

Intel® MPI Benchmarks
User Guide and Methodology Description

Copyright © 2004-2013 Intel Corporation

All Rights Reserved
Document number: 320714-008EN

Revision 3.2.4

2

Contents
Legal Information ... 4
Getting Help and Support .. 6

Submitting Issues ... 6
Introduction .. 7

Introducing Intel(R) MPI Benchmarks ... 7
Intended Audience .. 7
What's New .. 8

Changes in Intel® MPI Benchmarks 3.2.4 .. 8
Changes in Intel® MPI Benchmarks 3.2.3 .. 8
Changes in Intel® MPI Benchmarks 3.2.2 .. 8
Changes in Intel® MPI Benchmarks 3.2.1 .. 8
Changes in Intel(R) MPI Benchmarks 3.2 ... 9
Changes in Intel(R) MPI Benchmarks 3.1 ... 9
Changes in Intel® MPI Benchmarks 3.0 .. 10

Notational Conventions ... 11
Conventions and Symbols Used in This Document .. 11

Document Version Information ... 11
Related Information .. 13

Installation and Quick Start .. 14
Requirements .. 14

Software Requirements .. 14
Memory and Disk Space Requirements .. 14

Installing Intel® MPI Benchmarks ... 15
Building Intel® MPI Benchmarks .. 15

On Linux* OS: .. 15
On Microsoft* Windows* OS:... 16

Running Intel® MPI Benchmarks .. 16
Benchmarks .. 17

MPI-1 Benchmarks ... 17
Classification of MPI-1 Benchmarks .. 18
Single Transfer .. 20
Parallel Transfer Benchmarks .. 22
Collective Benchmarks .. 24

MPI-2 Benchmarks ... 30
Naming Conventions .. 32
IMB-MPI-2 Benchmark Classification ... 33
Benchmark Modes ... 35
IMB-EXT Benchmarks ... 36
IMB-IO Blocking Benchmarks .. 41
IMB-IO Non-blocking Benchmarks .. 51

Benchmark Methodology ... 53
Command-line Control .. 53

Benchmark Selection Arguments .. 54
-npmin Option ... 54
-multi outflag Option .. 54
-off_cache cache_size[,cache_line_size] Option .. 55
-iter Option ... 55

Legal Information

3

-time Option ... 56
-mem Option .. 56
-input <File> Option .. 56
-msglen <File> Option ... 57
-map PxQ Option ... 57
-include [[benchmark1] benchmark2 ...] ... 57
-exclude [[benchmark1] benchmark2 ...] .. 57
-msglog [<minlog>:]<maxlog> ... 58
-thread_level Option .. 59

Parameters Controlling Intel® MPI Benchmarks .. 59
Hard-Coded Settings ... 61

Communicators, Active Processes .. 61
Other Preparations for Benchmarking ... 62
Message/I-O Buffer Lengths .. 63
Buffer Initialization .. 63
Warm-up Phase (IMB-MPI1, IMB-EXT) .. 63
Synchronization ... 63
Actual Benchmarking.. 64

Checking Results .. 65
Output .. 66

Sample 1 - IMB-MPI1 PingPong Allreduce .. 66
Sample 2 - IMB-MPI1 PingPing Allreduce ... 69
Sample 3 - IMB-IO p_write_indv .. 71
Sample 4 - IMB-EXT.exe ... 73

Intel(R) MPI Benchmarks User Guide

4

Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could
result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE
INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY
AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE
DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS,
DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY
OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN
ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE
INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.
 Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined". Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
 The information here is subject to change without notice. Do not finalize a design with this
information.

The products described in this document may contain design defects or errors known as errata
which may cause the product to deviate from published specifications. Current characterized
errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and
before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other
Intel literature, may be obtained by calling 1-800-548-4725, or go to:
http://www.intel.com/design/literature.htm

Intel processor numbers are not a measure of performance. Processor numbers differentiate
features within each processor family, not across different processor families. Go to:
http://www.intel.com/products/processor_number/

Software and workloads used in performance tests may have been optimized for performance
only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, operations and functions.
Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products.

MPEG-1, MPEG-2, MPEG-4, H.261, H.263, H.264, MP3, DV, VC-1, MJPEG, AC3, AAC, G.711,
G.722, G.722.1, G.722.2, AMRWB, Extended AMRWB (AMRWB+), G.167, G.168, G.169,
G.723.1, G.726, G.728, G.729, G.729.1, GSM AMR, GSM FR are international standards
promoted by ISO, IEC, ITU, ETSI, 3GPP and other organizations. Implementations of these
standards, or the standard enabled platforms may require licenses from various entities,
including Intel Corporation.

http://www.intel.com/design/literature.htm
http://www.intel.com/products/processor_number/
http://www.intel.com/products/processor_number/

Legal Information

5

BlueMoon, BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Cilk, Core Inside, E-
GOLD, Flexpipe, i960, Intel, the Intel logo, Intel AppUp, Intel Atom, Intel Atom Inside, Intel
Core, Intel Inside, Intel Insider, the Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel Sponsors of Tomorrow., the Intel
Sponsors of Tomorrow. logo, Intel StrataFlash, Intel vPro, Intel XScale, InTru, the InTru logo,
the InTru Inside logo, InTru soundmark, Itanium, Itanium Inside, MCS, MMX, Moblin, Pentium,
Pentium Inside, Puma, skoool, the skoool logo, SMARTi, Sound Mark, Stay With It, The Creators
Project, The Journey Inside, Thunderbolt, Ultrabook, vPro Inside, VTune, Xeon, Xeon Inside, X-
GOLD, XMM, X-PMU and XPOSYS are trademarks of Intel Corporation in the U.S. and/or other
countries.

* Other names and brands may be claimed as the property of others.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of
Microsoft Corporation in the United States and/or other countries.

Java is a registered trademark of Oracle and/or its affiliates.

Copyright (C) 2004–2013, Intel Corporation. All rights reserved.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3,
and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

6

Getting Help and Support
Your feedback is very important to us. To receive technical support for the tools provided in this
product and technical information including FAQ's and product updates, you need to register for
an Intel(R) Premier Support account at the Registration Center.

This package is supported by Intel(R) Premier Support. Direct customer support requests at:

https://premier.intel.com

General information on Intel(R) product-support offerings may be obtained at:

http://www.intel.com/software/products/support

The Intel(R) MPI Benchmarks home page can be found at:

http://www.intel.com/go/imb

When submitting a support issue to Intel(R) Premier Support, please provide specific details of
your problem, including:

• The Intel(R) MPI Benchmarks package name and version information

• Host architecture (for example, IA-32 or Intel(R) 64 architecture)

• Compiler(s) and versions

• Operating system(s) and versions

• Specifics on how to reproduce the problem. Include makefiles, command lines, small test
cases, and build instructions.

Submitting Issues
1. Go to https://premier.intel.com

2. Log in to the site. Note that your username and password are case-sensitive.

3. Click on the Submit Issue link in the left navigation bar.

4. Choose Development Environment (tools, SDV, EAP) from the Product Type drop-
down list. If this is a software or license-related issue, choose the Intel(R) Cluster Studio
[XE], Linux* or the Intel(R) Cluster Studio [XE], Windows* from the Product Name
drop-down list.

5. Enter your question and complete the required fields to successfully submit the issue.

NOTE:

Notify your support representative prior to submitting source code where access needs to be
restricted to certain countries to determine if this request can be accommodated.

https://premier.intel.com/
http://www.intel.com/software/products/support
http://www.intel.com/go/imb
https://premier.intel.com/

7

Introduction
This Guide presents the Intel® MPI Benchmarks 3.2.4. The objectives of the Intel® MPI
Benchmarks are:

• Provide a concise set of benchmarks targeted at measuring the most important MPI
functions.

• Set forth a precise benchmark methodology.

• Report bare timings rather than provide interpretation of the measured results. Show
throughput values if and only if these values are well defined.

Intel® MPI Benchmarks is developed using ANSI C plus standard MPI.

Intel® MPI Benchmarks is distributed as an open source project to enable use of benchmarks
across various cluster architectures and MPI implementations.

Introducing Intel(R) MPI Benchmarks
Intel® MPI Benchmarks performs a set of MPI performance measurements for point-to-point
and global communication operations for a range of message sizes. The generated benchmark
data fully characterizes:

• performance of a cluster system, including node performance, network latency, and
throughput

• efficiency of the MPI implementation used

The Intel® MPI Benchmarks package consists of the following components:

• IMB-MPI1 - benchmarks for MPI-1 functions

• Two components for MPI-2 functionality:

• IMB-EXT - one-sided communications benchmarks

• IMB-IO - input/output (I/O) benchmarks

Each component corresponds to a separate executable file. You can run all of the supported
benchmarks, or specify a single executable file in the command line to get results for a specific
subset of benchmarks.

If you do not have the MPI-2 extensions available, you can install and use IMB-MPI1 that uses
only standard MPI-1 functions.

Intended Audience
This guide is intended for users who want to measure performance of MPI implementations.

Intel(R) MPI Benchmarks User Guide

8

What's New
This section provides changes for the Intel® MPI Benchmarks as compared to the previous
versions of this product.

Changes in Intel® MPI Benchmarks 3.2.4

This release includes the following updates as compared to the Intel® MPI Benchmarks 3.2.3:

• Changes of document layout.

Changes in Intel® MPI Benchmarks 3.2.3

This release includes the following updates as compared to the Intel® MPI Benchmarks 3.2.2:

• Option -msglog to control the message length. Use this option to control the maximum and the
second largest minimum of the message transfer sizes. The minimum message transfer size is
always 0.

• Thread safety support in the MPI initialization phase. Use MPI_Init()by default because it is
supported for all MPI implementations. You can choose MPI_Init_thread()by defining the
appropriate macro.

• Option –thread_level to specify the desired thread level support for MPI_Init_thread.

• Support for the Microsoft* Visual Studio* 2010 project folder.

Changes in Intel® MPI Benchmarks 3.2.2

This release includes the following updates as compared to the Intel® MPI Benchmarks 3.2.1:

• Support for large buffers greater than 2 GB for some MPI collective benchmarks (Allgather,
Alltoall, Scatter, Gather) to support large core counts.

• New benchmarks: PingPongSpecificSource and PingPingSpecificSource. The exact
destination rank is used for these tests instead of MPI_ANY_SOURCE as in the PingPong and
PingPing benchmarks. These are not executed by default. Use the -include option to enable the
new benchmarks. For example,

 $ mpirun n 2 IMB_MPI -include PingPongSpecificSource \
 PingPingSpecificSource

• New options -include/-exclude for better control over the benchmarks list. Use these options
to include or exclude benchmarks from the default execution list.

Changes in Intel® MPI Benchmarks 3.2.1

This release includes the following updates as compared to the Intel® MPI Benchmarks 3.2:

• Fix of the memory corruption issue when the command-line option -msglen is used with the
Intel® MPI Benchmarks executable files.

Introduction

9

• Fix in the accumulated benchmark related to using the CHECK conditional compilation macro.

• Fix for the integer overflow in dynamic calculations on the number of iterations.

• Recipes for building IA-32 executable files within Microsoft* Visual Studio* 2005 and Microsoft*
Visual Studio* 2008 project folders associated with the Intel® MPI Benchmarks.

Changes in Intel(R) MPI Benchmarks 3.2

Intel® MPI Benchmarks 3.2 has the following changes as compared to the previous version:

• The default settings are different.

• Microsoft* Visual Studio* project folders are added and can be used on the Microsoft* Windows*
platforms.

• Makefiles for the Microsoft* Windows* nmake utility provided with the Intel® MPI Benchmarks 3.1
are removed.

Run Time Control by Default

The impoved run time control that is associated with the –time flag. This is the default value for the
Intel® MPI Benchmarks executable files (with a maximum run time per sample set to 10 seconds by
the SECS_PER_SAMPLE parameter in the include file IMB_settings.h).

Makefiles

The nmake files for Windows* OS were removed and replaced by Microsoft* Visual Studio* solutions.

The Linux* OS Makefiles received new targets:

• Target MPI1 (default) for building IMB-MPI1

• Target EXT for building IMB-EXT

• Target IO for building IMB-IO

• Target all for building all three of the above

Microsoft* Visual Studio* Project Folders

Intel® MPI Benchmarks 3.2 contains Microsoft* Visual Studio* solutions based on an installation of
the Intel® MPI Library. A dedicated folder is created for the Microsoft* Windows* OS without
duplicating source files. The solutions refer to the source files that are located at their standard
location within the Intel® MPI Benchmarks directory structure.

As such solutions are highly version-dependent, see the information in the corresponding ReadMe.txt
files that unpack with the folder. You are recommended to learn about the Microsoft* Visual Studio*
philosophy and the run time environment of your Windows cluster.

Changes in Intel(R) MPI Benchmarks 3.1

This release includes the following updates as compared to the Intel® MPI Benchmarks 3.0:

• New control flags

Intel(R) MPI Benchmarks User Guide

10

• Better control of the overall repetition counts, run time, and memory exploitation

• A facility to avoid cache re-usage of message buffers as far as possible

• A fix of IMB-IO semantics

• New benchmarks

• Gather

• Gatherv

• Scatter

• Scatterv

• New command-line flags for better control

• -off_cache

Use this flag when measuring performance on high speed interconnects or, in particular,
across the shared memory within a node. Traditional Intel® MPI Benchmarks results included
a very beneficial cache re-usage of message buffers which led to idealistic results. The flag -
off_cache allows avoiding cache effects and lets the Intel® MPI Benchmarks use message
buffers which are very likely not resident in cache.

• -iter, -time

Use these flags for enhanced control of the overall run time, which is crucial for large clusters,
where collectives tend to run extremely long in the traditional Intel® MPI Benchmarks
settings.

CAUTION

In the Intel® MPI Benchmarks, the -time flag has been implemented as default.

• -mem

Use this flag to determine an a priori maximum (per process) memory usage of the Intel® MPI
Benchmarks for the overall message buffers.

Miscellaneous Changes

In the Exchange benchmark, the two buffers sent by MPI_Isend are separate. The command line is
repeated in the output. Memory management is completely encapsulated in the functions
IMB_v_alloc/IMB_v_free.

Changes in Intel® MPI Benchmarks 3.0

This release includes the following updates as compared to the Intel® MPI Benchmarks 2.3:

• A call to the MPI_Init_thread function to determine the MPI threading environment. The MPI
threading environment is reported each time an Intel® MPI Benchmark application is executed.

• A call to the function MPI_Get_version to report the version of the Intel MPI library
implementation that the three benchmark applications are linking to.

Introduction

11

• New Alltoallv benchmark.

• New command-line flag -h[elp] to display the calling sequence for each benchmark application.

• Removal of the outdated Makefile templates. There are three complete makefiles called
Makefile, make_ict, and make_mpich. The make_ict option uses the Intel® Composer XE
compilers. This option is available for both Intel and non-Intel microprocessors but it may result in
additional optimizations for Intel microprocessors.

• Better command-line argument checking, clean message and break on most invalid arguments.

Notational Conventions
The following conventions are used in this document.

Conventions and Symbols Used in This Document

This type style Document or product names

This type style Hyperlinks

This type style Commands, arguments, options, file names

THIS_TYPE_STYLE Environment variables

<this type style> Placeholders for actual values

[items] Optional items

{ item | item } Selectable items separated by vertical bar(s)

Document Version Information

Document Number Revision
Number Description Revision Date

320714-001 2.3 Initial version /10/2004

320714-002 3.0 The following topics were added: /06/2006

Intel(R) MPI Benchmarks User Guide

12

• Descriptions of environment
amendments

• The Alltoallv

320714-003 3.1

The following updates were added:

• Description of Windows version

• Four new benchmarks
(Scatter(v), Gather(v))

• IMB-IO functional fix

/07/2007

320714-004 3.2

The following topics were added:

• Run time control as default

• Microsoft* Visual Studio* solution
templates

/08/2008

320714-005 3.2.1

The following updates were added:

• Fix of the memory corruption

• Fix in accumulate benchmark
related to using the CHECK
conditional compilation macro

• Fix for integer overflow in dynamic
calculations on the number of
iterations

• Recipes for building IA-32
executable files within Microsoft*
Visual Studio* 2005 and
Microsoft* Visual Studio* 2008
project folders associated with the
Intel® MPI Benchmarks

/04/2010

320714-006 3.2.2

The following updates were added:

• Support for large buffers greater
than 2 GB for some MPI
benchmark

• New benchmarks
PingPongSpecificSource and
PingPingSpecificSource

• New options -include/-exclude

/09/2010

320714-007 3.2.3 The following topics were updated and /08/2011

Introduction

13

added:

• Changes in the Intel® MPI
Benchmarks 3.2.3

• Command-line Control

• Parameters Controlling IMB

• Microsoft* Visual Studio* 2010
project folder support

320714-008 3.2.4
The following updates were added:

• Changes of document layout
/06/2012

Related Information
For more information, you can see the following related resources:

Intel® MPI Benchmarks Download

Intel® MPI Library Product

http://www.intel.com/go/imb
http://www.intel.com/go/mpi

14

Installation and Quick Start
This section explains how to install and start using the Intel® MPI Benchmarks.

Requirements

Software Requirements

To run the Intel® MPI Benchmarks, you need:

• cpp, ANSI C compiler, gmake on Linux* OS or Unix* OS.

• Enclosed Microsoft Visual* C++ solutions as the basis for Microsoft Windows* OS.

• MPI installation, including a startup mechanism for parallel MPI programs.

 Memory and Disk Space Requirements

The table below lists memory requirements for benchmarks run with the default settings (standard
mode) and with the user-defined settings (optional mode). In this table:

• Q is the number of active processes.

• X is the maximal size of the passing message.

Benchmarks Standard Mode Optional Mode

Alltoall Qx8 MB Qx2X bytes

Allgather, Allgatherv (Q+1)x4 MB (Q+1)xX bytes

Exchange 12 MB 3X bytes

All other MPI-1 benchmarks 8 MB 2X bytes

IMB-EXT 80 Mbytes 2 max(X,OVERALL_VOL)
bytes

IMB-IO 32 Mbytes 3X bytes

NOTE:

If you do not select the -cache flag, add 2X cache size to all of the above.

For IMB-IO benchmarks, make sure you have enough disk space available:

• 16MB in the standard mode

Installation and Quick Start

15

• max(X,OVERALL_VOL) bytes in the optional mode

For instructions on enabling the optional mode, see Parameters Controlling Intel® MPI Benchmarks.

Installing Intel® MPI Benchmarks
To install the Intel® MPI Benchmarks, unpack the installation file. The installation directory structure
is as follows:

• ReadMe_first.txt

• ./doc - documentation directory that contains the following documents:

• ReadMe_IMB.txt

• User's guide, in PDF and HTML Uncompressed Help formats: Users_Guide.pdf and
imb_userguide/index.htm.

• ./src - program source- and Make-files.

• ./WINDOWS - Microsoft* Visual Studio* solution files.

• ./license - license agreement directory that contains the following files:

• license.txt - specifies the source code license granted to you.

• use-of-trademark-license.txt - specifies the license for using the name and/or
trademark of the Intel® MPI Benchmarks.

• ./versions_news - version history and update information.

For basic instructions on how to use the Intel® MPI Benchmarks, see ./doc/ReadMe_IMB.txt.

See Also
Buliding Intel® MPI Benchmarks

Building Intel® MPI Benchmarks
After you successfully install the Intel® MPI Benchmarks, do the following:

On Linux* OS:

1. Set the CC environment variable to point to the compiler you are using.

2. Run one or more makefile commands listed below.

Command Description

make clean Remove legacy binary object files and
executable files

Intel(R) MPI Benchmarks User Guide

16

make MPI1 Build the executable file for the IMB-MPI1
component.

make EXT Build the executable file for one-sided
communications benchmarks.

make IO Build the executable file for I/O benchmarks.

make all Build all executable files available.

On Microsoft* Windows* OS:

On Windows* OS, you can use the enclosed solution files as a starting point and revise these files
according to your needs.

See Also
Running Intel® MPI Benchmarks

Running Intel® MPI Benchmarks
To run the Intel® MPI Benchmarks, use the following command-line syntax:

mpirun -np <P> IMB-<component> [arguments]

where

• <P> is the number of processes. P=1 is recommended for all I/O and message passing
benchmarks except the single transfer ones.

• <component> is the component-specific suffix that can take MPI1, EXT, or IO values.

By default, all benchmarks run on Q active processes defined as follows:

Q=[1,] 2, 4, 8, ..., largest 2x

For example, if P=11, the benchmarks run on Q=[1,]2,4,8,11 active processes. Single transfer IMB-
IO benchmarks run with Q=1. Single transfer IMB-EXT benchmarks run with Q=2.

To pass control arguments other than P, you can use (argc,argv). Process 0 in MPI_COMM_WORLD
reads all command-line arguments and broadcasts them to all other processes. Control arguments can
define various features, such as time measurement, message length, and selection of communicators.
For details, see Command-Line Control.

See Also
Command-Line Control
Parameters Controlling Intel® MPI Benchmarks

17

Benchmarks
Intel® MPI Benchmarks provides a set of elementary MPI benchmarks.

You can run all benchmarks in the following modes:

• standard (default) - the benchmarks run in a single process group.

• multiple - the benchmarks run in several process groups.

To run the benchmarks in the multiple mode, add the multi- prefix to the benchmark name.

In the multiple mode, the number of groups may differ depending on the benchmark. For example, if
PingPong is running on N≥4 processes, N/2 separate groups of two processes are formed. These
process groups are running PingPong simultaneously. Thus, the benchmarks of the single transfer
class behave as parallel transfer benchmarks when run in the multiple mode.

See Also
Classification of MPI-1 Benchmarks
Classification of MPI-2 Benchmarks

MPI-1 Benchmarks
IMB-MPI1 component of the Intel® MPI Benchmarks provides benchmarks for MPI-1 functions. IMB-
MPI1 contains the following benchmarks:

Standard Mode Multiple Mode

PingPong Multi-PingPong

PingPongSpecificSource,
Multi-PingPongSpecificSource

(excluded by default)

PingPing Multi-PingPing

PingPingSpecificSource
Multi-PingPingSpecificSource

(excluded by default)

Sendrecv Multi-Sendrecv

Exchange Multi-Exchange

Bcast Multi-Bcast

Allgather Multi-Allgather

Allgatherv Multi-Allgatherv

Intel(R) MPI Benchmarks User Guide

18

Scatter Multi-Scatter

Scatterv Multi-Scatterv

Gather Multi-Gather

Gatherv Multi-Gatherv

Alltoall Multi-Alltoall

Alltoallv Multi-Alltoallv

Reduce Multi-Reduce

Reduce_scatter Multi-Reduce_scatter

Allreduce Multi-Allreduce

Barrier Multi-Barrier

Classification of MPI-1 Benchmarks

Intel® MPI Benchmarks introduces the following classes of benchmarks:

• Single Transfer

• Parallel Transfer

• Collective benchmarks

Each class interprets results in a different way.

Single Transfer Benchmarks

Single transfer benchmarks involve two active processes into communication. Other processes wait for
the communication completion. Each benchmark is run with varying message lengths. The timing is
averaged between two processes. The basic MPI data type for all messages is MPI_BYTE.

Throughput values are measured in MBps and can be calculated as follows:

throughput = X/220 * 106/time = X/1.048576/time,

where

• time is measured in μ sec.
• X is the length of a message, in bytes.

Parallel Transfer Benchmarks

Benchmarks

19

Parallel transfer benchmarks involve more than two active processes into communication. Each
benchmark runs with varying message lengths. The timing is averaged over multiple samples. The
basic MPI data type for all messages is MPI_BYTE.The throughput calculations of the benchmarks take
into account the multiplicity nmsg of messages outgoing from or incoming to a particular process. For
the Sendrecv benchmark, a particular process sends and receives X bytes, the turnover is 2X bytes,
nmsg=2. For the Exchange benchmark, the turnover is 4X bytes, nmsg=4.

Throughput values are measured in MBps and can be calculated as follows:

throughput = nmsg*X/220 * 106/time = nmsg*X/1.048576/time,

where

• time is measured in μ sec.
• X is the length of a message, in bytes.

Collective Benchmarks

Collective benchmarks measure MPI collective operations. Each benchmark is run with varying
message lengths. The timing is averaged over multiple samples. The basic MPI data type for all
messages is MPI_BYTE for pure data movement functions and MPI_FLOAT for reductions.

Collective benchmarks show bare timings.

The following table lists the MPI-1 benchmarks in each class:

Single Transfer Parallel Transfer Collective

PingPong Sendrecv
Bcast

Multi-Bcast

PingPongSpecificSource Exchange
Allgather

Multi-Allgather

PingPing Multi-PingPong
Allgatherv

Multi-Allgatherv

PingPingSpecificSource Multi-PingPing
Alltoall

Multi-Alltoall

 Multi-Sendrecv
Alltoallv

Multi-Alltoallv

 Multi-Exchange
Scatter

Multi-Scatter

 Scatterv

Intel(R) MPI Benchmarks User Guide

20

Multi-Scatterv

Gather

Multi-Gather

Gatherv

Multi-Gatherv

Reduce

Multi-Reduce

Reduce_scatter

Multi-Reduce_scatter

Allreduce

Multi-Allreduce

Barrier

Multi-Barrier

Single Transfer

The following benchmarks belong to the single transfer class:

• PingPong

• PingPongSpecificSource

• PingPing

• PingPingSpecificSources

See sections below for definitions of these benchmarks.

PingPong, PingPongSpecificSource

Use PingPong and PingPongSpecificSource for measuring startup and throughput of a single
message sent between two processes. PingPong uses the MPI_ANY_SOURCE value for destination
rank, while PingPongSpecificSource uses an explicit value.

PingPong Definition

Property Description

Benchmarks

21

Measured pattern
As symbolized between in the figure
below. This benchmark runs on two active
processes (Q=2).

MPI routines MPI_Send, MPI_Recv

MPI data type MPI_BYTE

Reported timings time=Δt/2 (in μsec) as indicated in the figure
below.

Reported throughput X/(1.048576*time)

PingPong Pattern

PingPing, PingPingSpecificSource

PingPing and PingPingSpecificSource measure startup and throughput of single messages that
are obstructed by oncoming messages. To achieve this, two processes communicate with each other
using MPI_Isend/MPI_Recv/MPI_Wait calls. The MPI_Isend calls are issued simultaneously by
both processes. For destination rank, PingPing uses the MPI_ANY_SOURCE value, while
PingPingSpecificSource uses an explicit value.

PingPing Definition

Property Description

Intel(R) MPI Benchmarks User Guide

22

Measured pattern
As symbolized between in the figure
below. This benchmark runs on two active
processes (Q=2).

MPI routines MPI_Isend/MPI_Wait, MPI_Recv

MPI data type MPI_BYTE

Reported timings time=Δt (in μsec)

Reported throughput X/(1.048576*time)

PingPing Pattern

Parallel Transfer Benchmarks

The following benchmarks belong to the parallel transfer class:

• Sendrecv

• Exchange

• Multi-PingPong

• Multi-PingPing

• Multi-Sendrecv

• Multi-Exchange

See sections below for definitions of these benchmarks.

Benchmarks

23

NOTE:

The definitions of the multiple mode benchmarks are analogous to their standard mode counterparts
in the single transfer class.

Sendrecv

The Sendrecv benchmark is based on MPI_Sendrecv. In this benchmark, the processes form a
periodic communication chain. Each process sends a message to the right neighbor and receives a
message from the left neighbor in the chain. The turnover count is two messages per sample (one in,
one out) for each process.

In the case of two processes, Sendrecv is equivalent to the PingPing benchmark of IMB1.x. For two
processes, it reports the bidirectional bandwidth of the system, as obtained by the optimized
MPI_Sendrecv function.

Sendrecv Definition

Property Description

Measured pattern As symbolized between in the figure
below.

MPI routines MPI_Sendrecv

MPI data type MPI_BYTE

Reported timings time=Δt (in μsec) as indicated in the figure
below.

Reported throughput 2X/(1.048576*time)

Sendrecv Pattern

Exchange

Intel(R) MPI Benchmarks User Guide

24

Exchange is a communication pattern that often occurs in grid splitting algorithms (boundary
exchanges). The group of processes is similar to a periodic chain, and each process exchanges data
with both left and right neighbor in the chain.

The turnover count is four messages per sample (two in, two out) for each process.

For two Isend messages, separate buffers are used.

Exchange Definition

Property Description

Measured pattern As symbolized between in the figure
below.

MPI routines MPI_Isend/MPI_Waitall, MPI_Recv

MPI data type MPI_BYTE

Reported timings time=Δt (in μsec)

Reported throughput 4X/(1.048576*time)

Exchange Pattern

Collective Benchmarks

The following benchmarks belong to the collective class:

• Bcast/multi-Bcast

Benchmarks

25

• Allgather/multi-Allgather

• Allgatherv/multi-Allgatherv

• Alltoall/multi-Alltoall

• Alltoallv/multi-Alltoallv

• Scatter/multi-Scatter

• Scatterv/multi-Scatterv

• Gather/multi-Gather

• Gatherv/multi-Gatherv

• Reduce/multi-Reduce

• Reduce_scatter/multi-Reduce_scatter

• Allreduce/multi-Allreduce

• Barrier/multi-Barrier

See sections below for definitions of these benchmarks.

Reduce

The benchmark for the MPI_Reduce function. It reduces a vector of length L = X/sizeof(float)
float items. The MPI data type is MPI_FLOAT. The MPI operation is MPI_SUM. The root of the operation
is changed round-robin.

Reduce Definition

Property Description

Measured pattern MPI_Reduce

MPI data type MPI_FLOAT

MPI operation MPI_SUM

Root i%num_procs in iteration i

Reported timings Bare time

Reported throughput None

Reduce_scatter

Intel(R) MPI Benchmarks User Guide

26

The benchmark for the MPI_Reduce_scatter function. It reduces a vector of length L =
X/sizeof(float) float items. The MPI data type is MPI_FLOAT. The MPI operation is MPI_SUM. In the
scatter phase, the L items are split as evenly as possible. To be exact, for np number of processes:

L = r*np+s

where

• r = ⌊L/np⌋

• s = L mod np

In this case, the process with rank i gets:

• r+1 items when i<s

• r items when i s

Property Description

Measured pattern MPI_Reduce_scatter

MPI data type MPI_FLOAT

MPI operation MPI_SUM

Reported timings Bare time

Reported throughput None

Allreduce

The benchmark for the MPI_Allreduce function. It reduces a vector of length L = X/sizeof(float)
float items. The MPI data type is MPI_FLOAT. The MPI operation is MPI_SUM.

Property Description

Measured pattern MPI_Allreduce

MPI data type MPI_FLOAT

MPI operation MPI_SUM

Reported timings Bare time

Reported throughput None

Benchmarks

27

Allgather

The benchmark for the MPI_Allgather function. Every process inputs X bytes and receives the
gathered X*np bytes, where np is the number of processes.

Property Description

Measured pattern MPI_Allgather

MPI data type MPI_BYTE

Reported timings Bare time

Reported throughput None

Allgatherv

The benchmark for the MPI_Allgatherv function. Every process inputs X bytes and receives the
gathered X*np bytes, where np is the number of processes. Unlike Allgather, this benchmark shows
whether MPI produces overhead.

Property Description

Measured pattern MPI_Allgatherv

MPI data type MPI_BYTE

Reported timings Bare time

Reported throughput None

Scatter

The benchmark for the MPI_Scatter function. The root process inputs X*np bytes (X for each
process). All processes receive X bytes. The root of the operation is changed round-robin.

Property Description

Measured pattern MPI_Scatter

MPI data type MPI_BYTE

Root i%num_procs in iteration i

Reported timings Bare time

Intel(R) MPI Benchmarks User Guide

28

Reported throughput None

Scatterv

The benchmark for the MPI_Scatterv function. The root process inputs X*np bytes (X for each
process). All processes receive X bytes. The root of the operation is changed round-robin.

Property Description

Measured pattern MPI_Scatterv

MPI data type MPI_BYTE

Root i%num_procs in iteration i

Reported timings Bare time

Reported throughput None

Gather

The benchmark for the MPI_Gather function. The root process inputs X*np bytes (X from each
process). All processes receive X bytes. The root of the operation is changed round-robin.

Property Description

Measured pattern MPI_Gather

MPI data type MPI_BYTE

Root i%num_procs in iteration i

Reported timings Bare time

Reported throughput None

Gatherv

The benchmark for the MPI_Gatherv function. All processes input X bytes. The root process receives
X*np bytes, where np is the number of processes. The root of the operation is changed round-robin.

Property Description

Measured pattern MPI_Gatherv

Benchmarks

29

MPI data type MPI_BYTE

Root i%num_procs in iteration i

Reported timings Bare time

Reported throughput None

Alltoall

The benchmark for the MPI_Alltoall function. In the case of np number of processes, every process
inputs X*np bytes (X for each process) and receives X*np bytes (X from each process).

Property Description

Measured pattern MPI_Alltoall

MPI data type MPI_BYTE

Reported timings Bare time

Reported throughput None

Bcast

The benchmark for MPI_Bcast. The root process broadcasts X bytes to all other processes. The root of
the operation is changed round-robin.

Property Description

Measured pattern MPI_Alltoall

MPI data type MPI_BYTE

Reported timings Bare time

Reported throughput None

Barrier

The benchmark for the MPI_Barrier function.

Property Description

Measured pattern MPI_Barrier

Intel(R) MPI Benchmarks User Guide

30

Reported timings Bare time

Reported throughput None

MPI-2 Benchmarks
Intel® MPI Benchmarks provides benchmarks for MPI-2 functions in two components: IMB-EXT and
IMB-IO. The table below lists all MPI-2 benchmarks available and specifies whether they support the
aggregate mode. For I/O benchmarks, the table also lists non-blocking flavors.

Benchmark Aggregate Mode Non-blocking Mode

IMB-EXT

Window

Multi-Window

Unidir_Put

Multi-Unidir_Put
Supported

Unidir_Get

Multi-Unidir_Get
Supported

Bidir_Get

Multi-Bidir_Get
Supported

Bidir_Put

Multi-Bidir_Put
Supported

Accumulate

Multi-Accumulate
Supported

Benchmark Aggregate Mode Non-blocking Mode

IMB-IO

Open_Close

Multi-Open_Close

Benchmarks

31

S_Write_indv

Multi-S_Write_indv
Supported

S_IWrite_indv

Multi-S_IWrite_indv

S_Read_indv

Multi-S_Read_indv

S_IRead_indv

Multi-S_IRead_indv

S_Write_expl

Multi-S_Write_expl
Supported

S_IWrite_expl

Multi-IS_Write_expl

S_Read_expl

Multi-S_Read_expl

S_IRead_expl

Multi-IS_Read_expl

P_Write_indv

Multi-P_Write_indv
Supported

P_IWrite_indv

Multi-P_IWrite_indv

P_Read_indv

Multi-P_Read_indv

P_IRead_indv

Multi-P_IRead_indv

P_Write_expl

Multi-P_Write_expl
Supported

P_IWrite_expl

Multi-P_IWrite_expl

P_Read_expl

Multi-P_Read_expl

P_IRead_expl

Multi-P_IRead_expl

P_Write_shared

Multi-P_Write_shared
Supported

P_IWrite_shared

Multi-P_IWrite_shared

P_Read_shared

Multi-P_Read_shared

P_IRead_shared

Multi-P_IRead_shared

P_Write_priv

Multi-P_Write_priv
Supported

P_IWrite_priv

Multi-P_IWrite_priv

P_Read_priv

Multi-P_Read_priv

P_IRead_priv

Multi-P_IRead_priv

C_Write_indv

Multi-C_Write_indv
Supported

C_IWrite_indv

Multi-C_IWrite_indv

Intel(R) MPI Benchmarks User Guide

32

C_Read_indv

Multi-C_Read_indv

C_IRead_indv

Multi-C_IRead_indv

C_Write_expl

Multi-C_Write_expl
Supported

C_IWrite_expl

Multi-C_IWrite_expl

C_Read_expl

Multi-C_Read_expl

C_IRead_expl

Multi-C_IRead_expl

C_Write_shared

Multi-C_Write_shared
Supported

C_IWrite_shared

Multi-C_IWrite_shared

C_Read_shared

Multi-C_Read_shared

C_IRead_shared

Multi-C_IRead_shared

See Also

Benchmark Modes
IMB-IO Non-Blocking Benchmarks

Naming Conventions

MPI-2 benchmarks have the following naming conventions:

Convention Description

Unidir/Bidir
Unidirectional/bidirectional one-sided
communications. These are the one-sided
equivalents of PingPong and PingPing.

S_ Single transfer benchmark.

C_ Collective benchmark.

P_ Parallel transfer benchmark.

expl I/O with explicit offset.

indv I/O with an individual file pointer.

Benchmarks

33

shared I/O with a shared file pointer.

priv
I/O with an individual file pointer to one
private file for each process opened for
MPI_COMM_SELF.

[ACTION] A placeholder for Read or Write component of
the benchmark name.

I
Non-blocking flavor. For example,
S_IWrite_indv is the non-blocking flavor of
the S_IWrite_indv benchmark.

Multi- The benchmark runs in the multiple mode.

IMB-MPI-2 Benchmark Classification

Intel® MPI Benchmarks introduces three classes of benchmarks:

• Single Transfer

• Parallel Transfer

• Collective

Each class interprets results in a different way.

NOTE:

The following benchmarks do not belong to any class:

• Window - measures overhead of one-sided communications for the
MPI_Win_create / MPI_Win_free functions

• Open_close - measures overhead of input/output operations for the
MPI_File_open / MPI_File_close functions

Single Transfer Benchmarks

This class contains benchmarks of functions that operate on a single data element transferred
between one source and one target. For MPI-2 benchmarks, the source of the data transfer can be an
MPI process or, in the case of Read benchmarks, an MPI file. The target can be an MPI process or an
MPI file.

For I/O benchmarks, the single transfer is defined as an operation between an MPI process and an
individual window or a file.

• Single transfer IMB-EXT benchmarks only run with two active processes.

Intel(R) MPI Benchmarks User Guide

34

• Single transfer IMB-IO benchmarks only run with one active process.

Parallel Transfer Benchmarks

This class contains benchmarks of functions that operate on several processes in parallel. The
benchmark timings are produced under a global load. The number of participating processes is
arbitrary.

In the Parallel Transfer, more than one process participates in the overall pattern.

The final time is measured as the maximum of timings for all single processes. The throughput is
related to that time and the overall amount of transferred data (sum over all processes).

Collective Benchmarks

This class contains benchmarks of functions that are collective as provided by the MPI standard. The
final time is measured as the maximum of timings for all single processes. The throughput is not
calculated.

MPI-2 Benchmarks Classification

Single Transfer Parallel Transfer Collective Other

Unidir_Get Multi_Unidir_Get Accumulate Window

Unidir_Put Multi_Unidir_Put Multi_Accumulate Multi_Window

Bidir_Get Multi_Bidir_Get

Bidir_Put Multi_Bidir_Put

S_[I]Write_indv P_[I]Write_indv C_[I]Write_indv Multi-
C_[I]Write_indv

S_[I]Write_indv P_[I]Write_indv
C_[I]Write_indv

Multi-C_[I]Write_indv

Open_close

Multi-Open_close

S_[I]Read_indv P_[I]Read_indv
C_[I]Read_indv

Multi-C_[I]Read_indv

S_[I]Write_expl P_[I]Write_expl
C_[I]Write_expl

Multi-C_[I]Write_expl

S_[I]Read_expl P_[I]Read_expl
C_[I]Read_expl

Multi-C_[I]Read_expl

 P_[I]Write_shared C_[I]Write_shared

Benchmarks

35

Multi-
C_[I]Write_shared

 P_[I]Read_shared

C_[I]Read_shared

Multi-
C_[I]Write_shared

 P_[I]Write_priv

 P_[I]Read_priv

Benchmark Modes

MPI-2 benchmarks can run in the following modes:

• Blocking/non-blocking mode. These modes apply to the IMB-IO benchmarks only. For details, see
sections IMB-IO Blocking Benchmarks and IMB-IO Non-Blocking Benchmarks.

• Aggregate/non-aggregate mode. Non-aggregate mode is not available for non-blocking flavors of
IMB-IO benchmarks.

The following example illustrates aggregation of M transfers for IMB-EXT and blocking Write
benchmarks:

Select a repetition count M

time = MPI Wtime();

issue M disjoint transfers

assure completion of all transfers

time = (MPI_Wtime() - time) / M

In this example:

• M is a repetition count:

• M = 1 in the non-aggregate mode

• M = n_sample in the aggregate mode. For the exact definition of n_sample see the Actual
Benchmarking section.

• A transfer is issued by the corresponding one-sided communication call (for IMB-EXT) and by an
MPI-IO write call (for IMB-IO).

• Disjoint means that multiple transfers (if M>1) are to/from disjoint sections of the window or file.
This permits to avoid misleading optimizations when using the same locations for multiple
transfers.

The variation of M provides important information about the system and the MPI implementation,
crucial for application code optimizations. For example, the following possible internal strategies of an
implementation could influence the timing outcome of the above pattern.

Intel(R) MPI Benchmarks User Guide

36

• Accumulative strategy. Several successive transfers (up to M in the example above) are
accumulated without an immediate completion. At certain stages, the accumulated transfers are
completed as a whole. This approach may save time of expensive synchronizations. This strategy
is expected to produce better results in the aggregate case as compared to the non-aggregate
one.

• Non-accumulative strategy. Every Transfer is completed before the return from the corresponding
function. The time of expensive synchronizations is taken into account. This strategy is expected
to produce equal results for aggregate and non-aggregate cases.

Assured Completion of Transfers

Following the MPI standard, assured completion of transfers is the minimum sequence of operations
after which all processes of the file communicator have a consistent view after a write.

The aggregate and non-aggregate modes differ in when the assured completion of data transfers
takes place:

• after each transfer (non-aggregate mode)

• after a bunch of multiple transfers (aggregate mode)

For Intel® MPI Benchmarks, assured completion means the following:

• For IMB-EXT benchmarks, MPI_Win_fence

• For IMB-IO Write benchmarks, a triplet
MPI_File_sync/MPI_Barrier(file_communicator)/MPI_File_sync. This fixes the non-
sufficient definition in the Intel® MPI Benchmarks 3.0.

IMB-EXT Benchmarks

This section provides definitions of IMB-EXT benchmarks. The benchmarks can run with varying
transfer sizes X, in bytes. The timings are averaged over multiple samples. See the Benchmark
Methodology section for details. In the definitions below, a single sample with a fixed transfer size X is
used.

The Unidir and Bidir benchmarks are exact equivalents of the message passing PingPong and
PingPing, respectively. Their interpretation and output are analogous to their message passing
equivalents.

Unidir_Put

This is the benchmark for the MPI_Put function. The following table and figure provide the basic
definitions and a schematic view of the pattern.

Unidir_Put Definition

Property Description

Measured pattern
As symbolized between in the figure
below. This benchmark runs on two active
processes (Q=2).

Benchmarks

37

MPI routine MPI_Put

MPI data type MPI_BYTE (origin and target)

Reported timings

t=t(M) (in μsec) as indicated in the figure
below, non-aggregate (M=1)and aggregate
(M=n_sample). For details, see Actual
Benchmarking.

Reported throughput X/t, aggregate and non-aggregate

Unidir_Put Pattern

Unidir_Get

This is the benchmark for the MPI_Get

Unidir_Get Definition

Property Description

Measured pattern
As symbolized between in the figure
below. This benchmark runs on two active
processes (Q=2).

MPI routine MPI_Get

MPI data type MPI_BYTE, for both origin and target

Intel(R) MPI Benchmarks User Guide

38

Reported timings

t=t(M) (in μsec) as indicated in the figure
below, non-aggregate (M=1)and aggregate
(M=n_sample). For details, see Actual
Benchmarking.

Reported throughput X/t, aggregate and non-aggregate

Unidir_Get Pattern

Bidir_Put

This is the benchmark for the MPI_Put function with bidirectional transfers. See the basic definitions
below.

Bidir_Put Definition

Property Description

Measured pattern
As symbolized between in the figure
below. This benchmark runs on two active
processes (Q=2).

MPI routine MPI_Put

MPI data type MPI_BYTE, for both origin and target

Reported timings

t=t(M) (in μsec)as indicated in the figure
below, non-aggregate (M=1)and aggregate
(M=n_sample). For details, see Actual
Benchmarking.

Benchmarks

39

Reported throughput X/t, aggregate and non-aggregate

Bidir_Get

This is the benchmark for the MPI_Get function, with bidirectional transfers. Below see the basic
definitions and a schematic view of the pattern.

Bidir_Get Definition

Property Description

Measured pattern
As symbolized between in the figure
below. This benchmark runs on two active
processes (Q=2).

MPI routine MPI_Get

MPI data type MPI_BYTE, for both origin and target

Reported timings

t=t(M) (in μsec) as indicated in the figure
below, non-aggregate (M=1)and aggregate
(M=n_sample). For details, see Actual
Benchmarking.

Reported throughput X/t, aggregate and non-aggregate

Bidir_Get Pattern

Accumulate

This is the benchmark for the MPI_Accumulate function. It reduces a vector of length
L = x/sizeof(float) of float items. The MPI data type is MPI_FLOAT. The MPI operation is
MPI_SUM. See the basic definitions and a schematic view of the pattern below.

Intel(R) MPI Benchmarks User Guide

40

Accumulate Definition

Property Description

Measured pattern
As symbolized between in the figure
below. This benchmark runs on two active
processes (Q=2).

MPI data type MPI_FLOAT

MPI operation MPI_SUM

Root 0

Reported timings

t=t(M) (in μsec) as indicated in the figure
below, non-aggregate (M=1)and aggregate
(M=n_sample). For details, see Actual
Benchmarking.

Reported throughput None

Accumulate Pattern

Window

This is the benchmark for measuring the overhead of an
MPI_Win_create/MPI_Win_fence/MPI_Win_free combination. In the case of an unused window, a
negligible non-trivial action is performed inside the window. It minimizes optimization effects of the
MPI implementation.

The MPI_Win_fence function is called to properly initialize an access epoch. This is a correction as
compared to earlier releases of the Intel® MPI Benchmarks.

Benchmarks

41

See the basic definitions and a schematic view of the pattern below.

Window Definition

Property Description

Measured pattern MPI_Win_create/MPI_Win_fence/MPI_Win_free

Reported timings t=Δt(M) (in μsec) as indicated in the figure
below.

Reported throughput None

Window Pattern

IMB-IO Blocking Benchmarks

This section describes blocking I/O benchmarks. The benchmarks can run with varying transfer sizes
X, in bytes. The timings are averaged over multiple samples. The basic MPI data type for all data
buffers is MPI_BYTE. In the definitions below, a single sample with a fixed I/O size X is used.

Every benchmark contains an elementary I/O action, denoting a pure read or write. Thus, all
benchmark flavors have a Write and a Read component. The [ACTION] placeholder denotes a Read
or a Write alternatively.

The Write flavors of benchmarks include a file synchronization with different placements for
aggregate and non-aggregate modes.

Figure: I/O Benchmarks, Aggregation for Output

Intel(R) MPI Benchmarks User Guide

42

S_[ACTION]_indv

File I/O performed by a single process. This pattern mimics the typical case when a particular master
process performs all of the I/O. See the basic definitions and a schematic view of the pattern below.

S_[ACTION]_indv Definition

Property Description

Measured pattern As symbolized in figure I/O benchmarks,
aggregation for output

Elementary I/O action As symbolized in the figure below.

MPI routines for the blocking mode MPI_File_write/MPI_File_read

MPI routines for the non-blocking mode MPI_File_iwrite/MPI_File_iread

Benchmarks

43

etype MPI_BYTE

File type MPI_BYTE

MPI data type MPI_BYTE

Reported timings

t (in μsec) as indicated in the figure I/O
benchmarks, aggregation for output,
aggregate and non-aggregate for the Write
flavor.

Reported throughput
x/t, aggregate and non-aggregate for the
Write flavor

S_[ACTION]_indv Pattern

S_[ACTION]_expl

This benchmark mimics the same situation as S_[ACTION]_indv, with a different strategy to access
files. See the basic definitions and a schematic view of the pattern below.

S_[ACTION]_expl Definition

Property Description

Measured pattern As symbolized in figure I/O benchmarks,
aggregation for output

Elementary I/O action As symbolized in the figure below.

Intel(R) MPI Benchmarks User Guide

44

MPI routines for the blocking mode MPI_File_write_at/MPI_File_read_at

MPI routines for the non-blocking mode MPI_File_iwrite_at/MPI_File_iread_at

etype MPI_BYTE

File type MPI_BYTE

MPI data type MPI_BYTE

Reported timings

t (in μsec) as indicated in the figure I/O
benchmarks, aggregation for output,
aggregate and non-aggregate for the Write
flavor.

Reported throughput
x/t, aggregate and non-aggregate for the
Write flavor

S_[ACTION]_expl pattern

P_[ACTION]_indv

This pattern accesses the file in a concurrent manner. All participating processes access a common
file. See the basic definitions and a schematic view of the pattern below.

P_[ACTION]_indv Definition

Property Description

Measured pattern As symbolized in figure I/O benchmarks,

Benchmarks

45

aggregation for output

Elementary I/O action As symbolized in the figure below. In this
figure, Nproc is the number of processes.

MPI routines for the blocking mode MPI_File_write/MPI_File_read

MPI routines for the non-blocking mode MPI_File_iwrite/MPI_File_iread

etype MPI_BYTE

File type Tiled view, disjoint contiguous blocks

MPI data type MPI_BYTE

Reported timings

t (in μsec) as indicated in the figure I/O
benchmarks, aggregation for output,
aggregate and non-aggregate for the Write
flavor.

Reported throughput
x/t, aggregate and non-aggregate for the
Write flavor

P_[ACTION]_indv Pattern

P_ACTION_expl

Intel(R) MPI Benchmarks User Guide

46

P_[ACTION]_expl follows the same access pattern as P_[ACTION]_indv with an explicit file
pointer type. See the basic definitions and a schematic view of the pattern below.

P_[ACTION]_expl Definition

Property Description

Measured pattern As symbolized in figure I/O benchmarks,
aggregation for output

Elementary I/O action As symbolized in the figure below. In this
figure, Nproc is the number of processes.

MPI routines for the blocking mode MPI_File_write_at/MPI_File_read_at

MPI routines for the non-blocking mode MPI_File_iwrite_at/MPI_File_iread_at

etype MPI_BYTE

File type MPI_BYTE

MPI data type MPI_BYTE

Reported timings

t (in μsec) as indicated in the figure I/O
benchmarks, aggregation for output,
aggregate and non-aggregate for the Write
flavor.

Reported throughput
x/t, aggregate and non-aggregate for the
Write flavor

Benchmarks

47

P_[ACTION]_expl Pattern

P_[ACTION]_shared

Concurrent access to a common file by all participating processes, with a shared file pointer.
See the basic definitions and a schematic view of the pattern below.

P_[ACTION]_shared Definition

Property Description

Measured pattern As symbolized in figure I/O benchmarks,
aggregation for output

Elementary I/O action As symbolized in the figure below. In this
figure, Nproc is the number of processes.

MPI routines for the blocking mode MPI_File_write_at/MPI_File_read_at

MPI routines for the non-blocking mode MPI_File_iwrite_at/MPI_File_iread_at

etype MPI_BYTE

File type MPI_BYTE

MPI data type MPI_BYTE

Intel(R) MPI Benchmarks User Guide

48

Reported timings

t (in μsec) as indicated in the figure I/O
benchmarks, aggregation for output,
aggregate and non-aggregate for the Write
flavor.

Reported throughput
x/t, aggregate and non-aggregate for the
Write flavor

P_[ACTION]_shared Pattern

P_[ACTION]_priv

This pattern tests the case when all participating processes perform concurrent I/O to
different private files. This benchmark is particularly useful for the systems that allow
completely independent I/O operations from different processes. The benchmark pattern is
expected to show parallel scaling and obtain optimum results. See the basic definitions and a
schematic view of the pattern below.

P_[ACTION]_priv Definition

Property Description

Benchmarks

49

Measured pattern As symbolized in figure I/O benchmarks,
aggregation for output

Elementary I/O action As symbolized in the figure below. In this
figure, Nproc is the number of processes.

MPI routines for the blocking mode MPI_File_write/MPI_File_read

MPI routines for the non-blocking mode MPI_File_iwrite/MPI_File_iread

etype MPI_BYTE

File type MPI_BYTE

MPI data type MPI_BYTE

Reported timings
Δt (in μsec), aggregate and non-aggregate for
the Write flavor.

Reported throughput
x/Δt, aggregate and non-aggregate for the
Write flavor

P_[ACTION]_priv Pattern

C_[ACTION]_indv

Intel(R) MPI Benchmarks User Guide

50

C_[ACTION]_indv tests collective access from all processes to a common file, with an
individual file pointer. Below see the basic definitions and a schematic view of the pattern.

This benchmark is based on the following MPI routines:

• MPI_File_read_all/MPI_File_write_all for the blocking mode

• MPI_File_.._all_begin/MPI_File_.._all_end for the non-blocking mode

All other parameters and the measuring method are the same as for the P_[ACTION]_indv
benchmark.

See Also
P_[ACTION]_indv

C_[ACTION]_expl

This pattern performs collective access from all processes to a common file, with an explicit
file pointer.

This benchmark is based on the following MPI routines:

• MPI_File_read_at_all/MPI_File_write_at_all for the blocking mode

• MPI_File_.._at_all_begin/MPI_File_.._at_all_end for the non-blocking mode

All other parameters and the measuring method are the same as for the P_[ACTION]_expl
benchmark.

See Also
P_[ACTION]_expl

C_[ACTION]_shared

The benchmark of a collective access from all processes to a common file, with a shared file
pointer.

This benchmark is based on the following MPI routines:

• MPI_File_read_ordered/MPI_File_write_ordered for the blocking mode

• MPI_File_.._ordered_begin/MPI_File_.._ordered_end for the non-blocking mode

All other parameters and the measuring method are the same as for the
P_[ACTION]_shared benchmark.

See Also

P_[ACTION]_shared

Open_Close

The benchmark for the MPI_File_open/MPI_File_close functions. All processes open the
same file. To avoid MPI implementation optimizations for an unused file, a negligible non-
trivial action is performed with the file. See the basic definitions of the benchmark below.

Benchmarks

51

Open_Close Definition

Property Description

Measured pattern MPI_File_open/MPI_File_close

etype MPI_BYTE

File type MPI_BYTE

Reported timings t=Δt (in μsec), as indicated in the figure
below.

Reported throughput None

Open_Close Pattern

IMB-IO Non-blocking Benchmarks

Intel® MPI Benchmarks implements blocking and non-blocking modes of the IMB-IO
benchmarks as different benchmark flavors. The Read and Write components of the blocking
benchmark name are replaced for non-blocking flavors by IRead and IWrite, respectively.

The definitions of blocking and non-blocking flavors are identical, except for their behavior in
regard to:

• Aggregation. The non-blocking versions only run in the non-aggregate mode.

• Synchronism. Only the meaning of an elementary transfer differs from the equivalent
blocking benchmark.

Basically, an elementary transfer looks as follows:

time = MPI_Wtime()

Intel(R) MPI Benchmarks User Guide

52

for (i=0; i<n_sample; i++)

{

Initiate transfer

Exploit CPU

Wait for the end of transfer

}

time = (MPI_Wtime()-time)/n_sample

The Exploit CPU section in the above example is arbitrary. Intel® MPI Benchmarks exploits
CPU as described below.

Exploiting CPU

Intel® MPI Benchmarks uses the following method to exploit the CPU. A kernel loop is
executed repeatedly. The kernel is a fully vectorizable multiplication of a 100x100 matrix with
a vector. The function is scalable in the following way:

CPU_Exploit(float desired_time, int initialize);

The input value of desired_time determines the time for the function to execute the kernel
loop, with a slight variance. At the very beginning, the function is called with initialize=1
and an input value for desired_time. This determines an Mflop/s rate and a timing t_CPU,
as close as possible to desired_time, obtained by running without any obstruction. During
the actual benchmarking, CPU_Exploit is called with initialize=0, concurrently with the
particular I/O action, and always performs the same type and number of operations as in the
initialization step.

Displaying Results

Three timings are crucial to interpret the behavior of non-blocking I/O , overlapped with CPU
exploitation:

• t_pure is the time for the corresponding pure blocking I/O action, non-overlapping with
CPU activity

• t_CPU is the time the CPU_Exploit periods (running concurrently with non-blocking I/O)
would use when running dedicated

• t_ovrl is the time for the analogous non-blocking I/O action, concurrent with CPU
activity (exploiting t_CPU when running dedicated)

A perfect overlap means: t_ovrl = max(t_pure,t_CPU)

No overlap means: t_ovrl = t_pure+t_CPU.

The actual amount of overlap is:

overlap=(t_pure+t_CPU-t_ovrl)/min(t_pure,t_CPU)(*)

The Intel® MPI Benchmarks result tables report the timings t_ovrl, t_pure, t_CPU and
the estimated overlap obtained by the (*) formula above. At the beginning of a run, the
Mflop/s rate is corresponding to the t_CPU displayed.

53

Benchmark Methodology
This section describes:

• Different ways to manage Intel® MPI Benchmarks control flow

• Command-line syntax for running the benchmarks

• Sample output data you can receive

Command-line Control
The command line is repeated in the output. The general command-line syntax is the
following:

IMB-MPI1 [-h{elp}]

 [-npmin <NPmin>]

 [-multi <MultiMode>]

 [-off_cache <cache_size[,cache_line_size]>

[-iter

<msgspersample[,overall_vol[,msgs_nonaggr]]>]

 [-time <max_runtime per sample>]

 [-mem <max. mem usage per process>]

 [-msglen <Lengths_file>]

 [-map <PxQ>]

 [-input <filename>]

 [-include] [benchmark1 [,benchmark2 [,...]]]

 [-exclude] [benchmark1 [,benchmark2 [,...]]]

 [-msglog [<minlog>:]<maxlog>]

 [benchmark1 [,benchmark2 [,...]]]

The options may appear in any order.

Examples:

Get out-of-cache data for PingPong:

mpirun -np 2 IMB-MPI1 pingpong -off_cache -1

Run a very large configuration: restrict iterations to 20, max. 1.5 seconds run time per
message size, max. 2 GBytes for message buffers:

mpirun -np 512 IMB-MPI1 -npmin 512

 alltoallv -iter 20 -time 1.5 -mem 2

Other examples:

mpirun -np 8 IMB-IO

mpirun -np 10 IMB-MPI1 PingPing Reduce

mpirun -np 11 IMB-EXT -npmin 5

mpirun -np 14 IMB-IO P_Read_shared -npmin 7

Intel(R) MPI Benchmarks User Guide

54

mpirun -np 3 IMB-EXT -input IMB_SELECT_EXT

mpirun -np 14 IMB-MPI1 -multi 0 PingPong Barrier

 -map 2x7

mpirun -np 16 IMB-MPI1 -msglog 2:7 -include PingPongSpecificsource

PingPingSpecificsource -exclude Alltoall Alltoallv

mpirun -np 4 IMB-MPI1 -msglog 16 PingPong PingPing
PingPongSpecificsource PingPingSpecificsource

Benchmark Selection Arguments

Benchmark selection arguments are a sequence of blank-separated strings. Each argument is
the name of a benchmark in exact spelling, case insensitive.

For example, the string IMB-MPI1 PingPong Allreduce specifies that you want to run
PingPong and Allreduce benchmarks only.

Default: no benchmark selection. All benchmarks of the selected component are run.

-npmin Option

Specifies the minimum number of processes P_min to run all selected benchmarks on. The
P_min value after -npmin must be an integer.

Given P_min, the benchmarks run on the processes with the numbers selected as follows:

P_min, 2P_min, 4P_min, ..., largest 2xP_min <P, P

NOTE:

You may set P_min to 1. If you set P_min > P, Intel MPI Benchmarks interprets this value
as P_min = P.

Default: no -npmin selection. Active processes are selected as described in the Running
Intel® MPI Benchmarks section.

-multi outflag Option

Defines whether the benchmark runs in the multiple mode. The argument after -multi is a
meta-symbol <outflag> that can take an integer value of 0 or 1. This flag controls the way
of displaying results:

• Outflag = 0 only display maximum timings (minimum throughputs) over all active
groups

• Outflag = 1 report on all groups separately. The report may be long in this case.

When the number of processes running the benchmark is more than half of the overall
number MPI_COMM_WORLD, the multiple benchmark coincides with the non-multiple one, as
not more than one process group can be created.

Benchmark Methodology

55

Default: no -multi selection. Intel® MPI Benchmarks run non-multiple benchmark flavors.

-off_cache cache_size[,cache_line_size] Option

Use the -off_cache flag to avoid cache re-usage. If you do not use this flag (default), the
communications buffer is the same within all repetitions of one message size sample. In this
case, Intel® MPI Benchmarks reuses the cache, so throughput results might be non-realistic.

The argument after off_cache can be a single number (cache_size), two comma-
separated numbers (cache_size,cache_line_size), or -1:

• cache_size is a float for an upper bound of the size of the last level cache, in MB.

• cache_line_size is assumed to be the size of a last level cache line (can be an upper
estimate).

• -1 indicates that the default values from IMB_mem_info.h should be used. The
cache_size and cache_line_size values are assumed to be statically defined in
IMB_mem_info.h.

The sent/received data is stored in buffers of size ~2x MAX(cache_size, message_size).
When repetitively using messages of a particular size, their addresses are advanced within
those buffers so that a single message is at least 2 cache lines after the end of the previous
message. When these buffers are filled up, they are reused from the beginning.

-off_cache is effective for IMB-MPI1 and IMB-EXT. You are not recommended to use this
option for IMB-IO.

Examples

Use the default values defined in IMB_mem_info.h:

-off_cache -1

2.5 MB last level cache, default line size:

-off_cache 2.5

16 MB last level cache, line size 128:

-off_cache 16,128

The off_cache mode might also be influenced by eventual internal caching with the Intel®
MPI Library. This could make results interpretation complicated.

Default: no cache control. Data may come out of cache.

-iter Option

Use this option to control iterations. The argument after -iter can be a single, two comma-
separated, or three comma-separated integer numbers that override the default values of
MSGSPERSAMPLE, OVERALL_VOL, and MSGS_NONAGGR defined in IMB_settings.h

Examples

-iter 2000 (override MSGSPERSAMPLE by value 2000)

Intel(R) MPI Benchmarks User Guide

56

-iter 1000,100 (override OVERALL_VOL by 100)

-iter 1000,40,150 (override MSGS_NONAGGR by 150)

The -iter option is overridden by a dynamic selection that is a new default in the Intel® MPI
Benchmarks 3.2: when a maximum run time (per sample) is expected to be exceeded, the
iteration number is cut down. See -time

Default: iteration control through parameters MSGSPERSAMPLE, OVERALL_VOL, and
MSGS_NONAGGR defined in IMB_settings.h.

-time Option

Specifies the number of seconds for the benchmark to run per message size. The argument
after -time is a floating-point number.

The combination of this flag with the -iter flag or its default alternative ensures that the
Intel MPI Benchmarks always chooses the maximum number of repetitions that conform to all
restrictions.

A rough number of repetitions per sample to fulfill the -time request is estimated in
preparatory runs that use ~1 second overhead.

Default: -time is activated. The floating-point value specifying the run-time seconds per
sample is set in the SECS_PER_SAMPLE variable defined in
IMB_settings.h/IMB_settings_io.h. The current value is 10.

-mem Option

Specifies the number of GB to be allocated per process for the message buffers
benchmarks/message. If the size is exceeded, a warning is returned, stating how much
memory is required for the overall run not to be interrupted.

The argument after -mem is a floating-point number.

Default: the memory is restricted by MAX_MEM_USAGE defined in IMB_mem_info.h.

-input <File> Option

Use the ASCII input file to select the benchmarks. For example, the IMB_SELECT_EXT file
looks as following:

IMB benchmark selection file

Every line must be a comment (beginning with #), or it

must contain exactly one IMB benchmark name

#Window

Unidir_Get

#Unidir_Put

#Bidir_Get

#Bidir_Put

Benchmark Methodology

57

Accumulate

With the help of this file, the following command runs only Unidir_Get and Accumulate
benchmarks of the IMB-EXT component:

mpirun IMB-EXT -input IMB_SELECT_EXT

-msglen <File> Option

Enter any set of non-negative message lengths to an ASCII file, line by line, and call the
Intel® MPI Benchmarks with arguments:

-msglen Lengths

The Lengths value overrides the default message lengths. For IMB-IO, the file defines the
I/O portion lengths.

-map PxQ Option

Numbers processes along rows of the matrix:

0 P ... (Q-2)P (Q-1)P

1

...

P-1 2P-1 (Q-1)P-1 QP-1

For example, to run Multi-PingPongbetween two nodes of size P, with each process on one
node communicating with its counterpart on the other, call:

mpirun -np <2P> IMB-MPI1 -map <P>x2 PingPong

-include [[benchmark1] benchmark2 ...]

Specifies the list of additional benchmarks to run. For example, to add
PingPongSpecificSource and PingPingSpecificSource benchmarks, call:

mpirun -np 2 IMB-MPI1 -
include PingPongSpecificSource PingPingSpecificSource

-exclude [[benchmark1] benchmark2 ...]

Specifies the list of benchmarks to be exclude from the run. For example, to exclude
Alltoall and Allgather, call:

mpirun -np 2 IMB-MPI1 -exclude Alltoall Allgather

Intel(R) MPI Benchmarks User Guide

58

-msglog [<minlog>:]<maxlog>

This option allows you to control the lengths of the transfer messages. This setting overrides
the MINMSGLOG and MAXMSGLOG values. The new message sizes are
0, 2^minlog, ..., 2^maxlog.

For example, try running the following command line:

mpirun -np 2 IMB-MPI1 -msglog 3:7 PingPong

Intel® MPI Benchmarks selects the lengths 0,8,16,32,64,128, as shown below:

#---

Benchmarking PingPong

#processes = 2

#---

 #bytes #repetitions t[μsec] Mbytes/sec

 0 1000 0.70 0.00

 8 1000 0.73 10.46

 16 1000 0.74 20.65

 32 1000 0.94 32.61

 64 1000 0.94 65.14

 128 1000 1.06 115.16

Alternatively, you can specify only the maxlog value:

#---

Benchmarking PingPong

#processes = 2

#---

 #bytes #repetitions t[μsec] Mbytes/sec

 0 1000 0.69 0.00

 1 1000 0.72 1.33

 2 1000 0.71 2.69

 4 1000 0.72 5.28

 8 1000 0.73 10.47

Benchmark Methodology

59

-thread_level Option

This option specifies the desired thread level for MPI_Init_thread(). See description of
MPI_Init_thread() for details. The option is available only if the Intel® MPI Benchmarks is
built with the USE_MPI_INIT_THREAD macro defined. Possible values for <level> are single,
funneled, serialized, and multiple.

Parameters Controlling Intel® MPI Benchmarks
Parameters controlling the default settings of the Intel® MPI Benchmarks are set by
preprocessor definition in files IMB_settings.h (for IMB-MPI1 and IMB-EXT benchmarks)
and IMB_settings_io.h (for IMB-IO benchmarks). Both include files have identical
structure, but differ in the predefined parameter values.

To enable the optional mode, define the IMB_OPTIONAL parameter in the
IMB_settings.h/IMB_settings_io.h. After you change the settings in the optional
section, you need to recompile the Intel® MPI Benchmarks.

The following table describes the Intel MPI Benchmarks parameters and lists their values for
the standard mode.

Parameter Values in
IMB_settings.h

Values in
IMB_settings_io.h Description

USE_MPI_INIT_THREAD Not set Not set

Set to initialize Intel®
MPI Benchmarks
by MPI_Init_thread()
instead of MPI_Init()

IMB_OPTIONAL Not set Not set Set to activate optional
settings

MINMSGLOG 0 0

The second smallest data
transfer size is
max(unit,2MINMSGLOG (the
smallest size is always 0),
where
unit=sizeof(float) for
reductions, unit=1 for all
other cases.

You can override this
parameter value using the
-msglog flag.

MAXMSGLOG 22 24

The largest message size
used is 2MAXMSGLOG

You can override this
parameter value using the
-msglog flag.

Intel(R) MPI Benchmarks User Guide

60

MSGSPERSAMPLE 1000 50

The maximum repetition
count for all IMB-MPI1
benchmarks. You can
override this parameter
value using the -iter
flag.

MSGS_NONAGGR 100 10

The maximum repetition
count for non-aggregate
benchmarks (relevant
only for IMB-EXT). You
can override this
parameter value using the
-time flag.

OVERALL_VOL 40 Mbytes 16*1048576

For all sizes smaller than
OVERALL_VOL, the
repetition count is
reduced so that not more
than OVERALL_VOL bytes
are processed all in all.
This permits you to avoid
unnecessary repetitions
for large message sizes.
Finally, the real repetition
count for message size X
is
MSGSPERSAMPLE (X=0),

min(MSGSPERSAMPLE,
max(1,OVERALL_VOL/X))
(X>0)

Note that OVERALL_VOL
does not restrict the size
of the maximum data
transfer. 2MAXMSGLOG
OVERALL_VOL.

You can override this
parameter value using the
-mem flag.

SECS_PER_SAMPLE 10

Number of iterations is
dynamically set so that
this number of run time
seconds is not exceeded
per message length.

N_BARR 2 2 Number of MPI_Barrier
for synchronization.

TARGET_CPU_SECS 0.01 seconds 0.1 seconds CPU seconds (as float) to
run concurrently with

Benchmark Methodology

61

non-blocking benchmarks
(currently irrelevant for
IMB-MPI1)

In the example below, the IMB_settings_io.h. file has the IMB_OPTIONAL parameter
enabled, so that user-defined parameters are used. I/O sizes of 32 and 64 MB, and a smaller
repetition count are selected, extending the standard mode tables. You can modify the
optional values as required.

#define FILENAME IMB_out

#define IMB_OPTIONAL

#ifdef IMB_OPTIONAL

#define MINMSGLOG 25

#define MAXMSGLOG 26

#define MSGSPERSAMPLE 10

#define MSGS_NONAGGR 10

#define OVERALL_VOL 16*1048576

#define SECS_PER_SAMPLE 10

#define TARGET_CPU_SECS 0.1 /* unit seconds */

#define N_BARR 2

#else

/*Do not change anything below this line*/

#define MINMSGLOG 0

#define MAXMSGLOG 24

#define MSGSPERSAMPLE 50

#define MSGS_NONAGGR 10

#define OVERALL_VOL 16*1048576

#define TARGET_CPU_SECS 0.1 /* unit seconds */

#define N_BARR 2

#endif

If IMB_OPTIONAL is deactivated, Intel MPI Benchmarks uses the default standard mode
values.

Hard-Coded Settings
The sections below describe Intel® MPI Benchmarks hard-coded settings.

Communicators, Active Processes

Communicator management is repeated in every "select MY_COMM" step. If it exists, the
previous communicator is freed. When running Q<=P processes, the first Q ranks of
MPI_COMM_WORLD are put into one group, and the remaining P-Q get MPI_COMM_NULL.

The group of MY_COMM calls the active processes group.

Intel(R) MPI Benchmarks User Guide

62

Other Preparations for Benchmarking

Window (IMB_EXT)

An Info is set and MPI_Win_create is called, creating a window of size X for MY_COMM. Then,
MPI_Win_fence is called to start an access epoch.

File (IMB-IO)

To initialize the IMB-IO file, follow these steps:

1. Select a file name. This parameter is located in the IMB_settings_io.h include file. In
the case of a multi-<MPI command>, a suffix _g<groupid> is appended to the name. If
the file name is per process, a second event suffix _<rank> is appended.

2. Delete the file if it exists: open the file with MPI_MODE_DELETE_ON_CLOSE and close it.

3. Select a communicator to open the file: MPI_COMM_SELF for S_benchmarks and
P_[ACTION]_priv.

4. Select a mode: MPI_MODE_CREATE | MPI_MODE_RDWR

5. Select an info routine as explained below.

Info

Intel® MPI Benchmarks uses an external function User_Set_Info which you implement for
the current system. The default version is:

#include mpi.h

void User_Set_Info (MPI_Info* opt_info)

#ifdef MPIIO

{/* Set info for all MPI_File_open calls */

*opt_info = MPI_INFO_NULL;

}

#endif

#ifdef EXT

{/* Set info for all MPI_Win_create calls */

*opt_info = MPI_INFO_NULL;

}

#endif

The Intel® MPI Benchmarks use no assumptions and imposes no restrictions on how this
routine is implemented.

View (IMB-IO)

The file view is determined by the following settings:

• disp = 0,

• datarep = native

Benchmark Methodology

63

• etype, filetypeas defined in the benchmark definitions above

• info as defined in the "Info" section above.

Message/I-O Buffer Lengths

IMB-MPI1, IMB-EXT

Set in IMB_settings.h and used unless the –msglen flag is selected.

IMB-IO

Set in IMB_settings_io.h and used unless the –msglen flag is selected.

Buffer Initialization

Communication and I/O buffers are dynamically allocated as void* and used as MPI_BYTE
buffers for all benchmarks except Accumulate, see Memory Requirements. To assign the
buffer contents, a cast to an assignment type is performed. This facilitates result checking
which may become necessary. Besides, a sensible data type is mandatory for Accumulate.

Intel® MPI Benchmarks sets the buffer assignment type assign_type in
IMB_settings.h/IMB_settings_io.h. Currently, int is used for IMB-IO, float for IMB-
EXT. The values are set by a CPP macro as follows.

For IMB-EXT benchmarks:

#define BUF_VALUE(rank,i) (0.1*((rank)+1)+(float)(i)

For IMB-IO benchmarks:

#define BUF_VALUE(rank,i) 10000000*(1+rank)+i%10000000

In every initialization, communication buffers are seen as typed arrays and initialized as
follows:

((assign_type*)buffer)[i] = BUF_VALUE(rank,i;

where rank is the MPI rank of the calling process.

Warm-up Phase (IMB-MPI1, IMB-EXT)

Before starting the actual benchmark measurement for IMB-MPI1 and IMB-EXT, the selected
benchmark is executed N_WARMUP times with a sizeof(assign_type) message length. The
N_WARMUP value is defined in IMB_settings.h, see Parameters Controlling Intel® MPI
Benchmarks for details. The warm-up phase eliminates the initialization overheads from the
benchmark measurement.

Synchronization

Before the actual benchmark measurement is performed, the constant N_BARR is used to
regulate calls to:

Intel(R) MPI Benchmarks User Guide

64

MPI_Barrier(MPI_COMM_WORLD)

The N_BARR constant is defined in IMB_settings.h and IMB_settings_io.h, with the
current value of 2.

See figure Control flow of IMB to ensure that all processes are synchronized.

Actual Benchmarking

To reduce measurement errors caused by insufficient clock resolution, every benchmark is
run repeatedly. The repetition count is as follows:

For MPI-1 and aggregate IMB-EXT/IO benchmarks, the repetition count is MSGSPERSAMPLE.
This constant is defined in IMB_settings.h/IMB_settings_io.h, with 1000 and 50 values,
respectively.

To avoid excessive run times for large transfer sizes X, an upper bound is set to
OVERALL_VOL/X. The OVERALL_VOL value is defined in
IMB_settings.h/IMB_settings_io.h, with 4MB and 16MB values, respectively.

Given transfer size X, the repetition count for all aggregate benchmarks is defined as follows:

n_sample = MSGSPERSAMPLE (X=0)

n_sample = max(1,min(MSGSPERSAMPLE,OVERALL_VOL/X)) (X>0)

The repetition count for non-aggregate benchmarks is defined completely analogously, with
MSGSPERSAMPLE replaced by MSGS_NONAGGR. A reduced count is recommended as non-
aggregate run times are usually much longer.

In the following examples, elementary transfer means a pure function (MPI_[Send, ...],
MPI_Put, MPI_Get, MPI_Accumulate, MPI_File_write_XX, MPI_File_read_XX), without any
further function call. Assured completion transfer completion is:

• MPI_Win_fence for IMB-EXT benchmarks

• a triplet MPI_File_sync/MPI_Barrier(file_communicator)/MPI_File_sync for IMB-
IO Write benchmarks

• empty for all other benchmarks

MPI-1 Benchmarks

for (i=0; i<N_BARR; i++) MPI_Barrier(MY_COMM)

time = MPI_Wtime()

for (i=0; i<n_sample; i++)

 execute MPI pattern

time = (MPI_Wtime()-time)/n_sample

IMB-EXT and Blocking I/O Benchmarks

For aggregate benchmarks, the kernel loop looks as follows:

for (i=0; i<N_BARR; i++)MPI_Barrier(MY_COMM)

/* Negligible integer (offset) calculations ... */

Benchmark Methodology

65

time = MPI_Wtime()

for (i=0; i<n_sample; i++)

 execute elementary transfer

 assure completion of all transfers

time = (MPI_Wtime()-time)/n_sample

For non-aggregate benchmarks, every single transfer is safely completed:

for (i=0; i<N_BARR; i++)MPI_Barrier(MY_COMM)

/* Negligible integer (offset) calculations ... */

time = MPI_Wtime()

for (i=0; i<n_sample; i++)

 {

 execute elementary transfer

 assure completion of transfer

 }

time = (MPI_Wtime()-time)/n_sample

Non-blocking I/O Benchmarks

A non-blocking benchmark has to provide three timings:

• t_pure - blocking pure I/O time

• t_ovrl- non-blocking I/O time concurrent with CPU activity

• t_CPU - pure CPU activity time

The actual benchmark consists of the following stages:

• Calling the equivalent blocking benchmark as defined in Actual Benchmarking and taking
benchmark time as t_pure.

• Closing and re-opening the particular file(s).

• Re-synchronizing the processes.

• Running the non-blocking case, concurrent with CPU activity (exploiting t_CPU when
running undisturbed), taking the effective time as t_ovrl.

The desired CPU time to be matched approximately by t_CPU is set in IMB_settings_io.h:

#define TARGET_CPU_SECS 0.1 /* unit seconds */

Checking Results
To check whether your MPI implementation is working correctly, you can use the CPP flag -
DCHECK.

Activate the CPP flag -DCHECK through the CPPFLAGS variable and recompile the Intel® MPI
Benchmarks executable files. Every message passing result from the Intel® MPI Benchmarks
are checked against the expected outcome. Output tables contain an additional column called
Defects that displays the difference as floating-point numbers.

Intel(R) MPI Benchmarks User Guide

66

NOTE:

The -DCHECK results are not valid as real benchmark data. Deactivate -DCHECK and
recompile to get the proper results.

Output
The benchmark output includes the following information:

• General information:

machine, system, release, and version are obtained by IMB_g_info.c.

• The calling sequence (command-line flags) are repeated in the output chart

• Results for the non-multiple mode

After a benchmark completes, three time values are available, extended over the group of
active processes:

• Tmax - the maximum time

• Tmin - the minimum time

• Tavg - the average time

The time unit is μ.

Single Transfer Benchmarks:

Display X = message size [bytes], T=Tmax[μsec], bandwidth = X / 1.048576 /
T

Parallel Transfer Benchmarks:

Display X = message; size, Tmax, Tmin and Tavg, bandwidth based on time =
Tmax

Collective Benchmarks:

Display X = message size;(except for Barrier), Tmax, Tmin; and Tavg

Results for the multiple mode

• -multi 0: the same as above, with min, avg over all groups.

• -multi 1: the same for all groups, max, min, avg over single groups.

Sample 1 - IMB-MPI1 PingPong Allreduce

The following example shows the results of the PingPong and Allreduce benchmark:

<..> np 2 IMB-MPI1 PingPong Allreduce

#---

Intel (R) MPI Benchmark Suite V3.2, MPI1 part

Benchmark Methodology

67

#---

Date : Thu Sep 4 13:20:07 2008

Machine : x86_64

System : Linux

Release : 2.6.9-42.ELsmp

Version : #1 SMP Wed Jul 12 23:32:02 EDT 2006

MPI Version : 2.0

MPI Thread Environment: MPI_THREAD_SINGLE

New default behavior from Version 3.2 on:

the number of iterations per message size is cut down

dynamically when a certain run time (per message size sample)

is expected to be exceeded. Time limit is defined by variable

SECS_PER_SAMPLE (=> IMB_settings.h)

or through the flag => -time

Calling sequence was:

./IMB-MPI1 PingPong Allreduce

Minimum message length in bytes: 0

Maximum message length in bytes: 4194304

MPI_Datatype : MPI_BYTE

MPI_Datatype for reductions : MPI_FLOAT

MPI_Op : MPI_SUM

List of Benchmarks to run:

PingPong

Allreduce

#---

Benchmarking PingPong

#processes = 2

#---

 #bytes #repetitions t[μsec] Mbytes/sec

 0 1000

 1 1000

 2 1000

 4 1000

 8 1000

 16 1000

 32 1000

 64 1000

Intel(R) MPI Benchmarks User Guide

68

 128 1000

 256 1000

 512 1000

 1024 1000

 2048 1000

 4096 1000

 8192 1000

 16384 1000

 32768 1000

 65536 640

 131072 320

 262144 160

 524288 80

1048576 40

2097152 20

4194304 10

#---

Benchmarking Allreduce

(#processes = 2)

#---

 #bytes #repetitions t_min[μsec] t_max[μsec] t_avg[μsec]

 0 1000

 4 1000

 8 1000

 16 1000

 32 1000

 64 1000

 128 1000

 256 1000

 512 1000

 1024 1000

 2048 1000

 4096 1000

 8192 1000

 16384 1000

 32768 1000

 65536 640

 131072 320

 262144 160

 524288 80

1048576 40

2097152 20

4194304 10

All processes entering MPI_Finalize

Benchmark Methodology

69

Sample 2 - IMB-MPI1 PingPing Allreduce

The following example shows the results of the PingPing

<..>

 -np 6 IMB-MPI1

 pingping allreduce -map 2x3 -msglen Lengths -multi 0

Lengths

 file:

0

100

1000

10000

100000

1000000

#---

Intel (R) MPI Benchmark Suite V3.2.2, MPI1 part

#---

Date : Thu Sep 4 13:26:03 2008

Machine : x86_64

System : Linux

Release : 2.6.9-42.ELsmp

Version : #1 SMP Wed Jul 12 23:32:02 EDT 2006

MPI Version : 2.0

MPI Thread Environment: MPI_THREAD_SINGLE

New default behavior from Version 3.2 on:

the number of iterations per message size is cut down

dynamically when a certain run time (per message size sample)

is expected to be exceeded. Time limit is defined by variable

SECS_PER_SAMPLE (=> IMB_settings.h)

or through the flag => -time

Calling sequence was:

IMB-MPI1 pingping allreduce -map 3x2 -msglen Lengths

-multi 0

Message lengths were user-defined

MPI_Datatype : MPI_BYTE

MPI_Datatype for reductions : MPI_FLOAT

MPI_Op : MPI_SUM

List of Benchmarks to run:

(Multi-)PingPing

(Multi-)Allreduce

#--

Intel(R) MPI Benchmarks User Guide

70

Benchmarking Multi-PingPing

(3 groups of 2 processes each running simultaneously)

Group 0: 0 3

Group 1: 1 4

Group 2: 2 5

#--

bytes #rep.s t_min[μsec] t_max[μsec] t_avg[μsec] Mbytes/sec

 0 1000

 100 1000

 1000 1000

 10000 1000

 100000 419

1000000 41

#--

Benchmarking Multi-Allreduce

(3 groups of 2 processes each running simultaneously)

Group 0: 0 3

Group 1: 1 4

Group 2: 2 5

#--

#bytes #repetitions t_min[μsec] t_max[μsec] t_avg[μsec]

 0 1000

 100 1000

 1000 1000

 10000 1000

 100000 419

1000000 41

#--

Benchmarking Allreduce

#processes = 4; rank order (rowwise):

0 3

1 4

(2 additional processes waiting in MPI_Barrier)

#--

bytes #repetitions t_min[μsec] t_max[μsec] t_avg[μsec]

 0 1000

 100 1000

 1000 1000

Benchmark Methodology

71

 10000 1000

 100000 419

1000000 41

#--

Benchmarking Allreduce

processes = 6; rank order (rowwise):

0 3

1 4

2 5

#--

bytes #repetitions t_min[μsec] t_max[μsec] t_avg[μsec]

 0 1000

 100 1000

 1000 1000

 10000 1000

 100000 419

1000000 41

All processes entering MPI_Finalize

 Sample 3 - IMB-IO p_write_indv

The following example shows the results of the p_write_indv benchmark:

<..> IMB-IO -np 2 p_write_indv -npmin 2

#---

Date : Thu Sep 4 13:43:34 2008

Machine : x86_64

System : Linux

Release : 2.6.9-42.ELsmp

Version : #1 SMP Wed Jul 12 23:32:02 EDT 2006

MPI Version : 2.0

MPI Thread Environment: MPI_THREAD_SINGLE

New default behavior from Version 3.2 on:

the number of iterations per message size is cut down

dynamically when a certain run time (per message size sample)

is expected to be exceeded. Time limit is defined by variable

SECS_PER_SAMPLE (=> IMB_settings.h)

or through the flag => -time

Calling sequence was:

./IMB-IO p_write_indv -npmin 2

Intel(R) MPI Benchmarks User Guide

72

Minimum io portion in bytes: 0

Maximum io portion in bytes: 16777216

List of Benchmarks to run:

P_Write_Indv

#--

Benchmarking P_Write_Indv

#processes = 2

#--

MODE: AGGREGATE

 #bytes #rep.s t_min[μsec] t_max t_avg Mb/sec

 0 50

 1 50

 2 50

 4 50

 8 50

 16 50

 32 50

 64 50

 128 50

 256 50

 512 50

 1024 50

 2048 50

 4096 50

 8192 50

 16384 50

 32768 50

 65536 50

 131072 50

 262144 50

 524288 32

 1048576 16

 2097152 8

 4194304 4

 8388608 2

16777216 1

#--

Benchmarking P_Write_Indv

#processes = 2

#--

MODE: NON-AGGREGATE

Benchmark Methodology

73

 #bytes #rep.s t_min[μsec] t_max t_avg Mb/sec

 0 10

 1 10

 2 10

 4 10

 8 10

 16 10

 32 10

 64 10

 128 10

 256 10

 512 10

 1024 10

 2048 10

 4096 10

 8192 10

 16384 10

 32768 10

 65536 10

 131072 10

 262144 10

 524288 10

 1048576 10

 2097152 8

 4194304 4

 8388608 2

16777216 1

All processes entering MPI_Finalize

Sample 4 - IMB-EXT.exe

The example below shows the results for the Window benchmark received after running IMB-
EXT.exe on a Microsoft Windows* cluster using two processes. The performance diagnostics
for Unidir_Get, Unidir_Put, Bidir_Get, Bidir_Put, and Accumulate are omitted.

<..> -n 2 IMB-EXT.exe

#---

Intel (R) MPI Benchmark Suite V3.2.2, MPI-2 part

#---

Date : Fri Sep 05 12:26:52 2008

Machine : Intel64 Family 6 Model 15 Stepping 6, GenuineIntel

System : Windows Server 2008

Release : .0.6001

Version : Service Pack 1

Intel(R) MPI Benchmarks User Guide

74

MPI Version : 2.0

MPI Thread Environment: MPI_THREAD_SINGLE

New default behavior from Version 3.2 on:

the number of iterations per message size is cut down

dynamically when a certain run time (per message size sample)

is expected to be exceeded. Time limit is defined by variable

SECS_PER_SAMPLE (=> IMB_settings.h)

or through the flag => -time

Calling sequence was:

\\master-node\MPI_Share_Area\IMB_3.1\src\IMB-EXT.exe

Minimum message length in bytes: 0

Maximum message length in bytes: 4194304

MPI_Datatype : MPI_BYTE

MPI_Datatype for reductions : MPI_FLOAT

MPI_Op : MPI_SUM

List of Benchmarks to run:

Window

Unidir_Get

Unidir_Put

Bidir_Get

Bidir_Put

Accumulate

#--

Benchmarking Window

#processes = 2

#---

 #bytes #repetitions t_min[μsec] t_max[μsec] t_avg[μsec]

 0 100

 4 100

 8 100

 16 100

 32 100

 64 100

 128 100

 256 100

 512 100

 1024 100

 2048 100

 4096 100

 8192 100

 16384 100

Benchmark Methodology

75

 32768 100

 65536 100

 131072 100

 262144 100

 524288 80

 1048576 40

 2097152 20

 4194304 10

...

All processes entering MPI_Finalize

The above example listing shows the results of running IMB-EXT.exe on a Microsoft
Windows* cluster using two processes.

The listing only shows the result for the Window benchmark. The performance diagnostics for
Unidir_Get, Unidir_Put, Bidir_Get, Bidir_Put, and Accumulate are omitted.

	Intel® MPI Benchmarks User Guide and Methodology Description

	Legal Information
	Getting Help and Support
	Submitting Issues

	Introduction
	Introducing Intel(R) MPI Benchmarks
	Intended Audience
	What's New
	Changes in Intel® MPI Benchmarks 3.2.4
	Changes in Intel® MPI Benchmarks 3.2.3
	Changes in Intel® MPI Benchmarks 3.2.2
	Changes in Intel® MPI Benchmarks 3.2.1
	Changes in Intel(R) MPI Benchmarks 3.2
	Run Time Control by Default
	Makefiles
	Microsoft* Visual Studio* Project Folders

	Changes in Intel(R) MPI Benchmarks 3.1
	Miscellaneous Changes

	Changes in Intel® MPI Benchmarks 3.0

	Notational Conventions
	Conventions and Symbols Used in This Document

	Document Version Information
	Related Information

	Installation and Quick Start
	Requirements
	Software Requirements
	Memory and Disk Space Requirements

	Installing Intel® MPI Benchmarks
	Building Intel® MPI Benchmarks
	On Linux* OS:
	On Microsoft* Windows* OS:

	Running Intel® MPI Benchmarks

	Benchmarks
	MPI-1 Benchmarks
	Classification of MPI-1 Benchmarks
	Single Transfer Benchmarks
	Parallel Transfer Benchmarks
	Collective Benchmarks

	Single Transfer
	PingPong, PingPongSpecificSource
	PingPong Definition
	PingPong Pattern

	PingPing, PingPingSpecificSource
	PingPing Definition
	PingPing Pattern

	Parallel Transfer Benchmarks
	Sendrecv
	Sendrecv Definition
	Sendrecv Pattern

	Exchange
	Exchange Definition
	Exchange Pattern

	Collective Benchmarks
	Reduce
	Reduce Definition

	Reduce_scatter
	Allreduce
	Allgather
	Allgatherv
	Scatter
	Scatterv
	Gather
	Gatherv
	Alltoall
	Bcast
	Barrier

	MPI-2 Benchmarks
	Naming Conventions
	IMB-MPI-2 Benchmark Classification
	Single Transfer Benchmarks
	Parallel Transfer Benchmarks
	Collective Benchmarks
	MPI-2 Benchmarks Classification

	Benchmark Modes
	Assured Completion of Transfers

	IMB-EXT Benchmarks
	Unidir_Put
	Unidir_Put Definition
	Unidir_Put Pattern

	Unidir_Get
	Unidir_Get Definition
	Unidir_Get Pattern

	Bidir_Put
	Bidir_Put Definition

	Bidir_Get
	Bidir_Get Definition
	Bidir_Get Pattern

	Accumulate
	Accumulate Definition
	Accumulate Pattern

	Window
	Window Definition
	Window Pattern

	IMB-IO Blocking Benchmarks
	S_[ACTION]_indv
	S_[ACTION]_indv Definition
	S_[ACTION]_indv Pattern

	S_[ACTION]_expl
	S_[ACTION]_expl Definition
	S_[ACTION]_expl pattern

	P_[ACTION]_indv
	P_[ACTION]_indv Definition
	P_[ACTION]_indv Pattern

	P_ACTION_expl
	P_[ACTION]_expl Definition
	P_[ACTION]_expl Pattern

	P_[ACTION]_shared
	P_[ACTION]_shared Definition
	P_[ACTION]_shared Pattern

	P_[ACTION]_priv
	P_[ACTION]_priv Definition
	P_[ACTION]_priv Pattern

	C_[ACTION]_indv
	C_[ACTION]_expl
	C_[ACTION]_shared
	Open_Close
	Open_Close Definition
	Open_Close Pattern

	IMB-IO Non-blocking Benchmarks
	Exploiting CPU
	Displaying Results

	Benchmark Methodology
	Command-line Control
	Benchmark Selection Arguments
	-npmin Option
	-multi outflag Option
	-off_cache cache_size[,cache_line_size] Option
	-iter Option
	-time Option
	-mem Option
	-input <File> Option
	-msglen <File> Option
	-map PxQ Option
	-include [[benchmark1] benchmark2 ...]
	-exclude [[benchmark1] benchmark2 ...]
	-msglog [<minlog>:]<maxlog>
	-thread_level Option

	Parameters Controlling Intel® MPI Benchmarks
	Hard-Coded Settings
	Communicators, Active Processes
	Other Preparations for Benchmarking
	Window (IMB_EXT)
	File (IMB-IO)
	Info
	View (IMB-IO)

	Message/I-O Buffer Lengths
	IMB-MPI1, IMB-EXT
	IMB-IO

	Buffer Initialization
	Warm-up Phase (IMB-MPI1, IMB-EXT)
	Synchronization
	Actual Benchmarking
	MPI-1 Benchmarks
	IMB-EXT and Blocking I/O Benchmarks
	Non-blocking I/O Benchmarks

	Checking Results
	Output
	Sample 1 - IMB-MPI1 PingPong Allreduce
	Sample 2 - IMB-MPI1 PingPing Allreduce
	Sample 3 - IMB-IO p_write_indv
	Sample 4 - IMB-EXT.exe

