: "A product",
 category: "Category #1", price: 110 },
 { name: "Product #3", description: "A product",
 category: "Category #2", price: 210 },
 { name: "Product #4", description: "A product",
 category: "Category #3", price: 202 }]
 };
});

Notice that the first statement in this file is a call to the angular.module method. This is the
same method call that I made in the app.html file to define the main module for the SportsStore
application. The difference is that when I defined the module, I provided an additional
argument, like this:

...
angular.module("sportsStore", []);
...

The second argument is an array, which is currently empty, that lists the modules on which
the sportsStore module depends and tells AngularJS to locate and provide the functionality that
these modules contain. I’ll be adding elements to this array later, but for now it is important to
know that when you supply the array—empty or otherwise—you are telling AngularJS to
create a new module. AngularJS will report an error if you try to create a module that already
exists, so you need to make sure your module names are unique.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

15

By contrast, the call to the angular.module method in the sportsStore.js file doesn’t have the
second argument:

...
angular.module("sportsStore")
...

Omitting the second argument tells AngularJS that you want to locate a module that has
already been defined. In this situation, AngularJS will report an error if the module specified
doesn’t exist, so you need to make sure the module has already been created.

Both uses of the angular.module method return a Module object that can be used to define
application functionality. I have used the controller method that, as its name suggests, defines a
controller, but I describe the full set of methods available—and the components they create—
in Chapters 9 and 18. You will also see me use some of these methods as I build the
SportsStore application.

Note I wouldn’t usually put the call to create the main application module in the HTML file like this

because it is simpler to put everything in the JavaScript file. The reason I split up the statements is

because the dual uses of the angular.module method cause endless confusion and I wanted to draw your

attention to it, even if that means putting a JavaScript statement in the HTML file that could be omitted.

The main role of the top-level controller in the SportsStore application is to define the data
that will be used in the different views that the application will display. As you will see—and as
I describe in detail in Chapter 13—an AngularJS can have multiple controllers arranged in a
hierarchy. Controllers arranged in this way can inherit data and logic from controllers above
them, and by defining the data in the top-level controller, I can make it easily available to the
controllers that I will be defining later.

The data I have defined is an array of objects that have the same properties as the data
that is stored by Parse, which allows me to get started before I start making Ajax requests to
get the real product information.

Caution Notice that when I define the data on the controller’s scope, I define the data objects in an

array that I assign to a property called products on an object called data, which in turn is attached to the

scope. You have to be careful when you define data you want to be inherited because if you assign

properties directly to the scope (that is, $scope.products = [data]) because other controllers can read, but

not always modify, the data. I explain this in detail in Chapter 13.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

16

Displaying the Product Details

To display details of the products, I need to add some HTML markup to the app.html file.
AngularJS makes it easy to display data, as Listing 6-3 shows.

Listing 6-3. Displaying Product Details in the app.html File

<!DOCTYPE html>
<html ng-app="sportsStore">
<head>
 <title>SportsStore</title>
 <script src="angular.js"></script>
 <link href="bootstrap.css" rel="stylesheet" />
 <link href="bootstrap-theme.css" rel="stylesheet" />
 <script>
 angular.module("sportsStore", []);
 </script>
 <script src="controllers/sportsStore.js"></script>
</head>
<body ng-controller="sportsStoreCtrl">
 <div class="navbar navbar-inverse">
 SPORTS STORE
 </div>
 <div class="panel panel-default row">
 <div class="col-xs-3">
 Categories go here
 </div>
 <div class="col-xs-8">
 <div class="well" ng-repeat="item in data.products">
 <h3>
 {{item.name}}

 {{item.price | currency}}

 </h3>
 {{item.description}}
 </div>
 </div>
 </div>
</body>
</html>

There are three different kinds of changes highlighted in this listing. The first is that I have
added a script element that imports the sportsStore.js file from the controllers folder. This is the file
that contains the sportsStoreCtrl controller. Because I defined the sportsStore module in the
app.html file and then located and used it in the sportsStore.js file, I need to make sure the inline
script element (the one that defines the module) appears before the one that imports the file
(which extends the module).

The next change is to apply the controller to its view using the ng-controller directive, like
this:

...

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

17

<body ng-controller="sportsStoreCtrl">
...

I will be using the sportsStoreCtrl controller to support the entire application, so I have
applied it to the body element so that the view it supports is the entire set of content elements.
This will start to make more sense when I begin to add other controllers to support specific
features.

Generating the Content Elements

The last set of changes in Listing 6-3 creates the elements to display details of the products for
sale in the SportsStore. One of the most useful directives that AngularJS provides is ng-repeat,
which generates elements for each object in an array of data. The ng-repeat directive is applied
as an attribute whose value creates a local variable that is used for each data object in a
specified array, like this:

...
<div class="well" ng-repeat="item in data.products">
...

The value I have used tells the ng-repeat directive to enumerate the objects in the
data.products array applied to the scope by the controller for the view and assign each object to
a variable called item. I can then refer to the current object in data binding expressions, which
are denoted with the {{ and }} characters, like this:

...
<div class="well" ng-repeat="item in data.products">
 <h3>
 {{item.name}}
 {{item.price | currency}}
 </h3>
 {{item.description}}
</div>
...

The ng-repeat directive duplicates the element to which it is applied (and any descendant
elements) for each data object. That data object is assigned to the variable item, which allows
me to insert the values of the name, price, and description properties as required.

The name and description values are inserted as-is in the HTML elements, but I have done
something different with the price property: I have applied a filter. A filter formats or orders
data values for display in a view. AngularJS comes with some built-in filters, including the
currency filter, which formats numeric values as currency amounts. Filters are applied by using
the | character, followed by the name of the filter, such that the expression item.price | currency
tells AngularJS to pass the value of the price property of the item object through the currency
filter.

The currency filter formats amounts as U.S. dollars by default, but, as I explain in Chapter
14, you can use some AngularJS localization filters to display other currency formats. I describe
the built-in filters and show you how to create your own in Chapter 14. I will also create a

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

18

custom filter in the next section. The result is that a set of elements like this one is generated
for each element:

<div class="well ng-scope" ng-repeat="item in data.products">
 <h3>
 <strong class="ng-binding">Product #1
 $100.00
 </h3>
 A product
</div>

Notice now AngularJS has annotated the elements with classes that begin with ng-. These
are an artifact of AngularJS processing the elements and resolving data bindings, and you
should not attempt to change them. You can see the visual effect changes in Listing 6-3 by
loading the app.html file in the browser, as shown in Figure 6-9. I have shown only the first
couple of products, but all of the details are displayed in a single list (something I will address
by adding pagination later in this chapter).

Figure 6-9. Generating the product detail elements

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

19

Displaying the Category List
The next step is to display the list of categories so that the user can filter the set of products
that are displayed. Implementing this feature requires the generation of the elements with
which the user will navigate, handling the navigation to select a product category, and, finally,
updating the details pane so that only products in the selected category are displayed.

Creating a List of Categories

I want to generate the category elements dynamically from the product data objects, rather
than hard-code HTML elements for a fixed set of categories. The dynamic approach is more
complex to set up, but it will allow the SportsStore application to automatically reflect changes
in the product catalog. This means I have to be able to generate a list of unique category
names from an array of product data objects. This is a feature that AngularJS doesn’t include
but is easy to implement by creating and applying a custom filter. I created a file called
customFilters.js in the filters directory, and you can see the contents of this file in Listing 6-4.

Listing 6-4. The Contents of the customFilters.js File

angular.module("customFilters", [])
 .filter("unique", function () {
 return function (data, propertyName) {
 if (angular.isArray(data) && angular.isString(propertyName)) {
 var results = [];
 var keys = {};
 for (var i = 0; i < data.length; i++) {
 var val = data[i][propertyName];
 if (angular.isUndefined(keys[val])) {
 keys[val] = true;
 results.push(val);
 }
 }
 return results;
 } else {
 return data;
 }
 }
 });

Custom filters are created using the filter method defined by Module objects, which are
obtained or created through the angular.module method. I have chosen to create a new module,
called customFilters, to contain my filter, mainly so I can show you how to define and combine
multiple modules within an application.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

20

Tip There are no hard-and-fast rules about when you should add a component to an existing

module or create a new one. I tend to create modules when I am defining functionality that I expect to

reuse in a different application later. Custom filters tend to be reusable because data formatting is

something that almost all AngularJS applications require and most developers end up with a utility belt

of common formats they require.

The arguments to the filter method are the name of the filter, which is unique in this case,
and a factory function that returns a filter function that does the actual work. AngularJS calls
the factory function when it needs to create an instance of the filter, and the filter function is
invoked to perform the filtering.

All filter functions are passed the data they are being asked to format, but my filter defines
an additional argument, called propertyName, which I use to specify the object property that will
be used to generate a list of unique values. You’ll see how to specify the value for the
propertyName argument when I apply the filter. The implementation of the filter function is
simple: I enumerate the contents of the data array and build up a list of the unique values of
the property whose name is provided through the propertyName argument.

Tip I could have hard-coded the filter function to look for the category property, but that limits the

potential for reusing the unique filter elsewhere in the application or even in another AngularJS

application. By taking the name of the property as an argument, I have created a filter that can be used

to generate a list of the unique values of any property in a collection of data objects.

A filter function is responsible for returning the filtered data, even if it is unable to process
the data it receives. To that end, I check to see that the data I am working with is an array and
that the propertyName is a string—checks that I perform using the angular.isArray and
angular.isString methods. Later in the code, I check to see whether a property has been defined
using the angular.isUndefined method. AngularJS provides a range of useful utility methods,
including ones that allow you to check the type of objects and properties. I describe the
complete set of these methods in Chapter 5. If my filter has received an array and a property
name, then I generate and return an array of the unique property values. Otherwise, I return
the data I have received unmodified.

Tip Changes that a filter makes to the data affect only the content displayed to the user and do not

modify the original data in the scope.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

21

Generating the Category Navigation Links

The next step is to generate the links that the user will click to navigate between product
categories. This requires the use of the unique filter that I created in the previous section, along
with some useful built-in AngularJS features, as shown in Listing 6-5.

Listing 6-5. Generating the Navigation Links in the app.html File

<!DOCTYPE html>
<html ng-app="sportsStore">
<head>
 <title>SportsStore</title>
 <script src="angular.js"></script>
 <link href="bootstrap.css" rel="stylesheet" />
 <link href="bootstrap-theme.css" rel="stylesheet" />
 <script>
 angular.module("sportsStore", ["customFilters"]);
 </script>
 <script src="controllers/sportsStore.js"></script>
 <script src="filters/customFilters.js"></script>
</head>
<body ng-controller="sportsStoreCtrl">
 <div class="navbar navbar-inverse">
 SPORTS STORE
 </div>
 <div class="panel panel-default row">
 <div class="col-xs-3">
 <a ng-click="selectCategory()"
 class="btn btn-block btn-default btn-lg">Home
 <a ng-repeat="item in data.products | orderBy:'category' |
unique:'category'"
 ng-click="selectCategory(item)"
 class="btn btn-block btn-default btn-lg">
 {{item}}

 </div>
 <div class="col-xs-8">
 <div class="well" ng-repeat="item in data.products">
 <h3>
 {{item.name}}

 {{item.price | currency}}

 </h3>
 {{item.description}}
 </div>
 </div>
 </div>
</body>
</html>

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

22

The first change that I made in this listing was to update the definition of the sportsStore
module to declare a dependency on the customFilters module that I created in Listing 6-5 and
that contains the unique filter:

...
angular.module("sportsStore", ["customFilters"]);
...

This is known as declaring a dependency. In this case, I am declaring that the sportsStore
module depends on the functionality in the customFilters module. This causes AngularJS to
locate the customFilters module and make it available so that I can refer to the components it
contains, such as filters and controllers—a process known as resolving the dependency.

Tip The process of declaring and managing dependencies between modules and other kinds of

components—known as dependency injection—is central to AngularJS. I explain the process in Chapter

9.

I also have to add a script element that loads the contents of the file that contains the
customFilters module, as follows:

...
<script>
 angular.module("sportsStore", ["customFilters"]);
</script>
<script src="controllers/sportsStore.js"></script>
<script src="filters/customFilters.js"></script>
...

Notice that I am able to define the script element for the customFilters.js file after the one
that creates the sportsStore module and declares a dependency on the customFilters module. This
is because AngularJS loads all of the modules before using them to resolve dependencies. The
effect can be confusing: The order of the script elements is important when you are extending a
module (because the module must already have been defined) but not when defining a new
module or declaring a dependency on one. The final set of changes in Listing 6-5 generates the
category selection elements. There is quite a lot going on in these elements, and it will be
easier to understand if you know what the result looks like—the addition of the category
buttons—shown in Figure 6-10.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

23

Figure 6-10. The category navigation buttons

Generating the Navigation Elements

The most interesting part of the markup is the use of the ng-repeat element to generate an a
element for each product category, as follows:

...
<a ng-click="selectCategory()" class="btn btn-block btn-default btn-lg">Home
<a ng-repeat="item in data.products | orderBy:'category' | unique:'category'"
 ng-click="selectCategory(item)" class=" btn btn-block btn-default btn-lg">
 {{item}}

...

The first part of the ng-repeat attribute value is the same as the one I used when generating
the product details, item in data.products, and tells the ng-repeat directive that it should
enumerate the objects in the data.products array, assign the current object to a variable called
item, and duplicate the a element to which the directive has been applied.

The second part of the attribute value tells AngularJS to pass the data.products array to a
built-in filter called orderBy, which is used to sort arrays. The orderBy filter takes an argument
that specifies which property the objects will be sorted by, which I specify by placing a colon
(the : character) after the filter name and then the argument value. In this example, I have
specified that the category property be used. (I describe the orderBy filter fully in Chapter 14.)

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

24

Tip Notice that I have specified the name of the property between single quotes (the ' character).

By default, AngularJS assumes that names in expression refer to variables defined on the scope. To

specify a static value, I have to use a string literal, which requires the single quote characters in

JavaScript. (I could have used double quotes, but I already used them to demark the start and end of the

ng-repeat directive attribute value.)

The use of the orderBy filter puts the product objects in order, sorted by the value of their
category property. But one of the nice features of filters is that you can chain several together
by using the bar symbol (the | character) and the name of another filter. In this case, I have
used the unique filter that I developed earlier in the chapter. AngularJS applies filters in the
order in which they are applied, which means that the objects are sorted by the category

property and only then passed to the unique filter, which generates the set of unique category
values. You can see how I have specified the property the unique filter will operate on:

...
<a ng-repeat="item in data.products | orderBy:'category' | unique:'category'"
...

The effect is that the data.products array is passed to the orderBy filter, which sorts the
objects based on the value of the category property. The sorted array is then passed to the
unique array, which returns a string array that contains the set of unique category values—and
since the unique filter doesn’t change the order of the values it processes, the results remain
sorted by the previous filter.

Or, to put it more directly, this is an instruction to the ng-repeat directive to generate a set
of unique category names, enumerate each of them, assign the current value to a variable
called item, and generate an a element for each value.

Tip I could have reversed the filters and achieved the same effect. The difference would be that the

orderBy filter would be operating on an array of strings, rather than product objects (because that’s

what the unique filter produces as its result). The orderBy filter is designed to operate on objects, but you

can sort strings by using this incantation: orderBy:'toString()'. Don’t forget the quotes; otherwise,

AngularJS will look for a scope property called toString, rather than invoking the toString method.

Handling the Click Event

I used the ng-click directive on the a elements so that I can respond when the user clicks of the
buttons. AngularJS provides a set of built-in directives, which I describe in Chapter 11, that
make it easy to call controller behaviors in response to events. As its name suggests, the ng-click
directive specifies what AngularJS should do when the click event is triggered, as follows:

...

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

25

<a ng-click="selectCategory()" class="btn btn-block btn-default btn-lg">Home
<a ng-repeat="item in data.products | orderBy:'category' | unique:'category'"
 ng-click="selectCategory(item)" class=" btn btn-block btn-default btn-lg">
 {{item}}

...

There are two a elements in the app.html file. The first is static and creates the Home
button, which I will use to display all of the products in all of the categories. For this element, I
have set the ng-click directive so that it calls a controller behavior called selectCategory with no
arguments. I’ll create the behavior shortly, but for now, the important thing to note is that for
the other a element—the one to which the ng-repeat directive has been applied—I have set up
the ng-click directive so that it calls the selectCategory behavior with the value of the item variable
as the argument. When the ng-repeat directive generates an a element for each unique
category, the ng-click directive will be automatically configured such that the selectCategory
behavior will be passed the category for the button, such as selectCategory('Category #1'), for
example.

Selecting the Category

Clicking the category buttons in the browser doesn’t have any effect at the moment because
the ng-click directive on the a elements is set up to call a controller behavior that isn’t defined.
AngularJS doesn’t complain when you try to access a nonexistent behavior or data value on
the scope on the basis that it might be defined at some point in the future. This can make
debugging a little frustrating because typos don’t result in errors, but the flexibility that this
approach gives is generally useful, as I explain in Chapter 13 when I describe how controllers
and their scopes work in more depth.

Defining the Controller

I need to define a controller behavior called selectCategory in order to respond to the user
clicking the category buttons. I don’t want to add the behavior to the top-level sportsStoreCtrl
controller, which I am reserving for behaviors and data that are required for the entire
application. Instead, I am going to create a new controller that will be used just by the product
listing and category views. Listing 6-6 shows the contents of the controllers/productListControllers.js
file, which I added to the project in order to define the new controller.

Tip You may be wondering why I used a more specific name for the controller’s file than for the

one that contains filters. The reason is that filters are more generic and readily reused in other parts of

the application or even other applications, whereas the kind of controller I am creating in this section

tends to be tied to specific functionality. (This isn’t true for all controllers, however, as you’ll see in

Chapters 15–17 when I show you how to create custom directives.)

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

26

Listing 6-6. The Contents of the productListControllers.js File

angular.module("sportsStore")
 .controller("productListCtrl", function ($scope, $filter) {

 var selectedCategory = null;

 $scope.selectCategory = function (newCategory) {
 selectedCategory = newCategory;
 }

 $scope.categoryFilterFn = function (product) {
 return selectedCategory == null ||
 product.category == selectedCategory;
 }
 });

I call the controller method on the sportsStore module that is defined in the app.html file
(remember that one argument to the angular.module method means find an existing module,
while two arguments means create a new one).

The controller is called productListCtrl, and it defines a behavior called selectCategory,
matching the name of the behavior that the ng-click directives in Listing 6-6. The controller also
defines categoryFilterFn, which takes a product object as its argument and returns true if no
category has been selected or if a category has been selected and the product belongs to it—
this will be useful shortly when I add the controller to the view.

Tip Notice that the selectedCategory variable is not defined on the scope. It is just a regular

JavaScript variable, and that means it cannot be accessed from directives or data bindings in the view.

The effect I have created is that the selectCategory behavior can be called to set the category, and the

categoryFilterFn can be used to filter the product objects, but details of which category has been selected

remains private. I won’t be relying on this feature in the SportsStore applications—I just wanted to draw

your attention to how controllers (and most other kinds of AngularJS components) can be selective

about what public services and data they provide.

Applying the Controller and Filtering the Products

I have to apply the controller to the view using the ng-controller directive so that the ng-click
directive is able to invoke the selectCategory behavior. Otherwise, the scope for the elements
that contain the ng-click directive would be the one created by the top-level sportsStoreCtrl
controller that doesn’t contain the behavior. You can see the changes I have made to do this in
Listing 6-7.

Listing 6-7. Applying a Controller in the app.html File

<!DOCTYPE html>

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

27

<html ng-app="sportsStore">
<head>
 <title>SportsStore</title>
 <script src="angular.js"></script>
 <link href="bootstrap.css" rel="stylesheet" />
 <link href="bootstrap-theme.css" rel="stylesheet" />
 <script>
 angular.module("sportsStore", ["customFilters"]);
 </script>
 <script src="controllers/sportsStore.js"></script>
 <script src="filters/customFilters.js"></script>
 <script src="controllers/productListControllers.js"></script>
</head>
<body ng-controller="sportsStoreCtrl">
 <div class="navbar navbar-inverse">
 SPORTS STORE
 </div>
 <div class="panel panel-default row" ng-controller="productListCtrl">
 <div class="col-xs-3">
 <a ng-click="selectCategory()"
 class="btn btn-block btn-default btn-lg">Home
 <a ng-repeat="item in data.products | orderBy:'category' |
unique:'category'"
 ng-click="selectCategory(item)" class="btn btn-block btn-default btn-
lg">
 {{item}}

 </div>
 <div class="col-xs-8">
 <div class="well"
 ng-repeat="item in data.products | filter:categoryFilterFn">
 <h3>
 {{item.name}}

 {{item.price | currency}}

 </h3>
 {{item.description}}
 </div>
 </div>
 </div>
</body>
</html>

I have added a script element to import the productListControllers.js file and applied the ng-

controller directive for the productListCtrl controller on the part of the view that contains both the
list of categories and the list of products.

Placing the ng-controller directive for the productListCtrl controller within the scope of the one
for the sportsStoreCtrl controller means I can take advantage of controller scope inheritance,
which I explain in detail in Chapter 13. The short version is the scope for the productListCtrl
inherits the data.products array and any other data and behaviors that sportsStoreCtrl defines,
which are then passed on to the view for the productListCtrl controller, along with any data or

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

28

behaviors that it defines. The benefit of using this technique is that it allows you to limit the
scope of controller functionality to the part of the application where it will be used, which
makes it easier to perform good unit tests (as described in Chapter 25) and prevents
unexpected dependencies between components in the application.

There is one other change in Listing 6-7: I changed the configuration of the ng-repeat
directive that generates the product details, like this:

...
<div class="well" ng-repeat="item in data.products | filter:categoryFilterFn">
...

One of the built-in filters that AngularJS provides is called, confusingly, filter. It processes a
collection and selects a subset of the objects it contains. I describe filters in Chapter 14, but
the technique I am using here is to specify the name of the function defined by the
productListCtrl controller. By applying the filter to the ng-repeat directive that creates the product
details, I ensure that only the products in the currently selected category are displayed, as
illustrated by Figure 6-11.

Figure 6-11. Selecting a category

Highlighting the Selected Category

The user can click the category buttons to filter the products, but there is no visual feedback to
show which category has been selected. To address this, I am going to selectively apply the
Bootstrap btn-primary CSS class to the category button that corresponds to the selected
category. The first step is to add a behavior to the controller that will accept a category and, if
it is the selected category, return the CSS class name, as shown in Listing 6-8.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

29

Tip Notice how I am able to chain together method calls on an AngularJS module. This is because

the methods defined by the Module return the Module, creating what is commonly referred to as a fluent

API.

Listing 6-8. Returning the Bootstrap Class Name in the productListControllers.js File

angular.module("sportsStore")
 .constant("productListActiveClass", "btn-primary")
 .controller("productListCtrl",
 function ($scope, $filter, productListActiveClass) {

 var selectedCategory = null;

 $scope.selectCategory = function (newCategory) {
 selectedCategory = newCategory;
 }

 $scope.categoryFilterFn = function (product) {
 return selectedCategory == null ||
 product.category == selectedCategory;
 }

 $scope.getCategoryClass = function (category) {
 return selectedCategory == category ? productListActiveClass : "";
 }
 });

I don’t want to embed the name of the class in the behavior code, so I have used the
constant method on the Module object to define a fixed value called productListActiveClass. This will
allow me to change the class that is used in one place and have the change take effect
wherever it is used. To access the value in the controller, I have to declare the constant name
as a dependency, like this:

...

.controller("productListCtrl", function ($scope, $filter, productListActiveClass) {

...

I can then use the productListActiveClass value in the getCategoryClass behavior, which simply
checks the category it receives as an argument and returns either the class name or the empty
string.

The getCategoryClass behavior may seem a little odd, but it is going to be called by each of
the category navigation buttons, each of which will pass the name of the category it represents
as the argument. To apply the CSS class, I use the ng-class directive, which I have applied to the
app.html file in Listing 6-9.

Listing 6-9. Applying the ng-class Directive to the app.html File

...

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

30

<div class="col-xs-3">
 <a ng-click="selectCategory()"
 class="btn btn-block btn-default btn-lg">Home
 <a ng-repeat="item in data.products | orderBy:'category' | unique:'category'"
 ng-click="selectCategory(item)" class=" btn btn-block btn-default btn-lg"
 ng-class="getCategoryClass(item)">
 {{item}}

</div>
...

The ng-class attribute, which I describe in Chapter 11, will add the element to which it has
been applied to the classes returned by the getCategoryClass behavior. You can see the effect this
creates in Figure 6-12.

Figure 6-12. Highlighting the selected category

Adding Pagination

The last feature I am going to add in this chapter is pagination, such that only a certain number
of product details are displayed at once. I don’t really have enough data to make pagination
terribly important, but it is a common requirement and worth demonstrating. There are three
steps to implementing pagination: modify the controller so that the scope tracks the
pagination state, implement filters, and update the view. I explain each step in the sections
that follow.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

31

Updating the Controller

I have updated the productListCtrl controller to support pagination, as shown in Listing 6-10.

Listing 6-10. Updating the Controller to Track Pagination in the productListControllers.js File

angular.module("sportsStore")
 .constant("productListActiveClass", "btn-primary")
 .constant("productListPageCount", 3)
 .controller("productListCtrl", function ($scope, $filter,
 productListActiveClass, productListPageCount) {

 var selectedCategory = null;

 $scope.selectedPage = 1;
 $scope.pageSize = productListPageCount;

 $scope.selectCategory = function (newCategory) {
 selectedCategory = newCategory;
 $scope.selectedPage = 1;
 }

 $scope.selectPage = function (newPage) {
 $scope.selectedPage = newPage;
 }

 $scope.categoryFilterFn = function (product) {
 return selectedCategory == null ||
 product.category == selectedCategory;
 }

 $scope.getCategoryClass = function (category) {
 return selectedCategory == category ? productListActiveClass : "";
 }

 $scope.getPageClass = function (page) {
 return $scope.selectedPage == page ? productListActiveClass : "";
 }
 });

The number of products shown on a page is defined as a constant called
productListPageCount, which I have declared as a dependency of the controller. Within the
controller, I define variables on the scope that expose the constant value (so I can access it in
the view) and the currently selected page. I have defined a behavior, selectPage, that allows the
selected page to be changed and another, getPageClass, that is designed for use with the ng-class
directive to highlight the selected page, much as I did with the selected category earlier.

Tip You might be wondering why the view can’t access the constant values directly, instead of

requiring everything to be explicitly exposed via the scope. The answer is that AngularJS tries to prevent

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

32

tightly coupled components, which I described in Chapter 3. If views could access services and constant

values directly, then it would be easy to end up with endless couplings and dependencies that are hard

to test and hard to maintain.

Implementing the Filters

I have created two new filters to support pagination, both of which I have added to the
customFilters.js file, as shown in Listing 6-11.

Listing 6-11. Adding Filters to the customFilters.js File

angular.module("customFilters", [])
.filter("unique", function () {
 return function (data, propertyName) {
 if (angular.isArray(data) && angular.isString(propertyName)) {
 var results = [];
 var keys = {};
 for (var i = 0; i < data.length; i++) {
 var val = data[i][propertyName];
 if (angular.isUndefined(keys[val])) {
 keys[val] = true;
 results.push(val);
 }
 }
 return results;
 } else {
 return data;
 }
 }
})
.filter("range", function ($filter) {
 return function (data, page, size) {
 if (angular.isArray(data) && angular.isNumber(page)
 && angular.isNumber(size)) {
 var start_index = (page - 1) * size;
 if (data.length < start_index) {
 return [];
 } else {
 return $filter("limitTo")(data.splice(start_index), size);
 }
 } else {
 return data;
 }
 }
})
.filter("pageCount", function () {
 return function (data, size) {
 if (angular.isArray(data)) {
 var result = [];
 for (var i = 0; i < Math.ceil(data.length / size) ; i++) {
 result.push(i);

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

33

 }
 return result;
 } else {
 return data;
 }
 }
});

The first new filter, called range, returns a range of elements from an array, corresponding
to a page of products. The filter accepts arguments for the currently selected page (which is
used to determine the start index of range) and the page size (which is used to determine the
end index).

The range filter isn’t especially interesting, other than I have built on the functionality
provided by one of the built-in filters, called limitTo, which returns up to a specified number of
items from an array. To use this filter, I have declared a dependency on the $filter service,
which lets me create and use instances of filter. I explain how this works in detail in Chapter
14, but the key statement from the listing is this one:

...
return $filter("limitTo")(data.splice(start_index), size);
...

The result is that I use the standard JavaScript splice method to select part of the data array
and then pass it to the limitTo filter to select no more than the number of items that can be
displayed on the page. The limitTo filter ensures that there are no problems stepping over the
end of the array and will return fewer items if the specified number isn’t available.

The second filter, pageCount, is a dirty—but convenient—hack. The ng-repeat directive makes
it easy to generate content, but it works only on data arrays. You can’t, for example, have it
repeat a specified number of times. My filter works out how many pages an array can be
displayed in and then creates an array with that many numeric values. So, for example, if a
data array can be displayed in three pages, then the result from the pageCount filter would be
an array containing the values 1, 2, and 3. You’ll see why this is useful in the next section.

Caution I am abusing the filter functionality to get around a limitation of the ng-repeat directive. This is a

bad thing, but it is expedient and, as you will see, allows me to build on some of the functionality I

created for related features. The better alternative would be to create a custom replacement for the ng-

repeat directive that will generate elements a specified number of times. I explain the techniques

required to do this—which are rather advanced—in Chapters 16 and 17.

Updating the View

The last step to implement pagination is to update the view so that only one page of products
is displayed and to provide the user with buttons to move from one page to another. You can
see the changes I have made to the app.html file in Listing 6-12.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

34

Listing 6-12. Adding Pagination to the app.html File

<!DOCTYPE html>
<html ng-app="sportsStore">
<head>
 <title>SportsStore</title>
 <script src="angular.js"></script>
 <link href="bootstrap.css" rel="stylesheet" />
 <link href="bootstrap-theme.css" rel="stylesheet" />
 <script>
 angular.module("sportsStore", ["customFilters"]);
 </script>
 <script src="controllers/sportsStore.js"></script>
 <script src="filters/customFilters.js"></script>
 <script src="controllers/productListControllers.js"></script>
</head>
<body ng-controller="sportsStoreCtrl">
 <div class="navbar navbar-inverse">
 SPORTS STORE
 </div>
 <div class="panel panel-default row" ng-controller="productListCtrl">
 <div class="col-xs-3">
 <a ng-click="selectCategory()"
 class="btn btn-block btn-default btn-lg">Home
 <a ng-repeat="item in data.products | orderBy:'category' |
unique:'category'"
 ng-click="selectCategory(item)"
 class="btn btn-block btn-default btn-lg"
 ng-class="getCategoryClass(item)">
 {{item}}

 </div>
 <div class="col-xs-8">
 <div class="well"
 ng-repeat=
 "item in data.products | filter:categoryFilterFn |
range:selectedPage:pageSize">
 <h3>
 {{item.name}}

 {{item.price | currency}}

 </h3>
 {{item.description}}
 </div>
 <div class="pull-right btn-group">
 <a ng-repeat=
 "page in data.products | filter:categoryFilterFn |
pageCount:pageSize"
 ng-click="selectPage($index + 1)" class="btn btn-default"
 ng-class="getPageClass($index + 1)">
 {{$index + 1}}

 </div>

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

35

 </div>
 </div>
</body>
</html>

The first change is to the ng-repeat directive that generates the product list so that the data
is passed through the range filter to select the products for the current page. The details of the
current page and the number of products per page are passed to the filter as arguments using
the values I defined on the controller scope.

The second change is the addition of the page navigation buttons. I use the ng-repeat
directive to work out how many pages the products in the currently selected category requires
and pass the result to the pageCount filter, which then causes the ng-repeat directive to generate
the right number of page navigation buttons. The currently selected page is indicated through
the ng-class directive, and the page is changed through the ng-click directive.

You can see the result in Figure 6-13, which shows the two pages required to display all of
the products. There are not enough items in the fake data for any one category to require
multiple pages, but the effect is evident.

Figure 6-13. Paginating the product details

Summary
In this chapter, I started the process of developing the SportsStore application. All
development frameworks that follow the MVC pattern have a common characteristic, which is
that there is a lot of seemingly slow preparation and then, all of a sudden, features start to fall
into place. AngularJS is no exception, and you can get a sense of the quickening pace
throughout this chapter, to the point where adding pagination took longer for me to explain
than to actually do. Now that the basic plumbing is in place, the pace will continue to crack
along in the next chapter, where I will start using the real data from the Parse server,
implement the shopping cart, and start the checkout process.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 6 SportsStore: A Real Application

36

TODO
- Sort out listing, figure and table numbers
- Tidy up long commands onto 2 lines

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

C H A P T E R 7

1

SportsStore: Navigation and
Checkout

In this chapter, I will continue the development of the SportsStore application by adding
support for working with the real data, by implementing the cart, and by beginning work on
the order checkout process.

Preparing the Example Project
I am going to continue building the project I started in Chapter 6. You can download the source
code from Chapter 6 from www.apress.com if you want to follow along with the examples but
don’t want to have to build the project from scratch.

Using the Real Product Data
In Chapter 6, I put all of the features in place for displaying the product data to the user, but I
did so using dummy data so that I could focus on building the basic plumbing of the
application. It is now time to switch over to using the real data, which I will obtain from Parse
and which I set up right at the start of Chapter 6.

AngularJS provides support for making Ajax requests through a service called $http. I
describe how services work in detail in Part 3 and the $http service itself in Chapter 23, but you
can get a sense of how it works through the changes I made to the top-level sportsStoreCtrl
controller, as shown in Listing 7-1.

Listing 7-1. Making an Ajax Request in the sportsStore.js File

angular.module("sportsStore")
 .constant("dataUrl", "http://localhost:1337/parse/classes/Products")
 .run(function ($http) {
 $http.defaults.headers.common["X-Parse-Application-Id"] = "sportsstore";
 $http.defaults.headers.common["X-Parse-REST-API-Key"] = "myRestSecret";
 })
 .controller("sportsStoreCtrl", function ($scope, $http, dataUrl) {

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 7 SportsStore: Navigation and Checkout

2

 $scope.data = {};

 $http.get(dataUrl)
 .success(function (data) {
 $scope.data.products = data.results;

 })
 .error(function (response) {
 $scope.data.error = response.error || response;
 });
 });

Most JavaScript methods calls, including those made on AngularJS components, are
synchronous, which means that execution doesn’t move on to the next statement until the
current one has been completed. That doesn’t work when making network requests in web
applications because we want the user to be able to interact with the application while the
request is being made in the background.

I am going to obtain the data I need using an Ajax request. Ajax stands for Asynchronous
JavaScript and XML, where the important word is asynchronous. An Ajax request is a regular
HTTP request that happens asynchronously, in other words, in the background. AngularJS
represents asynchronous operations using promises, which will be familiar to you if you have
used libraries such as jQuery (and which I introduced in Chapter 5 and explain in detail in
Chapter 20).

The $http service defines methods for making different kinds of Ajax request. The get
method, which is the one I have used here, uses the HTTP GET method to request the URL
passed as an argument. I have defined the URL as a constant called dataUrl and used the URL
from Chapter 6 with which I tested the Parse server, adding the headers that are required to
get data from the server with the run method (which I describe in Chapter 9).

 The $http.get method starts the Ajax request, and execution of the application continues,
even though the request has yet to be completed. AngularJS needs a way to notify me when
the server has responded to the request, which is where the promise comes in. The $http.get
method returns an object that defines success and error methods. I pass functions to these
methods, and AngularJS promises to call one of them to tell me how the request turns out.

AngularJS will invoke the function I passed to the success method if everything with the
HTTP request went well and—as a bonus—will automatically convert JSON data to JavaScript
objects and pass them as the argument to the success function. If there is a problem with the
Ajax HTTP request, then AngularJS will invoke the function I passed to the error method.

Tip JSON stands for JavaScript Object Notation and is a data exchange format that is widely used in

web applications. JSON represents data in a way that is similar to JavaScript, which makes it easy to

operate on JSON data in JavaScript applications. JSON has largely displaced XML, the X in Ajax, because

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 7 SportsStore: Navigation and Checkout

3

it is human-readable and easy to implement. I introduced JSON in Chapter 5, and you can learn about

the details of it at http://en.wikipedia.org/wiki/Json.

The success function I have used in the listing is simple because it relies on the automatic
conversion that AngularJS performs for JSON data. I just assign the data that is obtained from
the server to the data.products variable on the controller scope. The error function assigns the
object passed by AngularJS to describe the problem to the data.error variable on the scope. (I’ll
return to the error in the next section.)

Tip Successful responses from the Parse server are an object with a results property that is set to

the data that has been requested. Errors are expressed an object which has an error property. You can

see how I have used the results and error properties in the listing. Not all errors will come from the Parse

server, which is why I test for the error property and fallback to using the entire argument object.

You can see the effect of making the Ajax request in Figure 7-1. When AngularJS creates its
instance of the sportsStore controller, the HTTP request is started, and then the scope is
updated with the data when it arrives. The product detail, category, and page features that I
created in Chapter 6 operate just as they did before, but with the product data obtained from
the Parse server.

UNDERSTANDING THE SCOPE

It may not be obvious when testing the changes, but obtaining the data via Ajax
highlights one of the most important aspects of AngularJS development, which is the
dynamic nature of scopes. When the application first starts, the HTML content is
generated and displayed to the user even though there is no product information
available.

At some point after the content has been rendered, the data will arrive from the server
and be assigned to the data.products variable in the scope. When this happens, AngularJS
updates all of the bindings and the output from behaviors that depend on the product
data, ensuring that the new data is propagated throughout the application. In essence,
AngularJS scopes are live data stores, which respond and propagate changes. You will
see countless examples of this propagation of changes throughout the book.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 7 SportsStore: Navigation and Checkout

4

Figure 7-1. Obtaining product data via Ajax

Handling Ajax Errors

Dealing with successful Ajax requests is easy because I just assign the data to the scope and let
AngularJS update all of the bindings and directives in the views. I have to work a little harder to
deal with errors and add some new elements to the view that I will display when there is a
problem. In Listing 7-2, you can see the changes that I have made to the app.html file to display
errors to the user.

Listing 7-2. Displaying Errors in the app.html File

<!DOCTYPE html>

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 7 SportsStore: Navigation and Checkout

5

<html ng-app="sportsStore">
<head>
 <title>SportsStore</title>
 <script src="angular.js"></script>
 <link href="bootstrap.css" rel="stylesheet" />
 <link href="bootstrap-theme.css" rel="stylesheet" />
 <script>
 angular.module("sportsStore", ["customFilters"]);
 </script>
 <script src="controllers/sportsStore.js"></script>
 <script src="filters/customFilters.js"></script>
 <script src="controllers/productListControllers.js"></script>
</head>
<body ng-controller="sportsStoreCtrl">
 <div class="navbar navbar-inverse">
 SPORTS STORE
 </div>

 <div class="alert alert-danger" ng-show="data.error">
 Error ({{data.error.status}}). The product data was not loaded.
 Click here to try again
 </div>

 <div class="panel panel-default row" ng-controller="productListCtrl"
 ng-hide="data.error">
 <div class="col-xs-3">
 <a ng-click="selectCategory()"
 class="btn btn-block btn-default btn-lg">Home
 <a ng-repeat="item in data.products | orderBy:'category' |
unique:'category'"
 ng-click="selectCategory(item)"
 class="btn btn-block btn-default btn-lg"
 ng-class="getCategoryClass(item)">
 {{item}}

 </div>
 <div class="col-xs-8">
 <div class="well"
 ng-repeat=
 "item in data.products | filter:categoryFilterFn |
range:selectedPage:pageSize">
 <h3>
 {{item.name}}

 {{item.price | currency}}

 </h3>
 {{item.description}}
 </div>
 <div class="pull-right btn-group">
 <a ng-repeat=
 "page in data.products | filter:categoryFilterFn |
pageCount:pageSize"
 ng-click="selectPage($index + 1)" class="btn btn-default"

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 7 SportsStore: Navigation and Checkout

6

 ng-class="getPageClass($index + 1)">
 {{$index + 1}}

 </div>
 </div>
 </div>
</body>
</html>

I have added a new div element to the view, which shows an error to the user. I have used
the ng-show directive, which hides the element it applied to until the expression specified in the
attribute value evaluates to true. I have specified the data.error property, which AngularJS takes
as an instruction to show the div element when the property has been assigned a value. Since
the data.error property is undefined until an Ajax error occurs, the visibility of the div element is
tied to the outcome of the $http.get method in the controller.

The counterpart to the ng-show directive is ng-hide, which I have applied to the div element
that contains the category buttons and the product details. The ng-hide directive will show an
element and its contents until its expression evaluates to true, at which point they will be
hidden. The overall effect is that when there is an Ajax error, the normal content is hidden and
replaced with the error, as shown in Figure 7-2.

Tip I describe the ng-show and ng-hide directives in detail in Chapter 10.

Figure 7-2. Displaying an error to the user

Tip I created this screenshot by changing the value of the dataUrl in the sportsStore.js file to one

that doesn’t exist.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 7 SportsStore: Navigation and Checkout

7

The object passed to the error function defines status and message properties. The status
property is set to the HTTP error code, and the message property returns a string that
describes the problem. I included the status property in the message that I show to the user,
along with a link that lets them reload the application and, implicitly, try to load the data
again.

Creating Partial Views
The HTML in the app.html file is approaching the point of complexity where it isn’t immediately
obvious what every element does—something that will get worse as I add further features to
the SportsStore application.

Fortunately, I can break up the markup into separate files and use the ng-include directive to
import those files at runtime. To that end, I created the views/productList.html file, the contents
of which are shown in Listing 7-3.

Listing 7-3. The Contents of the productList.html File

<div class="panel panel-default row" ng-controller="productListCtrl"
 ng-hide="data.error">
 <div class="col-xs-3">
 <a ng-click="selectCategory()"
 class="btn btn-block btn-default btn-lg">Home
 <a ng-repeat="item in data.products | orderBy:'category' | unique:'category'"
 ng-click="selectCategory(item)" class=" btn btn-block btn-default btn-lg"
 ng-class="getCategoryClass(item)">
 {{item}}

 </div>
 <div class="col-xs-8">
 <div class="well"
 ng-repeat=
 "item in data.products | filter:categoryFilterFn |
range:selectedPage:pageSize">
 <h3>
 {{item.name}}

 {{item.price | currency}}

 </h3>
 {{item.description}}
 </div>
 <div class="pull-right btn-group">
 <a ng-repeat=
 "page in data.products | filter:categoryFilterFn | pageCount:pageSize"
 ng-click="selectPage($index + 1)" class="btn btn-default"
 ng-class="getPageClass($index + 1)">
 {{$index + 1}}

 </div>
 </div>

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 7 SportsStore: Navigation and Checkout

8

</div>

I have copied the elements that define the product and category lists into the HTML file.
Partial views are fragments of HTML, which means that they do not require html, head, and body
elements in the way that a complete HTML document does. In Listing 7-4, you can see how I
have removed these elements from the app.html file and replaced them with the ng-include
directive.

Tip There are three benefits to using partial views. The first is to break up the application into

manageable chunks, as I have done here. The second is to create fragments of HTML that can be used

repeatedly in an application. The third is to make it easier to show different areas of functionality to the

user as they use the application—I’ll return to this benefit in the “Defining URL Routes” section later in

the chapter.

Listing 7-4. Importing a Partial View in the app.html File

<!DOCTYPE html>
<html ng-app="sportsStore">
<head>
 <title>SportsStore</title>
 <script src="angular.js"></script>
 <link href="bootstrap.css" rel="stylesheet" />
 <link href="bootstrap-theme.css" rel="stylesheet" />
 <script>
 angular.module("sportsStore", ["customFilters"]);
 </script>
 <script src="controllers/sportsStore.js"></script>
 <script src="filters/customFilters.js"></script>
 <script src="controllers/productListControllers.js"></script>
</head>
<body ng-controller="sportsStoreCtrl">
 <div class="navbar navbar-inverse">
 SPORTS STORE
 </div>

 <div class="alert alert-danger" ng-show="data.error">
 Error ({{data.error.status}}). The product data was not loaded.
 Click here to try again
 </div>

 <ng-include src="'views/productList.html'"></ng-include>

</body>
</html>

The creator of a directive can specify how it can be applied: as an element, as an attribute,
as a class, or even as an HTML comment. I explain how this is done in Chapter 16, but the ng-

include directive has been set up so that it can be applied as an element and as the more

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 7 SportsStore: Navigation and Checkout

9

conventional attribute, and I have used it in this way solely for variety. When AngularJS
encounters the ng-include directive, it makes an Ajax request, loads the file specified by the src
attribute, and inserts the contents in place of the element. There is no visible difference in the
content presented to the user, but I have simplified the markup in the app.html file and put all
the product list–related HTML in a separate file.

Tip When using the ng-include directive, I specified the name of the file as a literal value in single

quotes. If I had not done this, then the directive would have looked for a scope property to get the

name of the file.

Creating the Cart
The user can see the products that I have available, but I can’t sell anything without a shopping
cart. In this section, I will build the cart functionality that will be familiar to anyone who has
used an e-commerce site, the basic flow of which is illustrated by Figure 7-3.

Figure 7-3. The basic flow of the shopping cart

As you will see in the following sections, several sets of changes are required to implement
the cart feature, including creating a custom AngularJS component.

Defining the Cart Module and Service

So far, I have been organizing the files in my project based on the type of component they
contain: Filters are defined in the filters folder, views in the views folder, and so on. This makes
sense when building the basic features of an application, but there will always be some
functionality in a project that is relatively self-contained but requires a mix of AngularJS
components. You can continue to organize the files by component type, but I find it more
useful to order the files by the function that they collectively represent, for which I use the
components folder. The cart functionality is suitable for this kind of organization because, as you
will see, I am going to need partial views and several components to get the effect I require. I

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 7 SportsStore: Navigation and Checkout

10

started by creating the components/cart folder and adding a new JavaScript file to it called cart.js.
You can see the contents of this file in Listing 7-5.

Listing 7-5. The Contents of the cart.js File

angular.module("cart", [])
.factory("cart", function () {

 var cartData = [];

 return {

 addProduct: function (id, name, price) {
 var addedToExistingItem = false;
 for (var i = 0; i < cartData.length; i++) {
 if (cartData[i].objectId == id) {
 cartData[i].count++;
 addedToExistingItem = true;
 break;
 }
 }
 if (!addedToExistingItem) {
 cartData.push({
 count: 1, objectId: id, price: price, name: name
 });
 }
 },

 removeProduct: function (id) {
 for (var i = 0; i < cartData.length; i++) {
 if (cartData[i].objectId == id) {
 cartData.splice(i, 1);
 break;
 }
 }
 },

 getProducts: function () {
 return cartData;
 }
 }
});

I started by creating a custom service in a new module called cart. AngularJS provides a lot
of its functionality through services, but they are simply singleton objects that are accessible
throughout an application. (Singleton just means that only one object will be created and
shared by all of the components that depend on the service.)

Not only does using a service allow me to demonstrate an important AngularJS feature,
but implementing the cart this way works well because having a shared instance ensures that
every component can access the cart and have the same view of the user’s product selections.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 7 SportsStore: Navigation and Checkout

11

As I explain in Chapter 18, there are different ways to create services depending on what
you are trying to achieve. I have used the simplest in Listing 7-5, which is to call the
Module.factory method and pass in the name of the service (which is cart, in this case) and a
factory function. The factory function will be invoked when AngularJS needs the service and is
responsible for creating the service object; since one service object is used throughout the
application, the factory function will be called only once.

My cart service factory function returns an object with three methods that operate on a
data array that is not exposed directly through the service, which I did to demonstrate that you
don’t have to expose all of the workings in a service. The cart service object defines the three
methods described in Table 7-1. I represent products in the cart with objects that define id,
name, and price properties to describe the product and a count property to record the number
the user has added to the basket.

Table 7-1. The Methods Defined by the Cart Service

Method Description

addProduct(id, name, price) Adds the specified product to the cart or increments the number required
if the cart already contains the product

removeProduct(id) Removes the product with the specified ID

getProducts() Returns the array of objects in the cart

Creating a Cart Widget

My next step is to create a widget that will summarize the contents of the cart and provide the
user with the means to begin the checkout process, which I am going to do by creating a
custom directive. Directives are self-contained, reusable units of functionality that sit at the
heart of AngularJS development. As you start with AngularJS, you will rely on the many built-in
directives (which I describe in Chapters 9–12), but as you gain confidence, you will find
yourself creating custom directives to tailor functionality to suit your applications.

You can do a lot with directives, which is why it takes me six chapters to describe them
fully later in the book. They even support a cut-down version of jQuery, called jqLite, to
manipulate elements in the DOM. In short, directives allow you to write anything from simple
helpers to complex features and to decide whether the result is tightly woven into the current
application or completely reusable in other applications. Listing 7-6 shows the additions I made
to the cart.js file to create the widget directive, which is at the simpler end of what you can do
with directives.

Listing 7-6. Adding a Directive to the cart.js File

angular.module("cart", [])
.factory("cart", function () {

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 7 SportsStore: Navigation and Checkout

12

 var cartData = [];

 return {
 // ...service statements omitted for brevity...
 }
})
.directive("cartSummary", function (cart) {
 return {
 restrict: "E",
 templateUrl: "components/cart/cartSummary.html",
 controller: function ($scope) {

 var cartData = cart.getProducts();

 $scope.total = function () {
 var total = 0;
 for (var i = 0; i < cartData.length; i++) {
 total += (cartData[i].price * cartData[i].count);
 }
 return total;
 }

 $scope.itemCount = function () {
 var total = 0;
 for (var i = 0; i < cartData.length; i++) {
 total += cartData[i].count;
 }
 return total;
 }
 }
 };
});

Directives are created by calling the directive method on an AngularJS module and passing
in the name of the directive (cartSummary in this case) and a factory function that returns a
directive definition object. The definition object defines properties that tell AngularJS what
your directive does and how it does it. I have specified three properties when defining the
cartSummary directive, and I have described them briefly in Table 7-2. (I describe and
demonstrate the complete set of properties in Chapters 16 and 17.)

Tip Although my directive is rather basic, it isn’t the simplest approach you can use to create a

directive. In Chapter 15, I show you how to create directives that use jqLite, the AngularJS version of

jQuery to manipulate existing content. The kind of directive that I have created here, which specifies a

template and a controller and restricts how it can be applied, is covered in Chapter 16 and Chapter 17.

Table 7-2. The Definition Properties Used for the cartSummary Directive

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 7 SportsStore: Navigation and Checkout

13

Name Description

restrict Specifies how the directive can be applied. I have used a value of E, which means that this
directive can be applied only as an element. The most common value is EA, which means
that the directive can be applied as an element or as an attribute.

templateUrl Specifies the URL of a partial view whose contents will be inserted into the directive’s
element.

controller Specifies a controller that will provide data and behaviors to the partial view.

In short, my directive definition defines a controller, tells AngularJS to use the

components/cart/cartSummary.html view, and restricts the directive so that it can be applied only
as an element. Notice that the controller in Listing 7-6 declares a dependency on the cart
service, which is defined in the same module. This allows me to define the total and itemCount
behaviors that consume the methods provided by the service to operate on the cart contents.
The behaviors defined by the controller are available to the partial view, which is shown in
Listing 7-7.

Tip This partial view contains a style element to redefine some of the Bootstrap CSS for the

navigation bar that runs across the top of the SportsStore layout. I don’t usually like embedding style

elements in partial views, but I do so when the changes affect only that view and there is a small

amount of CSS. In all other situations, I would define a separate CSS file and import it into the

application’s main HTML file.

Listing 7-7. The Contents of the cartSummary.html File

<style>
 .navbar-right { float: right !important; margin-right: 5px;}
 .navbar-text { margin-right: 10px; }
</style>

<div class="navbar-right">
 <div class="navbar-text">
 Your cart:
 {{itemCount()}} item(s),
 {{total() | currency}}
 </div>
 Checkout
</div>

The partial view uses the controller behaviors to display the number of items and the total
value of those items. There is also an a element that is labeled Checkout; clicking the button
doesn’t do anything at the moment, but I’ll wire it up later in the chapter.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 7 SportsStore: Navigation and Checkout

14

Applying the Cart Widget

Applying the cart widget to the application requires three steps: adding a script element to
import the contents of the JavaScript file, adding a dependency for the cart module, and adding
the directive element to the markup. Listing 7-8 shows all three changes applied to the app.html

file.

Listing 7-8. Adding the Cart Widget to the app.html File

<!DOCTYPE html>
<html ng-app="sportsStore">
<head>
 <title>SportsStore</title>
 <script src="angular.js"></script>
 <link href="bootstrap.css" rel="stylesheet" />
 <link href="bootstrap-theme.css" rel="stylesheet" />
 <script>
 angular.module("sportsStore", ["customFilters", "cart"]);
 </script>
 <script src="controllers/sportsStore.js"></script>
 <script src="filters/customFilters.js"></script>
 <script src="controllers/productListControllers.js"></script>
 <script src="components/cart/cart.js"></script>
</head>
<body ng-controller="sportsStoreCtrl">
 <div class="navbar navbar-inverse">
 SPORTS STORE
 <cart-summary />
 </div>
 <div class="alert alert-danger" ng-show="data.error">
 Error ({{data.error.status}}). The product data was not loaded.
 Click here to try again
 </div>
 <ng-include src="'views/productList.html'"></ng-include>
</body>
</html>

Notice that although I used the name cartSummary when I defined the directive in Listing 7-
8, the element I added to the app.html file is cart-summary. AngularJS normalizes component
names to map between these formats, as I explain in Chapter 15. You can see the effect of the
cart summary widget in Figure 7-4. The widget doesn’t do much at the moment, but I’ll start
adding other features that will drive its behavior in the following sections.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 7 SportsStore: Navigation and Checkout

15

Figure 7-4. The cart summary widget

Adding Product Selection Buttons

As with all AngularJS development, there is some up-front effort to develop the foundations
and then other features start to snap into place—something that holds true for the cart as
much as another part of the application. My next step is to add buttons to the product details
so that the user can add products to the cart. First, I need to add a behavior to the controller
for the product list view to operate on the cart. Listing 7-9 shows the changes I have made to
the controllers/productListController.js file.

Listing 7-9. Adding Support for the Cart to the productListControllers.js File

angular.module("sportsStore")
 .constant("productListActiveClass", "btn-primary")
 .constant("productListPageCount", 3)
 .controller("productListCtrl", function ($scope, $filter,
 productListActiveClass, productListPageCount, cart) {

 var selectedCategory = null;

 $scope.selectedPage = 1;
 $scope.pageSize = productListPageCount;

 $scope.selectCategory = function (newCategory) {
 selectedCategory = newCategory;
 $scope.selectedPage = 1;
 }

 $scope.selectPage = function (newPage) {
 $scope.selectedPage = newPage;
 }

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 7 SportsStore: Navigation and Checkout

16

 $scope.categoryFilterFn = function (product) {
 return selectedCategory == null ||
 product.category == selectedCategory;
 }

 $scope.getCategoryClass = function (category) {
 return selectedCategory == category ? productListActiveClass : "";
 }

 $scope.getPageClass = function (page) {
 return $scope.selectedPage == page ? productListActiveClass : "";
 }

 $scope.addProductToCart = function (product) {
 cart.addProduct(product.objectId, product.name, product.price);
 }
 });

I have declared a dependency on the cart service and defined a behavior called
addProductToCart that takes a product object and uses it to call the addProduct method on the cart
service.

Tip This pattern of declaring a dependency on a service and then selectively exposing its

functionality through the scope is one you will encounter a lot in AngularJS development. Views can

access only the data and behaviors that are available through the scope—although, as I demonstrated in

Chapter 6 (and explain in depth in Chapter 13), scopes can inherit from one another when controllers

are nested or (as I explain in Chapter 17) when directives are defined.

I can then add button elements to the partial view that displays the product details and
invokes the addProductToCart behavior, as shown in Listing 7-10.

Tip Bootstrap lets me style a and button elements so they have the same appearance; as a

consequence, I tend to use them interchangeably. That said, a elements are more useful when using URL

routing, which I describe later in this chapter.

Listing 7-10. Adding Buttons to the productList.html File

<div class="panel panel-default row" ng-controller="productListCtrl"
 ng-hide="data.error">
 <div class="col-xs-3">
 <a ng-click="selectCategory()"
 class="btn btn-block btn-default btn-lg">Home
 <a ng-repeat="item in data.products | orderBy:'category' | unique:'category'"

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 7 SportsStore: Navigation and Checkout

17

 ng-click="selectCategory(item)" class=" btn btn-block btn-default btn-lg"
 ng-class="getCategoryClass(item)">
 {{item}}

 </div>
 <div class="col-xs-8">
 <div class="well"
 ng-repeat=
 "item in data.products | filter:categoryFilterFn |
range:selectedPage:pageSize">
 <h3>
 {{item.name}}

 {{item.price | currency}}

 </h3>
 <button ng-click="addProductToCart(item)"
 class="btn btn-success pull-right">
 Add to cart
 </button>
 {{item.description}}
 </div>
 <div class="pull-right btn-group">
 <a ng-repeat=
 "page in data.products | filter:categoryFilterFn |
pageCount:pageSize"
 ng-click="selectPage($index + 1)" class="btn btn-default"
 ng-class="getPageClass($index + 1)">
 {{$index + 1}}

 </div>
 </div>
</div>

You can see the buttons and the effect they have in Figure 7-5. Clicking one of the Add to
cart buttons invokes the controller behavior, which invokes the service methods, which then
causes the cart summary widget to update.

Figure 7-5. Adding products to the cart

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 7 SportsStore: Navigation and Checkout

18

Adding URL Navigation
Before I go any further and add support for checking out, I am going to enhance the
infrastructure of the SportsStore application by adding support for URL routing. I describe URL
routing in detail in Chapter 22, but the short version is that it allows for different partial views
to be displayed automatically based on the current URL. This makes it easier to build larger
applications that the user can navigate freely around, and I will use it as the foundation for
displaying the views that the user needs to complete their purchase and submit an order to
the server.

To get started, I need to create a view that I will display when the user begins the checkout
process. Listing 7-11 shows the contents of the views/checkoutSummary.html file, which contains
some placeholder content for the moment. I’ll return to this file and add the real content once
I have set up the URL routing feature.

Listing 7-11. The Contents of the checkoutSummary.html File

<div class="lead">
 This is the checkout summary view
</div>
Back

Defining URL Routes

I am going to start by defining the routes I require, which are the mappings between specific
URLs and the views that should be displayed when the browser navigates to that URL. The first
two will map the /product and /checkout URLs to the productList.html and checkoutSummary.html
views, respectively. The other will be a catchall route that will display the productList.html view
by default. Listing 7-12 shows the changes I have made to implement routing in the app.html
file.

Listing 7-12. Adding Support for URL Routing in the app.html File

<!DOCTYPE html>
<html ng-app="sportsStore">
<head>
 <title>SportsStore</title>
 <script src="angular.js"></script>
 <link href="bootstrap.css" rel="stylesheet" />
 <link href="bootstrap-theme.css" rel="stylesheet" />
 <script>
 angular.module("sportsStore", ["customFilters", "cart", "ngRoute"])
 .config(function ($routeProvider) {

 $routeProvider.when("/checkout", {
 templateUrl: "/views/checkoutSummary.html"
 });

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 7 SportsStore: Navigation and Checkout

19

 $routeProvider.when("/products", {
 templateUrl: "/views/productList.html"
 });

 $routeProvider.otherwise({
 templateUrl: "/views/productList.html"
 });
 });
 </script>
 <script src="controllers/sportsStore.js"></script>
 <script src="filters/customFilters.js"></script>
 <script src="controllers/productListControllers.js"></script>
 <script src="components/cart/cart.js"></script>
 <script src="ngmodules/angular-route.js"></script>
</head>
<body ng-controller="sportsStoreCtrl">
 <div class="navbar navbar-inverse">
 SPORTS STORE
 <cart-summary />
 </div>
 <div class="alert alert-danger" ng-show="data.error">
 Error ({{data.error.status}}). The product data was not loaded.
 Click here to try again
 </div>
 <ng-view />
</body>
</html>

I have added a script element to import the angular-route.js file into the application. The
functionality that this file provides is defined in a module called ngRoute, which I have declared
as a dependency of the sportsStore module.

To set up my routes, I have called the config method on the module object. The config
method takes a function as its argument, which is executed when the module is loaded but
before the application is executed, providing an opportunity for any one-off configuration
tasks.

The function that I passed to the config method declares a dependency on a provider. As I
mentioned earlier, there are different ways to create AngularJS services, and one of them
creates a service that can be configured through a provider object, whose name is the
concatenation of the service name and Provider. The $routeProvider that I have declared a
dependency on is the provider for the $route service and is used to set up the URL routing in an
application.

Tip I explain how to create services with providers in Chapter 18 and how to use the $route service

and the $routeProvider in Chapter 22.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 7 SportsStore: Navigation and Checkout

20

I use two methods defined by the $routeProvider object to set up the routes I require. The
when method allows me to match a URL to a view, like this:

...
$routeProvider.when("/checkout", {
 templateUrl: "/views/checkoutSummary.html"
});
...

This statement tells AngularJS that when the URL is /checkout, I want the
/views/checkoutSummary.html file to be displayed. The otherwise method specifies the view that
should be used when the URL doesn’t match one of those defined by the when method. It is
always sensible to define such a fallback route, and mine specifies the /views/ProductList.html
view file.

URL routes are matched against the path section of the current URL and not the complete
URL. Here is a URL that would match the route shown earlier:

http://localhost:5000/app.html#/checkout

I have highlighted the path, which follows the # character in the URL. AngularJS doesn’t
monitor the whole URL because a URL such as http://localhost:5000/checkout would cause the
browser to dump the AngularJS application and try to load a different document from the
server—something that is rarely required. This point causes a lot of confusion, so I have
summarized the effect of my URL routing policy in Table 7-3.

Tip As I describe in Chapter 22, you can enable support for using the HTML5 History API, which

changes the way URLs are monitored so that something like http://localhost:5000/checkout will work.

Caution is required because browser implementations differ, and it is easy to confuse the user because

the browser will attempt to load a different document if they try to edit the URL manually.

Table 7-3. The Effect of the URL Routing Policy

URL Effect

http://localhost:5000/app.html#/checkout Displays the checkoutSummary.html view

http://localhost:5000/app.html#/products Displays the productList.html view

http://localhost:5000/app.html#/other Displays the productList.html view (because of the
fallback route defined by the otherwise method)

http://localhost:5000/app.html Displays the productList.html view (because of the
fallback route defined by the otherwise method)

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 7 SportsStore: Navigation and Checkout

21

Displaying the Routed View

The routing policy defines which views should be displayed for given URL paths, but it doesn’t
tell AngularJS where to display them. For that I need the ng-view directive, which is defined in
the ngRoute module along with the other routing features. In Listing 7-12, I replaced the ng-

include directive with ng-view, as follows:

...
<body ng-controller="sportsStoreCtrl">
 <div class="navbar navbar-inverse">
 SPORTS STORE
 <cart-summary />
 </div>
 <div class="alert alert-danger" ng-show="data.error">
 Error ({{data.error.status}}). The product data was not loaded.
 Click here to try again
 </div>
 <ng-view />
</body>
...

There are no configuration options or settings required; just adding the directive tells
AngularJS where it should insert the content of the currently selected view.

Using URL Routing to Navigate

Having defined my URL routes and applied the ng-view directive, I can change the URL path to
navigate through the application. My first change is to the Checkout button displayed by the
cart summary widget that I created earlier in the chapter. Listing 7-13 shows the change I
made to the cartSummary.html file.

Listing 7-13. Using URL Path Navigation to the cartSummary.html File

<style>
 .navbar-right { float: right !important; margin-right: 5px;}
 .navbar-text { margin-right: 10px; }
</style>

<div class="navbar-right">
 <div class="navbar-text">
 Your cart:
 {{itemCount()}} item(s),
 {{total() | currency}}
 </div>
 Checkout
</div>

I updated the a element to add an href attribute whose value changes the path. Clicking the
element will cause the browser to navigate to the new URL (which is local to the already-
loaded document). The navigation change is detected by the AngularJS routing service, which

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 7 SportsStore: Navigation and Checkout

22

causes the ng-view directive to display the checkoutSummary.html view, as illustrated by Figure 7-
6.

Figure 7-6. Navigating to the checkout summary

Notice that the URL displayed by the browser changes from the initial starting point of
http://localhost:5000/app.html to http://localhost:5000/app.html#/checkout. You can click the Back
button displayed by the checkoutSummary.html view, which I configured in Listing 7-11 to move
to the /products path, as follows:

...
Back
...

The main benefit of using URL routing is that components can change the layout shown by
the ng-view directive without having any prior knowledge of the view that will be shown, the
location or disposition of the ng-view directive, or sharing components (such as controllers or
services) with the view that will be displayed. This makes it easier to scale up complex
applications and makes it possible to change the behavior of the application just by changing
the URL routing configuration.

Tip You can also return to the products listing by manually editing the URL to be

http://localhost:5000/app.html#/products or http://localhost:5000/app.html#. Note the trailing # character

in that last URL. If you omit it, the browser will interpret the URL as a request to load the app.html page,

which will cause any unsaved state to be lost. For the SportsStore application, that means the contents

of the cart will be lost. The finicky nature of the URLs means that the user can edit them directly but that

the results can be unexpected with even the slightest error.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 7 SportsStore: Navigation and Checkout

23

Starting the Checkout Process
Now that the routing configuration is in place, I am going to turn to the checkout process. My
first task is to define a new controller called cartSummaryController, which I have placed in a new
file called controllers/checkoutControllers.js. Listing 7-14 shows the contents of the new file.

Listing 7-14. The Contents of the checkoutControllers.js File

angular.module("sportsStore")
.controller("cartSummaryController", function($scope, cart) {

 $scope.cartData = cart.getProducts();

 $scope.total = function () {
 var total = 0;
 for (var i = 0; i < $scope.cartData.length; i++) {
 total += ($scope.cartData[i].price * $scope.cartData[i].count);
 }
 return total;
 }

 $scope.remove = function (id) {
 cart.removeProduct(id);
 }
});

The new controller is added to the sportsStore module and depends on the cart service. It
exposes the contents of the cart through a scope property called cartData and defines behaviors
to calculate the total value of the products in the cart and to remove a product from the cart.
Using the features created by the controller, I can replace the temporary content in the
checkoutSummary.html file with a summary of the cart. Listing 7-15 shows the changes I have
made.

Listing 7-15. Revising the Contents of the checkoutSummary.html File

<h2>Your cart</h2>

<div ng-controller="cartSummaryController">

 <div class="alert alert-warning" ng-show="cartData.length == 0">
 There are no products in your shopping cart.

 Click here to return to the catalogue

 </div>

 <div ng-hide="cartData.length == 0">
 <table class="table">
 <thead>
 <tr>
 <th>Quantity</th>

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 7 SportsStore: Navigation and Checkout

24

 <th>Item</th>
 <th class="text-right">Price</th>
 <th class="text-right">Subtotal</th>
 </tr>
 </thead>
 <tbody>
 <tr ng-repeat="item in cartData">
 <td class="text-center">{{item.count}}</td>
 <td class="text-left">{{item.name}}</td>
 <td class="text-right">{{item.price | currency}}</td>
 <td class="text-right">
 {{ (item.price * item.count) | currency}}</td>
 <td>
 <button ng-click="remove(item.objectId)"
 class="btn btn-sm btn-warning">Remove</button>
 </td>
 </tr>
 </tbody>
 <tfoot>
 <tr>
 <td colspan="3" class="text-right">Total:</td>
 <td class="text-right">
 {{total() | currency}}
 </td>
 </tr>
 </tfoot>
 </table>

 <div class="text-center">
 Continue shopping
 Place order now
 </div>
 </div>
</div>

There are no new techniques in this view. The controller is specified using the ng-controller
directive, and I use the ng-show and ng-hide directives to show a warning when there are no
items in the cart and a summary when there are. The ng-repeat directive is used to generate
rows in a table for each product in the cart, and the details are displayed using data bindings.
Each row contains unit and total pricing and a button that uses the ng-click directive to invoke
the remove controller behavior and remove an item from the cart.

The two a elements at the end of the view allow the user to navigate elsewhere in the
application:

...
Continue shopping
Place order now
...

The Continue shopping button returns the user to the product list by navigating to the
#/products path, and the Place order button navigates to a new URL path, #/placeorder, which I
will configure in the next section.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 7 SportsStore: Navigation and Checkout

25

Applying the Checkout Summary

The next step is to add a script element to the app.html file and define the additional routes that
I will need to complete the checkout process, as shown in Listing 7-16.

Listing 7-16. Applying the Checkout Summary to the app.html File

<!DOCTYPE html>
<html ng-app="sportsStore">
<head>
 <title>SportsStore</title>
 <script src="angular.js"></script>
 <link href="bootstrap.css" rel="stylesheet" />
 <link href="bootstrap-theme.css" rel="stylesheet" />
 <script>
 angular.module("sportsStore", ["customFilters", "cart", "ngRoute"])
 .config(function ($routeProvider) {

 $routeProvider.when("/complete", {
 templateUrl: "/views/thankYou.html"
 });

 $routeProvider.when("/placeorder", {
 templateUrl: "/views/placeOrder.html"
 });

 $routeProvider.when("/checkout", {
 templateUrl: "/views/checkoutSummary.html"
 });

 $routeProvider.when("/products", {
 templateUrl: "/views/productList.html"
 });

 $routeProvider.otherwise({
 templateUrl: "/views/productList.html"
 });
 });
 </script>
 <script src="controllers/sportsStore.js"></script>
 <script src="filters/customFilters.js"></script>
 <script src="controllers/productListControllers.js"></script>
 <script src="components/cart/cart.js"></script>
 <script src="ngmodules/angular-route.js"></script>
 <script src="controllers/checkoutControllers.js"></script>
</head>
<body ng-controller="sportsStoreCtrl">
 <div class="navbar navbar-inverse">
 SPORTS STORE
 <cart-summary />
 </div>
 <div class="alert alert-danger" ng-show="data.error">
 Error ({{data.error.status}}). The product data was not loaded.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 7 SportsStore: Navigation and Checkout

26

 Click here to try again
 </div>
 <ng-view />
</body>
</html>

The new routes associate URLs with views that I will create in the next chapter. Figure 7-7
shows the cart summary that is now presented when the user clicks the Checkout button on
the cart widget.

Figure 7-7. Summarizing the contents of the shopping cart

Summary
In this chapter, I continued the development of the SportsStore application to obtain the
product data from the Parse server, to add support for working with partial views, and to
implement a custom directive. I also set up URL routing and started adding the functionality
that will allow the user to place an order. In the next chapter, I will complete the SportsStore
application and add support for administration.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

C H A P T E R 8

1

SportsStore: Orders and
Administration

In this chapter, I complete the SportsStore application by collecting and validating shipping
details and storing the order using the Parse server. I also build an administration application
that allows authenticated users to see the set of orders and manage the product catalog.

Preparing the Example Project
I am going to continue to build on the project that I started in Chapter 6 and extended in
Chapter 7. You can download the source code from Chapter 7 from www.apress.com if you want
to follow along with the examples but don’t want to have to build the project from scratch.

In Chapter 7, I started the checkout process by displaying a summary of the cart to the
user. That summary included an a element that navigated to the /placeorder URL path, for which
I added a URL route to the app.html file. In fact, I defined two routes, both of which I will need
to complete the checkout process in this chapter:

...
$routeProvider.when("/complete", {
 templateUrl: "/views/thankYou.html"
});

$routeProvider.when("/placeorder", {
 templateUrl: "/views/placeOrder.html"
});
...

In this chapter I am going to create the views named in the URL routes and create the
components required to complete the checkout process.

Getting Shipping Details
After showing the user a summary of the products in the cart, I want to capture the shipping
details for the order. That takes me to the AngularJS features for working with forms, which

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

2

you are likely to require in most web applications. I have created the views/placeOrder.html file to
capture the user’s shipping details, which is the view named in one of the routing URLs shown
earlier. I am going to introduce a number of form-related features, and to avoid having to
repeat largely similar code, I am going to start working with a couple of data properties (for
the user’s name and street address) and then add other properties when I have introduced the
features I will be using. Listing 8-1 shows the initial content of the placeOrder.html view file.

Listing 8-1. The Contents of the placeOrder.html File

<h2>Check out now</h2>
<p>Please enter your details, and we'll ship your goods right away!</p>

<div class="well">
 <h3>Ship to</h3>
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" ng-model="data.shipping.name" />
 </div>

 <h3>Address</h3>

 <div class="form-group">
 <label>Street Address</label>
 <input class="form-control" ng-model="data.shipping.street" />
 </div>

 <div class="text-center">
 <button class="btn btn-primary">Complete order</button>
 </div>
</div>

The first thing to notice about this view is that I have not used the ng-controller directive to
specify a controller. That means the view will be supported by the top-level controller,
sportsStoreCrtl, which manages the view that contains the ng-view directive (which I introduced in
Chapter 7). I make this point because you don’t have to define controllers for partial views,
which is convenient when the view doesn’t require any additional behaviors, as is the case
here.

The important AngularJS feature in the listing is the use of the ng-model directive on the
input elements, like this:

...
<input class="form-control" ng-model="data.shipping.name" />
...

The ng-model directive sets up a two-way data binding. I explain data bindings in depth in
Chapter 10, but the short version is that the kind of data binding I have been using so far in the
SportsStore application—the ones that use the {{ and }} characters—are one-way bindings,
which means they simply display a value from the scope. The value a one-way binding displays
can be filtered, or it can be an expression rather than just a data value, but it a read-only
relationship. The value displayed by the binding will be updated if the corresponding value on

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

3

the scope changes, but that’s the only direction that updates flow in—from the scope to the
binding.

Two-way data bindings are used on form elements to allow the user to enter values that
change the scope, rather than just displaying them. Updates flow in both directions between
the scope and the data binding. An update to the scope data property performed through a
JavaScript function, for example, will cause an input element to display the new value, and a
new value entered by the user into the input element will update the scope. I explain the use of
the ng-model directive in Chapter 10 and the broader AngularJS support for forms in Chapter 12.
For this chapter it is enough to know that when the user enters a value into an input element,
that value is assigned to the scope property specified by the ng-model directive—either the
data.shipping.name property or the data.shipping.street property in this example. You can see how
the form looks in the browser in Figure 8-1.

Tip Notice that I don’t have to update the controller so that it defines a data.shipping object on its

scope or the individual name or street properties. AngularJS scopes are remarkably flexible and assume

that you want to define a property dynamically if it isn’t already defined. I explain this in more detail in

Chapter 13.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

4

Figure 8-1. The short version of the shipping details form

Adding Form Validation

If you have written any kind of web application that uses form elements, then you will already
know that users will put just about anything in an input field and that it is unwise to assume
that users will have provided meaningful and useful data. To ensure you get the data you
expect, AngularJS supports form validation, which allows values to be checked for suitability.

AngularJS form validation is based on honoring standard HTML attributes applied to form
elements, such as type and required. Form validation is performed automatically, but some work
is required to display validation feedback to the user and to integrate the overall validation
results into an application.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

5

Tip HTML5 defined a new set of values for the type attribute on input elements, which can be used

to specify that a value should be an e-mail address or a number, for example. As I explain in Chapter 12,

AngularJS can validate some of these new values.

Preparing for Validation

The first step in setting up form validation is to add a form element to the view and add the
validation attributes to my input elements. Listing 8-2 shows the changes to the placeOrder.html
file.

Listing 8-2. Preparing the placeOrder.html File for Validation

<h2>Check out now</h2>
<p>Please enter your details, and we'll ship your goods right away!</p>

<form name="shippingForm" novalidate>
 <div class="well">
 <h3>Ship to</h3>
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" ng-model="data.shipping.name" required />
 </div>

 <h3>Address</h3>

 <div class="form-group">
 <label>Street Address</label>
 <input class="form-control" ng-model="data.shipping.street" required />
 </div>

 <div class="text-center">
 <button class="btn btn-primary">Complete order</button>
 </div>
 </div>
</form>

The form element has three purposes, even though I won’t be using the browser’s built-in
support for submitting forms in the SportsStore application.

The first purpose is to enable validation. AngularJS redefines some HTML elements with
custom directives to enable special features, and one such element is form. Without a form
element, AngularJS won’t validate the contents of elements such as input, select, textarea, and so
on.

The second purpose of the form element is to disable any validation that the browser might
try to perform, which is done through the application of the novalidate attribute. This attribute
is a standard HTML5 feature, and it ensures that only AngularJS is checking the data that the
user provides. If you omit the novalidate attribute, then the user may get conflicting or
duplicated validation feedback, depending on the browser being used.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

6

The final purpose of the form element is to define a variable that will be used to report on
the form validity. This is done through the name attribute, which I have set to shippingForm.
You’ll see how this value is used later in this chapter when I display validation feedback and
when I wire up the button element so that the user can place the order only when the contents
of the form are valid.

In addition to the form element, I have applied the required attribute to the input elements.
This is one of the simplest validation attributes that AngularJS recognizes, and it means that
the user has to provide a value—any value—for the input element to be valid. See Chapter 12
for details of the other ways in which you can validate form elements.

Displaying Validation Feedback

Once the form element and the validation attributes are in place, AngularJS starts to validate
the data that the user provides, but I have to do a little more work to give the user any
feedback. I get into the details in Chapter 12, but there are two kinds of feedback I can use: I
can define CSS styles to take advantage of classes that AngularJS assigns valid and invalid form
elements to, and I can use scope variables to control the visibility of targeted feedback
messages for specific elements. Listing 8-3 shows both kinds of changes.

Listing 8-3. Applying Validation Feedback to the placeOrder.html File

<style>
 .ng-invalid { background-color: lightpink; }
 .ng-valid { background-color: lightgreen; }
 span.error { color: red; font-weight: bold; }
</style>

<h2>Check out now</h2>
<p>Please enter your details, and we'll ship your goods right away!</p>

<form name="shippingForm" novalidate>
 <div class="well">
 <h3>Ship to</h3>
 <div class="form-group">
 <label>Name</label>
 <input name="name" class="form-control"
 ng-model="data.shipping.name" required />

 Please enter a name

 </div>

 <h3>Address</h3>

 <div class="form-group">
 <label>Street Address</label>
 <input name="street" class="form-control"
 ng-model="data.shipping.street" required />

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

7

 Please enter a street address

 </div>

 <div class="text-center">
 <button class="btn btn-primary">Complete order</button>
 </div>
 </div>
</form>

AngularJS assigns form elements to the ng-valid and ng-invalid classes, so I started by defining
a style element that contains CSS styles that target those classes. Form elements are always in
one of these classes, such that one of these styles is always applied.

Tip I am setting up a simple validation configuration for the SportsStore application, the effect of

which is that the form is invalid from the moment that it is shown to the user. This isn’t always

acceptable, and in Chapter 12 I describe some additional features that AngularJS provides to control

when validation messages are displayed.

The CSS styles have the effect of indicating when there is a problem with an input element
but provide no indication what the problem is. For that I have to add a name attribute to each
element and use some validation data that AngularJS adds to the scope to control the visibility
of error messages, like this:

...
<input name="street" class="form-control" ng-model="data.shipping.street" required />

 Please enter a street address

...

In this fragment, I have shown the input element that captures the user’s street address,
which I have assigned the name value of street. AngularJS creates a shippingForm.street object on
the scope (which is the combination of the name of the form element and the name of the input
element). This object defines a $error property, which itself is an object that has properties for
each of the validation attributes that the contents of the input element fail to satisfy. Or, to put
it another way, if the shippingForm.street.$error.required property is true, then I know that the
contents of the street input element are invalid, which I use to display an error message to the
user through the application of the ng-show directive. (I explain the validation properties fully in
Chapter 12 and the ng-show directive in Chapter 11.) You can see the initial state of the form in
Figure 8-2.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

8

Figure 8-2. The initial (invalid) form

I satisfy the required attribute as I enter details into the input elements, which has the effect
of switching the color applied to the element from red to green and hiding the error message.

Note I am deliberately simplifying the way I apply validation in this chapter, but AngularJS can be

used to create much more subtle and pleasing validation configurations, as I describe in Chapter 12.

Linking the Button to Validity

In most web applications, the user shouldn’t be able to move to the next step in a process until
all the form data has been provided and is valid. To that end, I want to disable the Complete
order button when the form is invalid and automatically enable it when the user has
completed the form properly.

To do this, I can take advantage of the validation information that AngularJS adds to the
scope. In addition to the per-field information that I used in the previous section to display
per-element messages, I can get information about the overall state of the form as well. The

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

9

shippingForm.$invalid property will be set to true when one or more of the input elements is
invalid, and I can combine this with the ng-disabled directive to manage the state of the button
element. I describe the ng-disabled directive in Chapter 11, but it adds and removes the disabled
attribute from the element it has been applied to based on the scope property or expression it
is configured with. Listing 8-4 shows how I can tie the state of the button to form validation.

Listing 8-4. Setting the State of the Button in the placeOrder.html File

...
<div class="text-center">
 <button ng-disabled="shippingForm.$invalid"
 class="btn btn-primary">Complete order</button>
</div>
...

You can see the effect that the ng-disabled directive has on the button element in Figure 8-3.

Figure 8-3. Controlling the state of a button based on form validation

Adding the Remaining Form Fields

Now that you have seen how AngularJS form validation works, I am going to add the remaining
input elements to the form. I avoided this earlier because I wanted to show you the individual
validation features without listing duplicate markup, but I can’t go any further without the
completed form. Listing 8-5 shows the addition of the remaining input elements and their
associated validation messages.

Listing 8-5. Adding the Remaining Form Fields to the placeOrder.html File

<style>
 .ng-invalid { background-color: lightpink; }
 .ng-valid { background-color: lightgreen; }
 span.error { color: red; font-weight: bold; }
</style>

<h2>Check out now</h2>
<p>Please enter your details, and we'll ship your goods right away!</p>

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

10

<form name="shippingForm" novalidate>
 <div class="well">
 <h3>Ship to</h3>
 <div class="form-group">
 <label>Name</label>
 <input name="name" class="form-control"
 ng-model="data.shipping.name" required />

 Please enter a name

 </div>

 <h3>Address</h3>

 <div class="form-group">
 <label>Street Address</label>
 <input name="street" class="form-control"
 ng-model="data.shipping.street" required />

 Please enter a street address

 </div>

 <div class="form-group">
 <label>City</label>
 <input name="city" class="form-control"
 ng-model="data.shipping.city" required />

 Please enter a city

 </div>

 <div class="form-group">
 <label>State</label>
 <input name="state" class="form-control"
 ng-model="data.shipping.state" required />

 Please enter a state

 </div>

 <div class="form-group">
 <label>Zip</label>
 <input name="zip" class="form-control"
 ng-model="data.shipping.zip" required />

 Please enter a zip code

 </div>

 <div class="form-group">
 <label>Country</label>

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

11

 <input name="country" class="form-control"
 ng-model="data.shipping.country" required />

 Please enter a country

 </div>

 <h3>Options</h3>
 <div class="checkbox">
 <label>
 <input name="giftwrap" type="checkbox"
 ng-model="data.shipping.giftwrap" />
 Gift wrap these items
 </label>
 </div>

 <div class="text-center">
 <button ng-disabled="shippingForm.$invalid"
 class="btn btn-primary">Complete order</button>
 </div>
 </div>
</form>

Tip The markup shown in Listing 8-5 is highly duplicative and is the sort of thing that attracts typos.

You might be tempted to try to use the ng-repeat directive to generate the input elements from an array

of objects that describes each field. This doesn’t work well because of the way that the attribute values

for directives like ng-model and ng-show are evaluated within the scope of the ng-repeat directive. My

advice is to simply accept the duplication in the markup, but if you do want a more elegant technique,

then read Chapters 15–17, which describe the ways in which you can create custom directives.

Placing Orders
Even though the state of the button element is controlled by form validation, clicking the button
has no effect, and that’s because I need to finish off the SportsStore application by allowing
the user to submit orders. In the sections that follow, I’ll extend the database provided by the
Parse server, send order data to the server using an Ajax request, and display a final thank-you
message to complete the process.

Extending the Backend

I need to extend the Parse server configuration to capture the orders that the SportsStore
application will submit. Using the Parse dashboard (which I first used in Chapter 6), click the
Create a Class button and select the Custom option and enter Orders into the text field, as shown in
Figure 8-4.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

12

Figure 8-4. Creating the Orders Class

Set the name of the new collection to Orders and click the Create Class button. The
dashboard will display a new data grid. Click the Add a New Column button and create the
columns shown in Table 8-1.

Table 8-1. The Properties Required for the Orders Collection

Name Type

name String

street String

city String

state String

zip String

country String

giftwrap Boolean

products Array

Pay particular attention to the type of the giftwrap and products properties—they are not the

same type as the other properties, and you’ll get some odd results if you don’t define them
correctly.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

13

Defining the Controller Behavior

The next step is to define the controller behavior that will send details of an order to the
server using an Ajax request. I could define this functionality in a number of different ways—as
a service or in a new controller, for example. This flexibility is one of the hallmarks of working
with AngularJS. There is no absolute right or wrong when it comes to the structure of an
AngularJS application, and you will develop your own style and set of preferences as your
experience builds. I am going to keep things simple and add the behavior I need to the top-
level sportsStore controller, which already contains the code that makes the Ajax request to load
the product data. Listing 8-6 shows the changes I have made.

Listing 8-6. Sending the Order to the Server in the sportsStore.js File

angular.module("sportsStore")
 .constant("dataUrl", "http://localhost:1337/parse/classes/Products")
 .constant("orderUrl", "http://localhost:1337/parse/classes/Orders")
 .run(function ($http) {
 $http.defaults.headers.common["X-Parse-Application-Id"] = "sportsstore";
 $http.defaults.headers.common["X-Parse-REST-API-Key"] = "myRestSecret";
 })
 .controller("sportsStoreCtrl", function ($scope, $http, $location,
 dataUrl, orderUrl, cart) {

 $scope.data = {
 };

 $http.get(dataUrl)
 .success(function (data) {
 $scope.data.products = data.results;
 })
 .error(function (response) {
 $scope.data.error = response.error || response;
 });

 $scope.sendOrder = function (shippingDetails) {
 var order = angular.copy(shippingDetails);
 order.products = cart.getProducts();
 $http.post(orderUrl, order)
 .success(function (data) {
 $scope.data.orderId = data.objectId;
 cart.getProducts().length = 0;
 })
 .error(function (error) {
 $scope.data.orderError = error;
 }).finally(function () {
 $location.path("/complete");
 });
 }
 });

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

14

The Parse server will create a new object in the database in response to a POST request
and will return the object that it has created in the response, including the objectId attribute
that has been generated to reference the new object.

Knowing this, you can see how the new additions to the controller operate. I have defined
a new constant that specifies the URL that I will use for the POST request and added a
dependency for the cart service so that I can get details of the products that the user requires.
The behavior I added to the controller is called sendOrder, and it receives the shipping details
for the user as its argument.

I use the angular.copy utility method, which I describe in Chapter 5, to create a copy of the
shipping details object so that I can safely manipulate it without affecting other parts of the
application. The properties of the shipping details object—which are created by the ng-model
directives in the previous section—correspond to the properties that I defined for the Orders
class, and all I have to do is define a products property that references the array of products in
the cart.

I use the $http.post method, which creates an Ajax POST request to the specified URL and
data, and I use the success and error methods that I introduced in Chapter 5 (and which I
describe fully in Chapter 20) to respond to the outcomes from the request. For a successful
request, I assign the objectId of the newly created order object to a scope property and clear
the contents of the cart. If there is a problem, I assign the error object to the scope so that I
can refer to it later.

I also use the then method on the promise returned by the $http.post method. The then
method takes a function that is invoked whatever the outcome of the Ajax request. I want to
display the same view to the user whatever happens, so I use the then method to call the
$location.path method. This is how the path component of the URL is set programmatically, and
it will trigger a change of view through the URL configuration that I created in Chapter 7. (I
describe the $location service in Chapter 11 and demonstrate its use with URL routing in
Chapter 22.)

Calling the Controller Behavior

To invoke the new controller behavior, I need to add the ng-click directive to the button
element in the shipping details view, as shown in Listing 8-7.

Listing 8-7. Adding a Directive to the placeOrder.html File

...
<div class="text-center">
 <button ng-disabled="shippingForm.$invalid"
 ng-click="sendOrder(data.shipping)"
 class="btn btn-primary">
 Complete order
 </button>
</div>
...

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

15

Defining the View

The URL path that I specify after the Ajax request has completed is /complete, which the URL
routing configuration maps to the file /views/thankYou.html. I created this file, and you can see
the contents of it in Listing 8-8.

Listing 8-8. The Contents of the thankYou.html File

<div class="alert alert-danger" ng-show="data.orderError">
 Error ({{data.orderError.status}}). The order could not be placed.
 Click here to try again
</div>

<div class="well" ng-hide="data.orderError">
 <h2>Thanks!</h2>
 Thanks for placing your order. We'll ship your goods as soon as possible.
 If you need to contact us, use reference {{data.orderId}}.
</div>

This view defines two different blocks of content to deal with success and unsuccessful
Ajax requests. If there has been an error, then details of the error are displayed, along with a
link that takes the user back to the shipping details view so they can try again. The user is
shown a thank-you message that contains the objectId of the new order object if the request is
successful. You can see the successful outcome in Figure 8-5.

Figure 8-5. Displaying feedback to the user when an order is placed

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

16

Making Improvements
In building the user side of the SportsStore application, I took a couple of shortcuts that could
be improved upon with techniques that I describe in later chapters but that depend on some
concepts that I didn’t want to introduce here.

First, when you load the app.html file into the browser, you may notice a small delay
between the view being displayed and the elements for the products and categories being
generated. This is because the Ajax request that gets the data is happening in the background,
and while waiting for the server to return the data, AngularJS carries on executing the
application and displaying the views, which are then updated when the data arrives. In
Chapter 22, I describe how you can use the URL routing feature to prevent AngularJS from
displaying the view until the Ajax request has been completed.

Next, I process the product data to extract the set of categories for the navigation and
pagination features. In a real project, I would consider generating this information once when
the product data first arrives and then reusing it thereafter. In Chapter 20, I describe how you
can use promises to build chains of behavior, which is ideally suited to this kind of task.

Finally, I would have used the $animate service, which I describe in Chapter 23, to display
short, focused animations to ease the transition from one view to another when the URL path
changes.

AVOIDING OPTIMIZATION PITFALLS

You will notice that I say that I could consider reusing the category and pagination data,
not that I would definitely do so. That’s because any kind of optimization should be
carefully assessed to ensure it is sensible and that it avoids two main pitfalls that dog
optimization efforts.

The first pitfall is premature optimization, which is where a developer sees an opportunity
to optimize an operation or task before the current implementation causes any problems
or breaks a contract in the nonfunctional specification. This kind of optimization tends to
make code more specific in its nature that it would otherwise be, and that can kill the
easy movement of functionality from one component to another that is typical of
AngularJS (and is one of the most enjoyable aspects of AngularJS development).
Further, by optimizing code that hasn’t been identified as a problem, you are spending
time solving a (potential) problem that no one cares about—time that could equally be
spent fixing real problems or building features that users require.

The second pitfall is translation optimization, where the optimization simply changes the
nature of the problem rather than offers a real solution. The main issue with the way that
the category and pagination data is generated is that it requires computation that could
be avoided by caching the information. This seems like a good idea, but caching requires
memory, which is often in short supply in mobile devices. The same kinds of devices that
would benefit from not having to process a few data records are the same ones that lack
the capacity to store some additional data to avoid that computation. And, if you are
sending the client so much data that the user has to wait while the processing is
performed, then the problems are more fundamental, and you should consider the way

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

17

you have designed your application—perhaps obtaining and processing data in smaller
chunks would be a more sensible solution.

I am not saying that you should not optimize your applications, but I am saying that you
should not do so until you have a real problem to solve and that your optimizations
should be a solution to the problem. Don’t let an abhorrence of inefficiency prevent you
from seeing that your development time is important and should only be spent solving
real issues.

Administering the Product Catalog
To complete the SportsStore application, I am going to create an application that will allow the
administrator to manage the contents of the product catalog and the order queue. This will
allow me to demonstrate how AngularJS can be used to perform create, read, update, and
delete (CRUD) operations and reinforce the use of some key features from the main
SportsStore application.

Note Every back-end service implements authentication in a slightly different way, but the basic

premise is the same: Send a request with the user’s credentials to a specific URL, and if the request is

successful, the browser will return a cookie that the browser will automatically send with subsequent

requests to identify the user. The examples in this section are specific to Parse, but they will translate

easily to most platforms.

Preparing the Backend

Making changes to the database is something that only administrators should be able to do. To
that end, I am going to use the Parse dashboard to define an administrator user and create the
access policy described by Table 8-2.

Table 8-2. The Access Control Policy

Class Admin Normal Users

products Read and Write Read Only

orders Read and Write Write Only

In short, the administrator should be able to perform any operation on any class of object.

The normal users should be able to read (but not modify) the products collection and create
new objects in the orders collection (but not be able to see, modify, or delete them).

Click the User class in the dashboard, as shown in Figure 8-6 and click the Add Row button to
create a new user.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

18

Figure 8-6. Selecting users

Set the username and password fields to the values shown in Table 8-4. You can ignore the
other columns – they are not required for the SportsStore application.

Table 8-4. Columns Details for the Administration User

Column Value

username admin

password secret

When you create the new row, Parse will assign a new objectId value to the user object.

Make a note of this value, which you will need in the following section. My objectId value is
RWaBxg2rWo but you will have a different value.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

19

Securing the Object Classes

Select the Orders class (which appears below the Users class you selected in the previous
section) and click on Security. Uncheck the Read box in the Public row. Enter admin into the Role,

User or Pointer field and ensure that both Read and Write are checked, as shown in Figure 8-7.
When you enter admin into the field, Parse will replace it with the objectID value you noted in
the previous section. Click the Save CLP button to save the changes.

Figure 8-7. Changing the permissions for orders

Repeat the process for the Products collection so that the access controls correspond to those
shown in Figure 8-8. (Notice that the Public permissions are reversed). Click the Save CLP
button to save the changes.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

20

Figure 8-8. Changing the permissions for products

Creating the Admin Application

I am going to create a separate AngularJS application for the administration tasks. I could
integrate these features into the main application, but that would mean all users would be
required to download the code for the admin functions, even though most of them would
never use it. I added a new file called admin.html to the angularjs folder, the contents of which
are shown in Listing 8-9.

Listing 8-9 .The Contents of the admin.html File

<!DOCTYPE html>
<html ng-app="sportsStoreAdmin">
<head>
 <title>Administration</title>
 <script src="angular.js"></script>
 <script src="ngmodules/angular-route.js"></script>
 <link href="bootstrap.css" rel="stylesheet" />
 <link href="bootstrap-theme.css" rel="stylesheet" />
 <script>
 angular.module("sportsStoreAdmin", ["ngRoute"])
 .config(function ($routeProvider) {

 $routeProvider.when("/login", {
 templateUrl: "/views/adminLogin.html"
 });

 $routeProvider.when("/main", {
 templateUrl: "/views/adminMain.html"

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

21

 });

 $routeProvider.otherwise({
 redirectTo: "/login"
 });
 });
 </script>
</head>
<body>
 <ng-view />
</body>
</html>

This HTML file contains the script and link elements required for the AngularJS and
Bootstrap files and an inline script element that defines the sportsStoreAdmin module, which will
contain the application functionality (and which I have applied to the html element using the
ng-app directive). I have used the Module.config method to create three routes for the
application, which drive the ng-view directive in the body element. Table 8-5 summarizes the
paths that the URLs match and the view files that they load.

Table 8-5. The URL Paths in the admin.html File

URL Path View

/login /views/adminLogin.html

/main /views/adminMain.html

All others Redirects to /login

For the route defined with the otherwise method, I used the redirectTo option, which changes

the URL path to another route. This has the effect of moving the browser to the /login path,
which is the one that I will use to authenticate the user. I describe the complete set of
configuration options that you can use with URL routes in Chapter 22.

Adding the Placeholder View

I am going to implement the authentication feature first, but I need to create some
placeholder content for the /views/adminMain.html view file so that I have something to show
when authentication is successful. Listing 8-10 shows the (temporary) contents of the file.

Listing 8-10. The Contents of the adminMain.html File

<div class="well">
 This is the main view
</div>

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

22

I’ll replace this placeholder with useful content once the application is able to authenticate
users.

Implementing Authentication

Parse authenticates users using standard HTTP requests. The application sends a GET request
to the /1/login URL, which includes username and password values for the authenticating user. The
server responds with status code 200 if the authentication attempt is successful and code 401
or 404 when the user cannot be authenticated. To implement authentication, I started by
defining a controller that makes the Ajax calls and deals with the response. Listing 8-11 shows
the contents of the controllers/adminControllers.js file, which I created for this purpose.

Listing 8-11. The Contents of the adminControllers.js File

angular.module("sportsStoreAdmin")
 .constant("authUrl", "http://localhost:1337/parse/login")
 .run(function ($http) {
 $http.defaults.headers.common["X-Parse-Application-Id"] = "sportsstore";
 $http.defaults.headers.common["X-Parse-REST-API-Key"] = "myRestSecret";
 })
.controller("authCtrl", function ($scope, $http, $location, authUrl) {

 $scope.authenticate = function (user, pass) {
 $http.get(authUrl, {
 params: {
 username: user,
 password: pass
 },
 }).success(function (data) {
 $scope.$broadcast("sessionToken", data.sessionToken);
 $http.defaults.headers.common["X-Parse-Session-Token"]
 = data.sessionToken;
 $location.path("/main");
 }).error(function (response) {
 $scope.authenticationError = response.error || response;
 });
 }
});

I use the angular.module method to extend the sportsStoreAdmin module that is created in the
admin.html file. I use the constant method to specify the URL that will be used for authentication
and the run method to define the key headers required to use the Parse web service.

I have created an authCtrl controller that defines a behavior called authenticate that receives
the username and password values as arguments and makes an Ajax request to the Parse server
with the $http.get method (which I describe in Chapter 20). I use the $location service, which I
describe in Chapter 11, to programmatically change the path displayed by the browser (and so
trigger a URL route change) if the Ajax request is successful.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

23

If the server returns an error, I assign the message passed to the error function to a scope
variable so that I can display details of the problem to the user. If the authentication request is
successful, then the Parse server returns an object with a sessionToken property whose value
must be included in subsequent requests using a header called X-Parse-Session-Token.

I will need to use the value of the sessionToken property to set the X-Parse-Session-Token
header for the other HTTP requests I need to administer the application and so I have used the
$scope.$broadcast method to send an event that contains the token value. You will see how I
receive the event with the $scope.$on method in Listing 8-20. Events are the means by which
controllers can communicate and I describe them in Chapter 13.

I need to include the JavaScript file that contains the controller in the admin.html file, taking
care to ensure that it appears after the script element that defines the module that is being
extended. Listing 8-12 shows the change to the admin.html file.

Listing 8-12. Adding a script Element for a Controller to the admin.html File

<!DOCTYPE html>
<html ng-app="sportsStoreAdmin">
<head>
 <title>Administration</title>
 <script src="angular.js"></script>
 <script src="ngmodules/angular-route.js"></script>
 <link href="bootstrap.css" rel="stylesheet" />
 <link href="bootstrap-theme.css" rel="stylesheet" />
 <script>
 angular.module("sportsStoreAdmin", ["ngRoute"])
 .config(function ($routeProvider) {

 $routeProvider.when("/login", {
 templateUrl: "/views/adminLogin.html"
 });

 $routeProvider.when("/main", {
 templateUrl: "/views/adminMain.html"
 });

 $routeProvider.otherwise({
 redirectTo: "/login"
 });
 });
 </script>
 <script src="controllers/adminControllers.js"></script>
</head>
<body>
 <ng-view />
</body>
</html>

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

24

Defining the Authentication View

The next step is to create the view that will allow the user to enter a username and password,
invoke the authenticate behavior defined by the authCtrl controller, and display details of any
errors. Listing 8-13 shows the contents of the views/adminLogin.html file.

Listing 8-13. The Contents of the adminLogin.html File

<div class="well" ng-controller="authCtrl">

 <div class="alert alert-info" ng-hide="authenticationError">
 Enter your username and password and click Log In to authenticate
 </div>

 <div class="alert alert-danger" ng-show="authenticationError">
 Authentication Failed ({{authenticationError}}). Try again.
 </div>

 <form name="authForm" novalidate>
 <div class="form-group">
 <label>Username</label>
 <input name="username" class="form-control"
 ng-model="username" required />
 </div>
 <div class="form-group">
 <label>Password</label>
 <input name="password" type="password" class="form-control"
 ng-model="password" required />
 </div>
 <div class="text-center">
 <button ng-click="authenticate(username, password)"
 ng-disabled="authForm.$invalid"
 class="btn btn-primary">
 Log In
 </button>
 </div>
 </form>
</div>

This view uses techniques I introduced for the main SportsStore application and that I
describe in depth in later chapters. I use the ng-controller directive to associate the view with
the authCtrl controller. I use the AngularJS support for forms and validation (Chapter 12) to
capture the details from the user and prevent the Log In button from being clicked until values
for both the username and password have been entered. I use the ng-model directive (Chapter
10) to assign the values entered to the scope. I use the ng-show and ng-hide directives (Chapter
11) to prompt the user to enter credentials and to report on an error. Finally, I use the ng-click
directive (Chapter 11) to invoke the authenticate behavior on the controller to perform
authentication.

You can see how the view is displayed by the browser in Figure 8-9. To authenticate, enter
the username (admin) and password (secret) that Parse is expecting and click the button.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

25

Figure 8-9. Authenticating the user

Defining the Main View and Controller

Once the user is authenticated, the ng-view directive displays the adminMain.html view. This view
will be responsible for allowing the administrator to manage the contents of the product
catalog and see the queue of orders.

Before I start to define the functionality that will drive the application, I need to define
placeholder content for the views that will display the list of products and orders. First, I
created views/adminProducts.html, the content of which is shown in Listing 8-14.

Listing 8-14. The Contents of the adminProducts.html File

<div class="well">
 This is the product view
</div>

Next, I create the views/adminOrders.html file, for which I have defined a similar placeholder,
as shown in Listing 8-15.

Listing 8-15. The Contents of the adminOrders.html File

<div class="well">
 This is the order view
</div>

I need the placeholders so I can demonstrate the flow of views in the admin application.
The URL routing feature has a serious limitation: You can’t nest multiple instances of the ng-

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

26

view directive, which makes it slightly more difficult to arrange to display different views within
the scope of ng-view. I am going to demonstrate how to address this using the ng-include
directive as a slightly less elegant—but perfectly functional—alternative. I started by defining a
new controller in the adminControllers.js file, as shown in Listing 8-16.

Listing 8-16. Adding a New Controller in the adminControllers.js File

angular.module("sportsStoreAdmin")
 .constant("authUrl", "http://localhost:1337/parse/login")
 .run(function ($http) {
 $http.defaults.headers.common["X-Parse-Application-Id"] = "sportsstore";
 $http.defaults.headers.common["X-Parse-REST-API-Key"] = "myRestSecret";
 })
.controller("authCtrl", function ($scope, $http, $location, authUrl) {

 $scope.authenticate = function (user, pass) {
 $http.get(authUrl, {
 params: {
 username: user,
 password: pass
 },
 }).success(function (data) {
 $scope.$broadcast("sessionToken", data.sessionToken);
 $http.defaults.headers.common["X-Parse-Session-Token"]
 = data.sessionToken;
 $location.path("/main");
 }).error(function (response) {
 $scope.authenticationError = response.error || response;
 });
 }
})
.controller("mainCtrl", function ($scope) {

 $scope.screens = ["Products", "Orders"];
 $scope.current = $scope.screens[0];

 $scope.setScreen = function (index) {
 $scope.current = $scope.screens[index];
 };

 $scope.getScreen = function () {
 return $scope.current == "Products"
 ? "/views/adminProducts.html" : "/views/adminOrders.html";
 };
});

The new controller is called mainCtrl, and it provides the behaviors and data I need to use
the ng-include directive to manage views, as well as generate the navigation buttons that will
switch between the views. The setScreen behavior is used to change the displayed view, which
is exposed through the getScreen behavior.

You can see how the controller functionality is consumed in Listing 8-17, which shows how
I have revised the adminMain.html file to remove the placeholder functionality.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

27

Listing 8-17. Revising the adminMain.html File

<div class="panel panel-default row" ng-controller="mainCtrl">
 <div class="col-xs-3 panel-body">
 <a ng-repeat="item in screens" class="btn btn-block btn-default"
 ng-class="{'btn-primary': item == current }" ng-click="setScreen($index)">
 {{item}}

 </div>
 <div class="col-xs-8 panel-body" >
 <div ng-include="getScreen()" />
 </div>
</div>

This view uses the ng-repeat directive to generate a elements for each value in the scope
screens array. As I explain in Chapter 10, the ng-repeat directive defines some special variables
that can be referred to within the elements it generates, and one of those, $index, returns the
position of the current item in the array. I use this value with the ng-click directive, which
invokes the setScreen controller behavior.

The most important part of this view is the use of the ng-include directive, which I
introduced in Chapter 7 to display a single partial view and which I describe properly in
Chapter 10. The ng-include directive can be passed a behavior that is invoked to obtain the
name of the view that should be displayed, as follows:

...
<div ng-include="getScreen()" />
...

I have specified the getScreen behavior, which maps the currently selected navigation value
to one of the views I defined at the start of this section. You can see the buttons that the ng-

repeat directive generates—and the effect of clicking them—in Figure 8-10. This isn’t as elegant
or robust as using the URL routing feature, but it is functional and is a useful technique in
complex applications where a single instance of the ng-view directive doesn’t provide the depth
of control over views that is required.

Figure 8-10. Using the ng-include directive to select views

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

28

Implementing the Orders Feature

I am going to start with the list of orders, which is the simplest to deal with because I am only
going to display a read-only list. In a real e-commerce application, orders would go into a
complex workflow that would involve payment validation, inventory management, picking and
packing, and—ultimately—shipping the ordered products. As I explained in Chapter 6, these
are not features you would implement using AngularJS, so I have omitted them from the
SportsStore application. With that in mind, I have added a new controller to the
adminControllers.js file that uses the $http service to make an Ajax GET request to the Parse server
to get the orders, as shown in Listing 8-18.

Listing 8-18. Adding a Controller to Obtain the Orders in the adminControllers.js File

angular.module("sportsStoreAdmin")
 .constant("authUrl", "http://localhost:1337/parse/login")
 .constant("ordersUrl", "http://localhost:1337/parse/classes/Orders")
 .run(function ($http) {
 $http.defaults.headers.common["X-Parse-Application-Id"] = "sportsstore";
 $http.defaults.headers.common["X-Parse-REST-API-Key"] = "myRestSecret";
 })
.controller("authCtrl", function ($scope, $http, $location, authUrl) {

 // ...controller statements omitted for brevity...

})
.controller("mainCtrl", function ($scope) {

 // ...controller statements omitted for brevity...

})
.controller("ordersCtrl", function ($scope, $http, ordersUrl) {

 $http.get(ordersUrl)
 .success(function (data) {
 $scope.orders = data.results;
 })
 .error(function (response) {
 $scope.error = response.error || response;
 });

 $scope.selectedOrder;

 $scope.selectOrder = function (order) {
 $scope.selectedOrder = order;
 };

 $scope.calcTotal = function (order) {
 var total = 0;
 for (var i = 0; i < order.products.length; i++) {
 total +=
 order.products[i].count * order.products[i].price;

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

29

 }
 return total;
 }
});

I have defined a constant that defines the URL that will return a list of the orders stored by
the server. The controller function makes an Ajax request to that URL and assigns the data
objects to the orders property on the scope or, if the request is unsuccessful, assigns the error
object.

The rest of the controller is straightforward. The selectOrder behavior is called to set a
selectedOrder property, which I will use to zoom in on the details of an order. The calcTotal
behavior works out the total value of the products in an order.

To take advantage of the ordersCtrl controller, I have removed the placeholder content from
the adminOrders.html file and replaced it with the markup shown in Listing 8-19.

Listing 8-19. The Contents of the adminOrders.html File

<div ng-controller="ordersCtrl">

 <table class="table table-striped table-bordered">
 <tr><th>Name</th><th>City</th><th>Value</th><th></th></tr>
 <tr ng-repeat="order in orders">
 <td>{{order.name}}</td>
 <td>{{order.city}}</td>
 <td>{{calcTotal(order) | currency}}</td>
 <td>
 <button ng-click="selectOrder(order)" class="btn btn-xs btn-primary">
 Details
 </button>
 </td>
 </tr>
 </table>

 <div ng-show="selectedOrder">
 <h3>Order Details</h3>

 <table class="table table-striped table-bordered">
 <tr><th>Name</th><th>Count</th><th>Price</th></tr>
 <tr ng-repeat="item in selectedOrder.products">
 <td>{{item.name}}</td>
 <td>{{item.count}}</td>
 <td>{{item.price| currency}} </td>
 </tr>
 </table>
 </div>
</div>

The view consists of two table elements. The first table shows a summary of the orders,
along with a button element that invokes the selectOrder behavior to focus on the order. The
second table is visible only once an order has been selected and displays details of the
products that have been ordered. You can see the result in Figure 8-11.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

30

Figure 8-11. Viewing the SportsStore orders

Implementing the Products Feature

For the products feature, I am going to perform a full range of operations on the data so that
the administrator not only can see the products but create new ones and edit and delete
existing ones. Parse provides a RESTful API whose actions you configured earlier in this
chapter. I get into the details of RESTful APIs properly in Chapter 21, but the short version is
that the data object you want is specified using the URL, and the operation you want to
perform is specified by the HTTP method of the request sent to the server. So, for example, if I
want to delete the object whose objectId attribute is 100, I would sent a request to the server
using the DELETE HTTP method and the URL /1/classes/Products/100.

You can use the $http service to work with a RESTful API, but doing so means you have to
expose the complete set of URLs that are used to perform operations throughout the
application. You can do this by defining a service that performs the operations for you, but a
more elegant alternative is to use the $resource service, defined in the optional ngResource
module, which also has a nice way of dealing with defining the URLs that are used to send
requests to the server.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

31

Defining the RESTful Controller

I am going to start by defining the controller that will provide access to the RESTful Parse API
via the AngularJS $resource service. I created a new file called adminProductController.js in the
controllers folder and used it to define the controller shown in Listing 8-20.

Listing 8-20. The Contents of the adminProductController.js File

angular.module("sportsStoreAdmin")
.constant("productUrl", "http://localhost:1337/parse/classes/Products/")
.run(function ($http) {
 $http.defaults.headers.common["X-Parse-Application-Id"] = "sportsstore";
 $http.defaults.headers.common["X-Parse-REST-API-Key"] = "myRestSecret";
})
.controller("productCtrl", function ($scope, $http, $resource, productUrl) {

 $scope.$on("sessionToken", function (sessionToken) {
 $http.defaults.headers.common["X-Parse-Session-Token"] = sessionToken;
 });

 function getData(data, headers) {
 return JSON.parse(data).results;
 }

 $scope.productsResource = $resource(productUrl + ":id", { id: "@objectId" }, {
 query: { method: "GET", isArray: true, transformResponse: getData },
 update: { method: "PUT"}
 });

 $scope.listProducts = function () {
 $scope.products = $scope.productsResource.query();
 }

 $scope.deleteProduct = function (product) {
 product.$delete().then(function () {
 $scope.products.splice($scope.products.indexOf(product), 1);
 });
 }

 $scope.createProduct = function (product) {
 new $scope.productsResource(product).$save().then(function (response) {
 response.$get().then(function (newProduct) {
 $scope.products.push(newProduct);
 $scope.editedProduct = null;
 })
 });
 }

 $scope.updateProduct = function (product) {
 var pCopy = {};
 angular.copy(product, pCopy)
 pCopy.$update().then(function () {
 $scope.editedProduct = null;

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

32

 })
 }

 $scope.startEdit = function (product) {
 $scope.editedProduct = product;
 }

 $scope.cancelEdit = function () {
 $scope.editedProduct = null;
 }

 $scope.listProducts();
});

I am not going to into the code for this listing because I cover the topic fully in Chapter 21.
But there some important themes that are worth explaining now, so I’ll cover just the
highlights.

The most important part of this example, however, is the statement that creates the
access object that provides access to the RESTful API:

...
$scope.productsResource = $resource(productUrl + ":id", { id: "@objectId" }, {
 query: { method: "GET", isArray: true, transformResponse: getData },
 update: { method: "PUT"}
 });
...

The first argument passed into the $resource call defines the URL format that will be used to
make queries. The :id part, which corresponds to the map object that is the second argument,
tells AngularJS that if the data object it is working with has an objectId property, then it should
be appended to the URL used for the Ajax request.

The URLs and HTTP methods that are used to access the RESTful API are inferred from
these two arguments, which means I don’t have to make individual Ajax calls using the $http
service.

The access object that is the result from using the $resource service has query, get, delete,
remove, and save methods that are used to obtain and operate on the data from the server
(methods are also defined on individual data objects, as I explain in Chapter 21). Calling these
methods triggers the Ajax request that performs the required operation.

The final argument that I pass to the $resource method is a configuration object that lets me
define new operations on the server and change the existing ones. I have defined an update
operation that uses an HTTP PUT request to update a modified object and adjusted the query
operation to specify a function that extracts the data that AngularJS is expecting from the
response send by the Parse server.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

33

Tip The methods defined by the access object don’t quite correspond to the API defined by Parse,

which is why I have had to add a new operation and modify an existing one. In Chapter 21, I show you

how you can change the $resource configuration to fully map onto any RESTful API.

Most of the code in the controller presents these methods to the view in a useful way that
works around a wrinkle in the $resource implementation. The collection of data objects
returned by the query method isn’t automatically updated when objects are created or deleted,
so I have to include code to take care of keeping the local collection in sync with the remote
changes.

Tip The access object doesn’t automatically load the data from the server, which is why I call the

query method directly at the end of the controller function.

Defining the View

To take advantage of the functionality defined by the controller, I have replaced the
placeholder content in the adminProducts.html view with the markup shown in Listing 8-21.

Listing 8-21. The Contents of the adminProducts.html File

<style>
 #productTable { width: auto; }
 #productTable td { max-width: 150px; text-overflow: ellipsis;
 overflow: hidden; white-space: nowrap; }
 #productTable td input { max-width: 125px; }
</style>

<div ng-controller="productCtrl">
 <table id="productTable" class="table table-striped table-bordered">
 <tr>
 <th>Name</th>
 <th>Description</th>
 <th>Category</th>
 <th>Price</th>
 <th></th>
 </tr>
 <tr ng-repeat="item in products | orderBy: 'category'"
 ng-hide="item.objectId == editedProduct.objectId">
 <td>{{item.name}}</td>
 <td class="description">{{item.description}}</td>
 <td>{{item.category}}</td>
 <td>{{item.price | currency}}</td>
 <td>
 <button ng-click="startEdit(item)" class="btn btn-xs btn-primary">

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

34

 Edit
 </button>
 <button ng-click="deleteProduct(item)"
 class="btn btn-xs btn-primary">
 Delete
 </button>
 </td>
 </tr>
 <tr ng-class="{danger: editedProduct}">
 <td><input ng-model="editedProduct.name" required /></td>
 <td><input ng-model="editedProduct.description" required /></td>
 <td><input ng-model="editedProduct.category" required /></td>
 <td><input type="number" ng-model="editedProduct.price" required /></td>
 <td>
 <button ng-hide="editedProduct.objectId"
 ng-click="createProduct(editedProduct)"
 class="btn btn-xs btn-primary">
 Create
 </button>
 <button ng-show="editedProduct.objectId"
 ng-click="updateProduct(editedProduct)"
 class="btn btn-xs btn-primary">
 Save
 </button>
 <button ng-show="editedProduct"
 ng-click="cancelEdit()" class="btn btn-xs btn-primary">
 Cancel
 </button>
 </td>
 </tr>
 </table>
</div>

There are no new techniques in this view, but it shows how AngularJS directives can be
used to manage a stateful editor view. The elements in the view use the controller behaviors
to manipulate the collection of product objects, allowing the user to create new products and
edit or delete existing products.

Adding the References to the HTML File

All that remains is to add script elements to the admin.html file to import the new module and
the new controller and to update the main application module so that it declares a
dependency on ngResource, as shown in Listing 8-22.

Listing 8-22. Adding the References to the admin.html File

<!DOCTYPE html>
<html ng-app="sportsStoreAdmin">
<head>
 <title>Administration</title>
 <script src="angular.js"></script>
 <script src="ngmodules/angular-route.js"></script>

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

35

 <script src="ngmodules/angular-resource.js"></script>
 <link href="bootstrap.css" rel="stylesheet" />
 <link href="bootstrap-theme.css" rel="stylesheet" />
 <script>
 angular.module("sportsStoreAdmin", ["ngRoute", "ngResource"])
 .config(function ($routeProvider) {

 $routeProvider.when("/login", {
 templateUrl: "/views/adminLogin.html"
 });

 $routeProvider.when("/main", {
 templateUrl: "/views/adminMain.html"
 });

 $routeProvider.otherwise({
 redirectTo: "/login"
 });
 });
 </script>
 <script src="controllers/adminControllers.js"></script>
 <script src="controllers/adminProductController.js"></script>
</head>
<body>
 <ng-view />
</body>
</html>

You can see the effect in Figure 8-12. The user creates a new product by filling in the input
elements and clicking the Create button, modifies a product by clicking one of the Edit
buttons, and removes a product using one of the Delete buttons.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 8 SportsStore: Administration

36

Figure 8-12. Editing products

Summary
In this chapter, I finished the main SportsStore application and built the SportsStore
administration tool. I showed you how to perform form validation, showed how to make Ajax
POST requests with the $http service, and outlined some improvements that could be made
using some of the advanced techniques I describe in later chapters. For the administration
application, I showed you how to perform authentication (and configure Ajax requests so that
they work with security cookies) and how to use the $resource service to consume a RESTful
API. You will see the features and themes that I used in the SportsStore application throughout
the rest of this book. In Part 2, I dig into AngularJS in detail, starting with an overview of the
different AngularJS components.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

C H A P T E R 21

1

Services for REST

In this chapter, I show you how AngularJS supports working with RESTful web services.
Representational State Transfer (REST) is a style of API that operates over HTTP requests,
which I introduced in Chapter 3. The requested URL identifies the data to be operated on, and
the HTTP method identifies the operation that is to be performed.

REST is a style of API rather than a formal specification, and there is a lot of debate and
disagreement about what is and isn’t RESTful, a term used to indicate an API that follows the
REST style. AngularJS is pretty flexible about how RESTful web services are consumed, and I
show you how you can tailor AngularJS to work with specific REST implementations.

Don’t worry if you are not familiar with REST or if you have not worked with a RESTful web
service before. I start by building a simple REST service and then provide plenty of examples to
show you how to use it. Table 21-1 summarizes this chapter.

Table 21-1. Chapter Summary

Problem Solution Listing

Consume a RESTful API through
explicit Ajax requests.

Use the $http service to request the data from the server
and perform operations on it.

1–8

Consume a RESTful API without
exposing the Ajax requests.

Use the $resource service. 9–14

Tailor the Ajax requests used by
the $resource service.

Define custom actions or redefine the default ones. 15–16

Create components that can work
with RESTful data.

Ensure that you can optionally enable support for
working with the $resource service and remember to
allow the actions that must be used to be configured
when the component is applied.

17–18

Why and When to Use the REST Services
You should use the services that I describe in this chapter when you are performing data
operations on a RESTful API. You may initially prefer to use the $http service to make Ajax

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

2

requests, especially if you are coming from a jQuery background. To that end, I describe the
use of $http at the start of the chapter, before explaining its limitations when used with REST
and the advantages of using the $resource service as an alternative.

Preparing the Example Project
I need a back-end service to demonstrate the different ways in which AngularJS can be used to
consume a RESTful web service, so I will be using Parse again and creating a similar – but
simpler – web service that I can use with AngularJS.

Note You must ensure that the database and Parse server and dashboard you earlier in the book are

not running before starting this example.

Starting the Database

If you are Windows, run the following command in a PowerShell window to start the database,
using the data directory that you created in Chapter 6:

& 'C:\Program Files\MongoDB\Server\3.4\bin\mongod.exe' --dbpath="./data"

If you are using Linux, then run the following command to start the database:

sudo service mongod start

If you are using macOS, then run the following command in a Terminal window to start the
database using the data directory that you created in Chapter 6:

mongod --dbpath=./data

Creating the RESTful Service

Once the database has started, run the following command to create a new Parse server,
configured to create an application called sportsstorelite:

parse-server --appId sportsstorelite --masterKey myMasterSecret
 --restAPIKey=myRestSecret --databaseURI mongodb://localhost/sportsstorelite

I have used the same values for the masterKey and restAPIKey arguments as in Chapter 6.
Open another terminal or PowerShell window and run this command to start the Parse

dashboard, which is used to configure the Parse server (enter the command on a single line):

parse-dashboard --appId sportsstorelite --masterKey myMasterSecret
 --serverURL "http://localhost:1337/parse" --appName SportsStoreLite

Open a browser tab and navigate to http://localhost:4040 to access the Parse dashboard,
which will contain the SportsStoreLite entry, as shown in Figure 21-1.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

3

FIgure 21-1. The Parse dashboard

Creating the Data Structure

Click on the SportsStoreLite application to open the detailed view and then click the Create a Class
button. Ensure that Custom is selected and enter Products into the text field, as shown in Figure
21-2.

FIgure 21-2. Creating the Products class

Click the Create Class button and then click the Add a New Column button to define the
columns shown in Table 21-2.

Table 21-2. The Columns Required for the Products Class

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

4

Name Type

name String

category String

price Number

Adding the Initial Data

I am going to populate the back end with some initial data to make creating the example
simple. Use the Add Row button to create data rows for the values shown in Table 21-3. Ignore
the built-in rows that Parse adds to all objects – values will be assigned to them automatically.

Table 21-3. The Initial Data Items

Name Category Price

Apples Fruit 1.20

Bananas Fruit 2.42

Pears Fruit 2.02

Tuna Fish 20.45

Salmon Fish 17.93

Trout Fish 12.93

When you have added the data, the data browser grid should look like the one shown in

Figure 21-3. (I have omitted most of the built-in properties from the figure).

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

5

Figure 21-3. Adding the data

Testing the API

My goal in this chapter is to show you the different facilities that AngularJS provides to
combine these URLs and HTTP methods to drive the data from an application. In Table 21-4, I
have listed the operations that can be performed on the Parse data and the combination of
HTTP method, URL and data that each requires.

Tip It is always worth checking the API that your RESTful service provides because there isn’t

complete consistency about the way that HTTP methods are combined with URLs to manipulate data. As

an example, some services support using the PATCH method to update individual properties for an

object, whereas others, including Parse, use the PUT method.

Table 21-4. The HTTP Methods and URLs That the RESTful Service Supports

Task Method URL Accepts Returns

List products GET /parse/classes/Products Nothing An array of objects

Create an object POST /parse/classes/Products A single object The saved object

Get an object GET /parse/classes/Products/<id> Nothing A single object

Update an object PUT /parse/classes/Products/<id> A single object The saved object

Delete an object DELETE /parse/classes/Products/<id> A single object Nothing

As I explained in Chapter 6, Parse identifies the application that a request relates to using

HTTP request headers. For this chapter, Table 21-5 shows the headers and the values that
must be used.

Table 21-5. The Headers and Values Required for HTTP Requests

Header Value

X-Parse-Application-ID sportsstorelite

X-Parse-REST-API-Key myRestSecret

To test the Parse service, use the following command in a Windows PowerShell:

Invoke-RestMethod http://localhost:1337/parse/classes/Products -Method Get `
 -Headers @{"X-Parse-Application-ID"="sportsstorelite"; `

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

6

 "X-Parse-REST-API-Key"="myRestSecret"} | ConvertTo-Json

Use this command if you are using Linux or macOS:

curl -X GET \
 -H "X-Parse-Application-Id: sportsstorelite" \
 -H "X-Parse-REST-API-Key: myRestSecret" \
 http://localhost:1337/parse/classes/Products

When this URL is requested, the Parse server returns a JSON string that contains the
details entered from Table 21-4. If you are using Google Chrome, then the JSON will be
displayed in the browser window, but some other browsers will ask you to save the JSON data
to a file. The JSON from Parse is similar to the JSON I manually created in Chapter 20, but with
two differences: since the data is being stored in a database, each product object is assigned a
unique key on a property called objectId and the collection of data objects is defined in an
object with a results property. Here is the first part of the JSON sent by the Parse server with
both the objectId and results property highlighted:

{"results":[
 {"category":"Fruit",
 "name":"Apples",
 "price":1.2,
 "createdAt":"2014-04-27T07:22:01.635Z",
 "updatedAt":"2014-04-27T07:22:12.072Z",
 "objectId":"zGAI4nXYz6"},

 ...other data items omitted for brevity...
]}

The objectId value zGAI4nXYz6 uniquely identifies the product object whose name property is
set to Apples. To delete this object via REST, I would use the HTTP DELETE method to invoke the
following URL:

https://localhost:1337/parse/classes/Products/zGAI4nXYz6

Creating the AngularJS Application

Now that the RESTful API is set up and populated with data, I am going to create a skeletal
AngularJS application. This application will display the content and present the user with the
means to add, modify, and delete product objects.

I started by clearing the contents of the angularjs directory and reinstalling the AngularJS
and Bootstrap files, as described in Chapter 1. I then created a new HTML file called
products.html, the contents of which you can see in Listing 21-1.

Listing 21-1. The Contents of the products.html File

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

7

<!DOCTYPE html>
<html ng-app="exampleApp">
<head>
 <title>Products</title>
 <script src="angular.js"></script>
 <link href="bootstrap.css" rel="stylesheet" />
 <link href="bootstrap-theme.css" rel="stylesheet" />
 <script src="products.js"></script>
</head>
<body ng-controller="defaultCtrl">
 <div class="panel panel-primary">
 <h3 class="panel-heading">Products</h3>
 <ng-include src="'tableView.html'" ng-show="displayMode == 'list'">
 </ng-include>
 <ng-include src="'editorView.html'" ng-show="displayMode == 'edit'">
 </ng-include>
 </div>
</body>
</html>

I am going to break this example into a series of smaller files, much as you would do in a
real project. The products.html file contains the script element for AngularJS and the link elements
for Bootstrap. The main content for this application is contained in two view files, tableView.html
and editorView.html, which I will create shortly. These are imported into the products.html file
using the ng-include directive, and the visibility of the elements is controlled using the ng-show
directive tied to a scope variable called displayMode.

The products.html file also contains a script element for a file called products.js, which I have
used to define the behaviors that the application will need. I have started by using dummy
local data, which I will replace with data obtained via REST later in the chapter. Listing 21-2
shows the contents of the products.js file.

Listing 21-2. The Contents of the products.js File

angular.module("exampleApp", [])
.controller("defaultCtrl", function ($scope) {

 $scope.displayMode = "list";
 $scope.currentProduct = null;

 $scope.listProducts = function () {
 $scope.products = [
 { objectId: 0, name: "Dummy1", category: "Test", price: 1.25 },
 { objectId: 1, name: "Dummy2", category: "Test", price: 2.45 },
 { objectId: 2, name: "Dummy3", category: "Test", price: 4.25 }];
 }

 $scope.deleteProduct = function (product) {
 $scope.products.splice($scope.products.indexOf(product), 1);
 }

 $scope.createProduct = function (product) {
 product.objectId = $scope.products.length;

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

8

 $scope.products.push(product);
 $scope.displayMode = "list";
 }

 $scope.updateProduct = function (product) {
 for (var i = 0; i < $scope.products.length; i++) {
 if ($scope.products[i].objectId == product.objectId) {
 $scope.products[i] = product;
 break;
 }
 }
 $scope.displayMode = "list";
 }

 $scope.editOrCreateProduct = function (product) {
 $scope.currentProduct = product || {};
 $scope.displayMode = "edit";
 }

 $scope.saveEdit = function (product) {
 if (angular.isDefined(product.objectId)) {
 $scope.updateProduct(product);
 } else {
 $scope.createProduct(product);
 }
 }

 $scope.cancelEdit = function () {
 $scope.currentProduct = {};
 $scope.displayMode = "list";
 }

 $scope.listProducts();
});

The controller in the listing defines all the functionality I need to operate on the product
data. The behaviors I have defined fall into two categories. The first category consists of
behaviors that manipulate the data in the scope: the listProducts, deleteProduct, createProduct, and
updateProduct functions. These behaviors correspond to the REST operations I described in Table
21-5, and most of this chapter is spent showing you different ways to implement those
methods. For the moment, the application uses some dummy test data, just so I can separate
showing you how the application works from showing you how to consume restful services.

The other behaviors, editOrCreateProduct, saveEdit, and cancelEdit, all support the user
interface and are invoked in response to user interaction. In Listing 21-1, you will see that I
used the ng-include directive to import two HTML views. The first of these is called tableView.html,
and I use it to display the data and provide buttons that will allow the user to reload the data
and create, delete, and edit a product. Listing 21-3 shows the contents of the tableView.html file.

Listing 21-3. The Contents of the tableView.html File

<div class="panel-body">

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

9

 <table class="table table-striped table-bordered">
 <thead>
 <tr>
 <th>Name</th>
 <th>Category</th>
 <th class="text-right">Price</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 <tr ng-repeat="item in products">
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td class="text-right">{{item.price | currency}}</td>
 <td class="text-center">
 <button class="btn btn-xs btn-primary"
 ng-click="deleteProduct(item)">
 Delete
 </button>
 <button class="btn btn-xs btn-primary"
 ng-click="editOrCreateProduct(item)">
 Edit
 </button>
 </td>
 </tr>
 </tbody>
 </table>
 <div>
 <button class="btn btn-primary" ng-click="listProducts()">Refresh</button>
 <button class="btn btn-primary" ng-click="editOrCreateProduct()">New</button>
 </div>
</div>

This view uses AngularJS features that I have described in earlier chapters. I use the ng-

repeat directive to generate rows in a table for each product object, and I use the currency filter
to format the price property on the product objects. Finally, I use the ng-click directive to respond
when the user clicks a button, calling the behaviors defined in the controller defined in the
products.js file.

The other view file is called editorView.html, and I use it to allow the user to create new
product objects or edit existing ones. You can see the contents of the editorView.html file in
Listing 21-4.

Listing 21-4. The Contents of the editorView.html File

<div class="panel-body">
 <div class="form-group">
 <label>Name:</label>
 <input class="form-control" ng-model="currentProduct.name" />
 </div>
 <div class="form-group">
 <label>Category:</label>
 <input class="form-control" ng-model="currentProduct.category" />

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

10

 </div>
 <div class="form-group">
 <label>Price:</label>
 <input type="number" class="form-control" ng-model="currentProduct.price" />
 </div>
 <button class="btn btn-primary" ng-click="saveEdit(currentProduct)">Save</button>
 <button class="btn btn-primary" ng-click="cancelEdit()">Cancel</button>
</div>

This view uses the ng-model directive to create two-way bindings with the product being
edited or created, and it uses the ng-click directive to respond to the user clicking the Save or
Cancel button.

Testing the Application

To test the AngularJS application, simply load the products.html file into the browser. All of the
other files will be imported, and you will see the list of dummy data, as illustrated in Figure 21-
4.

Figure 21-4. Displaying dummy data

If you click the Delete button, the deleteProduct behavior will be invoked, and the product in
the corresponding row will be removed from the data array. If you click the Refresh button,
the listProducts behavior will be invoked, and the data will be reset because this is where the
dummy data is defined; the data won’t be reset when I start making Ajax requests.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

11

Clicking the Edit or New button will invoke the editOrCreateProduct behavior, which causes
the contents of the editorView.html file to be displayed, as shown in Figure 21-5.

Figure 21-5. Editing or creating a product

If you click the Save button, the changes made to an existing item will be saved or a new
product will be created. I rely on the fact that data objects that are being edited will have an
objectId attribute. The Cancel button returns to the list view without saving any changes, which
I handle by using the angular.copy method to create a copy of the product object so that I can
discard it when needed.

Using the $http Service
The first service that I am going to use to complete the implementation of the example
application is $http, which I described in Chapter 20. RESTful services are consumed using
standard asynchronous HTTP requests, and the $http service provides all of the features that
are required to bring the data into the application and write changes to the server. In the
sections that follow, I’ll rewrite each of the data manipulation behaviors to use the $http
service.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

12

Listing the Product Data

None of the changes that I have to make to use Ajax is especially complex, and in Listing 21-5,
you can see how I have changed the definition of the controller factory function to declare its
dependencies.

I don’t want to embed the URL for the RESTful service throughout the application, so I
have defined a constant called baseUrl for the root URL that provides access to the data.

I then declare a dependency on baseUrl (which is possible because, as I explained in Chapter
18, constants are just simple services). I have also used the run method to set the headers that
provide Parse with the key values it required and to define an Ajax interceptor that extracts
the data array returned by Parse from the results property.

Caution Remember to change the keys to the ones you received when creating the application at the

start of the chapter.

Listing 21-5. Declaring Dependencies and Listing Data in the products.js File

angular.module("exampleApp", [])
.constant("baseUrl", "http://localhost:1337/parse/classes/Products/")
.config(function ($httpProvider) {
 $httpProvider.defaults.headers.common["X-Parse-Application-Id"]
 = "sportsstorelite";
 $httpProvider.defaults.headers.common["X-Parse-REST-API-Key"]
 = "myRestSecret";

 $httpProvider.interceptors.push(function () {
 return {
 response: function (response) {
 if (response.headers("content-type")
 .indexOf("application/json") != -1) {
 if (response.hasOwnProperty("data")
 && response.data.hasOwnProperty("results")) {
 response.data = response.data.results;
 }
 }
 return response;
 }
 }
 })
})
.controller("defaultCtrl", function ($scope, $http, baseUrl) {

 $scope.displayMode = "list";
 $scope.currentProduct = null;

 $scope.listProducts = function () {
 $http.get(baseUrl).success(function (data) {

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

13

 $scope.products = data;
 });
 }

 $scope.deleteProduct = function (product) {
 $scope.products.splice($scope.products.indexOf(product), 1);
 }

 $scope.createProduct = function (product) {
 product.objectId = $scope.products.length;
 $scope.products.push(product);
 $scope.displayMode = "list";
 }

 $scope.updateProduct = function (product) {
 // do nothing - no action required for local data
 $scope.displayMode = "list";
 }

 $scope.editOrCreateProduct = function (product) {
 $scope.currentProduct = product || {};
 $scope.displayMode = "edit";
 }

 $scope.saveEdit = function (product) {
 if (angular.isDefined(product.objectId)) {
 $scope.updateProduct(product);
 } else {
 $scope.createProduct(product);
 }
 }

 $scope.cancelEdit = function () {
 $scope.currentProduct = {};
 $scope.displayMode = "list";
 }

 $scope.listProducts();
});

The implementation of the listProduct method relies on the $http.get convenience method
that I described in Chapter 20. I make a call to the base URL, which, as Table 21-5 noted,
obtains the array of product objects from the server. I use the success method to receive the data
that the server sends and assign it to the products property in the controller scope.

The last statement in the controller’s factory function calls the listProduct behavior to
ensure that the application starts with some data. You can see the effect by loading
products.html into the browser and using the F12 developer tools to look at the network
requests that are made. You will see a GET request being made to the base URL, and the data
will be displayed in the table element, as shown in Figure 21-6.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

14

Tip You may notice a small delay between the contents of the tableView.html file being displayed

and the table element being populated. This is the time taken for the server to process the Ajax request

and send the response, and it can be quite pronounced when the network or the service is busy. In

Chapter 22, I show you how you can use the URL routing feature to prevent the view from being shown

until the data has arrived.

Figure 21-6. Listing the data from the server using Ajax

Deleting Products

The next behavior I am going to re-implement is deleteProduct, which you can see in Listing 21-6.

Listing 21-6. Adding Ajax Requests to the deleteProduct Function in the products.js File

...
$scope.deleteProduct = function (product) {
 $http({

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

15

 method: "DELETE",
 url: baseUrl + product.objectId
 }).success(function () {
 $scope.products.splice($scope.products.indexOf(product), 1);
 });
}
...

There is no $http convenience method for the HTTP DELETE method, so I have to use the
alternative technique of treating the $http service object as a function and pass in a
configuration object. I described the properties that can be set on a configuration object in
Chapter 20, but I need only the method and url properties for this example.

I set the URL to be the base URL plus the objectId of the product I want deleted following
the URL pattern I listed in Table 21-5. The $http service object returns a promise, and I use the
success method to delete the corresponding product from the local array so that the server data
and the local copy of it remain in sync.

The effect of this change is that clicking a Delete button removes the corresponding product
from the server and the client. You can see the change both in the Parse dashboard and, of
course, in the browser that is running the example AngularJS application.

Creating Products

Adding support for creating new product objects requires the use of the HTTP POST method, for
which there is an $http convenience method. You can see the changes I made to the
createProduct behavior in Listing 21-7.

Listing 21-7. Creating Products in the products.js File

...
$scope.createProduct = function (product) {
 $http.post(baseUrl, product).success(function (response) {
 product.objectId = response.objectId;
 $scope.products.push(product);
 $scope.displayMode = "list";
 });
}
...

The RESTful service responds to my create request by returning an object that has an
objectId property that identifies the newly created data object at the server. I use the value
from the response to set the objectId of the product parameter object, which I then add to the
products array. Once I have added the new object to the array, I set the displayMode variable so
that the application displays the list view.

Updating Products

The last behavior I have to revise is updateProduct, which you can see in Listing 21-8.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

16

Listing 21-8. Using Ajax in the updateProduct Behavior Defined in the product.json File

...
$scope.updateProduct = function (product) {
 $http({
 url: baseUrl + product.objectId,
 method: "PUT",
 data: product
 }).success(function () {
 for (var i = 0; i < $scope.products.length; i++) {
 if ($scope.products[i].objectId == product.objectId) {
 $scope.products[i] = product;
 break;
 }
 }
 $scope.displayMode = "list";
 });
}
...

Updating an existing product object requires the HTTP PUT method for which there is no
$http convenience method, meaning that I have to invoke the $http service object as a function
and pass in a configuration object with the method and URL. The response from the server just
a confirmation of the update, so I use the product parameter passed to the method to update
the products array to reflect the changes. Once I have added the modified object to the array, I
set the displayMode variable so that the application displays the list view.

Testing the Ajax Implementation

You can see from the previous sections that implementing the Ajax calls to integrate the
RESTful service into the application is a relatively simple task. I have skipped over some details
that would be required in a real application, such as form validation and handling errors, but
you get the idea: With just a little care and thought, it is easy to use the $http service to
consume a RESTful service.

Hiding the Ajax Requests
Using the $http service to consume a RESTful API is easy, and it provides a nice demonstration
of how different AngularJS features can be combined to create applications. In terms of
features, it works just fine, but there are serious problems when it comes to the design of the
application that it produces.

The problem is that the local data and the behaviors that manipulate the data on the
server are separate and care has to be taken to make sure that they stay synchronized. This
runs counter to the way that AngularJS usually work, where data is propagated throughout the
application via scopes and can be updated freely. To demonstrate the problem, I have added a

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

17

new file to the angularjs folder called increment.js, which contains the module shown in Listing
21-9.

Listing 21-9. The Contents of the increment.js File

angular.module("increment", [])
 .directive("increment", function () {
 return {
 restrict: "E",
 scope: {
 value: "=value"
 },
 link: function (scope, element, attrs) {
 var button = angular.element("<button>").text("+");
 button.addClass("btn btn-primary btn-xs");
 element.append(button);
 button.on("click", function () {
 scope.$apply(function () {
 scope.value++;
 })
 })
 },
 }
 });

The module in this file, called increment, contains a directive, also called increment, that
updates a value when the button is clicked. The directive is applied as an element and uses a
two-way binding on an isolated scope to get its data value (a process that I described in
Chapter 16). To use the module, I had to add a script element to the products.html file, as shown
in Listing 21-10.

Listing 21-10. Adding a script Element to the products.html File

<!DOCTYPE html>
<html ng-app="exampleApp">
<head>
 <title>Products</title>
 <script src="angular.js"></script>
 <link href="bootstrap.css" rel="stylesheet" />
 <link href="bootstrap-theme.css" rel="stylesheet" />
 <script src="products.js"></script>
 <script src="increment.js"></script>
</head>
<body ng-controller="defaultCtrl">
 <div class="panel panel-primary">
 <h3 class="panel-heading">Products</h3>
 <ng-include src="'tableView.html'" ng-show="displayMode == 'list'">
 </ng-include>
 <ng-include src="'editorView.html'" ng-show="displayMode == 'edit'">
 </ng-include>
 </div>
</body>

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

18

</html>

I also had to add a dependency for the module in the products.js file, as shown in Listing 21-
11.

Listing 21-11. Adding a Module Dependency in the products.js File

angular.module("exampleApp", ["increment"])
.constant("baseUrl", "http://localhost:1337/parse/classes/Products/")
.config(function ($httpProvider) {
...

And, finally, I had to apply the directive to the tableView.html file so that each row in the
table has an increment button, as shown in Listing 21-12.

Listing 21-12. Applying the increment Directive to the tableView.html File

...
<tr ng-repeat="item in products">
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td class="text-right">{{item.price | currency}}</td>
 <td class="text-center">
 <button class="btn btn-xs btn-primary"
 ng-click="deleteProduct(item)">
 Delete
 </button>
 <button class="btn btn-xs btn-primary"
 ng-click="editOrCreateProduct(item)">
 Edit
 </button>
 <increment value="item.price" />
 </td>
</tr>
...

The effect is shown in Figure 21-7. Clicking the + button increments the price property of
the corresponding product object by 1.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

19

Figure 21-7. Incrementing prices

The problem can be seen by clicking the Refresh button, which replaces the local product
data with fresh data from the server. The increment directive didn’t perform the required Ajax
update when it incremented the price property, so the local data fell out of sync with the server
data.

This may seem like a contrived example, but it arises frequently when using directives
written by other developers or provided by a third-party. Even if the author of the increment
directive knew that Ajax updates were required, they could not be performed because all of
the Ajax update logic is contained in the controller and not accessible to a directive, especially
one in another module.

The solution to this problem is to make sure that changes to the local data automatically
cause the required Ajax requests to be generated, but this means that any component that
needs to work with the data has to know whether the data needs to be synchronized with a
remote server and know how to make the required Ajax requests to perform updates.

AngularJS offers a partial solution to this problem through the $resource service, which
makes it easier to work with RESTful data in an application by hiding away the details of the
Ajax requests and URL formats. I’ll show you how to apply the $resource service in the sections
that follow.

Installing the ngResource Module

The $resource service is defined within an optional module called ngResource that must be
downloaded into the angularjs folder. Go to http://angularjs.org, click Download, select the version
you require (version 1.2.5 is the latest version as I write this), and click the Extras link in the
bottom-left corner of the window, as shown in Figure 21-8.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

20

Figure 21-8. Downloading an optional module

Download the angular-resource.js file into the angularjs folder. In Listing 21-13, you can see
how I have added a script element for the new file to the products.html file.

Listing 21-13. Adding a Reference to the products.html File

...
<head>
 <title>Products</title>
 <script src="angular.js"></script>
 <script src="angular-resource.js"></script>
 <link href="bootstrap.css" rel="stylesheet" />
 <link href="bootstrap-theme.css" rel="stylesheet" />
 <script src="products.js"></script>
 <script src="increment.js"></script>
</head>
...

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

21

Using the $resource Service

In Listing 21-14, you can see how I have used the $resource service in in the products.js file to
manage the data that I get from the server without directly creating Ajax requests.

Listing 21-14. Using the $resource Service in the products.js File

angular.module("exampleApp", ["increment", "ngResource"])
.constant("baseUrl", "http://localhost:1337/parse/classes/Products/")
.config(function ($httpProvider) {
 $httpProvider.defaults.headers.common["X-Parse-Application-Id"]
 = "sportsstorelite";
 $httpProvider.defaults.headers.common["X-Parse-REST-API-Key"]
 = "myRestSecret";
})
.controller("defaultCtrl", function ($scope, $http, $resource, baseUrl) {

 $scope.displayMode = "list";
 $scope.currentProduct = null;

 $scope.productsResource = $resource(baseUrl + ":id", { id: "@objectId" }, {
 query: {
 method: "GET", isArray: true,
 transformResponse: function (data, headers) {
 return JSON.parse(data).results
 .map(function(item) {
 return {
 objectId: item.objectId,
 name: item.name,
 category: item.category,
 price: item.price
 }
 })
 }
 },
 update: {method: "PUT"}
 });

 $scope.listProducts = function () {
 $scope.products = $scope.productsResource.query();
 }

 $scope.deleteProduct = function (product) {
 product.$delete().then(function () {
 $scope.products.splice($scope.products.indexOf(product), 1);
 })
 }

 $scope.createProduct = function (product) {
 var newProduct = new $scope.productsResource(product);
 newProduct.$save().then(function (response) {
 $scope.products.push(angular.extend(newProduct, product));
 $scope.displayMode = "list";

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

22

 });
 }

 $scope.updateProduct = function (product) {
 angular.copy(product).$update().then(function () {
 $scope.displayMode = "list";
 });
 }

 $scope.editOrCreateProduct = function (product) {
 $scope.currentProduct = product || {};
 $scope.displayMode = "edit";
 }

 $scope.saveEdit = function (product) {
 if (angular.isDefined(product.objectId)) {
 $scope.updateProduct(product);
 } else {
 $scope.createProduct(product);
 }
 }

 $scope.cancelEdit = function () {
 if ($scope.currentProduct && $scope.currentProduct.$get) {
 $scope.currentProduct.$get();
 }
 $scope.currentProduct = {};
 $scope.displayMode = "list";
 }

 $scope.listProducts();
});

The function signature for the behaviors defined by the controller have remained the
same, which is good because it means I don’t have to change any of the HTML elements in
order to use the $resource service. The implementation of every behavior has changed, not only
because the way that I obtain the data has changed but also because the assumptions that can
be made about the nature of the data are different. There is a lot going on in this listing, and
the $resource service can be confusing, so I am going to break down what’s going on step-by-
step in the sections that follow.

Configuring the $resource Service

The first thing I have to do is set up the $resource service so that it knows how to work with the
RESTful Parse service. Here is the statement that does this:

...
$scope.productsResource = $resource(baseUrl + ":id", { id: "@objectId" }, {
 query: {
 method: "GET", isArray: true, transformResponse: function (data, headers) {
 return JSON.parse(data).results
 .map(function(item) {

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

23

 return {
 objectId: item.objectId,
 name: item.name,
 category: item.category,
 price: item.price
 }
 })
 }
 },
 update: { method: "PUT" }
});
...

The $resource service object is a function that is used to describe the URLs that are used to
consume the RESTful service. The URL segments that change per object are prefixed with a
colon (the : character). There is only one variable part of the URL I need to use, and that is the
value of the objectId property of the product object, which is required when deleting or
modifying an object. For the first argument I combine the value of the baseUrl constant with :id
to indicate a URL segment that will change, producing a combined value of the following:

http://localhost:1337/parse/classes/Products/:id

The second argument is a configuration object whose properties specify where the value
for the variable segment will come from. Each property must correspond to a variable segment
from the first argument, and the value can be fixed or, as I have done in this example, bound
to a property on the data object by prefixing a property name with the @ character. I use the
configuration object to specify that the value for the id URL segment should be taken from the
objectId property.

Tip Most real applications will need multiple segment parts to express more complex data

collections. The URL passed to the $resource service can contain as many variable parts as you require.

The final argument is a configuration object that defines actions that can be performed on
RESTful objects or modifies the default actions. The default AngularJS REST configuration
doesn’t quite match the way that the Parse server works – I explain the changes I made using
the configuration object in the Configuring the $resource Service Actions section.

The result from calling the $resource service function is an access object that can be used to
query and modify the server data using the methods that I have described in Table 21-6.

Tip The delete and remove methods are identical and can be used interchangeably.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

24

Table 21-6. The Default Actions Defined by an Access Object

Name HTTP URL Description

delete(params, product) DELETE /parse/classes/Products
/<id>

Removes the object with the
specified ID

get(id) GET /parse/classes/Products
</id>

Gets the (single) object with the
specified ID

query() GET /parse/classes/Products Gets all of the objects as an array

remove(params, product) DELETE /parse/classes/Products
</id>

Removes the object with the
specified ID

save(product) POST /parse/classes/Products
</id>

Saves modifications to the object
with the specified ID

Don’t worry if you don’t understand the role of actions at the moment; it will become clear

soon.

Listing the REST Data

I assigned the access object returned from invoking the $resource service object to a variable
called productResource, which I then use to get the initial snapshot of data from the server. Here
is the definition of the listProducts behavior:

...
$scope.listProducts = function () {
 $scope.products = $scope.productsResource.query();
}
...

The access object provides me with the means to query and modify data on the server, but
it doesn’t automatically perform any of these actions itself, which is why I call the query
method to get the initial data for the application. The query method requests the
/parse/classes/Products URL provided by the Parse server to get all of the data objects available.

The result from the query method is a collection array that is initially empty. The $resource
service creates the result array and then uses the $http service to make an Ajax request. When
the Ajax request completes, the data that is obtained from the server is placed into the
collection. This is such an important point that I am going to repeat it as a caution.

The Parse server responds to queries with a JSON object that has a result property that
contains the array of objects. I explain how I configured the access object to automatically
unwrap the data in the Configuring the $resource Service Actions section.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

25

Caution The array returned by the query method is initially empty and is populated only when an

asynchronous HTTP request to the server has completed.

RESPONDING TO DATA LOADING

For many applications, loading the data asynchronously works perfectly well, and the
changes in the scope caused the data arrives ensure that the application responds
correctly. Even though the example in this chapter is simple, it illustrates the way that
many, if not most, AngularJS applications are structured: the data arrives, causing a
change in the scope that refreshes the bindings and displays the data in a table.

Sometimes you need to respond more directly at the moment when the data arrives. To
support this, the $resource service adds a $promise property to the collection array returned

by the query method. The promise is resolved when the Ajax request for the data is
complete. Here is an example of how you would register a success handler with the
promise:

...
$scope.listProducts = function () {
 $scope.products = $scope.productsResource.query();
 $scope.products.$promise.then(function (data) {
 // do something with the data
 });
}
...

The promise is fulfilled after the result array is populated, which means you can access
the data through the array or through the argument passed to the success function. See

Chapter 20 for details of promises and how they work.

The asynchronous delivery of the data works nicely with data bindings because they

automatically update when the data arrives and the collection array is populated.

Modifying Data Objects

The query method populates the collection array with Resource objects, which define all of the
properties specified in the data returned by the server and some methods that allow
manipulation of the data without needing to use the collections array. Table 21-7 describes the
methods that Resource objects define (plus one addition that I added with the configuration
object).

Table 21-7. The Methods Supported by Resource Objects

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

26

Name Description

$delete() Deletes the object from the server; equivalent to calling $remove()

$get() Refreshes the object from the server, clearing any uncommitted local changes

$remove() Deletes the object from the server; equivalent to calling $delete()

$save() Saves the object to the server

$update() Updates the object to reflect any changes. This is not a default action – see the Configuring
the $resource Service Actions sections for details.

All of the Resource object methods perform asynchronous requests and return promise

objects that you can use to receive notifications when the request completes or fails. An
example can be seen in the updateProduct behavior, which uses the $update method I added to
the access object when I created it:

...
$scope.updateProduct = function (product) {
 angular.copy(product).$update().then(function () {
 $scope.displayMode = "list";
 });
}
...

Tip There is usually some adjustment required to get AngularJS to work with a RESTful service. You

can see an example in the updateProduct behavior. AngularJS expects the server response to the $update

method to be the modified data object, but the Parse server only sends an acknowledgement to confirm

that the update has been applied and the effect is that AngularJS replaces the product object with one

that doesn't contain any product data. To work around this problem, I use the angular.copy method to

create a duplicate of the product object and call the $update method on it so that AngularJS updates an

object that isn't part of the products data array.

The $get method is also pretty straightforward. I used it in this example to back out from
abandoned edits in the cancelEdit behavior, as follows:

...
$scope.cancelEdit = function () {
 if ($scope.currentProduct && $scope.currentProduct.$get) {
 $scope.currentProduct.$get();
 }
 $scope.currentProduct = {};
 $scope.displayMode = "list";
}
...

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

27

Before I call the $get method, I check to see that it is available for me to call and the effect
is to reset the edited object to the state stored on the server. This is a different approach to
editing from the one I took when using the $http service, where I duplicated local data in order
to have a reference point to which I could return when editing was cancelled.

Note I am blithely assuming that all of my Ajax requests succeed in this example for the sake of

simplicity, but you should take care to respond to errors in real projects.

Deleting Data Objects

The $delete and $remove methods generate the same requests to the server and are identical in
every way. The wrinkle in their use is that they send the request to remove an object from the
server but don’t remove the object from the collection array. This is a sensible approach, since
the outcome of the request to the server isn’t known until the response is received and the
application will be out of sync with the server if the local copy is deleted and the request
subsequently returns an error.

To work around this, I have used the promise object that these methods return to register a
callback handler that synchronizes the local data upon the successful deletion at the server in
the deleteProduct behavior, as follows:

...
$scope.deleteProduct = function (product) {
 product.$delete().then(function () {
 $scope.products.splice($scope.products.indexOf(product), 1);
 })
}
...

Creating New Objects

Using the new keyword on the access object provides the means to apply the $resource methods
to data objects so that they can be saved to the server. I use this technique in the createProduct
behavior so that I can use the $save method and write new objects to the database:

...
$scope.createProduct = function (product) {
 var newProduct = new $scope.productsResource(product);
 newProduct.$save().then(function (response) {
 $scope.products.push(angular.extend(newProduct, product));
 $scope.displayMode = "list";
 });
}
...

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

28

The Parse server responds with the objectId value for the newly created object at the
server. I have a choice at this point – I can use the $get method to retrieve the new object from
the server so that I can update the products array with fully populated object that I can use for
subsequent requests. This is what I did in Chapter 8 when I used REST to administer the
application.

The alternative – and the choice I made here – is to combine the methods and properties
of the object I created with the new keyword (and which has been updated by AngularJS so
that it just contains the objectId value sent by the server) with the product object that contains
the data sent to the server. Here is the statement that combines both objects and updates the
products array:

...
$scope.products.push(angular.extend(newProduct, product));
...

Caution This technique should only be used when the server doesn't add any additional properties to

the data object when it is being created – or, if it does, that you don’t need them. Although the

approach that I used in Chapter 8 makes an additional HTTP request, it has the benefit of ensuring that

you are working with complete data.

Configuring the $resource Service Actions

The get, save, query, remove, and delete methods that are available on the collection array and the
$-prefixed equivalents on individual Resource objects are known as actions. By default, the
$resource service defines the first four actions I described in Table 21-7, but these are easily
configured and extended so that the methods correspond to the API provided by the server.
Here is the statement that I used to create the access object:

...
$scope.productsResource = $resource(baseUrl + ":id", { id: "@objectId" }, {
 query: {
 method: "GET", isArray: true, transformResponse: function (data, headers) {
 return JSON.parse(data).results
 .map(function(item) {
 return {
 objectId: item.objectId,
 name: item.name,
 category: item.category,
 price: item.price
 }
 })
 }
 },
 update: { method: "PUT" }
});
...

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

29

The configuration object that is final argument to the $resource method adapts and extends
the default AngularJS behavior to work with the Parse server. I used this feature to change the
behavior of the query action and define a new action called update.

The actions are expressed as object properties whose names correspond to the action that
is being defined or modified. Each action property is set to a configuration object that defines
the properties shown in Table 21-8.

Table 21-8. The Configuration Properties Used for Actions

Name Description

method Sets the HTTP method that will be used for the Ajax request. The default method is
POST.

params Specifies values for the segment variables in the URL passed as the first argument to
the $resource service function.

url Overrides the default URL for this action.

isArray When true, specifies that the response will be a JSON data array. The default value,
false, specifies that the response to the request will be, at most, one object.

transformRequest Specifies an interceptor function for requests

transformResponse Specifies an interceptor function for responses

Some RESTful web services allow objects to be created and updated using the HTTP POST

method but others – including Parse – will only accept updates with the PUT method. The
action I defined – called update – uses the method configuration property to specify the HTTP
method but otherwise accepts the default values:

...
update: { method: "PUT" }
...

The redefinition of the query action is more complex. AngularJS expects to receive an array
of data objects from the query action, but Parse wraps that array up in an object as the value of
a property called results. In order to adapt AngularJS to work with the Parse server, I give
AngularJS access to the array. I do this by using the transformResponse configuration property to
intercept the response, de-serialize the JSON sent by the server and return the value of the
results property, processed by the array map method to select the fields that are required:

...
function (data, headers) {
 return JSON.parse(data).results
 .map(function(item) {
 return {
 objectId: item.objectId,
 name: item.name,

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

30

 category: item.category,
 price: item.price
 }
 })
}
...

I have to set values for the method and isArray properties when redefining the query to
override the defaults.

Tip In addition, you can use the following properties to configure the Ajax request that the action

will generate (I described the effect of these options in Chapter 20): cache, timeout, withCredentials,

responseType, and interceptor.

Actions that are defined in this way are just like the defaults and can be called on the
collection array and on individual Resource objects, as demonstrated by the updateProduct
method, which uses the $update action.

Creating $resource-Ready Components

Using the $resource service lets me write components that can operate on RESTful data without
needing to know the details of the Ajax requests that are required to manipulate the data. In
Listing 21-17, you can see how I have updated the increment directive from earlier in the
chapter so that it can be configured to use data obtained from the $resource service.

AVOIDING THE ASYNCHRONOUS DATA TRAP

The $resource service provides a partial solution to disseminating RESTful data throughout
an application: It hides the details of the Ajax requests, but it still requires that the
components that use the data know that the data is RESTful and should be manipulated
with methods like $save and $delete.

At this point, you might be thinking of ways of completing the process and using scope
watchers and event handlers to create a wrapper around the RESTful data that monitors
for changes and automatically writes changes to the server.

Don’t be tempted to try this. It is a trap, and it doesn’t—in fact, it can’t—ever work
properly because you will be trying to hide the asynchronous nature of the Ajax requests
that underpin REST from the components that use the data. Code that doesn’t know that
RESTful data is being used will assume that all operations take effect immediately and
that the data in the browser is the authoritative reference, neither of which is true when
there are Ajax requests being fired off in the background.

Things fall apart completely when the server returns an error, which will reach the
browser long after the synchronous operation on the data has completed and execution

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

31

of the code has moved on. There is no compelling way of dealing with errors: You can’t
unwind the operation without risking causing an inconsistent state application (because
execution of the synchronous code has continued), and you lack the means to signal the
original code so that it can try again (because that would require awareness of the Ajax
requests). The best thing you can do is dump the application state and reload the data
from the server, which will come as a nasty surprise to the user.

Instead, accept that components have to be rewritten or adapted to understand the
methods that the $resource service adds to data objects and, as I demonstrate in the

updated increment directive, make the use of these methods configurable.

Listing 21-17. Working with RESTful Data in the increment.js File

angular.module("increment", [])
 .directive("increment", function () {
 return {
 restrict: "E",
 scope: {
 item: "=item",
 property: "@propertyName",
 restful: "@restful",
 method: "@methodName"
 },
 link: function (scope, element, attrs) {
 var button = angular.element("<button>").text("+");
 button.addClass("btn btn-primary btn-xs");
 element.append(button);
 button.on("click", function () {
 scope.$apply(function () {
 scope.item[scope.property]++;
 if (scope.restful) {
 angular.copy(scope.item)[scope.method]();
 }
 })
 })
 },
 }
 });

When creating components that may operate on data provided by the $resource service,
you need to provide configuration options not only to enable the RESTful support but also to
specify the action method or methods that are required to update the server. In this example, I
use the value of an attribute called restful to configure the REST support and method to get the
name of the method that should be called when the value is incremented. In Listing 21-18, you
can see how I apply these changes in the tableView.html file.

Listing 21-18. Adding Configuration Attributes in the tableView.html File

<div class="panel-body">
 <table class="table table-striped table-bordered">
 <thead>
 <tr>

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 21 Services for REST

32

 <th>Name</th>
 <th>Category</th>
 <th class="text-right">Price</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 <tr ng-repeat="item in products">
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td class="text-right">{{item.price | currency}}</td>
 <td class="text-center">
 <button class="btn btn-xs btn-primary"
 ng-click="deleteProduct(item)">
 Delete
 </button>
 <button class="btn btn-xs btn-primary"
 ng-click="editOrCreateProduct(item)">
 Edit
 </button>
 <increment item="item" property-name="price" restful="true"
 method-name="$update" />
 </td>
 </tr>
 </tbody>
 </table>
 <div>
 <button class="btn btn-primary" ng-click="listProducts()">Refresh</button>
 <button class="btn btn-primary" ng-click="editOrCreateProduct()">New</button>
 </div>
</div>

The result is that when you click the + button in a table row, the local value is updated, and
the $update method is then called to send the update to the server.

Summary
In this chapter I showed you how to work with RESTful services. I showed you how to manually
form the Ajax requests using the $http service and explained why this can cause problems
when the data is used beyond the component that creates it. I demonstrated how the $resource
service can be used to hide the details of the Ajax requests, and I gave a stern warning about
the dangers of trying to hide the asynchronous nature of RESTful data from the components
that operate on it. In the next chapter, I describe the service that provides URL routing.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

C H A P T E R 22

1

Services for Views

In this chapter, I describe the set of services that AngularJS provides for working with views. I
introduced views in Chapter 10 and showed you how to use the ng-include directive to import
them into an application. In this chapter, I demonstrate how to use URL routing, which uses
views to enable sophisticated navigation within an application. URL routing can be a difficult
topic to understand, so I introduce the functionality gradually in this chapter, slowly revising
the example application to introduce individual features. Table 22-1 summarizes this chapter.

Table 22-1. Chapter Summary

Problem Solution Listing

Enable navigation within the application. Define URL routes using the $routeProvider. 1–4

Display the view from the active route. Apply the ng-view directive. 5

Change the active view. Use the $location.path method or use an a element
whose href attribute matches the route path.

6–7

Pass information via the path. Use route parameters in the route URL. Access the
parameters using the $routeParams service.

8–10

Associate a controller with the view
displayed by the active route.

Use the controller configuration property. 11

Define dependencies for the controller. Use the resolve configuration property. 12–13

Why and When to Use the View Services
The services I describe in this chapter are useful for simplifying complex applications by
allowing multiple components to control the content that the user sees. You won’t need these
services in small or simple applications.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 22 Services for Views

2

Preparing the Example Project
For this chapter, I am going to continue to work with the example I created in Chapter 21 to
demonstrate the different ways in which AngularJS applications can consume RESTful APIs. In
the previous chapter, the focus was on managing the Ajax for the RESTful data, so you may not
have noticed a rather nasty hack, which I will explain before showing how to resolve it.

Understanding the Problem

The application contains two view files, tableView.html and editorView.html, which I imported into
the main products.html file using the ng-include directive.

The tableView.html file contains the default view for the application and lists the data from
the server in a table element. I switch to the contents of the editorView.html file when the user is
creating a new product or editing an existing one. When the operation is complete—or
cancelled—I return to the contents of the tableView.html file again. The problem is the way that I
manage the visibility of the contents of the view files. Listing 22-1 shows the products.html file.

Listing 22-1. The Contents of the products.html File

<!DOCTYPE html>
<html ng-app="exampleApp">
<head>
 <title>Products</title>
 <script src="angular.js"></script>
 <script src="angular-resource.js"></script>
 <link href="bootstrap.css" rel="stylesheet" />
 <link href="bootstrap-theme.css" rel="stylesheet" />
 <script src="products.js"></script>
 <script src="increment.js"></script>
</head>
<body ng-controller="defaultCtrl">
 <div class="panel panel-primary">
 <h3 class="panel-heading">Products</h3>
 <ng-include src="'tableView.html'" ng-show="displayMode == 'list'">
 </ng-include>
 <ng-include src="'editorView.html'" ng-show="displayMode == 'edit'">
 </ng-include>
 </div>
</body>
</html>

The issue is the use of the ng-show directive to control the visibility of the elements. To
work out whether the contents of the view should be shown to the user, I check the value of a
scope variable called displayMode and compare it to a literal value, like this:

...
<ng-include src="'tableView.html'" ng-show="displayMode == 'list'"></ng-include>
...

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 22 Services for Views

3

I set the value of displayMode in the controller behaviors defined in the products.js file to
display the content I require. Listing 22-2 highlights how I set displayMode in the products.js file to
switch between the views.

Listing 22-2. Setting the displayMode Value in the products.js File

angular.module("exampleApp", ["increment", "ngResource"])
.constant("baseUrl", "http://localhost:1337/parse/classes/Products/")
.config(function ($httpProvider) {
 $httpProvider.defaults.headers.common["X-Parse-Application-Id"]
 = "sportsstorelite";
 $httpProvider.defaults.headers.common["X-Parse-REST-API-Key"]
 = "myRestSecret";
})
.controller("defaultCtrl", function ($scope, $http, $resource, baseUrl) {

 $scope.displayMode = "list";
 $scope.currentProduct = null;

 $scope.productsResource = $resource(baseUrl + ":id", { id: "@objectId" }, {
 query: {
 method: "GET", isArray: true,
 transformResponse: function (data, headers) {
 return JSON.parse(data).results
 .map(function(item) {
 return {
 objectId: item.objectId,
 name: item.name,
 category: item.category,
 price: item.price
 }
 })
 }
 },
 update: { method: "PUT" }
 });

 $scope.listProducts = function () {
 $scope.products = $scope.productsResource.query();
 }

 $scope.deleteProduct = function (product) {
 product.$delete().then(function () {
 $scope.products.splice($scope.products.indexOf(product), 1);
 })
 }

 $scope.createProduct = function (product) {
 var newProduct = new $scope.productsResource(product);
 newProduct.$save().then(function (response) {
 $scope.products.push(angular.extend(newProduct, product));
 $scope.displayMode = "list";
 });

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 22 Services for Views

4

 }

 $scope.updateProduct = function (product) {
 angular.copy(product).$update().then(function () {
 $scope.displayMode = "list";
 });
 }

 $scope.editOrCreateProduct = function (product) {
 $scope.currentProduct = product || {};
 $scope.displayMode = "edit";
 }

 $scope.saveEdit = function (product) {
 if (angular.isDefined(product.objectId)) {
 $scope.updateProduct(product);
 } else {
 $scope.createProduct(product);
 }
 }

 $scope.cancelEdit = function () {
 if ($scope.currentProduct && $scope.currentProduct.$get) {
 $scope.currentProduct.$get();
 }
 $scope.currentProduct = {};
 $scope.displayMode = "list";
 }

 $scope.listProducts();
});

This approach works, but it presents a problem, which is that any component that needs
to change the layout of the application needs access to the displayMode variable, which is
assigned to the controller scope. This isn’t too much of a burden in such a simple application
where the view is always managed by a single controller, but it doesn’t scale up when
additional components need to control what the user sees.

What’s needed is a way to separate the view selection from the controller so that the
application content can be driven from any part of the application, and that’s what I will show
you in this chapter.

Using URL Routing
AngularJS supports a feature called URL routing, which uses the value returned by the
$location.path method to load and display view files without the need for nasty literal values
embedded throughout the markup and code in an application. In the sections that follow, I’ll
show you how to install and use the $route service, which provides the URL routing
functionality.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 22 Services for Views

5

Installing the ngRoute Module

The $route service is defined within an optional module called ngRoute that must be
downloaded into the angularjs folder. Go to http://angularjs.org, click Download, select the version
you require (version 1.2.5 is the latest version as I write this), and click the Extras link in the
bottom-left corner of the window, as shown in Figure 22-1.

Figure 22-1. Downloading an optional module

Download the angular-route.js file into the angularjs folder. In Listing 22-3, you can see how I
have added a script element for the new file to the products.html file.

Listing 22-3. Adding a Reference to the products.html File

<!DOCTYPE html>
<html ng-app="exampleApp">
<head>
 <title>Products</title>
 <script src="angular.js"></script>
 <script src="angular-resource.js"></script>
 <script src="angular-route.js"></script>
 <link href="bootstrap.css" rel="stylesheet" />

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 22 Services for Views

6

 <link href="bootstrap-theme.css" rel="stylesheet" />
 <script src="products.js"></script>
 <script src="increment.js"></script>
</head>
<body ng-controller="defaultCtrl">
 <div class="panel panel-primary">
 <h3 class="panel-heading">Products</h3>
 <ng-include src="'tableView.html'" ng-show="displayMode == 'list'">
 </ng-include>
 <ng-include src="'editorView.html'" ng-show="displayMode == 'edit'">
 </ng-include>
 </div>
</body>
</html>

Defining the URL Routes

At the heart of the functionality provided by the $route service is a set of mappings between
URLs and view file names, known as URL routes or just routes. When the value returned by the
$location.path method matches one of the mappings, the corresponding view file will be loaded
and displayed. The mappings are defined using the provider for the $route service,
$routeProvider. Listing 22-4 shows how I have defined routes for the example application.

Listing 22-4. Defining Routes in the product.js File

angular.module("exampleApp", ["increment", "ngResource", "ngRoute"])
.constant("baseUrl", "http://localhost:1337/parse/classes/Products/")
.config(function ($routeProvider, $locationProvider) {

 $locationProvider.html5Mode(true);

 $routeProvider.when("/list", {
 templateUrl: "/tableView.html"
 });

 $routeProvider.when("/edit", {
 templateUrl: "/editorView.html"
 });

 $routeProvider.when("/create", {
 templateUrl: "/editorView.html"
 });

 $routeProvider.otherwise({
 templateUrl: "/tableView.html"
 });

})
.config(function ($httpProvider) {
 $httpProvider.defaults.headers.common["X-Parse-Application-Id"]
...

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 22 Services for Views

7

I have added a dependency on the ngRoute module and added a config function to define
the routes. My config function declares dependencies on providers for the $route and $location
services, the latter of which I use to enable HTML5 URLs.

Tip I am going to use HTML5 URLs in this chapter because they are cleaner and simpler and I know

that the browser I will be using supports the HTML5 History API. See Chapter 19 for details of the

$location service support for HTML5, how to detect that the browser provides the required features, and

the potential for problems.

Routes are defined using the $routeProvider.when method. The first argument is the URL that
the route will apply to, and the second argument is the route configuration object. The routes I
have defined are the simplest possible because the URLs are static and I have provided the
minimum configuration information, but later in the chapter I’ll show you more complex
examples. I’ll describe all of the configuration options later in the chapter, but for now it is
enough to know that the templateUrl configuration option specifies the view file that should be
used when the path of the current browser URL matches the first argument passed to the when
method.

Tip Always specify the value of the templateUrl with a leading / character. If you do not, the URL will

be evaluated relative to the value returned by the $location.path method, and changing this value is one

of the key activities required when using routing. Without the / character, you will quickly generate a

Not Found error as you navigate within the application.

The otherwise method is used to define a route that is used when no other one matches the
current URL path. It is good practice to provide such a fallback route, and I have summarized
the overall effect of the routes I have defined in Table 22-2.

Tip I didn’t really need to define the route for /list since the route defined with the otherwise

method displays the tableView.html view if no other route matches the current path. I like to be explicit

when defining routes because they can become quite complex, and anything that makes them easier to

read and understand is worth doing.

Table 22-2. The Effect of the Routes Defined in the products.js File

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 22 Services for Views

8

URL Path View File

/list tableView.html

/edit editorView.html

/create editorView.html

All other URLs tableView.html

Displaying the Selected View

The ngRoute module includes a directive called ng-view that displays the contents of the view file
specified by the route that matches the current URL path returned by the $location service. In
Listing 22-5, you can see how I am able to use the ng-view directive to replace the troublesome
elements in the products.html file, removing the literal values that I dislike so much.

Listing 22-5. Using the ng-view Directive in the products.html File

<!DOCTYPE html>
<html ng-app="exampleApp">
<head>
 <title>Products</title>
 <script src="angular.js"></script>
 <script src="angular-resource.js"></script>
 <script src="angular-route.js"></script>
 <link href="bootstrap.css" rel="stylesheet" />
 <link href="bootstrap-theme.css" rel="stylesheet" />
 <script src="products.js"></script>
 <script src="increment.js"></script>
</head>
<body ng-controller="defaultCtrl">
 <div class="panel panel-primary">
 <h3 class="panel-heading">Products</h3>
 <div ng-view></div>
 </div>
</body>
</html>

When the value returned by the $location/path changes, the $route service evaluates the
routes defined through its provider and changes the content of the element to which the ng-

view directive has been applied.

Wiring Up the Code and Markup

All that remains is to update the code and the markup to change the URL rather than the
displayMode variable to change the layout of the application. In JavaScript code, this means I
need to use the path method provided by the $location service, as shown in Listing 22-6.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 22 Services for Views

9

Listing 22-6. Using the $location Service to Change Views in the products.js File

angular.module("exampleApp", ["increment", "ngResource", "ngRoute"])
.constant("baseUrl", "http://localhost:1337/parse/classes/Products/")
.config(function ($routeProvider, $locationProvider) {

 $locationProvider.html5Mode(true);

 $routeProvider.when("/list", {
 templateUrl: "/tableView.html"
 });

 $routeProvider.when("/edit", {
 templateUrl: "/editorView.html"
 });

 $routeProvider.when("/create", {
 templateUrl: "/editorView.html"
 });

 $routeProvider.otherwise({
 templateUrl: "/tableView.html"
 });

})
.config(function ($httpProvider) {
 $httpProvider.defaults.headers.common["X-Parse-Application-Id"]
 = "sportsstorelite";
 $httpProvider.defaults.headers.common["X-Parse-REST-API-Key"]
 = "myRestSecret";
})
.controller("defaultCtrl", function ($scope, $http, $resource, $location, baseUrl) {

 $scope.currentProduct = null;

 $scope.productsResource = $resource(baseUrl + ":id", { id: "@objectId" }, {
 query: {
 method: "GET", isArray: true,
 transformResponse: function (data, headers) {
 return JSON.parse(data).results
 .map(function(item) {
 return {
 objectId: item.objectId,
 name: item.name,
 category: item.category,
 price: item.price
 }
 })
 }
 },
 update: { method: "PUT" }
 });

 $scope.listProducts = function () {

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 22 Services for Views

10

 $scope.products = $scope.productsResource.query();
 }

 $scope.deleteProduct = function (product) {
 product.$delete().then(function () {
 $scope.products.splice($scope.products.indexOf(product), 1);
 })
 }

 $scope.createProduct = function (product) {
 var newProduct = new $scope.productsResource(product);
 newProduct.$save().then(function (response) {
 $scope.products.push(angular.extend(newProduct, product));
 $location.path("/list");
 });
 }

 $scope.updateProduct = function (product) {
 angular.copy(product).$update().then(function () {
 $location.path("/list");
 });
 }

 $scope.editOrCreateProduct = function (product) {
 $scope.currentProduct = product || {};
 $location.path("/edit");
 }

 $scope.saveEdit = function (product) {
 if (angular.isDefined(product.objectId)) {
 $scope.updateProduct(product);
 } else {
 $scope.createProduct(product);
 }
 $scope.currentProduct = {};
 }

 $scope.cancelEdit = function () {
 if ($scope.currentProduct && $scope.currentProduct.$get) {
 $scope.currentProduct.$get();
 }
 $scope.currentProduct = {};
 $location.path("/list");
 }

 $scope.listProducts();
});

This isn’t a huge change. I have added a dependency on the $location service and replaced
the calls that changed the displayMode value with equivalent calls to the $location.path method.
There is a more interesting change, however: I replaced the editOrCreateProduct behavior with
one called editProduct, which is slightly simpler. Here is the old behavior:

...

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 22 Services for Views

11

$scope.editOrCreateProduct = function (product) {
 $scope.currentProduct = product ? product : {};
 $scope.displayMode = "edit";
}
...

And here is its replacement:

...
$scope.editProduct = function (product) {
 $scope.currentProduct = product;
 $location.path("/edit");
}
...

The old behavior was the start point for both the editing and creation process, which were
differentiated by the product argument. If the product argument wasn’t null, then I used the
object to set the currentProduct variable, which populates the fields in the editorView.html view.

Tip There is one other change highlighted in the listing. I have updated the saveEdit behavior to

reset the value of the currentProduct variable. Without this change, the values from an edit operation are

displayed to the user if they subsequently create a new product. This is a temporary problem that will

be resolved as I expand the support for routing in the application.

The reason I am able to simplify the behavior is that the routing feature allows me to
initiate the process of creating a new product object just by changing the URL. In Listing 22-7,
you can see the changes I have made to the tableView.html file.

Listing 22-7. Adding Support for Routes to the tableView.html File

<div class="panel-body">
 <table class="table table-striped table-bordered">
 <thead>
 <tr>
 <th>Name</th>
 <th>Category</th>
 <th class="text-right">Price</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 <tr ng-repeat="item in products">
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td class="text-right">{{item.price | currency}}</td>
 <td class="text-center">
 <button class="btn btn-xs btn-primary"
 ng-click="deleteProduct(item)">
 Delete

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 22 Services for Views

12

 </button>
 <button class="btn btn-xs btn-primary"
 ng-click="editProduct(item)">
 Edit
 </button>
 <increment item="item" property-name="price" restful="true"
 method-name="$update" />
 </td>
 </tr>
 </tbody>
 </table>
 <div>
 <button class="btn btn-primary" ng-click="listProducts()">Refresh</button>
 New
 </div>
</div>

I have replaced the button element whose ng-click directive invoked the old behavior and
replaced it with an a element whose href attribute specifies the URL that matches the route
that displays the editorView.html view. Bootstrap allows me to style button and a elements to
look the same, so there is no discernable difference in the layout to the user. However, when
the a element is clicked, the URL changes to /create and the editorView.html view is displayed, as
shown in Figure 22-2.

Figure 22-2. Navigating within the application

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 22 Services for Views

13

To see the effect, load the products.html file into the browser and click the New button. The
URL displayed by the browser will change from http://localhost:5000/products.html to
http://localhost:5000/create. This is the magic of HTML5 URLs managed through the HTML5
Browser History API, and the contents of the editorView.html view will be displayed. Enter details
of a new product and click the Save button (or Cancel if you prefer), and the contents of the
tableView.html view are shown again, with a URL of http://localhost:5000/list.

Caution Routing works when the application changes the URL, but it doesn’t work if the user changes it;

the browser takes any URL that the user enters as being a literal request for a file and tries to request

the corresponding content from the server.

Using Route Parameters
The URLs I used to define the routes in the previous section were fixed or static, meaning that
the value passed to the $location.path method or set in an a element’s href attribute has to
exactly match the value I used with the $routeProvider.when method. As a reminder, here is one
of the routes that I defined:

...
$routeProvider.when("/create", {
 templateUrl: "editorView.html"
});
...

This route will be activated only when the path component of the URL matches /create. This
is the most basic kind of URL that routes can be used with and, as a consequence, the most
limited.

Route URLs can contain route parameters, which match one or more segments in the path
displayed by the browser. A segment is the set of characters between two / characters. As an
example, the segments in the URL http://localhost:5000/users/adam/details are users, adam, and
details. There are two kinds of route parameters: conservative and eager. A conservative route
parameter will match one segment, and an eager one will match as many segments as
possible. To demonstrate how this works, I have changed the routes in the products.js file, as
shown in Listing 22-8.

Listing 22-8. Defining Routes with Route Parameters in the products.js File

...

.config(function ($routeProvider, $locationProvider) {

 $locationProvider.html5Mode(true);

 $routeProvider.when("/list", {
 templateUrl: "/tableView.html"

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 22 Services for Views

14

 });

 $routeProvider.when("/edit/:id", {
 templateUrl: "/editorView.html"
 });

 $routeProvider.when("/edit/:id/:data*", {
 templateUrl: "/editorView.html"
 });

 $routeProvider.when("/create", {
 templateUrl: "/editorView.html"
 });

 $routeProvider.otherwise({
 templateUrl: "/tableView.html"
 });
})
...

The first highlighted route URL, /edit/:id, contains a conservative route parameter. The
variable is denoted by a colon character (:) and then a name, which is id in this case. The route
will match a path such as /edit/1234, and it will assign the value of 1234 to a route parameter
called id. (Route variables are accessed through the $routeParams service, which I describe
shortly.)

Routes that use only static segments and conservative route parameters will match only
those paths that contain the same number of segments as their URL. In the case of the /edit/:id
URL, only URLs that contain two segments where the first segment is edit will be matched.
Paths with more or less segments won’t match and nor will paths whose first segment isn’t
edit.

You can extend the range of paths that a route URL will match by including an eager route
parameter, like this:

...
$routeProvider.when("/edit/:id/:data*", {
...

An eager route parameter is denoted by a colon, followed by a name, followed by an
asterisk. The example will match any path that has at least three segments where the first
segment is edit. The second segment will be assigned to the route parameter id, and the
remaining segments will be assigned to the route parameter data.

Tip Don’t worry if segment variables and route parameters don’t make sense at the moment. You

will see how they work as I develop the examples in the following sections.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 22 Services for Views

15

Accessing Routes and Routes Parameters

The URLs I used in the previous section process paths and assign the contents of segments to
route parameters, which can then be accessed in code. In this section, I am going to
demonstrate how to access those values using the $route and $routeParams services, both of
which are contained in the ngRoute module. My first step is to change the button that edits
product objects in the tableView.html file, as shown in Listing 22-9.

Listing 22-9. Using Routing to Trigger Editing in the tableView.html File

<div class="panel-body">
 <table class="table table-striped table-bordered">
 <thead>
 <tr>
 <th>Name</th>
 <th>Category</th>
 <th class="text-right">Price</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 <tr ng-repeat="item in products">
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td class="text-right">{{item.price | currency}}</td>
 <td class="text-center">
 <button class="btn btn-xs btn-primary"
 ng-click="deleteProduct(item)">
 Delete
 </button>
 <a href="/edit/{{item.objectId}}"
 class="btn btn-xs btn-primary">Edit
 <increment item="item" property-name="price" restful="true"
 method-name="$update" />
 </td>
 </tr>
 </tbody>
 </table>
 <div>
 <button class="btn btn-primary" ng-click="listProducts()">Refresh</button>
 New
 </div>
</div>

I have replaced the button element with an a element whose href element corresponds to
one of the routing URLs I defined in Listing 22-9, which I achieve using a standard inline binding
expression within the ng-repeat directive. This means that each row in the table element will
contain an a element like this one:

Edit

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 22 Services for Views

16

When this link is clicked, the route parameter called id that I defined in Listing 22-8 will be
assigned the value 18d5f4716c6b1acf, which corresponds to the id property of the product object
that the user wants to edit. In Listing 22-10, you can see that I have updated the controller in
the products.js file to respond to this change.

Listing 22-10. Accessing a Route Parameter in the products.js File

...

.controller("defaultCtrl", function ($scope, $http, $resource, $location,
 $route, $routeParams, baseUrl) {

 $scope.currentProduct = null;

 $scope.$on("$routeChangeSuccess", function () {
 if ($location.path().indexOf("/edit/") == 0) {
 var id = $routeParams["id"];
 for (var i = 0; i < $scope.products.length; i++) {
 if ($scope.products[i].objectId == id) {
 $scope.currentProduct = $scope.products[i];
 break;
 }
 }
 }
 });

 $scope.productsResource = $resource(baseUrl + ":id", { id: "@objectId" }, {
 query: {
 method: "GET", isArray: true,
 transformResponse: function (data, headers) {
 return JSON.parse(data).results
 .map(function(item) {
 return {
 objectId: item.objectId,
 name: item.name,
 category: item.category,
 price: item.price
 }
 })
 }
 },
 update: { method: "PUT" }
 });

 $scope.listProducts = function () {
 $scope.products = $scope.productsResource.query();
 }

 $scope.deleteProduct = function (product) {
 product.$delete().then(function () {
 $scope.products.splice($scope.products.indexOf(product), 1);
 })
 }

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 22 Services for Views

17

 $scope.createProduct = function (product) {
 var newProduct = new $scope.productsResource(product);
 newProduct.$save().then(function (response) {
 $scope.products.push(angular.extend(newProduct, product));
 $location.path("/list");
 });
 }

 $scope.updateProduct = function (product) {
 angular.copy(product).$update().then(function () {
 $location.path("/list");
 });
 }

 $scope.editProduct = function (product) {
 $scope.currentProduct = product;
 $location.path("/edit");
 }

 $scope.saveEdit = function (product) {
 if (angular.isDefined(product.objectId)) {
 $scope.updateProduct(product);
 } else {
 $scope.createProduct(product);
 }
 $scope.currentProduct = {};
 }

 $scope.cancelEdit = function () {
 if ($scope.currentProduct && $scope.currentProduct.$get) {
 $scope.currentProduct.$get();
 }
 $scope.currentProduct = {};
 $location.path("/list");
 }

 $scope.listProducts();
});

There is a lot going on in the highlighted code, so I am going to break down each major
part and explain them in turn in the sections that follow.

Note I have removed the editProduct behavior from the controller, which was previously invoked to

initiate the editing process and displayed the editorView.html view. The behavior is no longer required

since editing is not initiated through the routing system.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 22 Services for Views

18

Responding to Route Changes

The $route service, for which I added a dependency in Listing 22-10, can be used to manage the
currently selected route. Table 22-3 shows the methods and properties that the $route service
defines.

Table 22-3. The Methods and Properties Defined by the $route Service

Name Description

current Returns an object that provides information about the active route. The object returned
from this property defines a controller property that returns the controller associated
with the route (see the “Using Controllers with Routes” section) and a locals property
that provides the set of controller dependencies (see the “Adding Dependencies to
Routes” section). The collection returned by the locals property also contains $scope and
$template properties that return the scope for the controller and the view content.

reload() Reloads the view even if the URL path hasn’t changed.

routes Returns the collections of the routes defined through the $routeProvider.

I didn’t use any of the members described in Table 22-3, but I did rely on another aspect of

the $route service, which is a set of events used to signal changes in the active route, as
described in Table 22-4. Handlers for these methods are registered using the scope $on
method, which I described in Chapter 15.

Table 22-4. The Events Defined by the $route Service

Name Description

$routeChangeStart Triggered before the route is changed

$routeChangeSuccess Triggered after the route has changed

$routeUpdate Triggered when the route is refreshed; this is tied to the reloadOnSearch
configuration property, which I describe in the “Configuring Routes” section

$routeChangeError Triggered if the route cannot be changed

Most of the $route service isn’t that useful. You usually need to know about two things:

when the route changes and what the new path is. The $routeChangeSuccess method provides
the first piece of information, and the $location service (not $route) provides the second, as
demonstrated by this fragment that repeats the key statements from the products.js file:

...
$scope.$on("$routeChangeSuccess", function () {
 if ($location.path().indexOf("/edit/") == 0) {
 // ...statements for responding to /edit route go here...

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 22 Services for Views

19

 }
});
...

I register a handler function that is invoked when the current route changes, and I use the
$location.path method to figure out what state the application is in. If the path starts with /edit/,
then I know I have to respond to an edit operation.

Getting the Route Parameters

When dealing with a path that starts with /edit/, I know I need to get the value of the id route
parameter so that I can populate the fields of the editorView.html file. Route parameter values
are accessed through the $routeParams service. The parameter values are presented as a
collection that is indexed by name, as follows:

...
$scope.$on("$routeChangeSuccess", function () {
 if ($location.path().indexOf("/edit/") == 0) {
 var id = $routeParams["id"];
 for (var i = 0; i < $scope.products.length; i++) {
 if ($scope.products[i].objectId == id) {
 $scope.currentProduct = $scope.products[i];
 break;
 }
 }
 }
});
...

I obtain the value of the id parameter and then use it to locate the object that the user
wants to edit.

Caution For simplicity in this example, I assume that the value of the id route parameter is in the right

format and corresponds to the objectId value of an object in the data array. You should be more careful

in a real project and validate the values you receive.

Configuring Routes
The routes I have defined so far in this chapter have defined only the templateUrl configuration
property, which specifies the URL of the view file that the route will display. This is only one of
the configuration options available. I have listed the full set in Table 22-5, and I describe the
two most important, controller and resolve, in the sections that follow.

Table 22-5. The Route Configuration Options

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 22 Services for Views

20

Name Description

controller Specifies the name of a controller to be associated with the view displayed by the
route. See the “Using Controllers with Routes” section.

controllerAs Specifies an alias to be used for the controller.

template Specifies the content of the view. This can be expressed as a literal HTML string
or as a function that returns the HTML.

templateUrl Specifies the URL of the view file to display when the route matches. This can be
expressed as a string or as a function that returns a string.

resolve Specifies a set of dependencies for the controller. See the “Adding Dependencies
to Routes” section.

redirectTo Specifies a path that the browser should be redirected to when the route is
matched. Can be expressed as a string or a function.

reloadOnSearch When true, the default value, the route will reload when only the values returned
by the $location search and hash methods change.

caseInsensitiveMatch When true, the default value, routes are matched to URLs without case sensitivity
(e.g., /Edit and /edit are considered to be the same).

Using Controllers with Routes

If you have lots of views in an application, having them share a single controller (as I have been
doing so far in this chapter) becomes unwieldy to manage and test. The controller configuration
option allows you to specify a controller that has been registered through the Module.controller
method for the view. The effect is to separate out the controller logic that is unique to each
view, as shown in Listing 22-11.

Listing 22-11. Using a Controller with a View in the products.js File

angular.module("exampleApp", ["increment", "ngResource", "ngRoute"])
.constant("baseUrl", "http://localhost:1337/parse/classes/Products/")
.config(function ($routeProvider, $locationProvider) {

 $locationProvider.html5Mode(true);

 $routeProvider.when("/edit/:id", {
 templateUrl: "/editorView.html",
 controller: "editCtrl"
 });

 $routeProvider.when("/create", {
 templateUrl: "/editorView.html",
 controller: "editCtrl"

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 22 Services for Views

21

 });

 $routeProvider.otherwise({
 templateUrl: "/tableView.html"
 });

})
.config(function ($httpProvider) {
 $httpProvider.defaults.headers.common["X-Parse-Application-Id"]
 = "sportsstorelite";
 $httpProvider.defaults.headers.common["X-Parse-REST-API-Key"]
 = "myRestSecret";
})
.controller("defaultCtrl", function ($scope, $http, $resource, $location,
 $route, $routeParams, baseUrl) {

 $scope.currentProduct = null;

 $scope.$on("$routeChangeSuccess", function () {
 if ($location.path().indexOf("/edit/") == 0) {
 var id = $routeParams["id"];
 for (var i = 0; i < $scope.products.length; i++) {
 if ($scope.products[i].objectId == id) {
 $scope.currentProduct = $scope.products[i];
 break;
 }
 }
 }
 });

 $scope.productsResource = $resource(baseUrl + ":id", { id: "@objectId" }, {
 query: {
 method: "GET", isArray: true,
 transformResponse: function (data, headers) {
 return JSON.parse(data).results
 .map(function(item) {
 return {
 objectId: item.objectId,
 name: item.name,
 category: item.category,
 price: item.price
 }
 })
 }
 },
 update: { method: "PUT" }
 });

 $scope.listProducts = function () {
 $scope.products = $scope.productsResource.query();
 }

 $scope.deleteProduct = function (product) {
 product.$delete().then(function () {

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 22 Services for Views

22

 $scope.products.splice($scope.products.indexOf(product), 1);
 })
 }

 $scope.createProduct = function (product) {
 var newProduct = new $scope.productsResource(product);
 newProduct.$save().then(function (response) {
 $scope.products.push(angular.extend(newProduct, product));
 $location.path("/list");
 });
 }

 $scope.listProducts();
})
.controller("editCtrl", function ($scope, $routeParams, $location) {

 $scope.currentProduct = null;

 if ($location.path().indexOf("/edit/") == 0) {
 var id = $routeParams["id"];
 for (var i = 0; i < $scope.products.length; i++) {
 if ($scope.products[i].objectId == id) {
 $scope.currentProduct = $scope.products[i];
 break;
 }
 }
 }

 $scope.cancelEdit = function () {
 if ($scope.currentProduct && $scope.currentProduct.$get) {
 $scope.currentProduct.$get();
 }
 $scope.currentProduct = {};
 $location.path("/list");
 }

 $scope.updateProduct = function (product) {
 angular.copy(product).$update().then(function () {
 $location.path("/list");
 });
 }

 $scope.saveEdit = function (product) {
 if (angular.isDefined(product.objectId)) {
 $scope.updateProduct(product);
 } else {
 $scope.createProduct(product);
 }
 $scope.currentProduct = {};
 }
});

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 22 Services for Views

23

I have defined a new controller called editCtrl and moved the code from the defaultCtrl
controller that is unique to supporting the editorView.html view. I then associate this controller
with the routes that display the editorView.html file using the controller configuration property.

A new instance of the editCtrl controller will be created each time that the editorView.html
view is displayed, which means I don’t need to use the $route service events to know when the
view has changed. I can just rely on the fact that my controller function is being executed.

One of the nice aspects of using controllers in this way is that the standard inheritance
rules that I described in Chapter 13 apply, such that the editCtrl is nested within the defaultCtrl
and can access the data and behaviors defined in its scope. This means I can define the
common data and functionality in the top-level controller and just define the view-specific
features in the nested controllers.

Adding Dependencies to Routes

The resolve configuration property allows you to specify dependencies that will be injected into
the controller specified with the controller property. These dependencies can be services, but
the resolve property is more useful for performing work required to initialize the view. This is
because you can return promise objects as dependencies, and the route won’t instantiate the
controller until they are resolved. In Listing 22-12, you can see how I have added a new
controller to the example and used the resolve property to load the data from the server.

Listing 22-12. Using the resolve Configuration Property in the products.js File

angular.module("exampleApp", ["increment", "ngResource", "ngRoute"])
.constant("baseUrl", "http://localhost:1337/parse/classes/Products/")
.factory("productsResource", function ($resource, baseUrl) {

 return $resource(baseUrl + ":id", { id: "@objectId" }, {
 query: {
 method: "GET", isArray: true,
 transformResponse: function (data, headers) {
 return JSON.parse(data).results
 .map(function(item) {
 return {
 objectId: item.objectId,
 name: item.name,
 category: item.category,
 price: item.price
 }
 })
 }
 },
 update: { method: "PUT" }
 });
})
.config(function ($routeProvider, $locationProvider) {

 $locationProvider.html5Mode(true);

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 22 Services for Views

24

 $routeProvider.when("/edit/:id", {
 templateUrl: "/editorView.html",
 controller: "editCtrl"
 });

 $routeProvider.when("/create", {
 templateUrl: "/editorView.html",
 controller: "editCtrl"
 });

 $routeProvider.otherwise({
 templateUrl: "/tableView.html",
 controller: "tableCtrl",
 resolve: {
 data: function (productsResource) {
 return productsResource.query();
 }
 }
 });

})
.config(function ($httpProvider) {
 $httpProvider.defaults.headers.common["X-Parse-Application-Id"]
 = "sportsstorelite";
 $httpProvider.defaults.headers.common["X-Parse-REST-API-Key"]
 = "myRestSecret";
})
.controller("defaultCtrl", function ($scope, $location, $routeParams,
productsResource) {

 $scope.data = {}

 $scope.currentProduct = null;

 $scope.deleteProduct = function (product) {
 product.$delete().then(function () {
 $scope.data.products.splice($scope.data.products.indexOf(product), 1);
 })
 }

 $scope.createProduct = function (product) {
 var newProduct = new productsResource(product);
 newProduct.$save().then(function (response) {
 $scope.data.products.push(angular.extend(newProduct, product));
 $location.path("/list");
 });
 }
})
.controller("tableCtrl", function ($scope, $location, $route, data) {

 $scope.data.products = data;

 $scope.refreshProducts = function () {

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 22 Services for Views

25

 $route.reload();
 }
})
.controller("editCtrl", function ($scope, $routeParams, $location) {

 $scope.currentProduct = null;

 if ($location.path().indexOf("/edit/") == 0) {
 var id = $routeParams["id"];
 for (var i = 0; i < $scope.data.products.length; i++) {
 if ($scope.data.products[i].objectId == id) {
 $scope.currentProduct = $scope.data.products[i];
 break;
 }
 }
 }

 $scope.cancelEdit = function () {
 $location.path("/list");
 }

 $scope.updateProduct = function (product) {
 angular.copy(product).$update().then(function () {
 $location.path("/list");
 });
 }

 $scope.saveEdit = function (product) {
 if (angular.isDefined(product.objectId)) {
 $scope.updateProduct(product);
 } else {
 $scope.createProduct(product);
 }
 $scope.currentProduct = {};
 }
});

There are a lot of changes in the listing, so I’ll walk you through them in turn. The most
important is the change of the definition of the /list route so that it uses the controller and
resolve properties, like this:

...
$routeProvider.otherwise({
 templateUrl: "/tableView.html",
 controller: "tableCtrl",
 resolve: {
 data: function (productsResource) {
 return productsResource.query();
 }
 }
});
...

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 22 Services for Views

26

I have specified that the route should instantiate a controller called tableCtrl, and I have
used the resolve property to create a dependency called data. The data property is set to a
function that will be evaluated before the tableCtrl controller is created, and the result will be
passed as an argument called data.

For this example, I use the $resource access object to obtain the data from the server, which
means that the controller won’t be instantiated until it is loaded and that, as a consequence,
the tableView.html view won’t be displayed until then either.

To be able to access the access object from the route dependency, I have to create a new
service, as follows:

...

.factory("productsResource", function ($resource, baseUrl) {
 return $resource(baseUrl + ":id", { id: "@objectId" },
 { create: { method: "POST" }, save: { method: "PUT" } });
})
...

This is the same code that I used to create the productResource object in the controller in
previous listings, just moved to a service through the factory method (described in Chapter 18)
so that it is accessible more widely in the application.

The tableCtrl controller is rather simple, as follows:

...

.controller("tableCtrl", function ($scope, $location, $route, data) {

 $scope.data.products = data;

 $scope.refreshProducts = function () {
 $route.reload();
 }
})
...

I receive the product information from the server via the data argument and simply assign
it to the $scope.data.products property. As I explained in the previous sections, the
controller/scope inheritance rules that I described in Chapter 13 apply when using controllers
with routes, so I had to add an object to which the data property belongs to ensure that the
product data is available to all of the controllers in the applications and not just the scope
belonging to the tabelCtrl controller.

The effect of adding the dependency in the route is that I no longer need the listProducts
behavior, so I removed it from the defaultCtrl controller. That stranded the Refresh button in
the tableView.html view without a way to force reload the data, so I defined a new behavior
called refreshProducts, which uses the $route.reload method I described in Table 22-3. The final
JavaScript change was to simplify the cancelEdit behavior, which no longer needs to reload a
single product object from the server when editing is cancelled because all of the data will be
refreshed when the /list route is activated:

...
$scope.cancelEdit = function () {

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 22 Services for Views

27

 $scope.currentProduct = {};
 $location.path("/list");
}
...

To reflect the changes in the controller, I had to update the tableView.html file, as shown in
Listing 22-13.

Listing 22-13. Updating the tableView.html File to Reflect Controller Changes

<div class="panel-body">
 <table class="table table-striped table-bordered">
 <thead>
 <tr>
 <th>Name</th>
 <th>Category</th>
 <th class="text-right">Price</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 <tr ng-repeat="item in data.products">
 <td>{{item.name}}</td>
 <td>{{item.category}}</td>
 <td class="text-right">{{item.price | currency}}</td>
 <td class="text-center">
 <button class="btn btn-xs btn-primary"
 ng-click="deleteProduct(item)">
 Delete
 </button>
 <a href="/edit/{{item.objectId}}"
 class="btn btn-xs btn-primary">Edit
 <increment item="item" property-name="price" restful="true"
 method-name="$update" />
 </td>
 </tr>
 </tbody>
 </table>
 <div>
 <button class="btn btn-primary" ng-click="refreshProducts()">Refresh</button>
 New
 </div>
</div>

There are two simple changes. The first is to update the ng-repeat directive to reflect the
new data structure I put in place to deal with the scope hierarchy. The second is to update the
Refresh button so that it calls the refreshProducts behavior instead of the defunct listProducts. The
overall effect is that the data is obtained from the server automatically when the /list view is
activated, which simplifies the overall code in the application.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 22 Services for Views

28

Summary
In this chapter, I showed you the built-in services that AngularJS provides for URL routing. This
is an advanced technique that is most usefully applied to make large and complex applications
easier to work with. In the next chapter, I describe the services that provide support for
content animation and touch events.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

C H A P T E R 23

1

Services for Animation and Touch

In this chapter, I describe the service that AngularJS provides for animating content changes in
the Document Object Model (DOM) and for dealing with touch events. Table 23-1 summarizes
this chapter.

Table 23-1. Chapter Summary

Problem Solution Listing

Animate content transitions. Declare a dependency on the ngAnimate module, use the
special naming structure to define CSS styles that contain
animations or transitions, and apply the classes to one of
the directives that manages content.

1–4

Detect swipe gestures. Use the ng-swipe-left and ng-swipe-right directives. 5

Preparing the Example Project
For this chapter, I am going to continue working on the example from Chapter 22. This
application obtains its data from using the RESTful API provided by Parse.com. The services
that I describe in this data are not limited—or even related—to RESTful data or Ajax requests,
but the application provides a convenient base for demonstrating new features.

Animating Elements
The $animate service allows you to provide transition effects when elements are added,
removed, or moved in the DOM. The $animate service doesn’t define any animations itself but
relies on the CSS3 animation and transition features. The details of CSS3 animations and
transitions are beyond the scope of this book, but I provide a full description in The Definitive
Guide to HTML5 book, which is also published by Apress.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 23 Services for Animation and Touch

2

Note Unfortunately, the nature of animations makes them impossible to show in static screenshots.

To understand how they work, you will need to experience the effects they generate. But you don’t

have to retype the code to do this. The examples in this chapter are included in the free source code

download that accompanies this book, available from www.apress.com.

Why and When to Use the Animation Service

Animations can be a useful means of drawing the user’s attention to an important change in
the layout of an application, making the transition from one state to another less jarring.

Many developers treat animations as an outlet for their frustrated artistic ambition and
ladle on as many as possible. The results can be annoying, especially for the user who has to
endure endless special effects every time they perform a task. For a line-of-business
application, where the user could be repeating the same set of actions all day, the effect is
demoralizing beyond description.

Animations should be subtle, brief, and quick. The goal is to draw the user’s attention to
the fact that something has changed. Use animations consistently, cautiously, and—above
all—sparingly.

Installing the ngAnimation Module

The $animation service is defined within an optional module called ngAnimate that must be
downloaded into the angularjs folder. Go to http://angularjs.org, click Download, select the version
you require (version 1.2.5 is the latest version as I write this), and click the Extras link in the
bottom-left corner of the window, as shown in Figure 23-1.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 23 Services for Animation and Touch

3

Figure 23-1. Downloading an optional module

Download the angular-animate.js file into the angularjs folder. In Listing 23-1, you can see how
I have added a script element for the new file to the products.html file.

Listing 23-1. Adding a Reference to the products.html File

<!DOCTYPE html>
<html ng-app="exampleApp">
<head>
 <title>Products</title>
 <script src="angular.js"></script>
 <script src="angular-resource.js"></script>
 <script src="angular-route.js"></script>
 <script src="angular-animate.js"></script>
 <link href="bootstrap.css" rel="stylesheet" />
 <link href="bootstrap-theme.css" rel="stylesheet" />
 <script src="products.js"></script>
 <script src="increment.js"></script>
</head>
<body ng-controller="defaultCtrl">
 <div class="panel panel-primary">
 <h3 class="panel-heading">Products</h3>

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 23 Services for Animation and Touch

4

 <div ng-view></div>
 </div>
</body>
</html>

In Listing 23-2, you can see the module dependency that I added to the products.js file for
ngAnimate.

Listing 23-2. Adding the Module Dependency in the products.js File

angular.module("exampleApp", ["increment", "ngResource", "ngRoute", "ngAnimate"])
.constant("baseUrl", "http://localhost:1337/parse/classes/Products/")
.config(function ($httpProvider) {
 $httpProvider.defaults.headers.common["X-Parse-Application-Id"]
...

Defining and Applying an Animation

You don’t work directly with the $animate service to apply animations. Instead, you define
animations or transitions with CSS, following a special naming convention, and then apply
those names as classes to elements, which also have AngularJS directives. The best way to
explain is with an example, and Listing 23-3 shows the changes I have made to the products.html
file to animate the transition between views.

Listing 23-3. Animating View Transition in the products.html File

<!DOCTYPE html>
<html ng-app="exampleApp">
<head>
 <title>Products</title>
 <script src="angular.js"></script>
 <script src="angular-resource.js"></script>
 <script src="angular-route.js"></script>
 <script src="angular-animate.js"></script>
 <link href="bootstrap.css" rel="stylesheet" />
 <link href="bootstrap-theme.css" rel="stylesheet" />
 <script src="products.js"></script>
 <script src="increment.js"></script>
 <style type="text/css">
 .ngFade.ng-enter { transition: 0.1s linear all; opacity: 0; }
 .ngFade.ng-enter-active { opacity: 1; }
 </style>
</head>
<body ng-controller="defaultCtrl">
 <div class="panel panel-primary">
 <h3 class="panel-heading">Products</h3>
 <div ng-view class="ngFade"></div>
 </div>
</body>
</html>

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 23 Services for Animation and Touch

5

The key to understand what’s happening in this example is the knowledge that some of
the built-in directives support animations when they change their content. Table 23-2 lists
directives and the names given to those changes for the purposes of animation.

The name enter is used when content is shown to the user. The name leave is used when
content is hidden from the user. The name move is used when content is moved within the
DOM. The names add and remove are used when content is added and removed from the DOM.

Table 23-2. The Built-in Directives That Support Animation and the Names Associated with Them

Directive Names

ng-repeat enter, leave, move

ng-view enter, leave

ng-include enter, leave

ng-switch enter, leave

ng-if enter, leave

ng-class add, remove

ng-show add, remove

ng-hide add, remove

With Table 23-2 as a reference, you can get a sense of the contents of the style element I

added to the example:

...
<style type="text/css">
 .ngFade.ng-enter { transition: 0.1s linear all; opacity: 0; }
 .ngFade.ng-enter-active { opacity: 1; }
</style>
...

I have defined two CSS classes, ngFade.ng-enter and ngFade.ng-enter-active, and the names of
these classes is important. The first part of the name—ngFade in this case—is the name used to
apply the animations or transitions to the element, like this:

...
<div ng-view class="ngFade"></div>
...

Tip There is no requirement to prefix the top-level class name with ng, as I have done, but this is

something that I have taken to doing to avoid conflicts with other CSS classes. The transition I have

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 23 Services for Animation and Touch

6

defined in the example causes elements to fade into view, and you might reasonably be tempted to use

the name fade. However, Bootstrap, which I am also using in this example, also defines a CSS class fade,

and that kind of conflict can cause problems. This has happened to me often enough that I now prefix

my AngularJS animation classes with ng, just to make sure that the names are unique within the

application.

The second part of the name tells AngularJS what the CSS style is to be used for. There are
two names in this example: ng-enter and ng-enter-active. The ng- prefix is required, and AngularJS
won’t process the animation without it. The next part of the name corresponds to the details
in Table 23-2. I am using the ng-view directive, which will perform animations when a view is
displayed to the user and hidden from the user. My styles use the prefix ng-enter, which tells
AngularJS that they should be used when a view is shown to the user.

The two styles define the start and end points for the transition that I want the ng-view
directive to use. The ng-enter style defines the start point and details of the transition. I have
specified that the CSS opacity property is initially 0 (meaning that the view is initially
transparent and not visible to the user) and that the transition should be performed over a
tenth of a second (I was serious when I said that animations should be brief). The ng-enter-active
style defines the end point for the transition. I have specified that the CSS opacity property
should be 1, meaning that the view will be entirely opaque and so visible to the user.

The overall effect is that when the view changes, the ng-view directive will apply the CSS
classes to the new view, which will transition it from transparent to opaque—basically, fading
in the new view.

Avoiding the Perils of Parallel Animation

It is natural to assume you have to animate both the departure of old content and the arrival
of new content, but doing so can be troublesome. The problem is that under normal
circumstances, the ng-view directive adds the new view to the DOM and then removes the old
one. If you try to animate the showing of the new content and the hiding of the old, then you
will end up with both displayed at once. Listing 23-4 shows additions to the products.html file
that will demonstrate the problem.

Listing 23-4. Adding Leave Animations to the products.html File

<!DOCTYPE html>
<html ng-app="exampleApp">
<head>
 <title>Products</title>
 <script src="angular.js"></script>
 <script src="angular-resource.js"></script>
 <script src="angular-route.js"></script>
 <script src="angular-animate.js"></script>
 <link href="bootstrap.css" rel="stylesheet" />
 <link href="bootstrap-theme.css" rel="stylesheet" />

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 23 Services for Animation and Touch

7

 <script src="products.js"></script>
 <script src="increment.js"></script>
 <style type="text/css">
 .ngFade.ng-enter { transition: 0.1s linear all; opacity: 0; }
 .ngFade.ng-enter-active { opacity: 1; }
 .ngFade.ng-leave { transition: 0.1s linear all; opacity: 1; }
 .ngFade.ng-leave-active { opacity: 0; }
 </style>
</head>
<body ng-controller="defaultCtrl">
 <div class="panel panel-primary">
 <h3 class="panel-heading">Products</h3>
 <div ng-view class="ngFade"></div>
 </div>
</body>
</html>

The result is a brief moment when both views are visible, which is unappealing and
confusing to the user. The ng-view directive doesn’t worry about trying to position views over
one another, and the new content is just displayed beneath the old, as illustrated in Figure 23-
2.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 23 Services for Animation and Touch

8

Figure 23-2. The effects of parallel animation

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 23 Services for Animation and Touch

9

The content is faded because I took the screenshot at the midpoint in the transition and
the opacity value of both views is about 0.5. A better effect is achieved by just animating the
incoming view using enter. It is subtle, but it makes the view transition less jarring and still
draws the user’s attention to the change.

Supporting Touch Events
The ngTouch module contains the $swipe service, which is used to improve support for
touchscreen devices beyond the basic events I described in Chapter 11. The events in ngTouch
module provide notification of swipe gestures and a replacement for the ng-click directive,
which addresses a common event problem on touch-enabled devices.

Why and When to Use Touch Events

The swipe gestures are useful whenever you want to improve support for touchscreen devices.
The ngTouch swipe events can be used to detect left-to-right and right-to-left swipe gestures. To
avoid confusing the user, you must ensure that the actions you perform in response to these
gestures are consistent with the rest of the underlying platform—or at the very least, the
default web browser for that platform. For example, if the right-to-left gesture usually means
“go back” in the web browser, then it is important that you do not interpret the gesture in
your application in a different way.

The replacement for the ng-click directive is useful for touch-enabled browsers because
they synthesize click events for compatibility for JavaScript code that has been written with
mouse events in mind. Touch browsers generally wait for 300 milliseconds after the user has
tapped the screen to see whether another tap occurs. If there is no second tap, then the
browser generates the touch event to represent a tap and a click event to simulate a mouse—
but that 300-millisecond delay is just enough of a lag to be noticeable to the user, and it can
make an application appear unresponsive. The ng-click replacement in the ngTouch module
doesn’t wait for a second tap and issues the click event much faster.

Installing the ngTouch Module

The ngTouch module must be downloaded from http://angularjs.org. Follow the same procedure
as for the ngAnimate module earlier in the chapter, but select the angular-touch.js file and
download it into the angularjs folder.

Handling Swipe Gestures

To demonstrate swipe gestures, I have created an HTML file called swipe.html in the angularjs
folder. Listing 23-5 shows the contents of the new file.

Listing 23-5. The Contents of the swipe.html File

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 23 Services for Animation and Touch

10

<!DOCTYPE html>
<html ng-app="exampleApp">
<head>
 <title>Swipe Events</title>
 <script src="angular.js"></script>
 <script src="angular-touch.js"></script>
 <link href="bootstrap.css" rel="stylesheet" />
 <link href="bootstrap-theme.css" rel="stylesheet" />
 <script>
 angular.module("exampleApp", ["ngTouch"])
 .controller("defaultCtrl", function ($scope, $element) {
 $scope.swipeType = "<None>";
 $scope.handleSwipe = function(direction) {
 $scope.swipeType = direction;
 }
 });
 </script>
</head>
<body ng-controller="defaultCtrl">
 <div class="panel panel-default">
 <div class="panel-body">
 <div class="well"
 ng-swipe-right="handleSwipe('left-to-right')"
 ng-swipe-left="handleSwipe('right-to-left')">
 <h4>Swipe Here</h4>
 </div>
 <div>Swipe was: {{swipeType}}</div>
 </div>
 </div>
</body>
</html>

I start by declaring a dependency on the ngTouch module. The event handlers are applied
through the ng-swipe-left and ng-swipe-right directives. I have applied these directives to a div
element and set them to call a controller behavior that updates a scope property that is
displayed using an inline binding expression.

The swipe gestures will be detected on touch-enabled devices or when the gesture is
made using the mouse. The best way to test touch events is with a touch-enabled device, of
course. But if you don’t have one on hand, then I find the ability of Google Chrome to simulate
touch input to be useful. Click the gear icon in the bottom-right corner of the F12 tools
window, select Setting > Devices and check the box for a device that supports touch, such as
the Laptop with Touch entry. Google seems to redesign the layout of the F12 tools every now and
again, so you may have to hunt around to find the right option. Once touch events are
enabled, you can use the mouse to swipe left and right using the mouse, and the browser will
generate the required touch events, as shown in Figure 23-3.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

CHAPTER 23 Services for Animation and Touch

11

Figure 23-3. Detecting swipe gestures

Using the Replacement ng-click Directive

I am not going to demonstrate the replacement ng-click directive because it is a like-for-like
replacement for the one I described in Chapter 11.

Summary
In this chapter, I described the services that AngularJS provides for animating elements and
detecting gestures. In the next chapter, I describe some services that are used internally by
AngularJS but that set the foundation for how unit testing functions.

www.itbook.store/books/9781430264484

https://itbook.store/books/9781430264484

