
CHAPTER 27

Calling Java from PL/SQL

The Java language, originally designed and promoted by Sun Microsystems and now
widely promoted by nearly everyone other than Microsoft, offers an extremely diverse
set of programming features, many of which are not available natively in PL/SQL. This
chapter introduces the topic of creating and using Java Stored Procedures in Oracle,
and shows how you can create and use JSP functionality from PL/SQL.

Oracle and Java
Starting with Oracle8i Database, the Oracle Database Server has included a Java Virtual
Machine that allows Java programs to run efficiently in the server memory space. Many
of the core Java class libraries are bundled with Oracle as well, resulting not only in a
formidable weapon in the programmer’s arsenal, but also a formidable topic for a
PL/SQL book! That’s why the objectives for this chapter are limited to the following:

• Providing the information you need to load Java classes into the Oracle database,
manage those new database objects, and publish them for use inside PL/SQL.

• Offering a basic tutorial on building Java classes that will provide enough guidance
to let you construct simple classes to access underlying Java functionality.

In preview, here is the usual way you will create and expose Java stored procedures:

1. Write the Java source code. You can use any convenient text editor or IDE such as
Oracle’s JDeveloper.

2. Compile your Java into classes and, optionally, bundle them into .jar files. Again,
you can use an IDE or Sun’s command-line javac compiler. (Strictly speaking, this
step is optional because you can load the source into Oracle and use the built-in
Java compiler.)

3. Load the Java classes into Oracle using the loadjava command-line utility or the
CREATE JAVA statement.

4. Publish the Java class methods by writing PL/SQL “wrappers” to invoke the Java
code.

1133

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

5. Grant privileges as required on the PL/SQL wrapper.

6. Call the PL/SQL programs from any one of a number of environments, as illustrated
in Figure 27-1.

Figure 27-1. Accessing JSPs from within the Oracle database

Oracle offers a variety of components and commands to work with Java. Table 27-1
shows just a few of them.

Table 27-1. Oracle components and commands for Java

Component Description

“aurora” JVM The Java Virtual Machine (JVM) that Oracle implemented in its database server

loadjava An operating system command-line utility that loads your Java code elements (classes, .jar files, etc.) into the
Oracle database

dropjava An operating system command-line utility that drops your Java code elements (classes, .jar files, etc.) from the
Oracle database

CREATE JAVA

DROP JAVA

ALTER JAVA

DDL statements that perform some of the same tasks as loadjava and dropjava

DBMS_JAVA A built-in package that offers a number of utilities to set options and other aspects of the JVM

1134 | Chapter 27: Calling Java from PL/SQL

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

The remainder of this chapter explains more about these steps and components. For
more coverage of Java in the Oracle database, you might also want to look at Java
Programming with Oracle JDBC by Donald Bales (O’Reilly). For more comprehensive
Java information, see the documentation from Sun Microsystems as well as the O’Reilly
Java series (as well as several other books I’ll recommend later in this chapter). For
more detailed documentation on using Oracle and Java together, see Oracle Corpora-
tion’s manuals.

Getting Ready to Use Java in Oracle
Before you can call Java methods from within your PL/SQL programs, you will need
to do the following:

• Ensure that the Java option has been installed in your Oracle Database Server.

• Build and load your Java classes and code elements.

• In some cases, have certain Java-specific permissions granted to your Oracle user
account.

Installing Java
On the Oracle server, the Java features may or may not be installed, depending on what
version of Oracle you are running and what choices your DBA made during the Oracle
installation. You can check whether Java is installed by running this query:

SELECT COUNT(*)
 FROM all_objects
 WHERE object_type LIKE 'JAVA%';

If the result is 0, Java is definitely not installed, and you can ask your DBA to run a
script called $ORACLE_HOME/javavm/install/initjvm.sql.

As a developer, you will probably want to build and test Java programs on your own
workstation, and that requires access to a Java Development Kit (JDK). You have two
choices when installing the JDK: you can download it from http://java.sun.com/ your-
self; or, if you are using a third-party IDE such as Oracle JDeveloper, you may be able
to rely on its bundled JDK. Be warned: you may need to be cautious about matching
the exact JDK version number.

When you download Java from the Sun site, you will have to choose from among lots
of different acronyms and versions. Personally, I’ve had reasonably good luck with Java
2 Standard Edition (J2SE) using the Core Java package rather than the “Desktop”
package, the latter of which includes a bunch of GUI-building stuff I don’t need. An-
other choice is between the JDK and the Java Runtime Engine (JRE). Always pick the
JDK if you want to compile anything! In terms of the proper version to download, I
would look at your Oracle server’s version and try to match that.

Getting Ready to Use Java in Oracle | 1135

www.itbook.store/books/9781449324452

http://java.sun.com/
https://itbook.store/books/9781449324452

Oracle version JDK version

Oracle8i Database (8.1.5) JDK 1.1.6

Oracle8i Database (8.1.6 or later) JDK 1.2

Oracle9i Database J2SE 1.3

Oracle Database 10g Release 1 J2SE 1.4.1

Oracle Database 10g Release 2 J2SE 1.4.2

If you have to support more than one version of the Oracle server, get the later one and
be careful about what features you use.

One other unobvious thing you may need to know: if you can’t seem to get your Java
program to compile, check to see that the environment variable CLASSPATH has been
set to include your classes—and the Oracle-supplied classes as well.

Building and Compiling Your Java Code
Many PL/SQL developers (myself included) have little experience with object-oriented
languages, so getting up to speed on Java can be a bit of a challenge. In the short time
in which I have studied and used Java, I have come to these conclusions:

• It doesn’t take long to get a handle on the syntax needed to build simple classes in
Java.

• It’s not at all difficult to start leveraging Java inside PL/SQL, but ...

• Writing real object-oriented applications using Java requires significant learning
and rethinking for PL/SQL developers!

There are many (many, many, many) books available on various aspects of Java, and
a number of them are excellent. I recommend that you check out the following:

The Java Programming Language, by Ken Arnold, James Gosling, and David Holmes
(Addison-Wesley)

James Gosling is the creator of Java, so you’d expect the book to be helpful. It is.
Written in clear, simple terms, it gives you a strong grounding in the language.

Java in a Nutshell, by David Flanagan (O’Reilly)
This very popular and often-updated book contains a short, but excellent primer
to the language, followed by a quick reference to all of the major language elements,
arranged in an easy-to-use and heavily cross-referenced fashion.

Thinking in Java, by Bruce Eckel (Prentice Hall)
A very readable and creative approach to explaining object-oriented concepts. It is
also available in a free, downloadable format at http://www.mindview.net/Books/
TIJ/. If you like the feel of Oracle PL/SQL Programming, you will definitely enjoy
Thinking in Java.

1136 | Chapter 27: Calling Java from PL/SQL

www.itbook.store/books/9781449324452

http://www.mindview.net/Books/TIJ/
http://www.mindview.net/Books/TIJ/
https://itbook.store/books/9781449324452

Later in this chapter, when I demonstrate how to call Java methods from within
PL/SQL, I will also take you step by step through the creation of relatively simple
classes. You will find that, in many cases, this discussion will be all you need to get the
job done.

Setting Permissions for Java Development and Execution
Java security was handled differently prior to release 8.1.6 of the Oracle database, so
we will look at the two models individually in the following sections.

Java security for Oracle through 8.1.5

Early releases of Oracle8i Database (before 8.1.6) supported a relatively simple model
of Java security. There were basically two database roles that a DBA could grant:

JAVAUSERPRIV
Grants relatively few Java permissions, including examining properties

JAVASYSPRIV
Grants major permissions, including updating JVM-protected packages

So for example, if I want to allow Scott to perform any kind of Java-related operation,
I would issue this command from a SYSDBA account:

GRANT JAVASYSPRIV TO scott;

If I want to place some restrictions on what he can do with Java, I might execute this
grant instead:

GRANT JAVAUSERPRIV TO scott;

For example, to create a file through Java, I need the JAVASYSPRIV role; to read or
write a file, I only need the JAVAUSERPRIV role. See Oracle’s Java Developer’s
Guide from 8.1.7 (or later) for more details about which Java privileges correspond to
which Oracle roles.

When the JVM is initialized, it installs an instance of java.lang.SecurityManager, the
Java Security Manager. Oracle uses this, along with Oracle Database security, to de-
termine who can call a particular Java method.

If a user lacking sufficient privileges tries to execute an illegal operation, the JVM will
throw the java.lang.SecurityException. Here is what you would see in SQL*Plus:

ORA-29532: Java call terminated by uncaught Java exception:
 java.lang.SecurityException

When you run Java methods inside the database, different security issues can arise,
particularly when interacting with the server-side filesystem or other operating system
resources. Oracle follows the following two rules when checking I/O operations:

• If the dynamic ID has been granted JAVASYSPRIV, then Security Manager allows
the operation to proceed.

Getting Ready to Use Java in Oracle | 1137

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

• If the dynamic ID has been granted JAVAUSERPRIV, then Security Manager fol-
lows the same rules that apply to the PL/SQL UTL_FILE package to determine if
the operation is valid. In other words, the file must be in a directory (or subdirec-
tory) specified by the UTL_FILE_DIR parameter in the database initialization file.

Java security for Oracle from 8.1.6

Beginning with 8.1.6, Oracle’s JVM offered support for Java 2 security, in which per-
missions are granted on a class-by-class basis. This is a much more sophisticated and
fine-grained approach to security. This section offers some examples to give you a sense
of the kind of security-related code you could write (check Oracle’s manuals for more
details and examples).

Generally, you will use the DBMS_JAVA.GRANT_PERMISSION procedure to grant
the appropriate permissions. Here is an example of calling that program to give the
BATCH schema permission to read and write the lastorder.log file:

/* Must be connected as a dba */
BEGIN
 DBMS_JAVA.grant_permission(
 grantee => 'BATCH',
 permission_type => 'java.io.FilePermission',
 permission_name => '/apps/OE/lastorder.log',
 permission_action => 'read,write');
END;
/
COMMIT;

When making such a call, be sure to uppercase the grantee; otherwise, Oracle won’t
be able to locate the account name.

Also note the COMMIT. It turns out that this DBMS_JAVA call is just writing permis-
sion data to a table in Oracle’s data dictionary, but it does not commit automatically.
And, by the way, you can query permission data through the views
USER_JAVA_POLICY and DBA_JAVA_POLICY.

Here is a sequence of commands that first grants permission to access files in a directory,
and then restricts permissions on a particular file:

BEGIN
/* First, grant read and write to everyone */
 DBMS_JAVA.grant_permission(
 'PUBLIC',
 'java.io.FilePermission',
 '/shared/*',
 'read,write');

/* Use the "restrict" built-in to revoke read & write
| permission on one particular file from everyone
*/
 DBMS_JAVA.restrict_permission(
 'PUBLIC',

1138 | Chapter 27: Calling Java from PL/SQL

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

 'java.io.FilePermission',
 '/shared/secretfile',
 'read,write');

/* Now override the restriction so that one user can read and write
| that file.
*/
 DBMS_JAVA.grant_permission(
 'BOB',
 'java.io.FilePermission',
 '/shared/secretfile',
 'read,write');

 COMMIT;
END;

Here are the predefined permissions that Oracle offers:

java.util.PropertyPermission
java.io.SerializablePermission
java.io.FilePermission
java.net.NetPermission
java.net.SocketPermission
java.lang.RuntimePermission
java.lang.reflect.ReflectPermission
java.security.SecurityPermission
oracle.aurora.rdbms.security.PolicyTablePermission
oracle.aurora.security.JServerPermission

Oracle also supports the Java mechanisms for creating your own permissions; check
Oracle’s Java Developer’s Guide for details.

A Simple Demonstration
Before diving into the details, let’s walk through all the steps needed to access Java from
within PL/SQL. In the process, I’ll introduce the various pieces of technology you need
to get the job done.

Say that I need to be able to delete a file from within PL/SQL. Prior to Oracle8i Database,
I had the following options.

• In Oracle7 Database (7.3) (and above), I could send a message to a database pipe
and then have a C listener program grab the message (“Delete file X”) and do all
the work.

• In Oracle8 Database and later, I could set up a library that pointed to a C DLL or
shared library, and then from within PL/SQL, call a program in that library to delete
the file.

The pipe technique is handy, but it is a clumsy workaround. The external procedure
implementation in Oracle8 Database is a better solution, but it is also less than straight-
forward, especially if you don’t know the C language. So the Java solution looks as if

A Simple Demonstration | 1139

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

it might be the best one all around. Although some basic knowledge of Java is required,
you don’t need the same level of skill that would be required to write the equivalent
code in C. Java comes with prebuilt (foundation) classes that offer clean, easy-to-use
APIs to a wide array of functionality, including file I/O.

Here are the steps that I will perform in this demonstration:

1. Identify the Java functionality I need to access.

2. Build a class of my own to make the underlying Java feature callable through
PL/SQL.

3. Compile the class and load it into the database.

4. Build a PL/SQL program to call the class method I created.

5. Delete files from within PL/SQL.

Finding the Java Functionality
A while back, my O’Reilly editor, Deborah Russell, was kind enough to send me a
whole bunch of their Java books, so I grabbed the big, fat Java Fundamental Classes
Reference, by Mark Grand and Jonathan Knudsen, and looked up “File” in the index
(sure, I could use online documentation, but I like books). The entry for “File class”
caught my eye, and I hurried to the correct page.

There I found information about the class named java.io.File, namely, that it “provides
a set of methods to obtain information about files and directories.” And it doesn’t just
let you obtain information; it also contains methods (procedures and functions) to
delete and rename files, make directories, and so on. I had come to the right place!

Here is a portion of the API offered by the File class:

public class java.io.File {
 public boolean delete();
 public boolean mkdir ();
}

In other words, I will call a Boolean function in Java to delete a file. If the file is deleted,
the function returns TRUE; otherwise, it returns FALSE.

Building a Custom Java Class
Now, you might be asking yourself why I had to build my own Java class on top of the
File class. Why can’t I just call that function directly inside my PL/SQL wrapper? There
are two reasons:

• A Java class method is typically executed for a specific object instantiated from the
class. In PL/SQL I cannot instantiate a Java object and then call the method against
that object; in other words, PL/SQL only allows the calling of static methods.

1140 | Chapter 27: Calling Java from PL/SQL

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

• Even though Java and PL/SQL both have Boolean datatypes (Java even offers a
Boolean primitive and a Boolean class), they do not map to each other. I cannot
pass a Boolean from Java directly to a PL/SQL Boolean.

As a direct consequence, I need to build my own class that will:

• Instantiate an object from the File class

• Execute the delete method against that object

• Return a value that PL/SQL interprets properly

Here is the very simple class I wrote to take advantage of the File.delete method:

/* File on web: JDelete.java */
import java.io.File;

public class JDelete {

 public static int delete (String fileName) {
 File myFile = new File (fileName);
 boolean retval = myFile.delete();
 if (retval) return 1; else return 0;
 }
}

Figure 27-2 explains each of the steps in this code, but the main effect is clear: the
JDelete.delete method simply instantiates a dummy File object for the specified file-
name so that I can call the delete method for that file. By declaring my method to be
static, I make that method available without the need to instantiate an object. Static
methods are associated with the class, not with the individual instances of the objects
of that class.

The JDelete class above highlights a number of differences between Java and PL/SQL
that you should keep in mind:

• There are no BEGIN and END statements in Java for blocks, loops, or conditional
statements. Instead, you use curly braces to delimit the block.

• Java is case-sensitive; “if ” is definitely not the same thing as “IF”.

• The assignment operator is a plain equals sign (=) rather than the compound sym-
bol used in PL/SQL (:=).

• When you call a method that does not have any arguments (such as the delete
method of the File class), you still must open and close the parentheses. Otherwise,
the Java compiler will try to interpret the method as a class member or data
structure.

Hey, that was easy! Of course, you didn’t watch me fumble around with Java for a day,
getting over the nuisance of minor syntax errors, the agony of a case-sensitive language,
and the confusion setting the CLASSPATH. I’ll leave all that to your imagination—and
your own day of fumbling!

A Simple Demonstration | 1141

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

Compiling and Loading into Oracle
Now that my class is written, I need to compile it. On a Microsoft Windows machine,
one way I could do this would be to open a console session on the directory where I
have the source code, ensure that the Java compiler (javac.exe) is on my PATH, and do
this:

C:\samples\java>javac JDelete.java

If successful, the compiler should generate a file called JDelete.class.

Now that it’s compiled, I realize that it would make an awful lot of sense to test the
function before I stick it inside Oracle and try it from PL/SQL. You are always better
off building and testing incrementally. Java gives us an easy way to do this: the “main”
method. If you provide a void method (i.e., a procedure) called main in your class—
and give it the right parameter list—you can then call the class, and this code will
execute.

Figure 27-2. A simple Java class used to delete a file

1142 | Chapter 27: Calling Java from PL/SQL

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

The main method is one example of how Java treats certain elements in
a special way if they have the right signature. Another example is the
toString method. If you add a method with this name to your class, it
will automatically be called to display your custom description of the
object. This is especially useful when your object consists of many ele-
ments that make sense only when presented a certain way, or that oth-
erwise require formatting to be readable.

So let’s add a simple main method to JDelete:

import java.io.File;

public class JDelete {
 public static int delete (String fileName) {
 File myFile = new File (fileName);
 boolean retval = myFile.delete();
 if (retval) return 1; else return 0;
 }

 public static void main (String args[]) {
 System.out.println (
 delete (args[0])
);
 }
}

The first element (0) in the “args” array represents the first argument supplied from the
calling environment.

Next, I will recompile the class:

C:\samples\java>javac JDelete.java

And, assuming the “java” executable is on my PATH:

C:\samples\java>java JDelete c:\temp\te_employee.pks
1

C:\samples\java>java JDelete c:\temp\te_employee.pks
0

Notice that the first time I run the main method it displays 1 (TRUE), indicating that
the file was deleted. So it will come as no surprise that when I run the same command
again, main displays 0. It couldn’t delete a file that had already been deleted.

That didn’t take too much work or know-how, did it?

A Simple Demonstration | 1143

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

In another demonstration of the superiority of Java over PL/SQL, please
note that while you have to type 20 characters in PL/SQL to display
output (DBMS_OUTPUT.PUT_LINE), you needn’t type any more than
18 characters in Java (System.out.println). Give us a break, you language
designers! Though Alex Romankeuich, one of our technical reviewers,
notes that if you declare “private static final PrintStream o = Sys-
tem.out;” at the beginning of the class, you can then display output in
the class with the command “o.println”—only 9 characters in all!

Now that my class compiles, and I have verified that the delete method works, I can
load it into the SCOTT schema of the Oracle database using Oracle’s loadjava com-
mand. Oracle includes loadjava as part of its distribution, so it should be on your PATH
if you have installed the Oracle server or client on your local machine.

C:\samples\java>loadjava -user scott/tiger -oci8 -resolve JDelete.class

I can even verify that the class is loaded by querying the contents of the USER_OBJECTS
data dictionary via a utility I’ll introduce later in this chapter:

SQL> EXEC myjava.showobjects
Object Name Object Type Status Timestamp

JDelete JAVA CLASS VALID 2005-05-06:15:01

That takes care of all the Java-specific steps, which means that it’s time to return to the
cozy world of PL/SQL.

Building a PL/SQL Wrapper
I will now make it easy for anyone connecting to my database to delete files from within
PL/SQL. To accomplish this goal, I will create a PL/SQL wrapper that looks like a
PL/SQL function on the outside but is really nothing more than a pass-through to the
underlying Java code.

/* File on web: fdelete.sf */
FUNCTION fDelete (
 file IN VARCHAR2)
 RETURN NUMBER
AS LANGUAGE JAVA
 NAME 'JDelete.delete (
 java.lang.String)
 return int';

The implementation of the fdelete function consists of a string describing the Java
method invocation. The parameter list must reflect the parameters of the method, but
in place of each parameter, I specify the fully qualified datatype name. In this case, that
means that I cannot simply say “String,” but instead must add the full name of the Java
package containing the String class. The RETURN clause simply lists int for integer.
The int is a primitive datatype, not a class, so that is the complete specification.

1144 | Chapter 27: Calling Java from PL/SQL

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

As a bit of an aside, I could also write a call spec for a procedure that invokes the
JDelete.main method:

PROCEDURE fDelete2 (
 file IN VARCHAR2)
AS LANGUAGE JAVA
 NAME 'JDelete.main(java.lang.String[])';

The main method is special; even though it accepts an array of Strings, you can define
a call spec using any number of parameters.

Deleting Files from PL/SQL
So I compile the function and then prepare to perform my magical, previously difficult
(if not impossible) feat:

SQL> @fdelete.sf

Function created.

SQL> EXEC DBMS_OUTPUT.PUT_LINE (fdelete('c:\temp\te_employee.pkb'))

And I get:

ERROR at line 1:
ORA-29532: Java call terminated by uncaught Java exception: java.security.
AccessControlException: the
Permission (java.io.FilePermission c:\temp\te_employee.pkb delete) has not been
granted to BOB. The PL/SQL
to grant this is dbms_java.grant_permission('BOB', 'SYS:java.io.FilePermission',
'c:\temp\te_employee.pkb', 'delete')
ORA-06512: at "BOB.FDELETE", line 1
ORA-06512: at line 1

I forgot to give myself permission! But hey, look at that message—it’s pretty nice of
Oracle to tell me not just what the problem is but also how to fix it. So I get my friendly
DBA to run something like this (a slight variation of Oracle’s suggestion):

CALL DBMS_JAVA.grant_permission(
 'BOB',
 'SYS:java.io.FilePermission',
 'c:\temp*',
 'read,write,delete');

And now I get:

SQL> EXEC DBMS_OUTPUT.PUT_LINE (fdelete('c:\temp\te_employee.pkb'))
1
SQL> exec DBMS_OUTPUT.PUT_LINE (fdelete('c:\temp\te_employee.pkb'))
0

Yippee, it works!

I can also build utilities on top of this function. How about a procedure that deletes all
of the files found in the rows of a nested table? Even better, how about a procedure that

A Simple Demonstration | 1145

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

accepts a directory name and filter (“all files like *.tmp,” for example) and deletes all
files found in that directory that pass the filter?

In reality, of course, what I should do is build a package and then put all this great new
stuff in there. And that is just what I will do later in this chapter. First, however, let’s
take a closer look at each of the steps I just performed.

Using loadjava
The loadjava utility is an operating system command-line utility that uploads Java files
into the database. The first time you run loadjava in a schema, it creates a number of
objects in your local schema; although the exact list varies somewhat by Oracle version,
you are likely to find at least the following in your default tablespace:

CREATE$JAVA$LOB$TABLE
A table created in each schema, containing Java code elements. Each new class you
load using loadjava will generate one row in this table, putting the bytes of the class
into a BLOB column.

SYS_C ... (exact name will vary)
Unique index on the above table.

SYS_IL ... (exact name will vary)
LOB index on the above table.

By the way, if you don’t have permissions or quota available to create these objects in
your default tablespace, the load operation will fail.

Before executing the load, Oracle will check to see if the object being loaded already
exists, and whether it has changed, thereby minimizing the need to reload and avoiding
invalidation of dependent classes.*

The load operation then calls the DDL command CREATE JAVA to load the Java
classes from the BLOB column of CREATE$JAVA$LOB$TABLE into the RDBMS as
schema objects. This loading occurs only if:

• The class is being loaded for the first time.

• The class has been changed.

• The -force option is supplied.

Here is the basic syntax :

loadjava {-user | -u} username/password[@database]
 [option ...] filename [filename]...

where filename is a Java source, sqlj, class, .jar, resource, properties, or .zip file. The
following command, for example, loads the JFile class into the SCOTT schema:

* Oracle examines the MD5 checksum of the incoming class and compares it against that of the existing class.

1146 | Chapter 27: Calling Java from PL/SQL

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

C:> loadjava -user scott/tiger -oci8 -resolve JFile.class

Here are some things to keep in mind about loadjava. To display help text, use this
syntax:

loadjava {-help | -h}

In a list of options or files, names must be separated only by spaces:

-force, -resolve, -thin // No
-force -resolve -thin // Yes

In a list of users or roles, however, names must be separated only by commas:

SCOTT, PAYROLL, BLAKE // No
SCOTT,PAYROLL,BLAKE // Yes

There are more than 40 command-line options on loadjava; some key options are
mentioned in Table 27-2.

Table 27-2. Common loadjava options

Option Description

-debug Aids in debugging the loadjava script itself, not your code; rarely necessary.

-definer Specifies that the methods of uploaded classes will execute with the privileges of their definer, not their invoker.
(By default, methods execute with the privileges of their invoker.) Different definers can have different privileges,
and an application can have many classes, so programmers should make sure the methods of a given class execute
only with the privileges they need.

-encoding Sets (or resets) the -encoding option in the database table JAVA$OPTIONS to the specified value, which must be
the name of a standard JDK encoding scheme (the default is “latin1”). The compiler uses this value, so the encoding
of uploaded source files must match the specified encoding. Refer to the section “GET_, SET_, and RESET_COM-
PILER_OPTION: Getting and Setting (a Few) Compiler Options” on page 1151 for information on how this object
is created and used.

-force Forces the loading of Java class files, whether or not they have changed since they were last loaded.

Note that you cannot force the loading of a class file if you previously loaded the source file (or vice versa). You
must drop the originally loaded object first.

-grant Grants the EXECUTE privilege on uploaded classes to the listed users or roles. (To call the methods of a class directly,
users must have the EXECUTE privilege.)

This option is cumulative. Users and roles are added to the list of those having the EXECUTE privilege.

To revoke the privilege, either drop and reload the schema object without specifying -grant, or use the SQL REVOKE
statement. To grant the privilege on an object in another user’s schema, you must have the CREATE PROCEDURE
WITH GRANT privilege.

-oci8 Directs loadjava to communicate with the database using the OCI JDBC driver. This option (the default) and -thin
are mutually exclusive. When calling loadjava from a client-side computer that does not have Oracle installed on
it, use the -thin option.

-resolve After all files on the command line are loaded and compiled (if necessary), resolves all external references in those
classes. If this option is not specified, files are loaded but not compiled or resolved until runtime.

Using loadjava | 1147

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

Option Description
Specify this option to compile and resolve a class that was loaded previously. You need not specify the -force option
because resolution is done independently, after loading.

-resolver Binds newly created class schema objects to a user-defined resolver spec. Because it contains spaces, the resolver
spec must be enclosed in double quotes. This option and -oracleresolver (the default) are mutually exclusive.

-schema Assigns newly created Java schema objects to the specified schema. If this option is not specified, the logon schema
is used. You must have the CREATE ANY PROCEDURE privilege to load into another user’s schema.

-synonym Creates a public synonym for uploaded classes, making them accessible outside the schema into which they are
loaded. To specify this option, you must have the CREATE PUBLIC SYNONYM privilege.

If you specify this option for source files, it also applies to classes compiled from those source files.

-thin Directs loadjava to communicate with the database using the thin JDBC driver. This option and -oci8 (the default)
are mutually exclusive. When calling loadjava from a client-side computer that does not have Oracle installed on
it, use the -thin option.

-verbose Enables the verbose mode, in which progress messages are displayed. Very handy!

As you can probably imagine, there are various nuances of using loadjava, such as
whether to load individual classes or compressed groups of elements in a .zip or .jar
file. The Oracle documentation contains more information about the loadjava com-
mand.

Using dropjava
The dropjava utility reverses the action of loadjava. It converts filenames into the names
of schema objects, then drops the schema objects and any associated data. Dropping
a class invalidates classes that depend on it directly or indirectly. Dropping a source
object also drops classes derived from it.

The syntax is nearly identical to loadjava syntax:

dropjava {-user | -u} username/password[@database]
 [option ...] filename [filename] ...

where option includes -oci8, -encoding, and -verbose.

Managing Java in the Database
This section explores in more detail issues related to the way that Java elements are
stored in the database and how you can manage those elements.

The Java Namespace in Oracle
Oracle stores each Java class in the database as a schema object. The name of that object
is derived from (but is not the same as) the fully qualified name of the class; this name

1148 | Chapter 27: Calling Java from PL/SQL

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

includes the names of any containing packages. The full name of the class OracleSim-
pleChecker, for example, is as follows:

oracle.sqlj.checker.OracleSimpleChecker

In the database, however, the full name of the Java schema object would be:

oracle/sqlj/checker/OracleSimpleChecker

In other words, once stored in the Oracle database, slashes replace dots.

An object name in Oracle, whether the name of a database table or a Java class, cannot
be longer than 30 characters. Java does not have this restriction; you can have much
longer names. Oracle will allow you to load a Java class into the Oracle database with
a name of up to 4,000 characters. If the Java element name has more than 30 characters,
the database will automatically generate a valid alias (less than 31 characters) for that
element.

But don’t worry! You never have to reference that alias in your stored procedures. You
can instead continue to use the real name for your Java element in your code. Oracle
will map that long name automatically to its alias (the schema name) when necessary.

Examining Loaded Java Elements
Once you have loaded Java source, class, and resource elements into the database,
information about those elements is available in several different data dictionary views,
as shown in Table 27-3.

Table 27-3. Class information in data dictionary views

View Description

USER_OBJECTS

ALL_OBJECTS

DBA_OBJECTS

Contains header information about your objects of JAVA SOURCE, JAVA CLASS, and JAVA RESOURCE types

USER_ERRORS

ALL_ERRORS

DBA_ERRORS

Contains any compilation errors encountered for your objects

USER_SOURCE Contains the source code for your Java source if you used the CREATE JAVA SOURCE command to create the
Java schema object

Here is a query that shows all of the Java-related objects in my schema:

/* Files on web: showjava.sql, myJava.pkg */
COLUMN object_name FORMAT A30
SELECT object_name, object_type, status, timestamp
 FROM user_objects
 WHERE (object_name NOT LIKE 'SYS_%'
 AND object_name NOT LIKE 'CREATE$%'

Managing Java in the Database | 1149

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

 AND object_name NOT LIKE 'JAVA$%'
 AND object_name NOT LIKE 'LOADLOB%')
 AND object_type LIKE 'JAVA %'
 ORDER BY object_type, object_name;

The WHERE clause filters out those objects created by Oracle for managing Java ob-
jects. You can build programs to access the information in a variety of useful ways.
Here is some sample output from the myjava package, which you can find on the book’s
web site:

SQL> EXEC myJava.showObjects
Object Name Object Type Status Timestamp

DeleteFile JAVA CLASS INVALID 0000-00-00:00:00
JDelete JAVA CLASS VALID 2005-05-06:10:13
book JAVA CLASS VALID 2005-05-06:10:07
DeleteFile JAVA SOURCE INVALID 2005-05-06:10:06
book JAVA SOURCE VALID 2005-05-06:10:07

The following would let you see a list of all the Java elements whose names contain
“Delete”:

SQL> EXEC myJava.showobjects ('%Delete%')

The column USER_OBJECTS.object_name contains the full names of Java schema
objects, unless the name is longer than 30 characters or contains an untranslatable
character from the Unicode character set. In both cases, the short name is displayed in
the object_name column. To convert short names to full names, you can use the
LONGNAME function in the utility package DBMS_JAVA, which is explored in the
next section.

Using DBMS_JAVA
The Oracle built-in package DBMS_JAVA gives you access to and the ability to modify
various characteristics of the Java Virtual Machine in the database.

The DBMS_JAVA package contains a large number of programs, many of which are
intended for Oracle internal use only. Nevertheless, we can take advantage of a number
of very useful programs; most can also be called within SQL statements. Table 27-4
summarizes some of the DBMS_JAVA programs. As noted earlier in the chapter,
DBMS_JAVA also offers programs to manage security and permissions.

Table 27-4. Common DBMS_JAVA programs

Program Description

LONGNAME function Obtains the full (long) Java name for a given Oracle short name

GET_COMPILER_OPTION function Looks up an option in the Java options table

SET_COMPILER_OPTION procedure Sets a value in the Java options table and creates the table, if one does not exist

RESET_COMPILER_OPTION procedure Resets a compiler option in the Java options table

1150 | Chapter 27: Calling Java from PL/SQL

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

Program Description

SET_OUTPUT procedure Redirects Java output to the DBMS_OUTPUT text buffer

EXPORT_SOURCE procedure Exports a Java source schema object into an Oracle LOB

EXPORT_RESOURCE procedure Exports a Java resource schema object into an Oracle LOB

EXPORT_CLASS procedure Exports a Java class schema object into an Oracle LOB

These programs are explored in more detail in the following sections.

LONGNAME: Converting Java Long Names
Java class names can easily exceed the maximum SQL identifier length of 30 characters.
In such cases, Oracle creates a unique “short name” for the Java code element and uses
that name for SQL- and PL/SQL-related access.

Use the following function to obtain the full (long) name for a given short name:

FUNCTION DBMS_JAVA.LONGNAME (shortname VARCHAR2) RETURN VARCHAR2

The following query displays the long names for all Java classes defined in the currently
connected schema for which the long names and short names do not match:

/* File on web: longname.sql */
SELECT object_name shortname,
 DBMS_JAVA.LONGNAME (object_name) longname
 FROM USER_OBJECTS
 WHERE object_type = 'JAVA CLASS'
 AND object_name != DBMS_JAVA.LONGNAME (object_name);

This query is also available inside the myJava package (found in the myJava.pkg file);
its use is shown here. Suppose that I define a class with this name:

public class DropAnyObjectIdentifiedByTypeAndName {

That is too long for Oracle, and I can verify that Oracle creates its own short name as
follows:

SQL> EXEC myJava.showlongnames
Short Name | Long Name
--
Short: /247421b0_DropAnyObjectIdentif
Long: DropAnyObjectIdentifiedByTypeAndName

GET_, SET_, and RESET_COMPILER_OPTION: Getting and Setting (a Few)
Compiler Options
You can also set a few of the compiler option values in the database table JAVA$OP-
TIONS (called the options table from here on). While there are currently about 40
command-line options, only three of them can be saved in the options table. They are:

Using DBMS_JAVA | 1151

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

encoding
Character-set encoding in which the source code is expressed. If not specified, the
compiler uses a default, which is the result of the Java method System.getProp-
erty(“file.encoding”); a sample value is ISO646-US.

online
True or false; applies only to SQLJ source. The default value of “true” enables
online semantics checking.

debug
True or false; setting to true is like using javac -g. If not specified, the compiler
defaults to true.

The compiler looks up options in the options table unless they are specified on the
loadjava command line.

You can get and set these three options-table entries using the following DBMS_JAVA
functions and procedures:

FUNCTION DBMS_JAVA.GET_COMPILER_OPTION (
 what VARCHAR2, optionName VARCHAR2)

PROCEDURE DBMS_JAVA.SET_COMPILER_OPTION (
 what VARCHAR2, optionName VARCHAR2, value VARCHAR2)

PROCEDURE DBMS_JAVA.RESET_COMPILER_OPTION (
 what VARCHAR2, optionName VARCHAR2)

where:

what
Is the name of a Java package, the full name of a class, or the empty string. After
searching the options table, the compiler selects the row in which what most closely
matches the full name of the schema object. If what is the empty string, it matches
the name of any schema object.

optionName
Is the name of the option being set. Initially, a schema does not have an options
table. To create one, use the procedure DBMS_JAVA.SET_COMPILER_OPTION
to set a value. The procedure creates the table if it does not exist. Enclose param-
eters in single quotes, as shown in the following example:

SQL> DBMS_JAVA.SET_COMPILER_OPTION ('X.sqlj', 'online', 'false');

SET_OUTPUT: Enabling Output from Java
When executed within the Oracle database, the System.out and System.err classes send
their output to the current trace files, which are typically found in the server’s udump
subdirectory. This is not a very convenient location if you simply want to test your code
to see if it is working properly. DBMS_JAVA supplies a procedure you can call to re-

1152 | Chapter 27: Calling Java from PL/SQL

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

direct output to the DBMS_OUTPUT text buffer so that it can be flushed to your
SQL*Plus screen automatically. The syntax of this procedure is:

PROCEDURE DBMS_JAVA.SET_OUTPUT (buffersize NUMBER);

Here is an example of how you might use this program:

/* File on web: ssoo.sql */
SET SERVEROUTPUT ON SIZE 1000000
CALL DBMS_JAVA.SET_OUTPUT (1000000);

Passing any integer to DBMS_JAVA.set_output will turn it on. Documentation on the
interaction between these two commands is skimpy; my testing has uncovered the
following behaviors:

• The minimum (and default) buffer size is a measly 2,000 bytes; the maximum size
is 1,000,000 bytes, at least up through Oracle Database 10g Release 1. You can
pass a number outside of that range without causing an error; unless the number
is really big, the maximum will be set to 1,000,000.

• The buffer size specified by SET SERVEROUTPUT supersedes that of
DBMS_JAVA.SET_OUTPUT. In other words, if you provide a smaller value for
the DBMS_JAVA call, it will be ignored, and the larger size will be used.

• If you are running Oracle Database 10g Release 2 or later, and you have set SERV-
EROUTPUT size to be UNLIMITED, the maximum size of the Java buffer is also
unlimited.

• If your output in Java exceeds the buffer size, you will not receive the error you get
with DBMS_OUTPUT, namely:

ORA-10027: buffer overflow, limit of nnn bytes

The output will instead be truncated to the buffer size specified, and execution of
your code will continue.

As is the case with DBMS_OUTPUT, you will not see any output from your Java calls
until the stored procedure through which they are called finishes executing.

EXPORT_SOURCE, EXPORT_RESOURCE, and EXPORT_CLASS: Exporting
Schema Objects
Oracle’s DBMS_JAVA package offers the following set of procedures to export source,
resources, and classes:

PROCEDURE DBMS_JAVA.EXPORT_SOURCE (
 name VARCHAR2 IN,
 [blob BLOB IN | clob CLOB IN]
);

PROCEDURE DBMS_JAVA.EXPORT_SOURCE (
 name VARCHAR2 IN,
 schema VARCHAR2 IN,

Using DBMS_JAVA | 1153

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

 [blob BLOB IN | clob CLOB IN]
);

PROCEDURE DBMS_JAVA.EXPORT_RESOURCE (
 name VARCHAR2 IN,
 [blob BLOB IN | clob CLOB IN]
);

PROCEDURE DBMS_JAVA.EXPORT_RESOURCE (
 name VARCHAR2 IN,
 schema VARCHAR2 IN,
 [blob BLOB IN | clob CLOB IN]
);

PROCEDURE DBMS_JAVA.EXPORT_CLASS (
 name VARCHAR2 IN,
 blob BLOB IN
);

PROCEDURE DBMS_JAVA.EXPORT_CLASS (
 name VARCHAR2 IN,
 schema VARCHAR2 IN,
 blob BLOB IN
);

In all cases, name is the name of the Java schema object to be exported, schema is the
name of the schema owning the object (if one is not supplied, the current schema is
used), and blob | clob is the large object that receives the specified Java schema object.

You cannot export a class into a CLOB, only into a BLOB. In addition, the internal
representation of the source uses the UTF8 format, so that format is used to store the
source in the BLOB as well.

The following prototype procedure offers an idea of how you might use the export
programs to obtain source code of your Java schema objects, when appropriate:

/* File on web: showjava.sp */
PROCEDURE show_java_source (
 NAME IN VARCHAR2, SCHEMA IN VARCHAR2 := NULL
)
-- Overview: Shows Java source (prototype). Author: Vadim Loevski
IS
 b CLOB;
 v VARCHAR2 (2000);
 i INTEGER;
 object_not_available EXCEPTION;
 PRAGMA EXCEPTION_INIT(object_not_available, −29532);

BEGIN
 /* Move the Java source code to a CLOB. */
 DBMS_LOB.createtemporary(b, FALSE);

 DBMS_JAVA.export_source(name, NVL(SCHEMA, USER), b);

 /* Read the CLOB to a VARCHAR2 variable and display it. */

1154 | Chapter 27: Calling Java from PL/SQL

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

 i := 1000;
 DBMS_lob.read(b, i, 1, v);
 DBMS_OUTPUT.put_line(v);
EXCEPTION
 /* If the named object does not exist, an exception is raised. */
 WHEN object_not_available
 THEN
 IF DBMS_UTILITY.FORMAT_ERROR_STACK LIKE '%no such%object'
 THEN
 DBMS_OUTPUT.put_line ('Java object cannot be found.');
 END IF;
END;

If I then create a Java source object using the CREATE JAVA statement as follows:

CREATE OR REPLACE JAVA SOURCE NAMED "Hello"
AS
 public class Hello {
 public static String hello() {
 return "Hello Oracle World";
 }
 };

I can view the source code as shown here (assuming that DBMS_OUTPUT has been
enabled):

SQL> EXEC show_java_source ('Hello')
public class Hello {
 public static String hello() {
 return "Hello Oracle World";
 }
};

Publishing and Using Java in PL/SQL
Once you have written your Java classes and loaded them into the Oracle database,
you can call their methods from within PL/SQL (and SQL)—but only after you “pub-
lish” those methods via a PL/SQL wrapper.

Call Specs
You need to build wrappers in PL/SQL only for those Java methods you want to make
available through a PL/SQL interface. Java methods can access other Java methods in
the Java Virtual Machine directly, without any need for a wrapper. To publish a Java
method, you write a call spec—a PL/SQL program header (function or procedure)
whose body is actually a call to a Java method via the LANGUAGE JAVA clause. This
clause contains the following information about the Java method: its full name, its
parameter types, and its return type. You can define these call specs as standalone
functions or procedures, as programs within a package, or as methods in an object type:

CREATE [OR REPLACE] --If standalone (not in a package)
Standard PL/SQL procedure/function header

Publishing and Using Java in PL/SQL | 1155

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

{IS | AS} LANGUAGE JAVA
NAME 'method_fullname (java_type[, java_type]...)
 [return java_type]';

where java_type is either the full name of a Java type, such as java.lang.String, or a
primitive type, such as int. Note that you do not include the parameter names, only
their types.

The NAME clause string uniquely identifies the Java method being wrapped. The full
Java name and the call spec parameters, which are mapped by position, must corre-
spond, one to one, with the parameters in the program. If the Java method takes no
arguments, code an empty parameter list for it.

Here are a few examples:

• As shown earlier, here is a standalone function calling a method:

FUNCTION fDelete (
 file IN VARCHAR2)
 RETURN NUMBER
AS LANGUAGE JAVA
 NAME 'JDelete.delete (
 java.lang.String)
 return int';

• A packaged procedure that passes an object type as a parameter:

PACKAGE nat_health_care
IS
 PROCEDURE consolidate_insurer (ins Insurer)
 AS LANGUAGE JAVA
 NAME 'NHC_consolidation.process(oracle.sql.STRUCT)';
END nat_health_care;

• An object type method:

TYPE pet_t AS OBJECT (
 name VARCHAR2(100),
 MEMBER FUNCTION date_of_birth (
 name_in IN VARCHAR2) RETURN DATE
 AS LANGUAGE JAVA
 NAME 'petInfo.dob (java.lang.String)
 return java.sql.Timestamp'
);

• A standalone procedure with an OUT parameter:

PROCEDURE read_out_file (
 file_name IN VARCHAR2,
 file_line OUT VARCHAR2
)
AS
LANGUAGE JAVA
 NAME 'utils.ReadFile.read(java.lang.String
 ,java.lang.String[])';

1156 | Chapter 27: Calling Java from PL/SQL

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

Some Rules for Call Specs
Note the following:

• A PL/SQL call spec and the Java method it publishes must reside in the same
schema.

• A call spec exposes a Java method’s top-level entry point to Oracle. As a result,
you can publish only public static methods, unless you are defining a member
method of a SQL object type. In this case, you can publish instance methods as
member methods of that type.

• You cannot provide default values in the parameter list of the PL/SQL program
that will serve as a wrapper for a Java method invocation.

• A method in object-oriented languages cannot assign values to objects passed as
arguments; the point of the method is to apply to the object to which it is attached.
When you want to call a method from SQL or PL/SQL and change the value of an
argument, you must declare it as an OUT or IN OUT parameter in the call spec.
The corresponding Java parameter must then be a one-element array of the ap-
propriate type.

You can replace the element value with another Java object of the ap-
propriate type or (for IN OUT parameters only) modify the value if the
Java type permits. Either way, the new value propagates back to the
caller. For example, you might map a call spec OUT parameter of type
NUMBER to a Java parameter declared as float[] p, and then assign a
new value to p[0].

A function that declares OUT or IN OUT parameters cannot be called
from SQL DML statements.

Mapping Datatypes
Earlier in this chapter, we saw a very simple example of a PL/SQL wrapper—a delete
function that passed a VARCHAR2 value to a java.lang.String parameter. The Java
method returned an int, which was then passed back through the RETURN NUMBER
clause of the PL/SQL function. These are straightforward examples of datatype map-
ping, that is, setting up a correspondence between a PL/SQL datatype and a Java da-
tatype.

When you build a PL/SQL call spec, the PL/SQL and Java parameters, as well as the
function result, are related by position and must have compatible datatypes. Ta-
ble 27-5 lists all the datatype mappings currently allowed between PL/SQL and Java.
If you rely on a supported datatype mapping, Oracle will convert from one to the other
automatically.

Publishing and Using Java in PL/SQL | 1157

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

Table 27-5. Legal datatype mappings

SQL type Java class

CHAR oracle.sql.CHAR

NCHAR java.lang.String

LONG java.sql.Date

VARCHAR2 java.sql.Time

NVARCHAR2 java.sql.Timestamp

java.lang.Byte

java.lang.Short

java.lang.Integer

java.lang.Long

java.lang.Float

java.lang.Double

java.math.BigDecimal

byte, short, int, long, float, double

DATE oracle.sql.DATE

java.sql.Date

java.sql.Time

java.sql.Timestamp

java.lang.String

NUMBER oracle.sql.NUMBER

java.lang.Byte

java.lang.Short

java.lang.Integer

java.lang.Long

java.lang.Float

java.lang.Double

java.math.BigDecimal

byte, short, int, long, float, double

RAW oracle.sql.RAW

LONG RAW byte[]

ROWID oracle.sql.CHAR

oracle.sql.ROWID

java.lang.String

1158 | Chapter 27: Calling Java from PL/SQL

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

SQL type Java class

BFILE oracle.sql.BFILE

BLOB oracle.sql.BLOB

oracle.jdbc2.Blob

CLOB oracle.sql.CLOB

NCLOB oracle.jdbc2.Clob

User-defined object type oracle.sql.STRUCT

java.sql.Struct

java.sql.SqlData

oracle.sql.ORAData

User-defined REF type oracle.sql.REF

java.sql.Ref

oracle.sql.ORAData

Opaque type (such as XMLType) oracle.sql.OPAQUE

TABLE

VARRAY

oracle.sql.ARRAY

User-defined table or VARRAY type java.sql.Array

oracle.sql.ORAData

Any of the above SQL types oracle.sql.CustomDatum

oracle.sql.Datum

As you can see, Oracle supports only automatic conversion for SQL datatypes. Such
PL/SQL-specific datatypes as BINARY_INTEGER, PLS_INTEGER, BOOLEAN, and
associative array types are not supported. In those cases, you have to perform manual
conversion steps to transfer data between these two execution environments. See the
references in the section “Other Examples” on page 1167 for examples of nondefault
mappings; see the Oracle documentation for even more detailed examples involving
the use of JDBC.

Calling a Java Method in SQL
You can call PL/SQL functions of your own creation from within SQL DML statements.
You can also call Java methods wrapped in PL/SQL from within SQL. However, these
methods must conform to the following purity rules:

• If you call a method from a SELECT statement or a parallelized INSERT, UPDATE,
MERGE, or DELETE statement, the method is not allowed to modify any database
tables.

Publishing and Using Java in PL/SQL | 1159

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

• If you call a method from an INSERT, UPDATE, MERGE, or DELETE statement,
the method cannot query or modify any database tables modified by that state-
ment.

• If you call a method from a SELECT, INSERT, UPDATE, MERGE, or DELETE
statement, the method cannot execute SQL transaction control statements (such
as COMMIT), session control statements (such as SET ROLE), or system control
statements (such as ALTER SYSTEM). The method also cannot execute DDL
statements because they automatically perform a commit in your session. Note
that these restrictions are waived if the method is executed from within an auton-
omous transaction PL/SQL block.

The objective of these restrictions is to control side effects that might disrupt your SQL
statements. If you try to execute a SQL statement that calls a method violating any of
these rules, you will receive a runtime error when the SQL statement is parsed.

Exception Handling with Java
On the one hand, the Java exception-handling architecture is very similar to that of
PL/SQL. In Java-speak, you throw an exception and then catch it. In PL/SQL-speak,
you raise an exception and then handle it.

On the other hand, exception handling in Java is much more robust. Java offers a
foundation class called Exception. All exceptions are objects based on that class, or on
classes derived from (extending) that class. You can pass exceptions as parameters and
manipulate them pretty much as you would objects of any other class.

When a Java stored method executes a SQL statement and an exception is thrown, that
exception is an object from a subclass of java.sql.SQLException. That subclass contains
two methods that return the Oracle error code and error message: getErrorCode() and
getMessage().

If a Java stored procedure called from SQL or PL/SQL throws an exception that is
not caught by the JVM, the caller gets an exception thrown from a Java error message.
This is how all uncaught exceptions (including non-SQL exceptions) are reported. Let’s
take a look at the different ways of handling errors and the resulting output.

Suppose that I create a class that relies on JDBC to drop objects in the database (this
is drawn from an example in the Oracle documentation):

/* File on web: DropAny.java */
import java.sql.*;
import java.io.*;
import oracle.jdbc.driver.*;

public class DropAny {
 public static void object (String object_type, String object_name)
 throws SQLException {
 // Connect to Oracle using JDBC driver
 Connection conn = new OracleDriver().defaultConnection();

1160 | Chapter 27: Calling Java from PL/SQL

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

 // Build SQL statement
 String sql = "DROP " + object_type + " " + object_name;
 Statement stmt = conn.createStatement();
 try {
 stmt.executeUpdate(sql);
 }
 catch (SQLException e) {
 System.err.println(e.getMessage());
 }
 finally {
 stmt.close();
 }
 }
}

This example traps and displays any SQLException using the highlighted code. The
“finally” clause ensures that the close() method executes whether the exception is
raised or not, in order to get the statement’s open cursor handled properly.

While it doesn’t really make any sense to rely on JDBC to drop objects
because this can be done much more easily in native dynamic SQL,
building it in Java makes the functionality available to other Java pro-
grams without calling PL/SQL.

I load the class into the database using loadjava and then wrap this class inside a
PL/SQL procedure as follows:

PROCEDURE dropany (
 tp IN VARCHAR2,
 nm IN VARCHAR2
)
AS LANGUAGE JAVA
 NAME 'DropAny.object (
 java.lang.String,
 java.lang.String)';

When I attempt to drop a nonexistent object, I will see one of two outcomes:

SQL> CONNECT scott/tiger
Connected.

SQL> SET SERVEROUTPUT ON
SQL> BEGIN dropany ('TABLE', 'blip'); END;
/
PL/SQL procedure successfully completed.

SQL> CALL DBMS_JAVA.SET_OUTPUT (1000000);

Call completed.

SQL> BEGIN dropany ('TABLE', 'blip'); END;
/

Publishing and Using Java in PL/SQL | 1161

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

ORA-00942: table or view does not exist

What you see in these examples is a reminder that output from System.err.println will
not appear on your screen until you explicitly enable it with a call to
DBMS_JAVA.SET_OUTPUT. In either case, however, no exception was raised back
to the calling block because it was caught inside Java. After the second call to dropany,
you can see that the error message supplied through the getMessage() method is taken
directly from Oracle.

If I comment out the exception handler in the DropAny.object() method, I will get
something like this (assuming SERVEROUTPUT is enabled, as well as Java output):

SQL > BEGIN
 2 dropany('TABLE', 'blip');
 3 EXCEPTION
 4 WHEN OTHERS
 5 THEN
 6 DBMS_OUTPUT.PUT_LINE(SQLCODE);
 7 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 8 END;
 9 /
oracle.jdbc.driver.OracleSQLException: ORA-00942: table or view does not exist
 at oracle.jdbc.driver.T2SConnection.check_error(T2SConnection.java:120)
 at oracle.jdbc.driver.T2SStatement.check_error(T2SStatement.java:57)
 at oracle.jdbc.driver.T2SStatement.execute_for_rows(T2SStatement.java:486)
 at oracle.jdbc.driver.OracleStatement.doExecute
WithTimeout(OracleStatement.java:1148)
 at oracle.jdbc.driver.OracleStatement.executeUpdate(OracleStatement.java:1705)
 at DropAny.object(DropAny:14)

−29532
ORA-29532: Java call terminated by uncaught Java exception: java.sql.SQLException:
ORA-00942: table or view does not exist

This takes a little explaining. Everything between:

java.sql.SQLException: ORA-00942: table or view does not exist

and:

−29532

represents an error stack dump generated by Java and sent to standard output, regard-
less of how you handle the error in PL/SQL. In other words, even if my exception section
looked like this:

EXCEPTION WHEN OTHERS THEN NULL;

I would still get all that output on the screen, and then processing in the outer block
(if any) would continue. The last three lines of output displayed are generated by my
calls to DBMS_OUTPUT.PUT_LINE.

1162 | Chapter 27: Calling Java from PL/SQL

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

Notice that the Oracle error is not ORA-00942, but instead is ORA-29532, a generic
Java error. This is a problem. If you trap the error, how can you discover what the real
error is? Looks like it’s time for Write-A-Utility Man!

It appears to me that the error returned by SQLERRM is of this form:

ORA-29532: Java call ...: java.sql.SQLException: ORA-NNNNN ...

So I can scan for the presence of java.sql.SQLException and then SUBSTR from there.
The book’s web site contains a program in the getErrorInfo.sp file that returns the error
code and message for the current error, building in the smarts to compensate for the
Java error message format.

The main focus in the following sections is an expansion of the JDelete class into the
JFile class, which will provide significant new file-related features in PL/SQL. Following
that, we’ll explore how to write Java classes and PL/SQL programs around them to
manipulate Oracle objects.

Extending File I/O Capabilities
Oracle’s UTL_FILE package (described in Chapter 22) is notable more for what it is
missing than for what it contains. With UTL_FILE, you can read and write the contents
of files sequentially. That’s it. At least before Oracle9i Database Release 2, you can’t
delete files, change privileges, copy a file, obtain the contents of a directory, set a path,
etc., etc. Java to the rescue! Java offers lots of different classes to manipulate files. You’ve
already met the File class and seen how easy it is to add the “delete a file” capability to
PL/SQL.

I will now take my lessons learned from JDelete and the rest of this chapter and create
a new class called JFile, which will allow PL/SQL developers to answer the questions
and take the actions listed here:

• Can I read from a file? Write to a file? Does a file exist? Is the named item a file or
a directory?

• What is the number of bytes in a file? What is the parent directory of a file?

• What are the names of all the files in a directory that match a specified filter?

• How can I make a directory? Rename a file? Change the extension of a file?

I won’t explain all the methods in the JFile class and its corresponding package; there
is a lot of repetition, and most of the Java methods look just like the delete() function
I built at the beginning of the chapter. I will instead focus on the unique issues addressed
in different areas of the class and package. You can find the full definition of the code
in the following files on the book’s web site:

JFile.java
A Java class that draws together various pieces of information about operating
system files and offers it through an API accessible from PL/SQL.

Publishing and Using Java in PL/SQL | 1163

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

xfile.pkg
The PL/SQL package that wraps the JFile class. Stands for “eXtra stuff for FILEs.”

Oracle9i Database Release 2 introduced an enhanced version of the
UTL_FILE package that, among other things, allows you to delete a file
using the UTL_FILE.FREMOVE procedure. It also supports file copy-
ing (FCOPY) and file renaming (FRENAME).

Polishing up the delete method

Before moving on to new and exciting stuff, we should make sure that what we’ve done
so far is optimal. The way I defined the JDelete.delete() method and the delete_file
function is far from ideal. Here’s the method code I showed you earlier:

public static int delete (String fileName) {
 File myFile = new File (fileName);
 boolean retval = myFile.delete();
 if (retval) return 1; else return 0;
 }

And the associated PL/SQL:

FUNCTION fDelete (
 file IN VARCHAR2) RETURN NUMBER
AS LANGUAGE JAVA
 NAME 'JDelete.delete (java.lang.String)
 return int';

So what’s the problem? The problem is that I have been forced to use clumsy, numeric
representations for TRUE/FALSE values. As a result, I must write code like this:

IF fdelete ('c:\temp\temp.sql') = 1 THEN ...

and that is very ugly, hardcoded software. Not only that, but the person writing the
PL/SQL code would be required to know about the values for TRUE and FALSE em-
bedded within a Java class.

I would much rather define a delete_file function with this header:

 FUNCTION fDelete (
 file IN VARCHAR2) RETURN BOOLEAN;

So let’s see what it would take to present that clean, easy-to-use API to users of the xfile
package.

First, I will rename the JDelete class to JFile to reflect its growing scope. Then, I will
add methods that encapsulate the TRUE/FALSE values its other methods will return
—and call those inside the delete() method. Here is the result:

/* File on web: JFile.java */
import java.io.File;

public class JFile {

1164 | Chapter 27: Calling Java from PL/SQL

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

 public static int tVal () { return 1; };
 public static int fVal () { return 0; };

 public static int delete (String fileName) {
 File myFile = new File (fileName);
 boolean retval = myFile.delete();
 if (retval) return tVal();
 else return fVal();
 }
}

That takes care of the Java side of things; now it’s time to shift attention to my PL/SQL
package. Here’s the first pass at the specification of xfile:

/* File on web: xfile.pkg */
PACKAGE xfile
IS
 FUNCTION delete (file IN VARCHAR2)
 RETURN BOOLEAN;
END xfile;

So now we have the Boolean function specified. But how do we implement it? I have
two design objectives:

• Hide the fact that I am relying on numeric values to pass back TRUE or FALSE.

• Avoid hardcoding the 1 and 0 values in the package.

To achieve these objectives, I will define two global variables in my package to hold
the numeric values:

/* File on web: xfile.pkg */
PACKAGE BODY xfile
IS
 g_true INTEGER;
 g_false INTEGER;

And way down at the end of the package body, I will create an initialization section
that calls these programs to initialize my globals. By taking this step in the initialization
section, I avoid unnecessary calls (and overhead) to Java methods:

BEGIN
 g_true := tval;
 g_false := fval;
END xfile;

Back up in the declaration section of the package body, I will define two private func-
tions whose only purpose is to give me access in my PL/SQL code to the JFile methods
that have encapsulated the 1 and 0:

FUNCTION tval RETURN NUMBER
AS LANGUAGE JAVA
 NAME 'JFile.tVal () return int';

FUNCTION fval RETURN NUMBER

Publishing and Using Java in PL/SQL | 1165

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

AS LANGUAGE JAVA
 NAME 'JFile.fVal () return int';

I have now succeeded in softcoding the TRUE/FALSE values in the JFile package. To
enable the use of a true Boolean function in the package specification, I create a private
“internal delete” function that is a wrapper for the JFile.delete() method. It returns a
number:

FUNCTION Idelete (file IN VARCHAR2) RETURN NUMBER
AS LANGUAGE JAVA
 NAME 'JFile.delete (java.lang.String) return int';

Finally, my public delete function can now call Idelete and convert the integer value to
a Boolean by checking against the global variable:

FUNCTION delete (file IN VARCHAR2) RETURN BOOLEAN
AS
BEGIN
 RETURN Idelete (file) = g_true;
EXCEPTION
 WHEN OTHERS
 THEN
 RETURN FALSE;
END;

And that is how you convert a Java Boolean to a PL/SQL Boolean. You will see this
method employed again and again in the xfile package body.

Obtaining directory contents

One of my favorite features of JFile is its ability to return a list of files found in a direc-
tory. It accomplishes this feat by calling the File.list() method; if the string you used
to construct a new File object is the name of a directory, it returns a array of String
filenames found in that directory. Let’s see how I can make this information available
as a collection in PL/SQL.

First, I create a collection type with which to declare these collections:

CREATE OR REPLACE TYPE dirlist_t AS TABLE OF VARCHAR2(512);

I next create a method called dirlist, which returns an oracle.sql.ARRAY:

/* File on web: JFile.java */
import java.io.File;
import java.sql.*;
import oracle.sql.*;
import oracle.jdbc.*;

public class JFile {
...
 public static oracle.sql.ARRAY dirlist (String dir)
 throws java.sql.SQLException
 {
 Connection conn = new OracleDriver().defaultConnection();
 ArrayDescriptor arraydesc =

1166 | Chapter 27: Calling Java from PL/SQL

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

 ArrayDescriptor.createDescriptor ("DIRLIST_T", conn);

 File myDir = new File (dir);
 String[] filesList = myDir.list();

 ARRAY dirArray = new ARRAY(arraydesc, conn, filesList);
 return dirArray;
 }
...

This method first retrieves a “descriptor” of the user-defined type dirlist_t so that we
can instantiate a corresponding object. After calling Java’s File.list() method, it copies
the resulting list of files into the ARRAY object in the invocation of the constructor.

Over on the PL/SQL side of the world, I then create a wrapper that calls this method:

FUNCTION dirlist (dir IN VARCHAR2)
 RETURN dirlist_t
AS
 LANGUAGE JAVA
 NAME 'myFile.dirlist(java.lang.String) return oracle.sql.ARRAY';

And here is a simple example of how it might be invoked:

DECLARE
 tempdir dirlist_t;
BEGIN
 tempdir := dirlist('C:\temp');
 FOR indx IN 1..tempdir.COUNT
 LOOP
 DBMS_OUTPUT.PUT_LINE_(tempdir(indx));
 END LOOP;
END;

You will find in the xfile package additional programs to do the following: retrieve
filenames as a list rather than an array, limit files retrieved by designated wildcard filters,
and change the extension of specified files. You will also find all of the entry points of
the UTL_FILE package, such as FOPEN and PUT_LINE. I add those so that you can
avoid the use of UTL_FILE for anything but declarations of file handles as
UTL_FILE.FILE_TYPE and references to the exceptions declared in UTL_FILE.

Other Examples
On the book’s web site there are still more interesting examples of using Java to extend
the capabilities of PL/SQL or perform more complex datatype mapping:

utlzip.sql
Courtesy of reviewer Vadim Loevski, this Java class and corresponding package
make zip/compression functionality available in PL/SQL. They also use the CRE-
ATE OR REPLACE JAVA statement to load a class directly into the database with-
out relying on the loadjava command. Here is the header of the Java class creation
statement:

Publishing and Using Java in PL/SQL | 1167

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

/* File on web: utlzip.sql */
JAVA SOURCE NAMED "UTLZip" AS
import java.util.zip.*;
import java.io.*;
public class utlzip
{ public static void compressfile(string infilename, string outfilename)
...
}

And here is the “cover” for the Java method:

PACKAGE utlzip
IS
 PROCEDURE compressfile (p_in_file IN VARCHAR2, p_out_file IN VARCHAR2)
 AS
 LANGUAGE JAVA
 NAME 'UTLZip.compressFile(java.lang.String,
 java.lang.String)';
END;

If you are running Oracle Database 10g or later, you may not find this quite as
useful, because you can just use Oracle’s built-in package UTL_COMPRESS in-
stead.

DeleteFile.java and deletefile.sql
Courtesy of reviewer Alex Romankeuich, this Java class and corresponding
PL/SQL code demonstrate how to pass a collection (nested table or VARRAY) into
an array in Java. The specific functionality implements the deletion of all files in
the specified directory that have been modified since a certain date. To create the
PL/SQL side of the equation, I first create a nested table of objects, and then pass
that collection to Java through the use of the oracle.sql.ARRAY class:

CREATE TYPE file_details AS OBJECT (
 dirname VARCHAR2 (30),
 deletedate DATE)
/
CREATE TYPE file_table AS TABLE OF file_details;
/
CREATE OR REPLACE PACKAGE delete_files
IS
 FUNCTION fdelete (tbl IN file_table) RETURN NUMBER
 AS
 LANGUAGE JAVA
 NAME 'DeleteFile.delete(oracle.sql.ARRAY) return int';
END delete_files;

And here are the initial lines of the Java method. Note that Alex extracts the result
set from the array structure and then iterates through that result set. See the De-
leteFile.java script for the full implementation and extensive comments.

/* File on web: DeleteFile.java and deletfile.sql */
public class DeleteFile {
 public static int delete(oracle.sql.ARRAY tbl) throws SQLException {
 try {

1168 | Chapter 27: Calling Java from PL/SQL

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

 // Retrieve the contents of the table/varray as a result set
 ResultSet rs = tbl.getResultSet();

 for (int ndx = 0; ndx < tbl.length(); ndx++) {
 rs.next();

 // Retrieve the array index and array element.
 int aryndx = (int)rs.getInt(1);
 STRUCT obj = (STRUCT)rs.getObject(2);

utlcmd.sql
Courtesy of reviewer Vadim Loevski, this Java class and corresponding package
make it dangerously easy to execute any operating system command from within
PL/SQL. Use with caution.

Publishing and Using Java in PL/SQL | 1169

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

CHAPTER 28

External Procedures

In the early days of PL/SQL, it was common to hear the question “Can I call what-
ever from within Oracle?” Typically, whatever had something to do with sending email,
running operating-system commands, or using some non-PL/SQL feature. Although
email has pretty much been a nonissue since Oracle began shipping the built-in
UTL_SMTP and UTL_MAIL packages, there are by now quite a handful of alternatives
to calling “whatever.” Here are the most common approaches:

• Write the program as a Java stored procedure and call the Java from PL/SQL.

• Use a database table or queue as a place to store the requests, and create a separate
process to read and respond to those requests.

• Expose the program as a web service.

• Use a database pipe and write a daemon that responds to requests on the pipe.

• Write the program in C and call it as an external procedure.

Java may work well, and it can be fast enough for many applications. Queuing is a very
interesting technology, but even if you are simply using plain tables, this approach
requires two Oracle database sessions: one to write to the queue and one to read from
it. Moreover, two sessions means two different transaction spaces, and that might be
a problem for your application. Database pipe-based approaches also have the two-
session problem, not to mention the challenge of packing and unpacking the contents
of the pipe. In addition, handling many simultaneous requests using any of these ap-
proaches might require you to create your own listener and process-dispatching system.

Those are all reasons to consider the final option. External procedures allow PL/SQL
to do almost anything that any other language can do, and can remedy the shortcomings
of the other approaches just mentioned. But ... just how do external procedures work?
Are they secure? How can I build my own? What are their advantages and disadvan-
tages? This chapter addresses these questions and provides examples of commonly used
features of external procedures.

1171

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

By the way, examples in this chapter make use of the GNU C compiler, which, like
Oracle, runs practically everywhere.* I love GCC, but it won’t work in every situation;
you might need to use the compiler that is “native” on your hardware.

Introduction to External Procedures
To call an external program from inside Oracle, the program must run as a shared
library. You probably know this type of program as a DLL file (dynamically linked
library) on Microsoft operating systems; on Solaris, AIX, and Linux, you’ll usually see
shared libraries with a .so (shared object) file extension, or .sl (shared library) on
HP-UX. In theory, you can write the external routine in any language you wish, but
your compiler and linker will need to generate the appropriate shared library format
that is callable from C. You “publish” the external program by writing a special PL/
SQL wrapper, known as a call specification. If the external function returns a value, it
maps to a PL/SQL function; if the external function returns nothing, it maps to a
PL/SQL procedure.

Example: Invoking an Operating System Command
Our first example allows a PL/SQL program to execute any operating system-level
command. Eh? I hope your mental security buzzer is going off—that sounds like a really
dangerous thing to do, doesn’t it? Despite several security hoops you have to jump
through to make it work, your database administrator will still object to granting wide
permissions to run this code. Just try to suspend your disbelief as we walk through the
examples.

The first example consists of a very simple C function, extprocsh(), which accepts a
string and passes it to the system function for execution:

int extprocshell(char *cmd)
{
 return system(cmd);
}

The function returns the result code as provided by system, a function normally found
in the C runtime library (libc) on Unix, or in msvcrt.dll on Microsoft platforms.

After saving the source code in a file named extprocsh.c, I can use the GNU C compiler
to generate a shared library. On my 64-bit Solaris machine running GCC 3.4.2 and
Oracle Database 10g Release 2, I used the following compiler command. Note that
GCC options vary on different Unix/Linux distributions.

gcc -m64 extprocsh.c -fPIC -G -o extprocsh.so

* GNU C is free to use and is found here: http://gcc.gnu.org. There are at least two versions for Microsoft
Windows; this chapter uses the one from http://www.mingw.org.

1172 | Chapter 28: External Procedures

www.itbook.store/books/9781449324452

http://gcc.gnu.org
http://www.mingw.org
https://itbook.store/books/9781449324452

Similarly, on Microsoft Windows XP Pro running GCC 3.2.3 from Minimal GNU for
Windows (MinGW), also with Oracle Database 10g Release 2, this works:

c:\MinGW\bin\gcc extprocsh.c -shared -o extprocsh.dll

These commands generate a shared library file, extprocsh.so or extprocsh.dll. Now I
need to put the library file somewhere that Oracle can find it. Depending on your Oracle
version, that may be easier said than done! Table 28-1 gives you a clue as to where to
put the files.

Table 28-1. Location of shared library files

Version Default “allowed” location Means of specifying nondefault location

Oracle8 Database

Oracle8 i Database

Oracle9i Database
Release 1

Anywhere readable by the oracle process Not applicable

Oracle9i Release 2 and
later

$ORACLE_HOME/lib and/or $ORA-
CLE_HOME/bin (varies by Oracle version
and platform; lib is typical for Unix and
bin for Microsoft Windows)

Edit listener configuration file and supply path
value(s) for ENVS="EXTPROC_DLLS...” property (see
the section "“The Oracle Net Configura-
tion” on page 1176“)

After copying the file and/or making adjustments to the listener, I also need to define
a “library” inside Oracle to point to the DLL:

CREATE OR REPLACE LIBRARY extprocshell_lib
 AS '/u01/app/oracle/local/lib/extprocsh.so'; -- Unix-Linux

CREATE OR REPLACE LIBRARY extprocshell_lib
 AS 'c:\oracle\local\lib\extprocsh.dll'; -- Microsoft

Don’t by confused by the term “library” here; it’s really just a filename alias that can
be used in Oracle’s namespace. Also note that performing this step requires Oracle’s
CREATE LIBRARY privilege, which is one of the security hoops I mentioned earlier.

Now I can create a PL/SQL call specification that uses the newly created library:

FUNCTION shell(cmd IN VARCHAR2)
 RETURN PLS_INTEGER
AS
 LANGUAGE C
 LIBRARY extprocshell_lib
 NAME "extprocshell"
 PARAMETERS (cmd STRING, RETURN INT);

That’s all there is to it! Assuming that the DBA has set up the system environment to
support external procedures (see the section “Specifying the Listener Configura-
tion” on page 1176 later in this chapter), shell() is now usable anywhere you can invoke
a PL/SQL function—SQL*Plus, Perl, Pro*C, etc. From an application programming

Introduction to External Procedures | 1173

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

perspective, calling an external procedure is indistinguishable from calling a conven-
tional procedure. For example:

DECLARE
 result PLS_INTEGER;
BEGIN
 result := shell('cmd');
END;

Or even:

SQL> SELECT shell('cmd') FROM DUAL;

If successful, this will return zero:

SHELL('cmd')

 0

Keep in mind that if the operating-system command normally displays output to stdout
or stderr, that output will go to the bit bucket unless you modify your program to return
it to PL/SQL. You can, subject to OS-level permissions, redirect that output to a file;
here is a trivial example of saving a file containing a directory listing:

result := shell('ls / > /tmp/extproc.out')); -- Unix-Linux
result := shell('cmd /c "dir c:\ > c:\temp\extproc.out"')); -- Microsoft

These operating-system commands will execute with the same privileges as the Oracle
Net listener that spawns the extproc process. Hmmm, I’ll bet your DBA or security guy
will want to change that. Read on if you want to help.

Architecture of External Procedures
What happens under the covers when you invoke an external procedure? Let’s first
consider a case such as the example illustrated in the previous section, which uses the
default external procedure “agent.”

When the PL/SQL runtime engine learns from the compiled code that the program has
been implemented externally, it looks for a TNS service named EXTPROC_CON-
NECTION_DATA, which must be known to the server via some Oracle Net naming
method such as the tnsnames.ora file. As shown in Figure 28-1, the Oracle Net listener
responds to the request by spawning a session-specific process called extproc, to which
it passes the path to the DLL file along with the function name and any arguments. It
is extproc that dynamically loads your shared library, sends needed arguments, receives
its output, and transmits these results back to the caller. In this arrangement, only one
extproc process runs for a given Oracle session; it launches with the first external pro-
cedure call and terminates when the session disconnects. For each distinct external
procedure you call, this extproc process loads the associated shared library (if it hasn’t
already been loaded).

1174 | Chapter 28: External Procedures

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

Oracle has provided a number of features to help make external procedures usable and
efficient:

Shared DLL
The external C program must be in a shared dynamically linked library rather than
in a statically linked module. Although deferring linking until runtime incurs some
overhead, there should be memory savings when more than one session uses a
shared library; the operating system allows some of the memory pages of the library
to be shared by more than one process. Another benefit of using dynamically linked
modules is that they can be created and updated more easily than statically linked
programs. In addition, there can be many subprograms in a shared library (hence
the term “library”). This mitigates the performance overhead by allowing you to
load fewer files dynamically.

Separate memory space
Oracle external procedures run in a separate memory space from the main database
kernel processes. If the external procedure crashes, it won’t step on kernel memory;
the extproc process simply returns an error to the PL/SQL engine, which in turn
reports it to the application. Writing an external procedure to crash the Oracle
server is possible, but it’s no easier than doing so from a non-external procedure
program.

Full transaction support
External procedures provide full transaction support; that is, they can participate
fully in the current transaction. By accepting “context” information from PL/SQL,

Figure 28-1. Invoking an external procedure that uses the default agent

Introduction to External Procedures | 1175

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

the procedure can call back to the database to fetch data, make SQL or PL/SQL
calls, and raise exceptions. Using these features requires some low-level Oracle Call
Interface (OCI) programming ... but at least it’s possible!

Multithreading (Oracle Database 10g and later)
Up through Oracle9i Database, each Oracle session that called an external proce-
dure required a companion extproc process. For large numbers of users, the added
overhead could be significant. Starting with Oracle Database 10g, though, the DBA
can configure a multithreaded “agent” that services each request in a thread rather
than a separate process. You will need to ensure that your C program is thread-
safe if you go this route. See the later section “Setting Up Multithreaded
Mode” on page 1179 for more information about using this feature.

Despite their many features and benefits, external procedures are not a perfect match
for every application: Oracle’s architecture requires an unavoidable amount of inter-
process communication. This is the tradeoff required for the safety of separating the
external procedure’s memory space from that of the database server.

The Oracle Net Configuration
Let’s take a look at how you would set up a simple configuration that will support
external procedures while closing up some of the glaring security gaps.

Specifying the Listener Configuration
It is the Oracle Net communications layer that provides the conduit between PL/SQL
and the shared libraries. Although default installations of Oracle8i Database and later
generally provide some support for external procedures, you probably don’t want to
use the out-of-the-box configuration until Oracle has made some significant security
enhancements.

At the time we were writing the third edition of this book, Oracle was suffering a bit
of a black eye from a security vulnerability arising from the external procedures feature.
Specifically, a remote attacker could connect via the Oracle Net TCP/IP port (usually
1521) and run extproc with no authentication. Although Oracle closed up that partic-
ular vulnerability, the conventional wisdom of securing Oracle includes that shown in
the following note.

Keep Oracle listeners behind a firewall; never expose a listener port to
the Internet or to any other untrusted network.

Getting the listener set up properly involves modifying the tnsnames.ora file and the
listener.ora file (either by hand or by using the Oracle Net Manager frontend). Here,

1176 | Chapter 28: External Procedures

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

for example, is a simple listener.ora file that sets up an external procedure listener that
is separate from the database listener:

regular listener (to connect to the database)

LISTENER =
 (ADDRESS = (PROTOCOL = TCP)(HOST = hostname)(PORT = 1521))

SID_LIST_LISTENER =
 (SID_DESC =
 (GLOBAL_DBNAME = global_name)
 (ORACLE_HOME = oracle_home_directory)
 (SID_NAME = SID)
)

external procedure listener

EXTPROC_LISTENER =
 (ADDRESS = (PROTOCOL = IPC)(KEY = extprocKey))

SID_LIST_EXTPROC_LISTENER =
 (SID_DESC =
 (SID_NAME = extprocSID)
 (ORACLE_HOME = oracle_home_directory)
 (ENVS="EXTPROC_DLLS=shared_object_file_list,other_envt_vars")
 (PROGRAM = extproc)
)

where:

hostname, global_name
hostname is the name or IP address of this machine; global_name is the fully quali-
fied name of the database. In the example, these parameters apply to the database
listener only, not to the external procedure listener.

extprocKey
A short identifier used by Oracle Net to distinguish this listener from other poten-
tial IPC listeners. Its actual name is arbitrary because your programs will never see
it. Oracle uses EXTPROC0 or EXTPROC1 as the default name for the first Oracle
Net installation on a given machine. This identifier must be the same in the address
list of listener.ora and in the tnsnames.ora file.

oracle_home_directory
The full pathname to your ORACLE_HOME directory, such as /u01/app/oracle/
oracle/product/10.2.0/db_1 on Unix or C:\oracle\product\10.2.0\db_1 on Microsoft
Windows. Notice that there are no quotation marks around the directory name
and no trailing slash.

extprocSID
An arbitrary unique identifier for the external procedure listener. In the default
installation, Oracle uses the value PLSExtProc.

The Oracle Net Configuration | 1177

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

ENVS="EXTPROC_DLLS=shared_object_file_list"
Available in Oracle9i Database Release 2 and later. The ENVS clause sets up en-
vironment variables for the listener. The list is colon-delimited, and each element
must be the fully qualified path name to the shared object file.

There are some special keywords you can use in the list. For no security at all, you
can use the ANY keyword, which lets you use any shared library that is visible to
the operating system user running the external procedure listener. In other words:

ENVS="EXTPROC_DLLS=ANY"

For maximum security, use the ONLY keyword to limit execution of those shared
libraries given by the colon-delimited list. Here is an example from my Solaris
machine that shows what this might look like:

(ENVS="EXTPROC_DLLS=ONLY:/u01/app/oracle/local/lib/extprocsh.so:/u01/app/oracle/
local/lib/RawdataToPrinter.so")

And here is an entry from my laptop machine, which runs a Microsoft Windows
operating system:

(ENVS="EXTPROC_DLLS=ONLY:c:\oracle\admin\local\lib\extprocsh.dll:c:\oracle\admin\
local\lib\RawDataToPrinter.dll")

Here, the colon symbol has two different meanings; as the list delimiter or as the
drive letter separator. Also note that although I’ve shown only two library files,
you can include as many as you like.

If you omit the ANY and ONLY keywords but still provide a list of files, both the
default directories and the explicitly named files are available.

other_envt_vars
You can set values for environment variables needed by shared libraries by adding
them to the ENVS setting of the external procedure listener. A commonly needed
value on Unix is LD_LIBRARY_PATH:

(ENVS="EXTPROC_DLLS=shared_object_file_list,LD_LIBRARY_PATH=/usr/local/lib")

Use commas to separate the list of files and each environment variable.

Security Characteristics of the Configuration
The configuration established here accomplishes two important security objectives:

• It allows the system administrator to run the external procedure listener as a user
account with limited privileges. By default, the listener would run as the account
that runs the Oracle server.

• It limits the external procedure listener to accept only IPC connections from the
local machine, as opposed to TCP/IP connections from anywhere.

But we’re not quite done. The tnsnames.ora file for the database in which the callout
originates will need an entry like the following:

1178 | Chapter 28: External Procedures

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

EXTPROC_CONNECTION_DATA =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = IPC)(KEY = extprocKey))
 (CONNECT_DATA = (SID = extprocSID) (PRESENTATION = RO))
)

You’ll recognize most of these settings from the earlier listener configuration. Note that
the values you used in the listener for extprocKey and extprocSID must match their
respective values here. The optional PRESENTATION setting is intended to improve
performance a bit; it tells the server, which might be listening for different protocols,
to assume that the client wants to communicate using the protocol known as
Remote-Ops (hence the RO).

You’ll want to be careful about what privileges the supplemental listener account has,
especially regarding its rights to modify files owned by the operating system or by the
oracle account. Also, by setting the TNS_ADMIN environment variable on Unix (or in
the registry of a Microsoft operating system), you can relocate the external procedure
listener’s listener.ora and sqlnet.ora files to a separate directory. This may be another
aspect of an overall approach to security.

Setting up these configuration files and creating supplemental OS-level user accounts
may seem rather distant from day-to-day PL/SQL programming, but these days, se-
curity is everybody’s business!

Oracle professionals should keep up with Oracle’s security alerts page
at http://otn.oracle.com/deploy/security/alerts.htm. The external proce-
dures problem I mentioned back in the section “Specifying the Listener
Configuration” on page 1176 first appeared as alert number 29, but
every Oracle shop should regularly review the entire list of issues to
discover what workarounds or patches to employ.

Setting Up Multithreaded Mode
Oracle Database 10g introduced a way for multiple sessions to share a single external
procedure process. Although this feature takes a bit of effort to set up, it could pay off
when you have many users running external procedures. Here are the minimum steps
required for your DBA to turn on multithreaded mode:

1. Shut down the external procedure listener. If you have configured a separate lis-
tener for it as recommended above, this step is simply:

OS> lsnrctl stop extproc_listener

2. Edit listener.ora: first, change your extprocKey (which by default would be
EXTPROC0 or EXTPROC1) to PNPKEY; second, to eliminate the possibility of
any dedicated listeners, delete the entire SID_LIST_EXTPROC_LISTENER sec-
tion.

3. Edit tnsnames.ora, changing your extprocKey to be PNPKEY.

Setting Up Multithreaded Mode | 1179

www.itbook.store/books/9781449324452

http://otn.oracle.com/deploy/security/alerts.htm
https://itbook.store/books/9781449324452

4. Restart the external procedure listener; for example:

OS> lsnrctl start extproc_listener

5. At the operating system command prompt, be sure you have set a value for the
AGTCTL_ADMIN environment variable. The value should consist of a fully quali-
fied directory path; this tells agtctl where to store its settings. (If you don’t set
AGTCTL_ADMIN, but do have TNS_ADMIN set, the latter will be used instead.)

6. If you need to send any environment variables to the agent such as
EXTPROC_DLLS or LD_LIBRARY_PATH, set these in the current operating sys-
tem session. Here are some examples (if using the bash shell or equivalent):

OS> export EXTPROC_DLLS=ANY
OS> export LD_LIBRARY_PATH=/lib:/usr/local/lib/sparcv9

7. Assuming that you are still using the external procedure’s default listener “SID,”
that is, PLSExtProc, run the following:

OS> agtctl startup extproc PLSExtProc

To see if it’s working, you can use the “lsnrctl services” command:

OS> lsnrctl services extproc_listener
...
Connecting to (ADDRESS=(PROTOCOL=IPC)(KEY=PNPKEY))
Services Summary...
Service "PLSExtProc" has 1 instance(s).
 Instance "PLSExtProc", status READY, has 1 handler(s) for this service...
 Handler(s):
 "ORACLE SERVER" established:0 refused:0 current:0 max:5 state:ready
 PLSExtProc
 (ADDRESS=(PROTOCOL=ipc)(KEY=#5746.1.4))

This output is what we hoped to see; the agent is listed in state “ready,” and is not
labeled as dedicated. This command also shows stats on the number of sessions; in the
output above, everything is “0” except the maximum number of sessions, which de-
faults to 5.

Internally, a multithreaded agent uses its own listener/dispatcher/worker bee arrange-
ment, allowing each session request to get handed off to its own thread of execution.
You can control the numbers of tasks using “agtctl set” commands. For example, to
modify the maximum number of sessions, first shut down the agent:

OS> agtctl shutdown PLSExtProc

Then set max_sessions:

OS> agtctl set max_sessions n PLSExtProc

Where n is the maximum number of Oracle sessions that can connect to the agent
simultaneously.

Finally, restart the agent:

OS> agtctl startup extproc PLSExtProc

1180 | Chapter 28: External Procedures

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

When tuning your setup, there are several parameter settings to be aware of:

Parameter Description Default

max_dispatchers Maximum number of dispatcher threads, which hand off requests
to the task threads

1

max_task_threads Maximum number of “worker bee” threads 2

max_sessions Maximum number of Oracle sessions that can be serviced by the
multithreaded extproc process

5

listener_address Addresses with which the multithreaded process “registers” with
an already-running listener

(ADDRESS_LIST=
 (ADDRESS=
 (PROTOCOL=IPC)
 (KEY=PNPKEY))
 (ADDRESS=
 (PROTOCOL=IPC)
 (KEY=listenerSID))
 (ADDRESS=
 (PROTOCOL=TCP)
 (HOST=127.0.0.1)
 (PORT=1521)))

By the way, while testing this feature, I discovered that whenever I bounced the listener,
afterwards I needed to bounce the agent as well. Fortunately, the agtctl utility kindly
remembers any parameter adjustments you have made from the default values.

Some experimentation may be needed to optimize the agent-specific parameters against
the number of agent processes. While I have not experimented enough with multi-
threaded agents to offer any rules of thumb, let’s at least take a look at the changes
required to use two multithreaded agents. Follow the steps given earlier, but this time,
in Step 7, you will start two agents with unique names:

OS> agtctl startup extproc PLSExtProc_001
...
OS> agtctl startup extproc PLSExtProc_002

You must also modify tnsnames.ora (Step 3 above) to be aware of these new agent
names; because you probably want Oracle Net to “load balance” across the agents, edit
the EXTPROC_CONNECTION_DATA section of tnsnames.ora to be:

EXTPROC_CONNECTION_DATA =
 (DESCRIPTION_LIST =
 (LOAD_BALANCE = TRUE)
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = IPC)(KEY = PNPKEY))
 (CONNECT_DATA = (SID = PLSExtProc_001)(PRESENTATION = RO))
)
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = ipc)(key = PNPKEY))
 (CONNECT_DATA = (SID = PLSExtProc_002)(PRESENTATION = RO))
)
)

Setting Up Multithreaded Mode | 1181

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

You need to add the DESCRIPTION_LIST parameter and include one description sec-
tion for each of the agents.

With this new configuration, each time Oracle Net receives a request from PL/SQL to
connect to an external procedure, Oracle Net will randomly connect to one of the agents
listed; if the connection fails (for example, because it already has the maximum number
of sessions connected), Oracle Net will try the other agent, until it either makes a suc-
cessful connection or fails to connect to any of them. Such a failure will result in
ORA-28575: unable to open RPC connection to external procedure agent.

You can read more about multithreaded mode and agtctl in Oracle’s Application De-
velopment Guide—Fundamentals and the Heterogenous Connectivity Administrator’s
Guide. Oracle Net’s load balancing features are described in the Net Services Adminis-
trator’s Guide and the Net Services Reference.

One final point: when using multithreaded agents, the C program that implements an
external procedure must be thread-safe, and writing such a beasty is not necessarily
trivial. See the notes at the end of this chapter for a few of the caveats.

Creating an Oracle Library
The SQL statement CREATE LIBRARY defines an alias in the Oracle data dictionary
for the external shared library file, allowing the PL/SQL runtime engine to find the
library when it is called. The only users who can create libraries are administrators and
those to whom they have granted the CREATE LIBRARY or CREATE ANY LIBRARY
privilege.

The general syntax for the CREATE LIBRARY command is:

CREATE [OR REPLACE] LIBRARY library_name
AS
 'path_to_file' [AGENT 'agent_db_link'] ;

where:

library_name
A legal PL/SQL identifier. This name will be used in subsequent bodies of external
procedures that need to call the shared object (or DLL) file. The library name can-
not be the same as a table, top-level PL/SQL object, or anything else in the main
namespace.

path_to_file
The fully qualified pathname to the shared object (or DLL) file, enclosed in single
quotes.

In Oracle9i Database, it became possible to use environment variables in
path_to_file. In particular, if the operating system-level account sets the variable
before starting the listener, you can put this variable in the CREATE LIBRARY
statement; for example:

1182 | Chapter 28: External Procedures

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

CREATE LIBRARY extprocshell_lib AS '${ORACLE_HOME}/lib/extprocsh.so'; -- Unix
CREATE LIBRARY extprocshell_lib AS '%{ORACLE_HOME}%\bin\extprocsh.dll'; -- MS

This may be a good thing to do for the sake of script portability.

You can also use an environment variable that you supply via EXTPROC_DLLS
in the listener.ora file, as discussed earlier.

AGENT 'agent_db_link'
(Optional) Database link to which the library owner has access. You must make
sure that there is an entry in tnsnames.ora for the service name you specify when
creating agent_db_link, and that the entry includes an external procedure address
and connection data. Using the AGENT clause allows the external procedure to
run on a different database server, although it must still be on the same machine.
The AGENT clause was introduced in Oracle9i Database.

Here are some things to keep in mind when issuing a CREATE LIBRARY statement:

• The statement must be executed by the DBA or by a user who has been granted
CREATE LIBRARY or CREATE ANY LIBRARY privileges.

• As with most other database objects, libraries are owned by a specific Oracle user
(schema). The owner automatically has execution privileges, and can grant and
revoke the EXECUTE privilege on the library to other users.

• Other users who have received EXECUTE privilege on a library can refer to it in
their own call specs using owner.library syntax, or they can create and use syno-
nyms for the library if desired.

• Oracle doesn’t check whether the named shared library file exists when you execute
the CREATE LIBRARY statement. Nor will it check when you later create an ex-
ternal procedure declaration for a function in that library. If you have an error in
the path, you won’t know it until the first time you try to execute the function.

You need to create only a single Oracle library in this fashion for each shared library
file you use. There can be any number of callable C functions in the library file and any
number of call specifications that refer to the library.

Let’s take a closer look at how to write a PL/SQL subprogram that maps the desired
routine from the shared library into a PL/SQL-callable form.

Writing the Call Specification
An external procedure can serve as the implementation of any program unit other than
an anonymous block. In other words, a call specification can appear in a top-level
procedure or function, a packaged procedure or function, or an object method. What’s
more, you can define the call spec in either the specification or the body of packaged
program units (or in either the spec or body of object types). Here are some schematic
examples:

Writing the Call Specification | 1183

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

CREATE FUNCTION name (args) RETURN datatype
AS callspec;

You should recognize the form shown here as that of the shell() function shown earlier
in the chapter. You can also create a procedure:

CREATE PROCEDURE name
AS callspec;

In this case, the corresponding C function would be typed void.

The next form shows a packaged function that does not need a package body:

CREATE PACKAGE pkgname
AS
 FUNCTION name RETURN datatype
 AS callspec;
END;

However, when the time comes to modify the package, you would have to recompile
the specification. Depending on the change you need to make, you may considerably
reduce the recompilation ripple effect by moving the call spec into the package body:

CREATE PACKAGE pkgname
AS
 PROCEDURE name;
END;

CREATE PACKAGE BODY pkgname
AS
 PROCEDURE name
 AS callspec;
END;

Unpublished or private program units inside packages can also be implemented as
external procedures. And finally, using a call spec in an object type method is quite
similar to using it in a package; that is, you can put the call spec in the object type
specification or in the corresponding type body.

The Call Spec: Overall Syntax
It is the AS LANGUAGE clause† that distinguishes the call spec from a regular stored
program.

Syntactically, the clause looks like this:

AS LANGUAGE C
 LIBRARY library_name
 [NAME external_function_name]
 [WITH CONTEXT]
 [AGENT IN (formal_parameter_name)]
 [PARAMETERS (external_parameter_map)] ;

† Oracle8 Database did not have this clause, offering instead a now-deprecated form, AS EXTERNAL.

1184 | Chapter 28: External Procedures

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

where:

AS LANGUAGE C
Another option here is AS LANGUAGE JAVA, as covered in Chapter 27. There
are no other supported languages.

library_name
Name of the library, as defined in a CREATE LIBRARY statement, which you have
privilege to execute, either by owning it or by receiving the privilege.

external_function_name
Name of the function as defined in the C language library. If the name is lowercase
or mixed case, you must put double quotes around it. You can omit this parameter,
in which case the name of the external routine must match your PL/SQL module’s
name (defaults to uppercase).

WITH CONTEXT
The presence of this clause indicates that you want PL/SQL to pass a “context
pointer” to the called program. The called program must be expecting the pointer
as a parameter of type OCIExtProcContext * (defined in the C header file ociextp.h).

This “context” that you are passing via a pointer is an opaque data structure that
contains Oracle session information. The called procedure doesn’t need to ma-
nipulate the data structure’s content directly; instead, the structure simply facili-
tates other OCI calls that perform various Oracle-specific tasks. These tasks include
raising predefined or user-defined exceptions, allocating session-only memory
(which gets released as soon as control returns to PL/SQL), and obtaining infor-
mation about the Oracle user’s environment.

AGENT IN (formal_parameter_name)
This clause is a way of designating a different agent process, similar to the AGENT
clause on the library, but deferring the selection of the agent until runtime. The
idea is that you pass in the value of the agent as a formal PL/SQL parameter to the
call spec; it will supersede the name of the agent given in the library, if any. To
learn a little more about the AGENT IN clause, see the section “Nondefault
Agents” on page 1196.

PARAMETERS (external_parameter_map)
This section gives the position and datatypes of parameters exchanged between
PL/SQL and C. The external_parameter_map is a comma-delimited list of elements
that match positionally with the parameters in the C function or that supply ad-
ditional properties.

Getting the mapping right is potentially the most complex task you face, so the next
section spends a bit of time examining the wilderness of details.

Writing the Call Specification | 1185

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

Parameter Mapping: The Example Revisited
Consider for a moment the problems of exchanging data between PL/SQL and C.
PL/SQL has its own set of datatypes that are only somewhat similar to those you find
in C. PL/SQL variables can be NULL and are subject to three-valued truth table logic;
C variables have no equivalent concept. Your C library might not know which national
language character set you’re using to express alphanumeric values. And should your
C functions expect a given argument by value or by reference (pointer)?

I’d like to start with an example that builds on the shell program illustrated earlier in
the chapter. When we last saw the shell() function, it had no protection from being
called with a NULL argument instead of a real command. It turns out that calling shell
(NULL) results in the runtime error ORA-01405: fetched column value is NULL. That
may be a perfectly acceptable behavior in some applications, but what if I prefer that
the external procedure simply respond to a null input with a null output?

Properly detecting an Oracle NULL in C requires PL/SQL to transmit an additional
parameter known as an indicator variable. Likewise, for the C program to return an
Oracle NULL, it must return a separate indicator parameter back to PL/SQL. While
Oracle sets and interprets this value automatically on the PL/SQL side, the C applica-
tion will need to get and set this value explicitly.

It’s probably simplest to illustrate this situation by looking at how the PL/SQL call spec
will change:

FUNCTION shell(cmd IN VARCHAR2)
 RETURN PLS_INTEGER
AS
 LANGUAGE C
 LIBRARY extprocshell_lib
 NAME "extprocsh"
 PARAMETERS (cmd STRING, cmd INDICATOR, RETURN INDICATOR, RETURN INT);

Although the PL/SQL function’s formal parameters can appear anywhere in the
PARAMETERS mapping, the items in the mapping must correspond in position and
in associated datatype with the parameters in the C function. Any RETURN mapping
that you need to provide must be the last item on the list.

You can omit RETURN from the parameter map if you want Oracle to use the default
mapping (explained later). This would actually be OK in this case, although the indi-
cator still has to be there:

FUNCTION shell(cmd IN VARCHAR2)
 RETURN PLS_INTEGER
AS
 LANGUAGE C
 LIBRARY extprocshell_lib
 NAME "extprocsh"
 PARAMETERS (cmd STRING, cmd INDICATOR, RETURN INDICATOR);

1186 | Chapter 28: External Procedures

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

The good news is that even though you’ve made a number of changes to the call spec
compared with the version earlier in the chapter, a program that invokes the shell()
function sees no change in the number or datatype of its parameters.

Let’s turn now to the new version of the C program, which adds two parameters, one
for each indicator:

 1 #include <ociextp.h>
 2
 3 int extprocsh(char *cmd, short cmdInd, short *retInd)
 4 {
 5 if (cmdInd == OCI_IND_NOTNULL)
 6 {
 7 *retInd = (short)OCI_IND_NOTNULL;
 8 return system(cmd);
 9 } else
10 {
11 *retInd = (short)OCI_IND_NULL;
12 return 0;
13 }
14 }

The changes you’ll notice are summarized in the following table:

Line(s) Changes

1 This include file appears in the %ORACLE_HOME%\oci\include subdirectory on Microsoft platforms; on Unix-like
machines, I’ve spotted this file in $ORACLE_HOME/rdbms/demo (Oracle9i Database) and $ORACLE_HOME/rdbms/
public (Oracle Database 10g), although it may be somewhere else on your system.

3 Notice that the command indicator is short, but the return indicator is short *. That follows the argument-
passing convention of using call-by-value for input parameters sent from PL/SQL to C, but call-by-reference for output
or return parameters sent from C to PL/SQL.

5, 7 The indicator variable is either OCI_IND_NULL or OCI_IND_NOTNULL; these are special #define values from Oracle’s
include file. Here, explicit assignments in the code set the return indicator to be one or the other.

11–12 The return indicator takes precedence over the return of 0; the latter is simply ignored.

Here are some simple commands that will compile and link the above program, first
on my 64-bit Solaris machine (still using GCC):

gcc -m64 extprocsh.c -fPIC -G -I$ORACLE_HOME/rdbms/public -o extprocsh.so

And here are the equivalent commands on my Microsoft Windows machine (all on one
line):

c:\MinGW\bin\gcc -Ic:\oracle\product\10.2.0\db_1\oci\include extprocsh.c
-shared -o extprocsh.dll

And now, steel yourself to face the intimidating details of parameter mapping.

Writing the Call Specification | 1187

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

Parameter Mapping: The Full Story
As shown in the previous section, when moving data between PL/SQL and C, each
PL/SQL datatype maps to an external datatype, identified by a PL/SQL keyword, which
in turn maps to an allowed set of C types.

You identify an external datatype in the PARAMETERS clause with a keyword known
to PL/SQL. In some cases, the external datatypes have the same name as the C type,
but in others they don’t. For example, if you pass a PL/SQL variable of type
PLS_INTEGER, the corresponding default external type is INT, which maps to an int
in C. But Oracle’s VARCHAR2 type uses the STRING external datatype, which nor-
mally maps to a char * in C.

Table 28-2 lists all the possible datatype conversions supported by Oracle’s PL/SQL-
to-C interface. Note that the allowable conversions depend on both the datatype and
the mode of the PL/SQL formal parameter, as the previous example illustrated. The
defaults, if ambiguous, are shown in bold in the table.

Table 28-2. Legal mappings of PL/SQL and C datatypes

 C datatypes for PL/SQL
parameters that are:

Datatype of PL/SQL parameter
PL/SQL keyword identify-
ing external type

N or function return
values

IN OUT, OUT, or any
parameter designated as be-
ing passed BY REFERENCE

Long integer family: BI-
NARY_INTEGER, BOOLEAN,
PLS_INTEGER

INT, UNSIGNED INT, CHAR,
UNSIGNED CHAR, SHORT,
UNSIGNED SHORT, LONG,
UNSIGNED LONG, SB1, UB1,
SB2, UB2, SB4, UB4, SIZE_T

int, unsigned int, char,
unsigned char, short,
unsigned short, long,
unsigned long, sb1,
ub1, sb2, ub2, sb4, ub4,
size_t

Same list of types as at left, but
use a pointer (for example, the
int * rather than int)

Short integer family: NATURAL,
NATURALN, POSITIVE, POSITIVEN,
SIGNTYPE

Same as above, except de-
fault is UNSIGNED INT

Same as above, except
default is unsigned int

Same as above, except default
is unsigned int *

Character family: VARCHAR2,
CHAR, NCHAR, LONG,
NVARCHAR2, VARCHAR, CHARAC-
TER, ROWID

STRING, OCISTRING char *, OCIString * char *, OCIString *

NUMBER OCINUMBER OCINumber * OCINumber *

DOUBLE PRECISION DOUBLE double double *

FLOAT, REAL FLOAT float float *

RAW, LONG RAW RAW, OCIRAW unsigned char *,
OCIRaw *

unsigned char *, OCIRaw *

DATE OCIDATE OCIDate * OCIDate *

1188 | Chapter 28: External Procedures

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

 C datatypes for PL/SQL
parameters that are:

Datatype of PL/SQL parameter
PL/SQL keyword identify-
ing external type

N or function return
values

IN OUT, OUT, or any
parameter designated as be-
ing passed BY REFERENCE

Timestamp family: TIMESTAMP,
TIMESTAMP WITH TIME ZONE,
TIMESTAMP WITH LOCAL TIME
ZONE

OCIDATETIME OCIDateTime * OCIDateTime *

INTERVAL DAY TO SECOND, INTER-
VAL YEAR TO MONTH

OCIINTERVAL OCIInterval * OCIInterval *

BFILE, BLOB, CLOB, NCLOB OCILOBLOCATOR OCILOBLOCATOR * OCILOBLOCATOR **

Descriptor of user-defined type
(collection or object)

TDO OCIType * OCIType *

Value of user-defined collection OCICOLL OCIColl **, OCIArray **,
OCITable **

OCIColl **, OCIArray **,
OCITable **

Value of user-defined object DVOID dvoid * dvoid * (use dvoid ** for non-
final types that are IN OUT or
OUT)

In some simple cases where you are passing only numeric arguments and where the
defaults are acceptable, you can actually omit the PARAMETERS clause entirely. How-
ever, you must use it when you want to pass indicators or other data properties.

Each piece of supplemental information we want to exchange will be passed as a sep-
arate parameter, and will appear both in the PARAMETERS clause and in the C lan-
guage function specification.

More Syntax: The PARAMETERS Clause
The PARAMETERS clause provides a comma-delimited list that may contain five dif-
ferent kinds of elements:

• The name of the parameter followed by the external datatype identifier.

• The keyword RETURN and its associated external datatype identifier.

• A “property” of the PL/SQL parameter or return value, such as a nullness indicator
or an integer corresponding to its length.

• The keyword CONTEXT, which is a placeholder for the context pointer.

• The keyword SELF, in the case of an external procedure for an object type member
method.

Elements (other than CONTEXT) follow the syntax pattern:

{pname | RETURN | SELF} [property] [BY REFERENCE] [external_datatype]

Writing the Call Specification | 1189

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

If your call spec includes WITH CONTEXT, the corresponding element in the param-
eter list is simply:

CONTEXT

By convention, if you have specified WITH CONTEXT, you should make CONTEXT
the first argument because that is its default location if the rest of the parameter map-
pings are defaulted.

Parameter entries have the following meanings:

pname | RETURN | SELF
The name of the parameter as specified in the formal parameter list of the PL/SQL
module, or the keyword RETURN, or the keyword SELF (in the case of a member
method in an object type). PL/SQL parameter names do not need to be the same
as the names of formal parameters in the C language routine. However, parameters
in the PL/SQL parameter list must match one for one, in order, those in the C
language specification.

property
One of the following: INDICATOR, INDICATOR STRUCT, LENGTH, MAX-
LEN, TDO, CHARSETID, or CHARSETFORM. These are described in the next
section.

BY REFERENCE
Pass the parameter by reference. In other words, the module in the shared library
is expecting a pointer to the parameter rather than its value. BY REFERENCE only
has meaning for scalar IN parameters that are not strings, such as
BINARY_INTEGER, PLS_INTEGER, FLOAT, DOUBLE PRECISION, and
REAL. All others (IN OUT and OUT parameters, as well as IN parameters of type
STRING) are always passed by reference, and the corresponding C prototype must
specify a pointer.

external_datatype
The external datatype keyword from the second column of Table 28-2. If this is
omitted, the external datatype will default as indicated in the table.

PARAMETERS Properties
This section describes each possible property you can specify in a PARAMETERS
clause.

The INDICATOR property

The INDICATOR property is a flag to denote whether the parameter is null, and has
the following characteristics:

Allowed external types
short (the default), int, long

1190 | Chapter 28: External Procedures

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

Allowed PL/SQL types
All scalars can use an INDICATOR; to pass indicator variables for composite types
such as user-defined objects and collections, use the INDICATOR STRUCT prop-
erty.

Allowed PL/SQL modes
IN, IN OUT, OUT, RETURN

Call mode
By value for IN parameters (unless BY REFERENCE specified), and by reference
for IN OUT, OUT, and RETURN variables.

You can apply this property to any parameter, in any mode, including RETURNs. If
you omit an indicator, PL/SQL is supposed to think that your external routine will
always be non-null (but it’s not that simple; see the sidebar “Indicating Without Indi-
cators?” on page 1191).

When you send an IN variable and its associated indicator to the external procedure,
Oracle sets the indicator’s value automatically. However, if your C module is returning
a value in a RETURN or OUT parameter and an indicator, your C code must set the
indicator value.

For an IN parameter, the indicator parameter in your C function might be:

short pIndicatorFoo

Or for an IN OUT parameter, the indicator might be:

short *pIndicatorFoo

In the body of your C function, you should use the #define constants OCI_IND_NOT-
NULL and OCI_IND_NULL, which will be available in your program if you #include
oci.h. Oracle defines these as:

typedef sb2 OCIInd;
#define OCI_IND_NOTNULL (OCIInd)0 /* not NULL */
#define OCI_IND_NULL (OCIInd)(-1) /* NULL */

Indicating Without Indicators?
What happens if you don’t specify an indicator variable for a string and then return an
empty C string? We wrote a short test program to find out:

void mynull(char *outbuff){
 outbuff[0] = '\0';
}

The call spec could look like this:

CREATE OR REPLACE PROCEDURE mynull
 (res OUT VARCHAR2)
AS
 LANGUAGE C
 LIBRARY mynulllib
 NAME "mynull";

Writing the Call Specification | 1191

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

When invoked as an external procedure, PL/SQL does actually interpret this parameter
value as a NULL. The reason appears to be that the STRING external type is special;
you can also indicate a NULL value to Oracle by passing a string of length 2 where the
first byte is \0. (This works only if you omit a LENGTH parameter.)

But you probably shouldn’t take this lazy way out; use an indicator instead!

The LENGTH property

The LENGTH property is an integer indicating the number of characters in a character
parameter, and has the following characteristics:

Allowed external types
int (the default), short, unsigned short, unsigned int, long, unsigned long

Allowed PL/SQL types
VARCHAR2, CHAR, RAW, LONG RAW

Allowed PL/SQL modes
IN, IN OUT, OUT, RETURN

Call mode
By value for IN parameters (unless BY REFERENCE specified), and by reference
for IN OUT, OUT, and RETURN variables

The LENGTH property is mandatory for RAW and LONG RAW, and is available as
a convenience to your C program for the other datatypes in the character family. When
passing a RAW from PL/SQL to C, Oracle will set the LENGTH property; however,
your C program must set LENGTH if you need to pass the RAW data back.

For an IN parameter, the indicator parameter in your C function might be:

int pLenFoo

Or for an OUT or IN OUT parameter, it might be:

int *pLenFoo

The MAXLEN property

The MAXLEN property is an integer indicating the maximum number of characters in
a string parameter, and has the following characteristics:

Allowed external types
int (the default), short, unsigned short, unsigned int, long, unsigned long

Allowed PL/SQL types
VARCHAR2, CHAR, RAW, LONG RAW

Allowed PL/SQL modes
IN OUT, OUT, RETURN

1192 | Chapter 28: External Procedures

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

Call mode
By reference

MAXLEN applies to IN OUT, OUT and RETURN parameters and to no other mode.
If you attempt to use it for an IN, you’ll get the compile-time error PLS-00250: incorrect
usage of MAXLEN in parameters clause.

Unlike the LENGTH parameter, the MAXLEN data is always passed by reference.

Here’s an example of the C formal parameter:

int *pMaxLenFoo

The CHARSETID and CHARSETFORM properties

The CHARSETID and CHARSETFORM properties are flags denoting information
about the character set, and have the following characteristics:

Allowed external types
unsigned int (the default), unsigned short, unsigned long

Allowed PL/SQL types
VARCHAR2, CHAR, CLOB

Allowed PL/SQL modes
IN, IN OUT, OUT, RETURN

Call mode
By reference

If you are passing data to the external procedure that is expressed in a nondefault
character set, these properties will let you communicate the character set’s ID and form
to the called C program. The values are read-only and should not be modified by the
called program. Here is an example of a PARAMETERS clause that includes character
set information:

 PARAMETERS (CONTEXT, cmd STRING, cmd INDICATOR, cmd CHARSETID,
 cmd CHARSETFORM);

Oracle sets these additional values automatically, based on the character set in which
you have expressed the cmd argument. For more information about Oracle’s globali-
zation support in the C program, refer to Oracle’s OCI documentation.

Raising an Exception from the Called C Program
The shell() program shown earlier in the chapter is very, um, “C-like:” it is a function
whose return value contains the status code, and the caller must check the return value
to see if it succeeded. Wouldn’t it make more sense—in PL/SQL, anyway—for the
program to be a procedure that simply raises an exception when there’s a problem?
Let’s take a brief look at how to perform the OCI equivalent of RAISE_APPLICA-
TION_ERROR.

Raising an Exception from the Called C Program | 1193

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

In addition to the easy change from a function to a procedure, there are several other
things I need to do:

• Pass in the context area.

• Decide on an error message and an error number in the 20001–20999 range.

• Add a call to the OCI service routine that raises an exception.

The changes to the call spec are trivial:

/* File on web: extprocsh.sql */
PROCEDURE shell(cmd IN VARCHAR2)
AS
 LANGUAGE C
 LIBRARY extprocshell_lib
 NAME "extprocsh"
 WITH CONTEXT
 PARAMETERS (CONTEXT, cmd STRING, cmd INDICATOR);
/

(I also removed the return parameter and its indicator.) The following code shows how
to receive and use the context pointer in the call needed to raise the exception:

/* File on web: extprocsh.c */
1 #include <ociextp.h>
2 #include <errno.h>
3
4 void extprocsh(OCIExtProcContext *ctx, char *cmd, short cmdInd)
5 {
6 int excNum = 20001; # a convenient number :->
7 char excMsg[512];
8 size_t excMsgLen;
9
10 if (cmdInd == OCI_IND_NULL)
11 return;
12
13 if (system(cmd) != 0)
14 {
15 sprintf(excMsg, "Error %i during system call: %.*s", errno, 475,
16 strerror(errno));
17 excMsgLen = (size_t)strlen(excMsg);
18
19 if (OCIExtProcRaiseExcpWithMsg(ctx, excNum, (text *)excMsg, excMsgLen)
20 != OCIEXTPROC_SUCCESS)
21 return;
22 }
23
24 }

1194 | Chapter 28: External Procedures

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

Note the following lines:

Line(s) Description

4 The first of the formal parameters is the context pointer.

6 You can use whatever number in Oracle’s user-defined error number range you want; in general, I advise against
hardcoding these values, but, er, this is a “do as I say, not as I do” example.

7 The maximum size for the text in a user-defined exception is 512 bytes.

8 A variable to hold the length of the error message text, which will be needed in the OCI call that raises the exception.

10–11 Here, I am translating the NULL argument semantics of the earlier function into a procedure: when called with NULL,
nothing happens.

13 A zero return code from system() means that everything executed perfectly; a nonzero code corresponds to either an
error or a warning.

15,-17 These lines prepare the variables containing the error message and its length.

19–20 This OCI function, which actually raises the user-defined exception, is where the context pointer actually gets used.

Now, how do we compile this baby? First, Unix/Linux:

gcc -m64 -extprocsh.c -I$ORACLE_HOME/rdbms/public -fPIC -shared -o extprocsh.so

That was easy enough. But on Microsoft Windows, I found that I needed an ex-
plicit .def file to define the desired entry point (more precisely, to exclude potential
entry points found in Oracle’s oci.lib):

/* File on web: build_extprocsh.bat */
echo LIBRARY extprocsh.dll > extprocsh.def
echo EXPORTS >> extprocsh.def
echo extprocsh >> extprocsh.def

Although we’ve had to break it to fit in the book’s margins, the following line must be
entered as one long string:

c:\MinGW\bin\gcc -c extprocsh.def extprocsh.c -IC:\oracle\product\10.2.0\db_1\oci\
include C:\oracle\product\10.2.0\db_1\oci\lib\msvc\oci.lib-shared -o extprocsh.dll

Here’s what a test of the function should yield:

SQL> CALL shell('garbage');
CALL shell('garbage')
 *
ERROR at line 1:
ORA-20001: Error 2 during system call: No such file or directory

That is, you should get a user-defined −20001 exception with the corresponding text
“no such file or directory.” Unfortunately, I discovered that system() does not always
return meaningful error codes, and on some platforms the message is ORA-20001:
Error 0 during system call: Error 0. (Fixing this probably requires using a call other than
system(). Another reader exercise.)

Raising an Exception from the Called C Program | 1195

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

A number of other OCI routines are unique to writing external procedures. Here is the
complete list:

OCIExtProcAllocCallMemory
Allocates memory that Oracle will automatically free when control returns to
PL/SQL.

OCIExtProcRaiseExcp
Raises a predefined exception by its Oracle error number.

OCIExtProcRaiseExcpWithMsg
Raises a user-defined exception, including a custom error message (illustrated in
the previous example).

OCIExtProcGetEnv
Allows an external procedure to perform OCI callbacks to the database to execute
SQL or PL/SQL.

These all require the context pointer. Refer to Oracle’s Application Developer’s Guide—
Fundamentals for detailed documentation and examples that use these routines.

Nondefault Agents
Starting with Oracle9i Database, it is possible to run external procedure agents via
database links that connect to other local database servers. This functionality enables
you to spread the load of running expensive external programs onto other database
instances.

Even without other servers, running an external procedure through a nondefault agent
launches a separate process. This can be handy if you have a recalcitrant external pro-
gram. Launching it via a nondefault agent means that even if its extproc process crashes,
it won’t have any effect on other external procedures running in the session.

As a simple example of a nondefault agent, here is a configuration that allows an agent
to run on the same database but in a separate extproc task. The tnsnames.ora file needs
an additional entry such as:

agent0 =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = IPC)(KEY=extprocKey))
 (CONNECT_DATA = (SID = PLSExtProc))
)

Here, extprocKey can just be the same key as in your EXTPROC_CONNEC-
TION_DATA entry.

Because agents are created with a database link, we’ll need to create one of those:

SQL> CREATE DATABASE LINK agent0link
 2 CONNECT TO username IDENTIFIED BY password
 3 USING 'agent0';

1196 | Chapter 28: External Procedures

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

Now, finally, the agent can appear in a CREATE LIBRARY statement such as:

CREATE OR REPLACE LIBRARY extprocshell_lib_with_agent
 AS 'c:\oracle\admin\local\lib\extprocsh.dll'
 AGENT 'agent0';

Any call spec that was written to use this library will authenticate and connect through
this agent0 link, launching an extproc task separate from the default extproc task. In
this way, you could separate tasks from each other (for example, you could send the
thread-safe tasks to a multithreading agent and the others to dedicated agents).

Oracle also supports a dynamic arrangement that allows you to pass in the name of the
agent as a parameter to the external procedure. To take advantage of this feature, use
the AGENT IN clause in the call spec. For example (changes in boldface):

CREATE OR REPLACE PROCEDURE shell2 (name_of_agent IN VARCHAR2, cmd VARCHAR2)
AS
 LANGUAGE C
 LIBRARY extprocshell_lib
 NAME "extprocsh2"
 AGENT IN (name_of_agent)
 WITH CONTEXT
 PARAMETERS (CONTEXT, name_of_agent STRING, cmd STRING, cmd INDICATOR);

Notice that I had to include the name of the agent in the list of parameters. Oracle
enforces a rule that every formal parameter must have a corresponding entry in the
PARAMETERS clause. So I have to modify my external C library. In my case, I merely
added a second entry point, extprocsh2(), to the library with the following trivial
function:

void extprocsh2(OCIExtProcContext *ctx, char *agent, char *cmd, short cmdInd)
{
 extprocsh(ctx, cmd, cmdInd);
}

My code just ignores the agent string. Now, though, I can invoke my shell2 procedure
as in the following:

CALL shell2('agent0', 'whatever');

If you want your stored program to somehow invoke an external procedure on a remote
machine, you have a couple of options. You could implement an external procedure
on the local machine which is just a “pass-through” program, making a C-based remote
procedure call on behalf of PL/SQL. Alternatively, you could implement a stored PL/
SQL program on the remote machine as an external procedure, and call it from the
local machine via a database link. What isn’t possible is setting up an external procedure
listener to accept networked connections from a different machine.

Nondefault Agents | 1197

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

A Debugging Odyssey
It turns out that some debuggers, including the GNU debugger (GDB), can attach to a
running process and debug external procedures. Here is an outline of how I got this to
work on Solaris and on Windows XP.

As a preliminary step on both platforms, I compiled the shared library file with the
compiler option (-g in the case of GCC) needed to include symbolic information for
the debugger. That was the easy part. During testing, I discovered the slap-hand-on-
forehead fact that I could not debug my 64-bit Solaris external procedure with a 32-bit
debugger, so I also had to build and install a 64-bit gdb executable. This step began in
the root directory of the GDB source tree with the command:

OS> CC="gcc -m64" ./configure

At this point, the GDB build presented many surprises; it probably would have helped
to have a competent system administrator looking over my shoulder!

Another preparatory step, although optional, involves running the script dbgextp.sql,
which should be in the plsql/demo directory. If you’re using Oracle Database 10g or
later, you won’t find this directory in your default $ORACLE_HOME distribution be-
cause Oracle moved the entire directory to the Companion CD. However, you may be
able to extract the plsql/demo directory with a command like this:

OS> jar xvf /cdrom/stage/Components/oracle.rdbms.companion/10. x.x.x.x /1/
DataFiles/filegroup1.jar

If you do manage to locate the dbgextp.sql file, you’ll find that it contains some useful
inline comments, which you should definitely read. Then run the script as yourself (not
as SYS) to build a package named DEBUG_EXTPROC. This package contains a pro-
cedure whose sole purpose in life is to launch the external procedure agent, thus al-
lowing you to discover the corresponding process ID (PID). In a fresh SQL*Plus session,
you can run it as follows:

SQL> EXEC DEBUG_EXTPROC.startup_extproc_agent

This causes an extproc process to launch; its PID can be found using ps -ef or pgrep
extproc.

Why do I say the DEBUG_EXTPROC package is optional? Because you can also launch
the agent by running any old external procedure; or, if you happen to be using multi-
threaded agents, the process will already be pre-spawned, and you can probably figure
out the PID without breaking a sweat.

At any rate, armed with the PID, you can start the debugger and attach to the running
process:

OS> gdb $ORACLE_HOME/bin/extproc pid

When I first tried this, I got a “permission denied” error, which was cured by logging
in as the oracle account.

I then set a breakpoint on the “pextproc” symbol, per the instructions in the file
dbgextp.sql. Next, in my SQL*Plus session, I invoked my external procedure using:

1198 | Chapter 28: External Procedures

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

SQL> CALL shell(NULL);

I issued a GDB “continue,” and extproc promptly hit the pextproc breakpoint. Next, I
executed a GDB “share” command so the debugger would read the symbols in my just-
loaded external shared library; and, finally, I was able to set a breakpoint on the ex-
tprocsh() external procedure, issue a “continue,” and boom—I’m in my code! It worked
pretty well after that, allowing me to step through each line of my code, examine
variables, etc.

I found that debugging external procedures with Cygwin’s GDB on Microsoft platforms
required the following adjustments:

• I had to modify the listener service in the Windows control panel to execute under
the authority of my own user account rather than under that of “Local System.”

• Instead of ps -ef, I used Microsoft’s tasklist.exe program (or the Windows task
manager) to obtain the extproc PID.

• To view the external procedure’s source code during the debugging session, I found
that I needed to launch GDB from the directory containing its source file (there is
probably another way to do this).

On Solaris, my tests were performed using a 64-bit build of GDB 6.3 on Solaris 2.8. On
my Windows XP machine, I used Cygwin’s GDB 6.3 binary with no problems, but was
not able to get the MinGW GDB 5.2.1 binary to work.

Maintaining External Procedures
Here are some assorted bits of information that will assist you in creating, debugging,
and managing external procedures.

Dropping Libraries
The syntax for dropping a library is simply:

DROP LIBRARY library_name;

The Oracle user who executes this command must have the DROP LIBRARY or DROP
ANY LIBRARY privilege.

Oracle does not check dependency information before dropping the library. This fact
is useful if you need to change the name or location of the shared object file to which
the library points. You can just drop it and rebuild it, and any dependent routines will
continue to function. (More useful, perhaps, would be a requirement that you use a
DROP LIBRARY FORCE command, but such an option does not exist.)

Before you drop the library permanently, you may wish to look in the
DBA_DEPENDENCIES view to see if any PL/SQL module relies on the library.

Maintaining External Procedures | 1199

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

Data Dictionary
There are a few entries in the data dictionary that help manage external procedures.
Table 28-3 shows the USER_ version of the dictionary tables, but note that there are
corresponding entries for DBA_ and ALL_.

Table 28-3. Data dictionary views for external procedures

To answer the question... Use this view Example

What libraries have I created? USER_LIBRARIES SELECT *
FROM user_libraries;

What stored PL/SQL programs use the xyz
library in a call spec?

USER_DEPENDENCIES SELECT *
 FROM user_dependencies
 WHERE referenced_name = 'XYZ';

What external procedure agents (both
dedicated and multithreaded) are
currently running?

V$HS_AGENT SELECT * FROM V$HS_AGENT
 WHERE UPPER(program) LIKE 'EXTPROCS%'

What Oracle sessions are using which
agents?

V$HS_SESSION SELECT s.username, h.agent_id
 FROM V$SESSION s, V$HS_SESSION h
 WHERE s.sid = h.sid;

Rules and Warnings
As with almost all things PL/SQL, external procedures come with an obligatory list of
cautions:

• While the mode of each formal parameter (IN, IN OUT, OUT) may have certain
restrictions in PL/SQL, C does not honor these modes. Differences between the
PL/SQL parameter mode and the usage in the C module cannot be detected at
compile time, and could also go undetected at runtime. The rules are what you
would expect: don’t assign values to IN parameters, don’t read OUT parameters;
always assign values to IN OUT and OUT parameters, and always return a value
of the appropriate datatype.

• Modifiable INDICATORs and LENGTHs are always passed by reference for IN
OUT, OUT, and RETURN. Unmodifiable INDICATORs and LENGTHs are
always passed by value unless you specify BY REFERENCE. However, even if you
pass INDICATORs or LENGTHs for PL/SQL variables by reference, they are still
read-only parameters.

• Although you can pass up to 128 parameters between PL/SQL and C, if any of
them are float or double, your actual maximum will be lower. How much lower
depends on the operating system.

• If you use the multithreaded agent feature introduced in Oracle Database 10g, there
are special additional restrictions on your programs. All the calls you invoke from
the C program must be thread-safe. In addition, you want to avoid using global C
variables. Even in the nonthreaded version, globals may not behave as expected
due to “DLL caching” by the operating system.

1200 | Chapter 28: External Procedures

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

• Your external procedure may not perform DDL commands, begin or end a session,
or control a transaction using COMMIT or ROLLBACK. (See Oracle’s PL/SQL
User’s Guide and Reference for a list of unsupported OCI routines.)

Maintaining External Procedures | 1201

www.itbook.store/books/9781449324452

https://itbook.store/books/9781449324452

