
I just know I read about how
upcasting and downcasting make
event handling easier somewhere....

review and preview
Knowledge, power, and

building cool stuff

Learning’s no good until you BUILD something.�
Until you’ve actually written working code, it’s hard to be sure if you really get some of

the tougher concepts in C#. In this chapter, we’re going to use what we’ve learned to

do just that. We’ll also get a preview of some of the new ideas coming up soon. And

we’ll do all that by building phase I of a really complex application to make sure

you’ve got a good handle on what you’ve already learned from earlier chapters. So

buckle up…it’s time to build some software!

This is the GDI+ Graphics bonus PDF download for Head First C#. GDI+ is the API that allows
WinForms programs to draw and print graphics. This PDF divided into three sections. The first
section is a review/preview chapter, which was originally published as Chapter 12 in the second
edition of Head First C#. In the first scetion, you’ll build a beehive simulator. That simulator will
serve as the basis for the project that you’ll build in the second section, in which you’ll learn about
the specific GDI+ graphics methods, classes, and structs, and how to use them in your programs.

Did you find an error in this PDF? Please submit it using the Errata page for Head First
C# (3rd edition) so we can fix it and upload an updated PDF as quickly as possible!

http://www.oreillynet.com/oreilly/authors/errata.csp?b=0636920027812www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

2   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

You’ve come a long way, baby
We’ve come a long way since we first used the IDE to help us rescue the
Objectville Paper Company. Here’s just a few of the things you’ve done
over the last several hundred pages:

[note from human resources: “baby” is no longerpolitically correct. Please use age-challenged orinfant to avoid offending readers.]

Navigator obj
e c

tnavigator3

4.2 miles

Navigator obj
e c

tnavigator1

3.5 miles

Navigator obj
e c

t

navigator2

3.8 miles

Navigator

SetLocation()
SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

7 int variables

heig
hts[

]

 int int int int int int int

.NET Framework
solutions

Form Obje
ct

s

Data access DinnerParty
NumberOfPeople
CostOfDecorations
CostOfBeveragesPerPerson
HealthyOption
CalculateCostOfDecorations()
CalculateCost()
SetHealthyOption()

BirthdayParty
NumberOfPeople
CostOfDecorations
CakeSize
CakeWriting
CalculateCostOfDecorations()
CalculateCost()

Party
NumberOfPeople
CostOfDecorations

CalculateCostOfDecorations()
CalculateCost()

You’ve used inheritance, as well as interfaces and subclasses, to build object trees.
You’ve built forms, used the
.NET Framework, and even
talked with databases.

You’ve used event
s to notify

objects about cer
tain things

that happen, while keeping your

objects’ concerns
separate.

Objects, classes, instance
s…

all these strange term
s are

now part of your everyda
y

programming toolbox.

Even complex types like arrays
are no big deal to work with.

Debugging and exceptions are part of your problem-eliminating techniques.

my brain’s full

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   3

gdi+ graphics

We’ve also become beekeepers
Back in Chapter 6, we built some bee classes. Remember these?

We had different bees doing different jobs…

…and even shifts
that the bees
worked on.

But we can do a lot bet ter now…
You’ve learned a lot since Chapter 6, though. So let’s start from
scratch, and build an animated beehive simulator over the
next few chapters. We’ll end up with a user interface that shows
us the hive and the field the bees are flying around, and even a
stats window letting users know what their bees are doing.

The Hive window shows
us what’s happening.

The stats window
lets us monitor the
simulation in detail.

We can even watch the bees
work a field of flowers.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

4   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

The beehive simulator architecture

System.Window
s.

Fo
rm

s.
Fo

rm

Main form

List of Bee o
bj

e
c

ts

Hive obje
ct

List of Flower o
b

je
c

ts

Here’s the architecture for the bee simulator. Even
though the simulator will be controlling a lot of different
bees, the overall object model is pretty simple.

This is the object for the main
window that shows the bee
stats and messages.

The World object keeps track of everything in the simulator: the state of the hive, every bee, and every flower.

Each bee knows its location (outside the hive at point 174, 36) and its state (“flying to a flower”, “gathering nectar”, “making honey”).
Everything in the architecture m

aps to the

overall world of bees, which we’ll build a GUI

for in the next chapter.

World represents the
entire thing.

We’ll need Flower objects
for each flower.

The Hive is home base for the bees.

And of course, we’ll
need a Bee class.

World obje
ct

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   5

gdi+ graphics

Building the beehive simulator
Of course, we’ve never built anything this complex before,
so it’s going to take us a couple of chapters to put all the
pieces together. Along the way, you’ll add timers, LINQ,
and a lot of graphical skill to your toolkit.

Here’s what you’re going to do in this chapter (more to
come in the next):

Build a Flower class that ages, produces nectar,
and eventually wilts and dies.

1

Build a Bee class that has several different states
(gathering nectar from a flower, returning to the
hive), and knows what to do based on its state.

2

Build a Hive class that has an entrance, exit,
nursery for new bees, and honey factory for
turning collected nectar into honey.

3

Build a World class that manages the hive,
flowers, and bees at any given moment.

4

Build a main form that collects statistics from the
other classes and keeps the world going.

5

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

6   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

Let’s jump right into some code. First up, we need a Flower class. The Flower class has a
location defined by a point, an age, and a lifespan. As time goes on, the flower gets older. Then,
when its age reaches its lifespan, the flower dies. It’s your job to put all this into action.

Flower
Location: Point
Age: int
Alive: bool
Nectar: double
NectarHarvested: double
lifespan: int

HarvestNectar(): double
Go()

Write the skeleton code for Flower
Below is the class diagram for Flower. Write the basic class skeleton. Location,
Age, Alive, Nectar, and NectarHarvested are automatic properties.
NectarHarvested is writable; the other four are read-only. For now, leave the methods
blank; we’ll come back to those in a minute.

1

All of these should be
read-only properties
except NectarHarvested.

This is used only in the
class, so it just needs to
be a private field.

The type after the
colon is the type o

f
the variable…

…or the return type
of the method.

Add several constants to the class
We need lots of constants for flowers. Add six to your Flower class:

2

 LifeSpanMin, the shortest flower lifespan

 LifeSpanMax, the longest flower lifespan

 InitialNectar, how much nectar a flower starts with

 MaxNectar, how much nectar a flower can hold

 NectarAddedPerTurn, how much nectar gets added each time the flower grows older

 NectarGatheredPerTurn, how much nectar gets collected during a cycle

You should be able to figure out the types for each constant based on their
values. Flowers live between 15,000 and 30,000 cycles, and have 1.5 units
of nectar when they start out. They can store up to 5 units of nectar. In
each cycle of life, a flower adds 0.01 units of nectar, and in a single cycle,
0.3 units can be collected.

A class “skeleton” is jus
t its field,

property, and method declarations,

with no implementation.

FYI, you don’t usually
show constants in a
class diagram.

stop and smell the flowers

Since this simulator will be animated, we’ll be drawing it frame by frame. We’ll use the words “frame,” “cycle,” and “turn” interchangeably.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   7

gdi+ graphics

Build the constructor
The constructor for Flower should take in a Point, indicating the flower’s location, and an
instance of the Random class. You should be able to use those arguments to set the location
of the flower, and then set its age to 0, set the flower to alive, and set its nectar to the initial
amount of nectar for a flower. Since no nectar has been harvested yet, set that variable
correctly, as well. Finally, figure out the flower’s lifespan. Here’s a line of code to help you:

3

lifeSpan = random.Next(LifeSpanMin, LifeSpanMax + 1);

This will only work if you’ve got your
variables and constants named right, as well
as the argument to the Flower constructor.

Write code for the HarvestNectar() method
Every time this method is called, it should check to see if the nectar gathered every cycle
is larger than the amount of nectar left. If so, return 0. Otherwise, you should remove
the amount collected in a cycle from the nectar the flower has left, and return how much
nectar was collected. Oh, and don’t forget to add that amount to the NectarHarvested
variable, which keeps up with the total nectar collected from this particular flower.

4

Hint: You’ll use NectarGatheredPerTurn, Nectar, and NectarHarvested in this method, but nothing else.

Write code for the Go() method
This is the method that makes the flower go. Assume every time this method is called, one
cycle passes, so update the flower’s age appropriately. You’ll also need to see if the age is
greater than the flower’s lifespan. If so, the flower dies.

Assuming the flower stays alive, you’ll need to add the amount of nectar each flower gets
in a cycle. Be sure and check against the maximum nectar your flower can store, and don’t
overrun that.

5

Answers on the next page…try and finish
your code and compile it before peeking.

The final product will be animated, with little
pictures of bees flying around. The Go() method
will be called once every frame, and there will be
several frames run per second.

You’ll need to add using System.Drawing; to the top of any class file that uses a Point.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

8   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

class Flower {
 private const int LifeSpanMin = 15000;
 private const int LifeSpanMax = 30000;
 private const double InitialNectar = 1.5;
 private const double MaxNectar = 5.0;
 private const double NectarAddedPerTurn = 0.01;
 private const double NectarGatheredPerTurn = 0.3;
 public Point Location { get; private set; }
 public int Age { get; private set; }
 public bool Alive { get; private set; }
 public double Nectar { get; private set; }
 public double NectarHarvested { get; set; }
 private int lifeSpan;

 public Flower(Point location, Random random) {
 Location = location;
 Age = 0;
 Alive = true;
 Nectar = InitialNectar;
 NectarHarvested = 0;
 lifeSpan = random.Next(LifeSpanMin, LifeSpanMax + 1);
 }

 public double HarvestNectar() {
 if (NectarGatheredPerTurn > Nectar)
 return 0;
 else {
 Nectar -= NectarGatheredPerTurn;
 NectarHarvested += NectarGatheredPerTurn;
 return NectarGatheredPerTurn;
 }
 }

 public void Go() {
 Age++;
 if (Age > lifeSpan)
 Alive = false;
 else {
 Nectar += NectarAddedPerTurn;
 if (Nectar > MaxNectar)
 Nectar = MaxNectar;
 }
 }
}

Your job was to build the Flower class for our beehive simulator. Flower
Location: Point
Age: int
Alive: bool
Nectar: double
NectarHarvested: double
lifespan: int

HarvestNectar(): double
Go()

Make sure the flower
stops adding nectar
after it’s dead.

Location, Age,
Alive, and Nectar
are all readonly
automatic
properties.

NectarHarvested
will need to be
accessible to other
classes.

Flowers have random
lifespans, so the field of flowers doesn’t all change at once.

A bee calls HarvestNectar() to get
nectar out of a flower. A bee can
only harvest a little bit of nectar
at a time, so he’ll have to sit near
the flower for several turns until
the nectar’s all gone.

As part of the
simulator’s animation,
the Go() method will be
called each frame. This
makes the flower age
just a tiny little bit per
frame. As the simulator
runs, those tiny bits will
add up over time.

where have all the flowers gone?

Point lives in the System.Drawing namespace, so make sure you
added using System.Drawing; to the top of the class file.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   9

gdi+ graphics

Q: It doesn’t look like
NectarHarvested is used anywhere in
the class, except where we increment it.
What’s that variable for?

A: Good catch! We’re planning ahead a
bit. Eventually, the simulator will keep an
eye on flowers, and how much total nectar
has been harvested, for our statistics
monitor. So leave it in, and our other
classes will use it shortly.

Q: Why all the read-only automatic
properties?

A: Remember Chapter 5, and hiding
our privates? Always a good practice.
Flowers can take care of those values, so
we’ve made them read-only. Other objects,
like bees and the hive, should be able
to read those properties, but not change
them. But remember, they’re only read-
only outside of the class—code inside the
class can access the private set accesor.

Q: My code looks different. Did I do
something wrong?

A: You might have your code in each
method in a different order, but as long
as your code functions the same way as
ours does, you’ll be OK. That’s another
aspect of encapsulation: the internals
of each class aren’t important to other
classes, as long as each class does what
it’s supposed to do.

Life and death of a f lower
Our flower goes through a basic turn, living, adding nectar,
having nectar harvested, and eventually dying:

Flower o

bje
ct

age = 0
nectar = 1.5

Flower o

bje
ct

age = 17809
nectar = 3.2

Flower o

bje
ct

age = 30291
nectar = .83

DEAD alive = false

When a flower is created,
it

has an age of
0, and a small

amount of necta
r.

Eventually, we’ll have other classes harvesting nectar, too. So that reduces the overall nectar the flower has.

As the flower gets
older, it produces
more nectar.

Eventually, the flower’s
age hits its lifespan, an

d
the flower dies.

If Go() increases the age of the Flower by 1, and the lifespan range
is between 15,000 and 30,000, that means Go() will get called at least
15,000 times for each flower before it dies. How would you handle calling
the method that many times? What if there are 10 flowers? 100? 1,000?

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

10   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

class Bee {
 private const double HoneyConsumed = 0.5;
 private const int MoveRate = 3;
 private const double MinimumFlowerNectar = 1.5;
 private const int CareerSpan = 1000;

 public int Age { get; private set; }
 public bool InsideHive { get; private set; }
 public double NectarCollected { get; private set; }

 private Point location;
 public Point Location { get { return location; } }

 private int ID;
 private Flower destinationFlower;

 public Bee(int id, Point location) {
 this.ID = id;
 Age = 0;
 this.location = location;
 InsideHive = true;
 destinationFlower = null;
 NectarCollected = 0;
 }

 public void Go(Random random) {
 Age++;
 }

Now we need a Bee class
With flowers ready to be harvested, we need a Bee class. Below is
the basic code for Bee. The Bee knows its age, whether or not it’s
in the hive, and how much nectar it can collect. We’ve also added a
method to move the bee toward a specific destination point.

Like the Flower class, there are several bee-specific constants we need to define.

We used a backing field for location. If we’d used an automatic property, MoveTowardsLocation() wouldn’t
be able to set its members directly (“Location.X -= MoveRate”).

A bee needs an ID and an initial location.

Bees start out inside the
hive, they don’t have a
flower to go to, and they
don’t have any nectar.

We’ll have to add a lot more code to Go() before we’re done, but this will get us started.

MinimumFlowerNectar is how the bee figures out which flowers are eligible for harvesting.

Each bee will be assigned its own
unique ID number.

busy bee

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   11

gdi+ graphics

 private bool MoveTowardsLocation(Point destination) {
 if (Math.Abs(destination.X - location.X) <= MoveRate &&
 Math.Abs(destination.Y - location.Y) <= MoveRate)
 return true;

 if (destination.X > location.X)
 location.X += MoveRate;
 else if (destination.X < location.X)
 location.X -= MoveRate;

 if (destination.Y > location.Y)
 location.Y += MoveRate;
 else if (destination.Y < location.Y)
 location.Y -= MoveRate;

 return false;
 }

This method starts by figuring out if we’re already within our MoveRate of being at the destination.

If we’re not close enough,
then we move toward the
destination by our move rate.

We return false, since we’re not yet at the destination point. We need to keep moving.

Bees have lots of things they can do. Below is a list. Create a new enum that Bee uses called
BeeState. You should also create a read-only automatic property called CurrentState
for each Bee to track that bee’s state. Set a bee’s initial state to idle, and in the Go() method,
add a switch statement that has an option for each item in the enum.

The enum item		 What the item means
Idle			 The bee isn’t doing anything
FlyingToFlower		 The bee’s flying to a flower
GatheringNectar	 The bee’s gathering nectar from a flower
ReturningToHive		 The bee’s heading back to the hive
MakingHoney		 The bee’s making honey
Retired			 The bee’s hung up his wings

Here we used Math.Abs() to calculate the absolute
value of the difference between the destination and
the current location.

The MoveTowardsLocation()
destination moves the bee’s
current location by changing
the X and Y values of its
location field. It returns
true if the bee’s reached its
destination.

If the bee
reached its
destination,
the method
returns true;
otherwise, it
returns false.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

12   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

Bees have lots of things they can do. Below is a list. Create a new enum that Bee uses
called BeeState. You should also create a private currentState field for each Bee to
track that bee’s state. Set a bee’s initial state to idle, and in the Go() method, add a switch
statement that has an option for each item in the enum.

 enum BeeState {
 Idle,
 FlyingToFlower,
 GatheringNectar,
 ReturningToHive,
 MakingHoney,
 Retired
 }

class Bee {
 // constant declarations
 // variable declarations

 public BeeState CurrentState { get; private set; }

 public Bee(int ID, Point initialLocation) {
 this.ID = ID;
 Age = 0;
 location = initialLocation;
 InsideHive = true;
 CurrentState = BeeState.Idle;
 destinationFlower = null;
 NectarCollected = 0;
 }

Here’s the enum with all
the different bee states.

We also need a variable to track the state of each bee.

The bee starts out idle.

bee cool

Did you remember to add using System.Drawing; to the top of the
class file (because it uses Point)?

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   13

gdi+ graphics

public void Go(Random random) {
 Age++;
 switch (CurrentState) {
 case BeeState.Idle:
 if (Age > CareerSpan) {
 CurrentState = BeeState.Retired;
 } else {
 // What do we do if we’re idle?
 }
 break;
 case BeeState.FlyingToFlower:
 // move towards the flower we’re heading to
 break;
 case BeeState.GatheringNectar:
 double nectar = destinationFlower.HarvestNectar();
 if (nectar > 0)
 NectarCollected += nectar;
 else
 CurrentState = BeeState.ReturningToHive;
 break;
 case BeeState.ReturningToHive:
 if (!InsideHive) {
 // move towards the hive
 } else {
 // what do we do if we’re inside the hive?
 } break;
 case BeeState.MakingHoney:
 if (NectarCollected < 0.5) {
 NectarCollected = 0;
 CurrentState = BeeState.Idle;
 } else {
 // once we have a Hive, we’ll turn the nectar into honey
 }
 break;
 case BeeState.Retired:
 // Do nothing! We’re retired!
 break;
 }
 }
}

Here’s the switch() statement to handle each bee’s state.

You should have
each of these
states covered.

We’ve filled out a few
of the states. It’s OK
if you didn’t come up
with this code, but go
ahead and add it in now.

If the age reaches the bee’s lifespan,
the bee retires. But he’ll finish the
current job before he does.

We’ll fill this code in a bit later.

Here, we harvest
nectar from the
flower we’re working….

…and if there’s nectar left, add it to what we’ve already collected…
…but if there’s no nectar
left, head for the hive.

Returning to the hive is different based on whether we’re already in the hive or not.

The bee adds half a unit of
nectar to the honey factory
at a time. If there’s not
enough nectar to add, the
factory can’t use it so the
bee just discards it.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

14   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

P. A. H. B. (Programmers Against Homeless Bees)
We’ve got bees, and flowers full of nectar. We need to write code so
the bees can collect nectar, but before that happens, where do the
bees get created in the first place? And where do they take all that
nectar? That’s where a Hive class comes in.

The hive isn’t just a place for bees to come back to, though. It has
several locations within it, all with different points in the world.
There’s the entrance and the exit, as well as a nursery for birthing
more bees and a honey factory for turning nectar into honey.

Bees come in the entrance, and leave from the exit. It’s all very orderly.

New bees are
created and
start out in the
hive nursery.

Each location is distinct,
and bees can travel from
one to the other just like
they can go from the hive
to a flower.

The hive runs on honey
The other big part that the hive plays is keeping up with how much
honey it has stored up. It takes honey for the hive to keep running,
and if new bees need to be created, that takes honey, too. On top
of that, the honey factory has to take nectar that bees collect and
turn that into honey. For every unit of nectar that comes in, .25
units of honey can be created.

Think about this for a second…as time
passes, the hive uses honey to run, and to
create more bees. Meanwhile, other bees
are bringing in nectar, which gets turned
into honey, which keeps things going longer.

It’s up to you (with some help) to model all
of this in the simulator code.

beehive hairdo

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   15

gdi+ graphics

It’s up to you to write the code for Hive.

Write the skeleton code for Hive
Like we did with the Flower class, you should start with
a basic skeleton for Hive. The class diagram is shown to
the right. Make Honey a read-only automatic property,
locations should be private, and beeCount is only
used internally, so can be a private field.

1
Hive

Honey: double
locations: Dictionary<string, Point>
beeCount: int

InitializeLocations()
AddHoney(Nectar: double): bool
ConsumeHoney(amount: double): bool
AddBee(random: Random)
Go(random: Random)
GetLocation(location: string): Point

Define the constants for the Hive
You need a constant for the initial number of bees (6), the amount
of honey the hive starts with (3.2), the maximum amount of honey
the hive can store (15), the ratio of units of nectar produced from
units of honey (.25), the maximum number of bees (8), and the
minimum honey required for the hive to birth new bees (4).

2

You’ll have to figure out good names for
each, as well as the types. For types,
don’t just think about initial values, but

also the values these constants will be
used with. Doubles pair best with other
doubles, and ints with other ints.

Write the code to work with Locations
First, write the GetLocation() method. It should take in
a string, look up that string in the locations dictionary,
and return the associated point. If it’s not there, throw an
ArgumentException.

Then, write the InitializeLocations() method. This
method should set up the following locations in the hive:

3

 Entrance, at (600, 100)

 Nursery, at (95, 174)

 HoneyFactory, at (157, 98)

 Exit, at (194, 213)

Build the Hive constructor
When a hive is constructed, it should set its honey to the initial
amount of honey all hives have. It should set up the locations
in the hive, and also create a new instance of Random. Then,
AddBee() should be called—passing in the Random instance you
just created—once for each bee that starts out in the hive.

4

Each of these maps to a location within the 2D space that our hive takes up. Later on, we’ll have to make sure the simulator makes the hive cover all these points.
In this simulation, we’re just

assuming one hive, with fixed

points. If you wanted multiple

hives, you might make the

points relative to t
he hive,

instead of the over
all world.

AddBee() needs a Random object because it adds
a random value to the Nursery location—that way
the bees don’t start on top of each other.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

16   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

Your job was to start building the Hive class.

class Hive {
 private const int InitialBees = 6;
 private const double InitialHoney = 3.2;
 private const double MaximumHoney = 15.0;
 private const double NectarHoneyRatio = .25;
 private const double MinimumHoneyForCreatingBees = 4.0;
 private const int MaximumBees = 8;
 private Dictionary<string, Point> locations;
 private int beeCount = 0;
 public double Honey { get; private set; }
 private void InitializeLocations() {
 locations = new Dictionary<string, Point>();
 locations.Add(“Entrance”, new Point(600, 100));
 locations.Add(“Nursery”, new Point(95, 174));
 locations.Add(“HoneyFactory”, new Point(157, 98));
 locations.Add(“Exit”, new Point(194, 213));
 }

 public Point GetLocation(string location) {
 if (locations.Keys.Contains(location))
 return locations[location];
 else
 throw new ArgumentException(“Unknown location: ” + location);
 }

 public Hive() {
 Honey = InitialHoney;
 InitializeLocations();
 Random random = new Random();
 for (int i = 0; i < InitialBees; i++)
 AddBee(random);
 }

 public bool AddHoney(double nectar) { return true; }
 public bool ConsumeHoney(double amount) { return true; }
 private void AddBee(Random random) { }
 public void Go(Random random) { }
}

You might have different names for your constants. That’s OK, as long as you’re consistent in the rest of your code.
We made MaximumHoney
a double, since it can
range from InitialHoney
(3.2) to this value. Since
InitialHoney will need to
be a double, it’s best to
make this a double, too.Remember dictionaries? Ours stores a location, keyed with a string value.

Don’t forget to create
 a

new instance of Dictionary,

or this won’t work.
The rest of this method is pretty straightforward.

You should have calle
d

AddBee() once for each be
e

that a hive starts with.

We don’t have code
for these yet, but
you should have built
empty methods as
placeholders.

This method protects other classes from
working with our locations dictionary
and changing something they shouldn’t.
It’s an example of encapsulation.

first design then build

Make sure you add “using System.
Drawing;” because this code uses
Point.

You could also throw a NotImplementedException in any method you
haven’t implemented yet. That’s a great way to keep track of code you
still have to build.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   17

gdi+ graphics

Isn’t this sort of a weird
way to build code? Our bees don’t know

about flowers yet, and our hive is full of
empty method declarations. Nothing actually

works yet, right?

Real code is built bit by bit

It would be nice if you could write all the code for a single
class at one time, compile it, test it, and put it away, and
then start on your next class. Unfortunately, that’s almost
never possible.

More often than not, you’ll write code just the way we are
in this chapter: piece by piece. We were able to build pretty
much the entire Flower class, but when it came to Bee,
we’ve still got some work to do (mostly telling it what to do
for each state).

And now, with Hive, we’ve got lots of empty methods to
fill in. Plus, we haven’t hooked any Bees up to the Hive.
And there’s still that nagging problem about how to call the
Go() method in all these objects thousands of times.…

But we didn’t really start out
by putting the classes together! We
figured out the architecture first, and

then started building.

First you design, then you build

We started out the project knowing exactly what we
wanted to build: a beehive simulator. And we know
a lot about how the bees, flowers, hive, and world all
work together. That’s why we started out with the
architecture, which told us how the classes would work
with each other. Then we could move on to each class,
designing them individually.

Projects always go a lot more smoothly if you have a good
idea of what you’re building before you start building it.
That seems pretty straightforward and common-sense. But
it makes all the difference in the final product.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

18   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

Fil ling out the Hive class
Let’s get back to the Hive class, and fill in a few of
those missing methods:

class Hive {
 // constant declarations
 // variable declarations

 // InitializeLocations()
 // GetLocation()
 // Hive constructor

 public bool AddHoney(double nectar) {
 double honeyToAdd = nectar * NectarHoneyRatio;
 if (honeyToAdd + Honey > MaximumHoney)
 return false;
 Honey += honeyToAdd;
 return true;
 }
 public bool ConsumeHoney(double amount) {
 if (amount > Honey)
 return false;
 else {
 Honey -= amount;
 return true;
 }
 }
 private void AddBee(Random random) {
 beeCount++;
 int r1 = random.Next(100) - 50;
 int r2 = random.Next(100) - 50;
 Point startPoint = new Point(locations[“Nursery”].X + r1,
 locations[“Nursery”].Y + r2);
 Bee newBee = new Bee(beeCount, startPoint);
 // Once we have a system, we need to add this bee to the system
 }
 public void Go(Random random) { }
}

First, we figure out how
much honey this nectar

can

be converted to…
…and then see if there’s room in the hive for that much more honey.

If there’s room, we add the
honey to the hive.

This method takes an amount of
honey, and tries to consume it
from the hive’s stores.

If there’s not enough honey in the hive
to meet the demand, we return false.

If there’s enough, remove it from the
hive’s stores and return true.

This is
private…
only Hive
instances
can create
bees.

This creates a point within
50 units in both the X
and Y direction from the
nursery location.

Add a new
bee, at the
designated
location.

We’ll finish AddBee() and fill in
the Go() method soon….

make the hive Go()

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   19

gdi+ graphics

The hive’s Go() method
We’ve already written a Go() method for Flower, and a Go()
method for Bee (even though we’ve got some additional code to
add in). Here’s the Go() method for Hive:

public void Go(Random random) {

 if (Honey > MinimumHoneyForCreatingBees)

 AddBee(random);

}

Unfortunately, this isn’t very realistic. Lots of times in a busy
hive, the queen doesn’t have time to create more bees. We don’t
have a QueenBee class, but let’s assume that when there’s
enough honey to create bees, a new bee actually gets created
10% of the time. We can model that like this:

public void Go(Random random) {

 if (Honey > MinimumHoneyForCreatingBees

 && random.Next(10) == 1) {

 AddBee(random);

 }

}

This is an easy way to simulate a 1 in

10 chance of a bee getting created
.

It comes up with a random number
between 0 and 9. If the number is 1,

then create the bee.

The only constraint (at least for now) is the hive must have enough honey to create more bees.

The same instance of Random that
got passed to Go() gets sent to the
AddBee() method.

One reason to leave it out is so that you can save the Random seed—that way you can rerun a specific simulation…if you feel like doing that later!

Q: So the hive can create an infinite
number of bees?

A: Right now it can—or, at least, it’s got
a very large limit—but you’re right, that’s not
very realistic. Later on, we’ll come back to
this, and add a constraint that only lets so
many bees exist in our simulator world at
one time.

Q: Couldn’t we assign that instance
of Random to a property of the class,
instead of passing it on to AddBee()?

A: You sure could. Then AddBee could
use that property, rather than a parameter
passed in. There’s not really a right answer
to this one; it’s up to you.

Q: I still don’t understand how all of
these Go() methods are getting called.

A: That’s OK, we’re just about to get to
that. First, though, we need one more object:
the World class, which will keep track of
everything that’s going on in the hive, track
all the bees, and even keep up with flowers.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

20   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

System.Window
s.

Fo
rm

s.
Fo

rm

Main form

List of Bee o
bj

e
c

ts

Hive obje
ct

List of Flower o
b

je
c

ts

World obje
ct

We’re ready for the World
With the Hive, Bee, and Flower classes in place, we can
finally build the World class. World handles coordination
between all the individual pieces of our simulator: keeping
up with all the bees, telling the hive if there is room for
more bees, locating flowers, etc.:

We don’t have all the code for these classes written, but we’ve got the basic parts in place.

The World will
keep up with lists

of the flowers
and the bees.

Our form, when we develop it, uses the World object to keep up with what’s going on.

World is really just
a big container and
engine for all the
individual parts.

foreach (Bee bee in Bees)
 bee.Go(random);

The World object keeps everything Go()ing
One of the biggest tasks of the World object is, for each turn in
the simulator, to call Go() on every Flower, Bee, and Hive
instance. In other words, World makes sure that life continues
in the simulator world.

We still have to deal with
calling World’s Go() method,
but we’ll come back to that.

hive.Go(random);

foreach (Flower flower in Flowers)
 flower.Go(random);

Go()

Go() in World calls Go() on all the other objects in the world.

take on the world

System.Window
s.

Fo
rm

s.
Fo

rm

Main form List of Bee o
bj

e
c

ts

Hive obje
ct

List of Flower o
b

je
c

ts

World obje
ct

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   21

gdi+ graphics

Bee

Bee
Bee

Bee

Bee

We’re building a turn-based system
Our Go() methods in each object are supposed to run each turn, or cycle, of our
simulator. A turn in this case just means an arbitrary amount of time: for instance, a
turn could be every 10 seconds, or every 60 seconds, or every 10 minutes.

The main thing is that a turn affects every object in the world. The hive ages by one
“turn,” checking to see if it needs to add more bees. Then each bee takes a turn, moving
a very small distance toward its destination or doing one small action, and getting older.
Then each flower takes a turn, manufacturing a little nectar and getting older too. And
that’s what World does: it makes sure that every time its Go() method is called, every
object in the world gets a turn to act.

World obje
ct

Go()

Every time Go() in World is called, every object in the world has to get a turn to Go().

Hive

Go()

Go()

Each Bee and each Flower
must have Go() called, or the
simulator breaks down.

One of the big object-oriented principles we’ve been using in the simulator
is encapsulation (flip back to Chapter 5 for a refresher). See if you can look
over the code we’ve developed so far and come up with two examples of
encapsulation for each class you’ve built.

Hive Bee Flower

1.

2.

1.

2.

1.

2.

Each “turn” will be drawn
as a single frame of
animation, so the world
only needs to change a
tiny little bit each turn.

Flower

Flower

Flower

Flower
Flower

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

22   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

using System.Drawing;
class World {
 private const double NectarHarvestedPerNewFlower = 50.0;
 private const int FieldMinX = 15;
 private const int FieldMinY = 177;
 private const int FieldMaxX = 690;
 private const int FieldMaxY = 290;

 public Hive Hive;
 public List<Bee> Bees;
 public List<Flower> Flowers;

 public World() {
 Bees = new List<Bee>();
 Flowers = new List<Flower>();
 Random random = new Random();
 for (int i = 0; i < 10; i++)
 AddFlower(random);
 }

 public void Go(Random random) {
 Hive.Go(random);

 for (int i = Bees.Count - 1; i >= 0; i--) {
 Bee bee = Bees[i];
 bee.Go(random);
 if (bee.CurrentState == BeeState.Retired)
 Bees.Remove(bee);
 }

 double totalNectarHarvested = 0;
 for (int i = Flowers.Count - 1; i >= 0; i--) {
 Flower flower = Flowers[i];
 flower.Go();
 totalNectarHarvested += flower.NectarHarvested;
 if (!flower.Alive)
 Flowers.Remove(flower);
 }

Here’s the code for World
The World class is actually one of the simpler classes in our simulator.
Here’s a starting point for the code. But if you look closely, you’ll notice
that it’s missing a few things (which you’ll add in just a minute).

These define the bounds of the
field, which is where flowers can live.

Every world has one hive, a list
of bees, and a list of flowers.

When we create a new world, we
initialize our lists, create a new hive,

and then add 10 initial flowers.

This is easy…we just tell the Hive to Go(), passing in a Random instance.

If a bee’s retired, we need to take

it out of the world.

We run through all the current
bees and tell them Go().

We run through each flower and tell it to Go().

We need to keep up with
how much nectar’s been
collected this turn, too.
So we get that by summing
up the nectar collected
from each flower.Just like bees, we remove any flowers that die during this turn.

what in the world are you doing? Encapsulation alert!

Take a look at the public Hive, Bees,
and Flowers fields. Another class
could accidentally reset any of
those to null, which would cause
serious problems! Can you think of
a way to use properties or methods
to encapsulate them better?

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   23

gdi+ graphics

 if (totalNectarHarvested > NectarHarvestedPerNewFlower) {
 foreach (Flower flower in Flowers)
 flower.NectarHarvested = 0;
 AddFlower(random);
 }
 }

 private void AddFlower(Random random)
 {
 Point location = new Point(random.Next(FieldMinX, FieldMaxX),
 random.Next(FieldMinY, FieldMaxY));
 Flower newFlower = new Flower(location, random);
 Flowers.Add(newFlower);
 }
}

Bees pollinate flowers as they harvest
nectar. Once they’ve harvested enough
nectar from the flowers, they’ve
pollinated enough for the world to add a
new flower.

If there’s enough nectar in the field, the world adds a new flower.

This handles coming up with a random
location in the field…

…and then adding a new flower
in that location.

One of the big object-oriented principles we’ve been using in the simulator
is encapsulation (flip back to Chapter 5 for a refresher). See if you can look
over the code we’ve developed so far and come up with two examples of
encapsulation for each class you’ve built.

Hive Bee Flower

1. The hive’s Locations
dictionary is private
2. It gives the bees a
method to add honey

1. The bee’s location is
read-only
2. So is its age. So other
classes can’t write to them

1. The flower provides a
method to gather nectar
2. And it keeps its alive
boolean private

Here are the ones we came
up with. Did you come up
with any others?

Q: Why don’t you use foreach
loops to remove dead flowers and retired
bees?

A: Because you can’t remove items
from a collection from inside a foreach
loop that’s iterating on it. If you do, .NET will
throw an exception.

Q: OK, then why does each of those
for loops start at the end of the list and
count down to 0?

A: Because each loop needs to preserve
the numbering of the list. Let’s say you
started at the beginning of a list of five
flowers, and your loop discovered that one
of the flowers in the middle was dead. If it

removes the flower at index #3, now the list
only has 4 flowers in it, and there’s a new
flower at index #3—and that flower will end
up getting skipped, because the next time
through the loop it’ll look at index #4.
If the loop starts at the end, then the flower
that moves into the empty slot will already
have been looked at by the loop, so there’s
no chance of missing a flower.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

24   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

With all four of our core classes in place, we’ve got some work to do to tie them all
together. Follow the steps below, and you should have working Bee, Hive, Flower,
and World classes. But beware: you’ll have to make changes to almost every class, in
several places, before you’re done.

Update Bee to take in a Hive and World reference.
Now that we’ve got a class for Hive and a class for World, Bee objects need to
know about both. Update your code to take in references to a bee’s hive and world as
parameters to its constructor and save those references for later use.

1

Update Hive to take in a World reference.
Just as a Bee needs to know about its Hive, a Hive needs to know about its
World. Update Hive to take in a World reference in its constructor, and save that
reference. You should also update the code in Hive that creates new bees to pass
into the Bee a reference to itself (the Hive) and the World.

2

Update World to pass itself into a new Hive.
Update your World class so that when it creates a new Hive, it
passes in a reference to itself.

3

Place an upper limit on the bees that Hive can create.
The Hive class has a MaximumBees constant that determines
how many bees the Hive can support (inside and outside the hive,
combined). Now that the Hive has access to the World, you should
be able to enforce that constraint.

4

Hint: Look at code near where you create or add bees. There are two places where code related to this occurs in Hive, so be careful.
When the Hive creates bees, let the World know.
The World class uses a List of bee objects to keep up with all the
bees that exist. When the Hive creates a new Bee, make sure that
Bee gets added to the overall list that the World is keeping up with.

5

put it all together

STOP! At this point, you should be able to compile all of
your code. If you can’t, check through it and correct any

mistakes before continuing on.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   25

gdi+ graphics

Q: Why did you throw an exception in the Hive class’s
GetLocation() method?

A: Because we needed a way to deal with bad data passed into
the parameter. The hive has a few locations, but the parameter to
GetLocations() can pass any string. What happens if there’s
a bug in the program that causes an invalid string (like an empty
string, or the name of a location that’s not in the locations dictionary)
to be sent as the parameter? What should the method return?

When you’ve got an invalid parameter and it’s not clear
what to do with it, it’s always a good idea to throw a new
ArgumentException. Here’s how the GetLocation()
method does it:

 throw new ArgumentException(
 “Unknown location: ” + location);

This statement causes the Hive class to throw an
ArgumentException with the message “Unknown location:”
that contains the location that it couldn’t find.

The reason this is useful is that it immediately alerts you if a bad
location parameter is passed to the method. And by including the
parameter in the exception message, you’re giving yourself some
valuable information that will help you debug the problem.

Q: What’s the point of storing all the locations in a Point if
we’re not drawing anything?

A: Every bee has a location, whether or not you draw it on the
screen in that location. The job of the Bee object is to keep track
of where it is in the world. Each time its Go() method is called, it
needs to move a very small distance toward its destination.
Now, even though we may not be drawing a picture of the bee yet,
the bee still needs to keep track of where it is inside the hive or in the
field, because it needs to know if it’s arrived at its destination.

Q: Then why use Point to store the location, and not
something else? Aren’t Points specifically for drawing?

A: Yes, a Point is what all of the visual controls use for their
Location properties. Plus, it’ll come in handy when we do the
animation. However, just because .NET uses them that way, that
doesn’t mean it’s not also useful for us to keep track of locations. Yes,
we could have created our own BeeLocation class with integer
fields called X and Y. But why reinvent the wheel when C# and .NET
give us Point for free?

It’s almost always easier to
repurpose or extend an existing
class that does MOSTLY what
you want it to do, rather than
creating an all-new class from
scratch.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

26   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

With all four of our core classes in place, we’ve got some work to do to tie them all
together. Follow the steps below, and you should have working Bee, Hive, Flower,
and World classes. Here’s how we made the changes to put this into place.

Update Bee to take in a Hive and World reference.
Now that we’ve got a class for Hive and a class for World, Bee objects need to
know about both. Update your code to take in references to a bee’s hive and world in
the constructor and save those references for later use.

1

class Bee {
 // existing constant declarations
 // existing variable declarations
 private World world;
 private Hive hive;

 public Bee(int ID, Point InitialLocation, World world, Hive hive) {
 // existing code
 this.world = world;
 this.hive = hive;
 }
}

Update Hive to take in a World reference.
Just as a Bee needs to know about its Hive, a Hive needs to know about its
World. Update Hive to take in a World reference in its constructor, and save that
reference. You should also update the code in Hive that creates new bees to pass
into the Bee a reference to itself (the Hive) and the World.

2

class Hive {
 private World world;

 public Hive(World world) {
 this.world = world;
 // existing code
 }
 public void AddBee(Random random) {
 // other bee creation code
 Bee newBee = new Bee(beeCount, startPoint, world, this);
 }
}

This is pretty straightforward…take
these in, assign them to private fields.

More basic code…get the reference, set a private field. You want to assign the world FIRST because the rest of the constructor needs to use it.
New bees need a
reference to the world,
and to the hive, now.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   27

gdi+ graphics

private void AddBee(Random random) {
 beeCount++;
 // Calculate the starting point
 Point startPoint = // start the near the nursery
 Bee newBee = new Bee(beeCount, startPoint, world, this);
 world.Bees.Add(newBee);
}

Place an upper limit on the bees that Hive can create.
The Hive class has a MaximumBees constant that determines
how many bees the Hive can support (inside and outside the hive,
combined). Now that the Hive has access to the World, you should
be able to enforce that constraint.

3

public void Go(Random random) {
 if (world.Bees.Count < MaximumBees
 && Honey > MinimumHoneyForCreatingBees
 && random.Next(10) == 1) {
 AddBee(random);
 }
}

We can use the World object to see how many total bees there are, and compare that to the maximum bees for this hive.

We put that comparison first. If there’s no

room for bees, no sense in seeing if t
here’s

enough honey to create bees.

When the Hive creates bees, let the World know.
The World class keeps up with all the bees that exist. When the
Hive creates a new Bee, make sure that Bee gets added to the
overall list that the World is keeping up with.

4

We add the new bee to the world’s overall bee list.

This demonstrates one of
the reasons we need a World
reference in the Hive class.

If you’re having trouble getting this running, you can download the
code for this exercise (and all the others, too) from:
http://www.headfirstlabs.com/books/hfcsharp/

public World() {
 Bees = new List<Bee>();
 Flowers = new List<Flower>();
 Hive = new Hive(this);
 Random random = new Random();
 for (int i = 0; i < 10; i++)
 AddFlower(random);
}

Update World to pass itself into a new Hive.
Update your World class so that when it creates a new Hive, it
passes in a reference to itself.

5

This passes in the reference
to the Hive.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

28   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

public void Go(Random random) {
 Age++;
 switch (CurrentState) {
 case BeeState.Idle:
 if (Age > CareerSpan) {
 CurrentState = BeeState.Retired;
 } else if (world.Flowers.Count > 0
 && hive.ConsumeHoney(HoneyConsumed)) {
 Flower flower =
 world.Flowers[random.Next(world.Flowers.Count)];
 if (flower.Nectar >= MinimumFlowerNectar && flower.Alive) {
 destinationFlower = flower;
 CurrentState = BeeState.FlyingToFlower;
 }
 }
 break;
 case BeeState.FlyingToFlower:
 if (!world.Flowers.Contains(destinationFlower))
 CurrentState = BeeState.ReturningToHive;
 else if (InsideHive) {
 if (MoveTowardsLocation(hive.GetLocation(“Exit”))) {
 InsideHive = false;
 location = hive.GetLocation(“Entrance”);
 }
 }
 else
 if (MoveTowardsLocation(destinationFlower.Location))
 CurrentState = BeeState.GatheringNectar;
 break;
 case BeeState.GatheringNectar:
 double nectar = destinationFlower.HarvestNectar();
 if (nectar > 0)
 NectarCollected += nectar;
 else
 CurrentState = BeeState.ReturningToHive;
 break;

Giv ing the bees behavior
The one big piece of code that’s missing in our current classes
is the Bee’s Go() method. We were able to code a few of
the states earlier, but there are plenty left (Idle is incomplete,
FlyingToFlower, and part of MakingHoney).

Let’s finish up those remaining states now:

If we’re idle, we want to go find

another flower to harvest from.

See if there are flowers left, and then consume enough honey to keep on going. Otherwise, we’re stuck.
We need another
living flower with
nectar.

Assuming that all works out, go to the new flower.

If we can get to the exit, then we’re out of the hive.

Update our location. Since we’re now on the field form,

we should fly out near the entrance.

Make sure the flower hasn’t
died as we’re heading toward it.

If we’re out of the hive, and the flower is alive, get to it and start gathering nectar.

That’s why we passed a
reference to the hive
to the Bee constructor.

make the bees behave themselves

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   29

gdi+ graphics

 case BeeState.ReturningToHive:
 if (!InsideHive) {
 if (MoveTowardsLocation(hive.GetLocation(“Entrance”))) {
 InsideHive = true;
 location = hive.GetLocation(“Exit”);
 }
 }
 else
 if (MoveTowardsLocation(hive.GetLocation(“HoneyFactory”)))
 CurrentState = BeeState.MakingHoney;
 break;
 case BeeState.MakingHoney:
 if (NectarCollected < 0.5) {
 NectarCollected = 0;
 CurrentState = BeeState.Idle;
 }
 else
 if (hive.AddHoney(0.5))
 NectarCollected -= 0.5;
 else
 NectarCollected = 0;
 break;
 case BeeState.Retired:
 // Do nothing! We’re retired!
 break;
 }
}

Try and give this nectar to the hive.
If the hive could use the
nectar to make honey…

…remove it from the bee.

If the hive’s full, AddHoney() will

return false, so the bee
 just dumps the

rest of the nectar so h
e can fly out

on another mission.

If we’ve made it to the hive,
update our location and the
insideHive status.

If we’re already in the hive, head to the honey factory.

Suppose you wanted to change the simulator so it took two turns to reach
a flower, and two turns to go from a flower back to the hive. Without writing
any code, which methods of which classes would you have to change to
put this new behavior into place?

This is the exit. When
the hive stores its “Exit”
location, it corresponds to
the point on the Hive form
that shows the picture of
the exit.

This is the entrance. When
the bees fly back to the
hive, they fly toward the
entrance of the hive on
the field form.

That’s why the location dictionary stores two
separate “Exit” and “Entrance” locations.

Once the bee’s retired, he just has to
wait around until the Hive removes him
from the list. Then he’s off to Miami!

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

30   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

The main form tel ls the world to Go()
OK, so you know that the world advances by one frame every
time its Go() method is called. But what calls that Go()
method? Why, the main form, of course! Time to lay it out.

Go ahead and add a new form to your project. Make it look like
the form below. We’re using some new controls, but we’ll explain
them all over the next several pages.

Each of these labels
lives in one cell of a
TableLayoutPanel control.
You lay it out just like a
table in Microsoft Word.
Click on the little black
arrow to add, remove, and
resize columns and rows.

The ToolStrip control puts
a toolstrip at the top of
your form. You can add
the two buttons using the
drop-down that appears on
the ToolStrip when you’re
in the form designer. Set
each button’s DisplayStyle
to Text.

Add a StatusStrip to
put a status bar on the
bottom. Use the drop-
down that appears on
the StatusStrip in
the designer to add a
StatusLabel to it.

Add a Timer control to the form. It
doesn’t show up at all—it’s a non-visual component that the form designer displays as an icon in the space below the form.

We’re finally getting
 to the

code that moves the World

object along.

The ToolStrip control adds a toolbar to the top of
your form, and StatusStrip adds a status bar to the
bottom. But they also appear as icons in the area
below the form, so you can edit their properties.

pop goes the world

hive.Go(random);

foreach (Bee bee in Bees)
 bee.Go(random);

foreach (Flower flower in Flowers)
 flower.Go(random);

Go()

System.Window
s.

Fo
rm

s.
Fo

rm

Main form List of Bee o
bj

e
c

ts

Hive obje
ct

List of Flower o
b

je
c

ts

World obje
ct

The labels in the right-hand column will show the stats. Name them “Bees”, “Flowers”, “HoneyInHive”, etc.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   31

gdi+ graphics

private void UpdateStats(TimeSpan frameDuration) {
 Bees.Text = world.Bees.Count.ToString();
 Flowers.Text = world.Flowers.Count.ToString();
 HoneyInHive.Text = String.Format(“{0:f3}”, world.Hive.Honey);
 double nectar = 0;
 foreach (Flower flower in world.Flowers)
 nectar += flower.Nectar;
 NectarInFlowers.Text = String.Format(“{0:f3}”, nectar);
 FramesRun.Text = framesRun.ToString();
 double milliSeconds = frameDuration.TotalMilliseconds;
 if (milliSeconds != 0.0)
 FrameRate.Text = string.Format(“{0:f0} ({1:f1}ms)”,
 1000 / milliSeconds, milliSeconds);
 else
 FrameRate.Text = “N/A”;
}

Most of this just
involves getting
data from
the world and
updating labels.

Print the first parameter
as a number with no
decimals, then a space, then
print the second parameter
with one decimal followed
by the letters “ms” (in
parentheses)

This indicates how long passes for a turn…we’ll have to send this parameter in from somewhere else, in just a few pages.

We can use World to get stat ist ics
Now we want to update all these controls. But we don’t need click handlers
for each one; instead, let’s use a single method that will update the different
statistics in the simulator window (we’ll explain framesRun shortly):

Be sure
you match
your label
names on
the form
with your
code.

Whoa! Where did that World object
come from…we haven’t created that yet, have
we? And what’s all that time and frame stuff?

Let’s create a World

You’re right, we need to create the World object. Add this
line to your form’s constructor:

 public Form1() {
 InitializeComponent();
 world = new World();
 }

Go ahead and add a private World field to your form
called world.

That just leaves all the time-related code. We’ve always said
we needed a way to run Go() in World over and over…
sounds like we need some sort of timer.

Add this method
into Form1.

This code uses the same
String.Format() method you
used in the hex dump. But
instead of printing in hex
using “x2”, you use “f3” to
display a number with three
decimal places.

We’ll talk
more about
this when we
create that
TimeSpan
object.

The frame rate is the number of frames run per second. We’re using a TimeSpan object to store how long it took to run the frame. We divide 1000 by the number of milliseconds it took to run the frame—that gives us the total number of milliseconds it took to run the last frame.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

32   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

Timers f ire events over and over again
Remember how you used a loop to animate the greyhounds? Well, there’s
a better way to do it. A timer is an especially useful component that
triggers an event over and over again, up to a thousand times a second.

Do this
Create a new project with a timer and three buttons
You don’t have to close your current project—just pop open a new instance of Visual
Studio and start up a new project. Drag a timer and three buttons onto the form. Click
on the timer icon at the bottom of the designer and set its Interval property to 1000. That
number is measured in milliseconds—it tells the timer to fire its tick event once a second.

1

Open the IDE’s Properties window and click on the Events button.
(Remember, the Events button looks like a lightning bolt, and it lets you manage the
events for any of your form’s controls.) The timer control has exactly one event, Tick.
Click on the Timer icon in the designer, then double-click on its row in the
Events page and the IDE will create a new event handler method for you and hook it up
to the property automatically.

2

The Events button in the
Properties window lets you
work with all the events
for each of your controls.

The Timer control has one event called Tick. If you double-click here, the IDE creates an event handler method for you automatically.The bottom of the window has a description of the event.

Add code to the Tick event and to your buttons
Here’s some code that will help you get a sense of how the timer works:
 private void timer1_Tick(object sender, EventArgs e) {
 Console.WriteLine(DateTime.Now.ToString());
}
private void toggleEnabled_Click(object sender, EventArgs e) {
 if (timer1.Enabled)
 timer1.Enabled = false;
 else
 timer1.Enabled = true;
}
private void startTimer_Click(object sender, EventArgs e){
 timer1.Start();
 Console.WriteLine(“Enabled = ” + timer1.Enabled);
}
private void stopTimer_Click(object sender, EventArgs e) {
 timer1.Stop();
 Console.WriteLine(“Enabled = ” + timer1.Enabled);
}

3
This statement writes the
current date and time to the

output. Check the output
window to make sure the tick

event is fired once a secon
d

(every 1000 milliseconds).

The timer’s Enabled property
starts and stops the timer.

The timer’s Start() method
starts the timer and sets
Enabled to true. The Stop()
method stops the timer and
sets Enabled to false.

Take a minute and create a new project
so you can see how timers work. Then we’ll
get back to the simulator and put your
new knowledge to work.

These buttons let
you play with the
Enabled property
and the Start()
and Stop()
methods. The
first one switches
Enabled between
true and false, and the other two call
the Start() and
Stop() methods.

play it again

You can also just
double-click on
the Timer icon
to add the event
handler instead
of using the
Properties window.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   33

gdi+ graphics

How do C# and .NET tell the timer what to do every tick? How
does the timer1_Tick() method get run every time your
timer ticks? Well, we’re back to events and delegates, just
like we talked about in the last chapter. Use the IDE’s “Go To
Definition” feature to remind yourself how the EventHandler
delegate works:

Right-click on your timer1 variable and select “Go To Definition”
The “Go To Definition” feature will cause the IDE to automatically jump to the location in the code
where the timer1 variable is defined. The IDE will jump you to the code it created to add timer1 as a
property in the Form1 object in Form1.Designer.cs. Scroll up in the file until you find this line:

this.timer1.Tick += new System.EventHandler(this.timer1_Tick);

4

Now right-click on EventHandler and select “Go To Definition”
The IDE will automatically jump to the code that defines EventHandler. Take a look at the name
of the new tab that it opened to show you the code: “EventHandler [from metadata]”. This means
that the code to define EventHandler isn’t in your code. It’s built into the .NET Framework, and
the IDE generated a “fake” line of code to show you how it’s represented:

public delegate void EventHandler(object sender, EventArgs e);

5

The t imer ’s using an event
handler behind the scenes

This is the Tick event
of your timer control.
You’ve set this to occur
every 1000 milliseconds.

Here’s one of the System’s delegates: the basic event handler. It’s a delegate…a pointer to one or more methods.

Here’s the method you
just wrote, timer1_Tick().

You’re telling the deleg
ate

to point to that method.

Here’s why every event in C# generally takes
an Object and EventArgs parameter-that’s
the form of the delegate that C# defines
for event handling.

Each event is of type E
ventHandler.

So our Tick event now points to the

timer1_Tick() method.

What code would you write to run the World’s Go() method
10 times a second in our beehive simulator?

The timer’s Tick event
is an average, everyday
event handler, just
like the ones to handle
button clicks. Behind

the Scenes

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

34   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

Add a t imer to the simulator
Let’s add a timer to the simulator. You’ve already got a timer control,
probably called timer1. Instead of using the IDE to generate a
timer1_Tick() method, though, we can wire the timer to an event
handler method called RunFrame() manually:

public partial class Form1 : Form {
 World world;
 private Random random = new Random();
 private DateTime start = DateTime.Now;
 private DateTime end;
 private int framesRun = 0;

 public Form1() {
 InitializeComponent();
 world = new World();

 timer1.Interval = 50;
 timer1.Tick += new EventHandler(RunFrame);
 timer1.Enabled = false;
 UpdateStats(new TimeSpan());
 }

 private void UpdateStats(TimeSpan frameDuration) {
 // Code from earlier to update the statistics
 }

 public void RunFrame(object sender, EventArgs e) {
 framesRun++;
 world.Go(random);
 end = DateTime.Now;
 TimeSpan frameDuration = end - start;
 start = end;
 UpdateStats(frameDuration);
 }
}

You should have a World
property from earlier.

These will be used to figure out how long the simulator’s been running at any given point.

Run every 50 milliseconds.

We set the handler to our own
method, RunFrame().

Timer starts off.

We also start out by updating stats, with a new TimeSpan (0 time elapsed).

A second
is 1000
milliseconds, so
our timer will
tick 20 times a
second.

We want to keep up with
how many frames-or
turns-have passed.

Increase the frame count, and
tell the world to Go().

Next, we figure out the
time elapsed since the last
frame was run.

Finally, update the stats again,
with the new time duration.

DateTime &TimeSpan
.NET uses the DateTime class to
store information about a time, and
its Now property returns the current
date and time. If you want to find
the difference between two times, use
a TimeSpan object: just subtract one
DateTime object from another, and
that’ll return a TimeSpan object that
holds the difference between them.

TimeSpan has properties like Days, Hours,
Seconds, and Milliseconds that let you
measure the span in different units.

good timing

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   35

gdi+ graphics

Your job is to write the event handlers for the Start Simulation and
Reset buttons in the ToolStrip. Here’s what each button should do:

1. Initially, the first button should read “Start Simulation.”
Pressing it causes the simulation to start, and the
label to change to “Pause
Simulation.” If the simulation
is paused, the button should
read, “Resume simulation.”

2. The second button should
say “Reset.” When it’s
pressed, the world should
be recreated. If the timer is
paused, the text of the first
button should change from

“Resume simulation” to “Start
Simulation.”

What do you think is left to be done in this phase
of the simulator? Try running the program. Write
down everything you think we still need to take
care of before moving on to the graphical stuff.

There’s no single answer to this question—we just
want you to think about what’s left to do.

Q: We’ve been using the term
“turn,” but now you’re talking about
frames. What’s the difference?

A: Semantics, really. We’re still
dealing in turns: little chunks of time
where every object in the world gets
to act. But since we’ll soon be putting
some heavy-duty graphics in place,
we’ve started using “frame,” as in a
graphical game’s frame-rate.

If you haven’t
dragged a ToolStrip
and StatusStrip out
of the toolbox and
onto your form, do
it now.

Just double-click on a ToolStrip button
in the designer to make the IDE add its
event handler, just like a normal button.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

36   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

Your job was to write the event handlers for the Start
Simulation and Reset buttons.

The existing code from the form
remains unchanged.

 private void startSimulation_Click(object sender, EventArgs e) {
 if (timer1.Enabled) {
 toolStrip1.Items[0].Text = “Resume simulation”;
 timer1.Stop();
 } else {
 toolStrip1.Items[0].Text = “Pause simulation”;
 timer1.Start();
 }
 }

 private void reset_Click(object sender, EventArgs e) {
 framesRun = 0;
 world = new World();
 if (!timer1.Enabled)
 toolStrip1.Items[0].Text = “Start simulation”;
 }
}

Toggle the t
imer,

and update
the

message.

Resetting the simulator is
just a matter of recreating
the World instance and
resetting framesRun.

The only time we need to change the first button’s label is if it says, “Resume simulation.” If it says, “Pause simulation,” it doesn’t need to change.

Be sure
your
form’s
control
names
match up
with what
you use in
your code.

get it going

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   37

gdi+ graphics

Test dri ve
You’ve done a ton of work. Compile your
code, fix any typos, and run the simulator.
How’s it look?

Looks pretty good! All these numbers should update as the world moves along.

Your start/pause and
reset buttons should
all work.

Hmmm…our status stripseems to be the only
thing not working.

Here’s your chance to put together everything you’ve learned. We need to
allow bees to tell our simulator what they’re doing. When they do, we want
our simulator to update the status message in the simulator.

This time, it’s up to you to not only write most of the code, but to figure out
what code you need to write. How can you have a method in your simulator
that gets called every time a bee changes its state?

To give you a little help, we’ve written the method to add to the form. The
Bee class should call this method any time its state changes:

private void SendMessage(int ID, string Message) {
 statusStrip1.Items[0].Text = “Bee #” + ID + “: ” + Message;
}

* OK, one more
hint. You’ll need to
make changes to
all but one of your
classes to make
this work.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

38   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

exercise solution

Your job was to come up with a way for bees to let the simulator know
about what they’re doing.

Here’s what we added to the Bee class.

class Bee {
 // all our existing code
 public BeeMessage MessageSender;

 public void Go(Random random) {
 Age++;
 BeeState oldState = CurrentState;
 switch (currentState) {
 // the rest of the switch statement is the same
 }
 if (oldState != CurrentState
 && MessageSender != null)
 MessageSender(ID, CurrentState.ToString());
 }
}

We used a callback to hook each individual bee object up to the form’s SendMessage() method.

If the status of the Bee changed, we
call back the method our BeeMessage
delegate points to, and let that method
know about the status change.

class Hive {
 // all our existing code
 public BeeMessage MessageSender;

 public Hive(World world, BeeMessage MessageSender) {
 this.MessageSender = MessageSender;
 // existing constructor code
 }

 public void AddBee(Random random) {
 // existing AddBee() code
 Bee newBee = new Bee(beeCount, startPoint, world, this);
 newBee.MessageSender += this.MessageSender;
 world.Bees.Add(newBee);
}

Here are the changes
we made to the Hive.

Hive needs a delegate too, so
it can pass on the methods for
each bee to call when they’re
created in AddBee().

AddBee() now has to make sure that each new bee gets the method to point at.

It uses a delegate called BeeMessage that takes a bee ID and a message. The bee uses it to send messages back to the form.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   39

gdi+ graphics

BeeMessage is our delegate. It’s also
a match with the SendMessage()
method we wrote in the form. Add
it to its own file called BeeMessage.
cs—it should be in the namespace, but
outside of any class.

class World {
 // all our existing code

 public World(BeeMessage messageSender) {
 Bees = new List<Bee>();
 Flowers = new List<Flower>();
 Hive = new Hive(this, messageSender);
 Random random = new Random();
 for (int i = 0; i < 10; i++)
 AddFlower(random);
 }
}

World doesn’t need to have a delegate of its own. It just passes on the method to call to the Hive instance.

The World class required some changes as well.

public partial class Form1 : Form {
 // variable declarations
 public Form1() {
 InitializeComponent();
 world = new World(new BeeMessage(SendMessage));
 // the rest of the Form1 constructor
 }

 private void reset_Click(object sender, EventArgs e) {
 framesRun = 0;
 world = new World(new BeeMessage(SendMessage));
 if (!timer1.Enabled)
 toolStrip1.Items[0].Text = “Start simulation”;
 }

 private void SendMessage(int ID, string Message) {
 statusStrip1.Items[0].Text = “Bee #” + ID + “: ” + Message;
 }
}

Last but not least, here’s the updated form. Anything not shown stayed the same.

We create a new delegate from the
Bee class (make sure you declared
BeeMessage public), and point it at
our SendMessage() method.

Same thing here…create the world with the method for bees to call back.

This is the method we gave
you…be sure to add it in, too.

 public delegate void BeeMessage(int ID, string Message);

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

40   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

Let’s work with groups of bees
Your bees should be buzzing around the hive and the field,
and your simulation should be running! How cool is that? But
since we don’t have the visual part of the simulator working
yet—that’s what we’re doing in the next chapter—all the
information we have so far is the messages that the bees are
sending back to the main form with their callbacks. So let’s
add more information about what the bees are doing.

You know enough to gather the information you’d need to populate that
ListBox—take a minute and think through how that would work. But it’s
a little more complex than it seems at first. What would you need to do to
figure out how many bees are in each of the various Bee.State states?

You already have the form
updating these stats and
displaying the messages
that the bees send as
they do their jobs.

At any time, there are a bunch of b
ees flying around.

The new ListBox will display how many bees are doing

each job. In this case, two bees are flying to flowers,

one is at a flower gathering nectar, one i
s returning

to the hive, and two are in the honey factor
y

turning nectar into honey
.

Go ahead and add a
ListBox to your form.
We’ll use it to display
some extra stats about
the bees in the world.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   41

gdi+ graphics

A collect ion col lects…DATA
Our bees are stored in a List<Bee>, which is one of the
collection types. And collection types really just store data…a
lot like a database does. So each bee is like a row of data,
complete with a state, and ID, and so on. Here’s how our bees
look as a collection of objects:

Database

ID = 987

Bee
currentState = MakingHoney

ID = 12

Bee
currentState = FlyingToFlower

ID = 1982

Bee
currentState = GatheringNectar

List of Bee o
bj

e
c

tsBees

There’s a lot of data in the Bee objects’ fields. You can almost
think of a collection of objects the same way you think of
rows in a database. Each object holds data in its fields, the
same way each row in a database holds data in its columns.

Bees table ID = 987 currentState = MakingHoney
ID = 12 currentState = FlyingToFlower

ID = 1982 currentState = GatheringNectar

Suppose we had a Bees table, and each row in the table had an ID column and a currentState column.
Most collections—especially
when they hold objects—
can be thought of as data
stores, just like a database.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

42   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

Who cares if you can
think about a collection as a database if

you can’t use a collection like a database?
What a total waste of time....

What if you could query collections,
databases, and even XML documents
with the same basic syntax?

C# has a really useful feature called LINQ (which
stands for Language INtegrated Query). The idea
behind LINQ is that it gives you a way to take an array,
list, stack, queue, or other collection and work with all
the data inside it all at once in a single operation.

But what’s really great about LINQ is that you can use
the same syntax that works with collections as you can
for working with databases. We’ll spend most of Chapter 15 working with LINQ.

ID = 987

Bee
currentState = MakingHoney

ID = 12

Bee
currentState = FlyingToFlower

ID = 1982

Bee
currentState = GatheringNectar

List of Bee o
bj

e
c

tsBees

Database

Bees table ID = 987 currentState = MakingHoney
ID = 12 currentState = FlyingToFlower

ID = 1982 currentState = GatheringNectar

XML
<bee id=”987” currentState=”MakingHoney” />
<bee id=”12” currentState=”FlyingToFlower” />
<bee id=”1982” currentState=”GatheringNectar” />

var beeGroups =
 from bee in world.Bees
 group bee by bee.CurrentState
 into beeGroup
 orderby beeGroup.Key
 select beeGroup;

LINQ

This LINQ query works essentially

the same with data in a collection

or a database.

If we had our bee data in a database—
or even an XML file—LINQ could work
with them in exactly the same way.

missing LINQ

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   43

gdi+ graphics

LINQ makes working with data in
col lect ions and databases easy
We’re going to spend an entire chapter on LINQ before long, but we can
use LINQ and some Ready Bake Code to add some extra features to our
simulator. Ready Bake Code is code you should type in, and it’s OK if
you don’t understand it all. You’ll learn how it all works in Chapter 15.

private void SendMessage(int ID, string Message) {
 statusStrip1.Items[0].Text = “Bee #” + ID + “: “ + Message;
 var beeGroups =
 from bee in world.Bees
 group bee by bee.CurrentState into beeGroup
 orderby beeGroup.Key
 select beeGroup;
 listBox1.Items.Clear();
 foreach (var group in beeGroups) {
 string s;
 if (group.Count() == 1)
 s = “”;
 else
 s = “s”;
 listBox1.Items.Add(group.Key.ToString() + “: “
 + group.Count() + “ bee” + s);
 if (group.Key == BeeState.Idle
 && group.Count() == world.Bees.Count()
 && framesRun > 0) {
 listBox1.Items.Add(“Simulation ended: all bees are idle”);
 toolStrip1.Items[0].Text = “Simulation ended”;
 statusStrip1.Items[0].Text = “Simulation ended”;
 timer1.Enabled = false;
 }
 }
}

The group’s Key is the bee’s
CurrentState, so that’s the order the
states will be displayed on the form.

This bit of code makes sure it says, “1 bee”
and “3 bees”, keeping the plural right.

Ready Bake
Code

This is a LINQ query. It takes all the bees in the Bees collection, and groups them by their CurrentState property.

Make sure
this matches
the list box
control’s
name on
your form.

beeGroups is from the LINQ query. We can count the members, and iterate over them.

Finally, add the group
status (its key) and
count to the list box.Here’s another nice feature. Since we know how many bees are idle…

…we can see if ALL
bees are idle. If so,
the hive’s out of honey,
so let’s stop the
simulation.

		� We’ll learn a lot more about LINQ in
upcoming chapters.

You don’t need to memorize LINQ syntax or
try to drill all of this into your head right now.

You’ll get a lot more practice working with LINQ in Chapter 15.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

44   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

save the world

Test dri ve (Part 2)
Go ahead and compile your code and run your project. If
you get any errors, double-check your syntax, especially
with the new LINQ code. Then, fire up your simulator!

These stats come from
the form querying the
World object.

The timer on your form

controls the running
of

the simulation.

LINQ queries
your collections
to feed you this
data every turn.

Bees call back your simulator
form to update the form every
time their status changes.

You’ll add these standard items, and
event handlers to make them work

[NonSerialized] keeps data from getting serialized
Sometimes you want to serialize part of an object, not all of it. It might have data that you don’t want written to the disk. Let’s say you’re building a system that a user logs into, and you want to save an object that stores the user’s options and settings to a file. You might mark the password field with the [NonSerialized] attribute. That way, when you Serialize() the object, it will skip that field.
The [NonSerialized] attribute is especially useful when your object has a reference to an object that is not serializable. For example, if you try to serialize a Form, Seralize() will throw a SerializationException. So if our object has a reference to a Form object, then when you try to serialize it the serializer will follow that link and try to serialize the Form, too…which will throw that exception. But if you mark the field that holds the reference with the [NonSerialized] attribute, then Serialize() won’t follow the reference at all.

When one object has a
method that’s hooked up to
a delegate or event handler
in another object, that’s a
reference that serialization
will try to follow.

So if you try to serialize an object
that’s got an event handler listening
to an event on a control, then if you
don’t mark it [NonSerialized] it’ll
try to serialize the control, which
will throw a SerializationException.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   45

gdi+ graphics

Add code to make the save and open buttons work.

Add the button event handlers
The new standard buttons are named openToolStripButton, saveToolStripButton,
and printToolStripButton. Just double-click on them to add their event handlers.

2

Add the Open, Save, and Print icons
The ToolStrip control has a really useful feature—it can automatically insert
picture buttons for standard icons: new, open, save, print, cut, copy, paste, and help.
Just right-click on the ToolStrip icon at the bottom of the Form Designer window
and select “Insert Standard Items”. Then click on the first item—that’s the

“new” icon—and delete it. Keep the next three items, because they’re the ones we
need (open, save, and print). After that comes a separator; you can either delete it
or move it between the Reset button and the save buton. Then delete the rest of
the buttons. Make sure you set its CanOverflow property to false (so it doesn’t add
an overflow menu button to the right-hand side of the toolbar) and its GripStyle
property to Hidden (so it removes the sizing grip from the left-hand side).

1

One f inal challenge: Open and Save
We’re almost ready to take on graphics, and add some visual eye candy to
our simulator. First, though, let’s do one more thing to this version: allow
loading, saving, and printing of bee statistics.

1. Make the save button serialize the world to a file. The save button should stop the timer (it can restart it after
saving if the simulator was running). It should display a Save dialog box, and if the user specifies a filename then it
should serialize the World object, and the number of frames that have been run.
When you try to serialize the World object, it will throw a SerializationException with this message: Type
‘Form1’is not marked as serializable. That’s because the serializer found one of the BeeMessage fields and

tried to follow it. Since the delegate was hooked up to a field on the form, the serializer tried to serialize the form, too.
Fix this problem by adding the [NonSerialized] attribute to the MessageSender fields in the Hive and Bee
classes, so .NET doesn’t try and serialize the code your delegates point to.

2. Make the open button deserialize the world from a file. Take care of the timer just like in the save button: pop up
an Open dialog box, and deserialize the world and the number of frames run from the selected file. Then you can hook
up the MessageSender delegates again and restart the timer (if necessary).

3. Don’t forget about exception handling! Make sure the world is intact if there’s a problem reading or writing the file.
Consider popping up a human-readable error message indicating what went wrong.

You’ll add the Print
button now—we’ll make
it print a status page
for the hive in the
next chapter.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

46   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

exercise solution

private void saveToolStripButton_Click(object sender, EventArgs e) {
 bool enabled = timer1.Enabled;

 if (enabled)

 timer1.Stop();

 SaveFileDialog saveDialog = new SaveFileDialog();

 saveDialog.Filter = “Simulator File (*.bees)|*.bees”;

 saveDialog.CheckPathExists = true;

 saveDialog.Title = “Choose a file to save the current simulation”;

 if (saveDialog.ShowDialog() == DialogResult.OK) {

 try {

 BinaryFormatter bf = new BinaryFormatter();

 using (Stream output = File.OpenWrite(saveDialog.FileName)) {

 bf.Serialize(output, world);

 bf.Serialize(output, framesRun);

 }

 }

 catch (Exception ex) {

 MessageBox.Show(“Unable to save the simulator file\r\n” + ex.Message,

 “Bee Simulator Error”, MessageBoxButtons.OK, MessageBoxIcon.Error);

 }

 }

 if (enabled)

 timer1.Start();
}

Your job was to make the Save and Open buttons work.

Don’t forget the extra using statements.

[Serializable]
class World {
 [Serializable]
class Hive {

You’ll need to make the World, Hive, Flower,
and Bee classes serializable. When you
serialize the world, .NET will find its
references to Hive, Flower, and Bee objects
and serialize them, too.

Here’s the code for the Save button.

Here’s where
the world is
written out
to a file.

We decided to use “.bees”
as the extension for
simulator save files.

After we save the file, we can restart the
timer (if we stopped it).

Remember, when we serialize World, everything it references gets serialized…all the bees, flowers, and the hive.

using System.IO;
using System.Runtime.Serialization.Formatters.Binary;

 [Serializable]
class Flower {
 [Serializable]
class Bee {

[NonSerialized]
public BeeMessage MessageSender;

And make sure the MessageSender fields
in the Hive and Bee classes are marked
[NonSerialized].

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   47

gdi+ graphics

private void openToolStripButton_Click(object sender, EventArgs e) {
 World currentWorld = world;
 int currentFramesRun = framesRun;

 bool enabled = timer1.Enabled;
 if (enabled)
 timer1.Stop();

 OpenFileDialog openDialog = new OpenFileDialog();
 openDialog.Filter = “Simulator File (*.bees)|*.bees”;
 openDialog.CheckPathExists = true;
 openDialog.CheckFileExists = true;
 openDialog.Title = “Choose a file with a simulation to load”;
 if (openDialog.ShowDialog() == DialogResult.OK) {
 try {
 BinaryFormatter bf = new BinaryFormatter();
 using (Stream input = File.OpenRead(openDialog.FileName)) {
 world = (World)bf.Deserialize(input);
 framesRun = (int)bf.Deserialize(input);
 }
 }
 catch (Exception ex) {
 MessageBox.Show(“Unable to read the simulator file\r\n” + ex.Message,
 “Bee Simulator Error”, MessageBoxButtons.OK, MessageBoxIcon.Error);
 world = currentWorld;
 framesRun = currentFramesRun;
 }
 }

 world.Hive.MessageSender = new BeeMessage(SendMessage);
 foreach (Bee bee in world.Bees)
 bee.MessageSender = new BeeMessage(SendMessage);
 if (enabled)
 timer1.Start();
}

Before opening the file and reading from it,
save a reference to the current world and
framesRun. If there’s a problem, you can revert
to these and keep running.

Here’s the code for the Open button.

Set up the Open
File dialog box
and pop it up.

Here’s where we deserialize
the world and the number
of frames run to the file.

If the file operations throw an exception, we restore the current world and framesRun.

using ensures
the stream
gets closed.

Once everything is loaded, we
hook up the delegates and
restart the timer.

You’ll need to get your simulator up and running before you move on
to the next chapter. You can download a working version from the
Head First Labs website: www.headfirstlabs.com/books/hfcsharp/

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

Pages 49 through 106 of this PDF were originally published as the GDI+ chapter in Head First C#, 2nd Edition. The rest of the PDF is Lab #3, in which you’ll build the Invaders arcade game. This is the version from the second edition of Head First C#, which was designed to work with GDI+ graphics.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

controls and graphics

Make it pretty

Sometimes you have to take graphics into your own hands.�
We’ve spent a lot of time relying on controls to handle everything visual in our applications.

But sometimes that’s not enough—like when you want to animate a picture. And once

you get into animation, you’ll end up creating your own controls for your .NET programs,

maybe adding a little double buffering, and even drawing directly onto your forms.

It all begins with the Graphics object, bitmaps, and a determination to not accept the

graphics status quo.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

50   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

You’ve been using controls al l along
to interact with your programs
TextBoxes, PictureBoxes, Labels…you’ve got a pretty good
handle by now on how you can use the controls in the IDE’s toolbox.
But what do you really know about them? There’s a lot more to a
control than just dragging an icon onto your form.

You can create your own controls
The controls in the toolbox are really useful for building forms and
applications, but there’s nothing magical about them. They’re just
classes, like the classes that you’ve been writing on your own. In fact,
C# makes it really easy for you to create controls yourself, just by
inheriting from the right base class.

≥

Your custom controls show up in the IDE’s toolbox
There’s also nothing mysterious about the toolbox in the IDE. It just
looks in your project’s classes and the built-in .NET classes for any
controls. If it finds a class that implements the right interface, then
it displays an icon for it in the toolbox. If you add your own custom
controls, they’ll show up in the toolbox, too.

≥

You can write code to add controls to your form, and even
remove controls, while your program’s running
Just because you lay out a form in the IDE’s form designer, it doesn’t mean
that it has to stay like that. You’ve already moved plenty of PictureBox
controls around (like when you built the greyhound race). But you can add or
remove controls, too. In fact, when you build a form in the IDE, all it’s doing
is writing the code that adds the controls to the form…which means you can
write similar code, and run that code whenever you want.

≥

You can create a class
that inherits from any
of the existing control
classes—even if it
doesn’t have any other
code in it—and it’ll
automatically show up in
the toolbox.

objects everywhere

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   51

gdi+ graphics

System.Window
s.

Fo
rm

s.
Fo

rm

Form controls are just objects
You already know how important controls are to your forms. You’ve been
using buttons, text boxes, picture boxes, checkboxes, group boxes, labels, and
other forms since Chapter 1. Well, it turns out that those controls are just
objects, just like everything else you’ve been working with.

A control is just an object, like any other object—it just happens to know how
to draw itself. The Form object keeps track of its controls using a special
collection called Controls, which you can use to add or remove controls in
your own code.

Here’s the form for a
simple application. Its
Controls collection keeps a
reference to each of the
control objects on the
form.

There are 9 controls on this form, so the Controls collection contains 9
references to individual
control objects.

Since there are
 three

labels on the fo
rm,

the Controls collectio
n

will contain thre
e

Label objects.

Each control in the form
is just an instance of a
particular object.

RadioButto

n o
b

je
c

t

Button obj
ec

t

TextBox
ob

je
c

t

RadioButto

n o
b

je
c

t

RadioButto

n o
b

je
c

t

TrackBar o
bj

ec
t

Label obje
ct

Label obje
ct

Label obje
ct

Controls obje
ct

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

52   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

Use controls to animate the beehive simulator
You’ve built a cool simulator, but it’s not much to look at. It’s time to create a
really stunning visualization that shows those bees in action. You’re about to
build a renderer that animates the beehive…and controls are the key.

The user interface shows you everything that’s going on
Your simulator will have three different windows. You’ve already built the main “heads-up display”
stats window that shows stats about the current simulation and updates from the bees. Now you’ll
add a window that shows you what’s going in inside the hive, and a window that shows the field of
flowers where the bees gather nectar.

1

We’ll make the Print button in the stats window work
The stats window has working Open and Save buttons, but the Print button
doesn’t work yet. We’ll be able to reuse a lot of the graphics code to get the Print
button on the ToolStrip to print an info page about what’s going on.

2

These two windows are child windows—when
you minimize the main window, the other two disappear along with it. And when you move the main window around, the other two follow it.

The form you built in the
last chapter becomes the
heads-up display for the
simulator.

This window shows what’s
going on in the hive.

This window displays the field of flowers and the bees
gathering nectar.

how cute!

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   53

gdi+ graphics

The hive window shows you what’s going on inside the hive
As the bees fly around the world, you’ll need to animate each one. Sometimes they’re
inside the hive, and when they are, they show up in this window.

3

The hive has three
important locations in it.
The bees are born in the
nursery, they have to fly
to the exit to leave the
hive to gather nectar from the flowers, and when they come back they need to go to the honey factory to
make honey.

The field window is where the bees collect the nectar
Bees have one big job: to collect nectar from the flowers, and bring
it back to the hive to make honey. Then they eat honey to give them
energy to fly out and get more nectar.

4

Here’s the entrance to the
hive. When bees fly into it,
they disappear from the
field form and reappear near
the exit in the hive form.

The hive exit is on the hive form, and
the entrance is on the field form.
(That’s why we put both of them in
the hive’s locations dictionary.)

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

54   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

Add a renderer to your architecture

World obje
ct

Hive fo

rm

Renderer obje
ct

Field fo

rm

List of Flower o
b

je
c

ts

List of Bee o
bj

e
c

ts

Hive obje
ctSystem.Window

s.
Fo

rm
s.

Fo
rm

Main form

We need another class that reads the information in the
world and uses it to draw the hive, bees, and flowers on
the two new forms. We’ll add a class called Renderer
to do exactly that. And since your other classes are well
encapsulated, this won’t require a lot of changes to your
existing code.

This is the object for the main
window that you’ve already built.

The Hive and
Field objects are
forms, tied to
your main form.

The World object keeps track of everything in the simulator: the state of the hive, every bee, and every flower.

Each bee knows its location—and we can use that location to draw the bee on the form.

Because Bee,
Hive, Flower, and
World are well
encapsulated, a
class that renders
those objects can
be added without
lots of changes to
existing code.

The renderer reads the
information from the
World object and uses
that information to
update the two forms. It
keeps a reference to the
World object, as well as
the Hive form object and
the Field form object.

ren-der, verb.
to represent or depict artistically.
Sally’s art teacher asked the class to look
at all of the shadows and lines in the
model and render them on the page.

You’ve already built these object
s.

a sweet rendition

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   55

gdi+ graphics

The renderer draws everything in
the world on the t wo forms
The World object keeps track of everything in the simulation: the
hive, the bees, and the flowers. But it doesn’t actually draw anything
or produce any output. That’s the job of the Renderer object. It
reads all of the information in the World, Hive, Bee, and Flower
objects and draws them on the forms.

Renderer o
bj

ec
t

World obje
ct

checks fields for state

draws the bees

and flowers in
the field

Renderer o
bj

ec
t

draws the bees in the hive

returns the state of the objects

The simulator renders the world af ter each frame
After the main form calls the world’s Go() method, it should call the
renderer’s Render() method to redraw the display windows. For example,
each flower will be displayed using a PictureBox control. But let’s go
further with bees and create an animated control. You’ll create this new
control, called BeeControl, and define its behavior yourself.

Field fo

rm
Hive fo

rm

System.Window
s.

Fo
rm

s.
Fo

rm

Main form

renderer.Render()

moves each

bee’s BeeControl

moves each

BeeControl and

flower PictureBoxThe renderer keeps track of which visual control is used to represent a particular bee or flower using Dictionary objects, where the Bee or Flower object is the key.

The World is encapsulated, so Renderer only
needs to use the properties on World and
its related objects to get the information
it needs, and render the information on the
display windows.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

56   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

Controls are well suited for
v isual display e lements
When a new bee is added to the hive, we’ll want our simulator to add a new
BeeControl to the Hive form and change its location as it moves around the
world. When that bee flies out of the hive, our simulator will need to remove the
control from the Hive form and add it to the Field form. And when it flies
back to the hive with its load of nectar, its control needs to be removed from the
Field form and added back to the Hive form. And all the while, we’ll want the
animated bee picture to flap its wings. Controls will make it easy to do all of that.

Field fo

rm

Hive fo

rm

Hive fo

rm

Renderer o
bj

e
c

t

Renderer o
bj

ec
t

Hive fo

rm

Renderer o
bj

e
c

t

Controls.Add(new BeeControl());

The world adds a new bee, and the renderer creates a new BeeControl
and adds it to the Hive form’s Controls collection.

1

When the bee flies out of the hive and enters the field, the renderer
removes the BeeControl from the hive’s Controls collection and adds
it to the Field form’s Controls collection.

2

Cont
rols

.Rem
ove(

theB
ee);

Controls.Add(theBee);

A bee will retire if it’s idle and it’s gotten too old. If the renderer checks the
world’s Bees list and finds that the bee is no longer there, it removes the
control from the Hive form.

3

Controls.Remove(theBee);

taking control of graphics

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   57

gdi+ graphics

Can you figure out what each of these code snippets does? Assume
each snippet is inside a form, and write down your best guess.

this.Controls.Add(new Button());

Form2 childWindow = new Form2();

childWindow.BackgroundImage =

 Properties.Resources.Mosaic;

childWindow.BackgroundImageLayout =

 ImageLayout.Tile;

childWindow.Show();

Label myLabel = new Label();

myLabel.Text = “What animal do you like?”;

myLabel.Location = new Point(10, 10);

ListBox myList = new ListBox();

myList.Items.AddRange(new object[]

 { “Cat”, “Dog”, “Fish”, “None” });

myList.Location = new Point(10, 40);

Controls.Add(myLabel);

Controls.Add(myList);

Label controlToRemove = null;

foreach (Control control in Controls) {

 if (control is Label

 && control.Text == “Bobby”)

 controlToRemove = control as Label;

}

Controls.Remove(controlToRemove);

controlToRemove.Dispose();

Bonus question: Why do you think
we didn’t put the Controls.Remove()
statement inside the foreach loop?

You don’t need to write down each line, as much as summarize what’s going on in the code block.

Try it out if you want, and
write why you think you got the result that .NET gave you.

If you’ve got a ListBox on your form, you can use its AddRange() method to add list items.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

58   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

Can you figure out what each of these code snippets does? Assume
each snippet is inside a form, and write down what you think it does.

this.Controls.Add(new Button());

Form2 childWindow = new Form2();

childWindow.BackgroundImage =

 Properties.Resources.Mosaic;

childWindow.BackgroundImageLayout =

 ImageLayout.Tile;

childWindow.Show();

Label myLabel = new Label();

myLabel.Text = “What animal do you like?”;

myLabel.Location = new Point(10, 10);

ListBox myList = new ListBox();

myList.Items.AddRange(new object[]

 { “Cat”, “Dog”, “Fish”, “None” });

myList.Location = new Point(10, 40);

Controls.Add(myLabel);

Controls.Add(myList);

Label controlToRemove = null;

foreach (Control control in Controls) {

 if (control is Label

 && control.Text == “Bobby”)

 controlToRemove = control as Label;

}

Controls.Remove(controlToRemove);

controlToRemove.Dispose();

Bonus question: Why do you think
we didn’t put the Controls.Remove()
statement inside the foreach loop?

Create a new button and add it to the
form. It’ll have default values (e.g., the Text
property will be empty).

There’s a second Form in the application
called Form2, so this creates it, sets its
background image to a resource image called
“Mosaic”, makes the background image so it’s
tiled instead of stretched, and then displays
the window to the user.

This code creates a new label, sets its text,
and moves it to a new position. Then it
creates a new list box, adds four items to
the list, and moves it just underneath the
label. It adds the label and list box to the
form, so they both get displayed immediately.

This loop searches through all the controls on
the form until it finds a label with the text
“Bobby”. Once it finds the label, it removes it
from the form.

You can’t modify the Controls collection
(or any other collection) in the middle of a
foreach loop that’s iterating through it.

If you try, .NET will throw an exception. It

needs the collection intact, otherwise it’ll lose its

place and give you unpredictable result
s. That’s

why you’d use a for loop for this instea
d.

buzz buzz buzz

What happens if there’s no control named
“Bobby” in the Controls collection?

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   59

gdi+ graphics

Build your f irst animated control
You’re going to build your own control that draws an animated bee
picture. If you’ve never done animation, it’s not as hard as it sounds: you
draw a sequence of pictures one after another, and produce the illusion of
movement. Lucky for us, the way C# and .NET handle resources makes it
really easy for us to do animation.

1
2

3

4

Once you download the four bee animation pictures (Bee animation 1.png through Bee animation 4.png) from Head First Labs, you’ll add them to your project’s resources. When you flash these four bees quickly one after another, it’ll look like their wings are flapping.

We want a control in the toolbox
If you build BeeControl right, it’ll appear as a control
that you can drag out of your toolbox and onto your form.
It’ll look just like a PictureBox showing a picture of a
bee, except that it’ll have animated flapping wings.

As long as we extend the right cla
sses,

.NET takes care of showing our

control in the IDE toolbox.

This is like a PictureBox, but the image is set, and there’s animation that we’ll build in. Any guesses as to what class BeeControl subclasses?

Download the images for this chapter
from the Head First Labs website:
www.headfirstlabs.com/books/
hfcsharp/

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

60   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

BeeControl is LIKE a PictureBox…so le t’s
start by INHERITING from PictureBox
Since every control in the toolbox is just an object, it’s easy to make a new control.
All you need to do is add a new class to your project that inherits from an existing
control, and add any new behavior you want your control to perform.

We want a control—let’s call it a BeeControl—that shows an animated
picture of a bee flapping its wings, but we’ll start with a control that shows
a non-animated picture, and then just add animation. So we’ll start with a
PictureBox, and then we’ll add code to draw an animated bee on it.

Create a new project and add the four animation cells to the project’s resources, just like you added
the Objectville Paper Company logo to your project way back in Chapter 1. But instead of adding them
to the form resources, add them to the project’s resources. Find your project’s Resources.resx file in
the Solution Explorer (it’s under Properties). Double-click on it to bring up the project’s Resources page.

1

In Chapter 1, we added the logo
graphic to the form’s Resources
file. This time we’re adding the
resources to the project’s global
collection of resources, which
makes them available to every
class in the project (through the
Properties.Resources collection).

We’ve drawn a four-cell bee animation to import into your resources that you can
download from http://www.headfirstlabs.com/books/hfcsharp/. Then, go
to the Resources page, select “Images” from the first drop-down at the top of the screen,
and select “Add Existing File…” from the “Add Resource” drop-down.

2

Animate this!

Bee animation 1.png Bee animation 2.png Bee animation 3.png Bee animation 4.png

These appear under your project, not a particular form.

Import each of these images into
your project’s resources.

Take a minute and flip back
to Chapter 1 to remind
yourself how you did this.

DIY control

Double-click on Resources.
resx to bring up the
Resources page.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   61

gdi+ graphics

pictureBox1.Image =
 Properties.Resources.Bee_animation_1;

When you add images or other resources to the project’s Resources file, you can access
them using the Properties.Resources class. Just go to any line in your code and
type Properties.Resources.—as soon as you do, IntelliSense pops up a drop-
down list that shows all of the pictures you’ve imported.

3

This sets the image used for a
particular PictureBox’s image (and
for our starting image).

Note that “.” at the end…that’s what tells the IDE to pop up the properties and methods of the class you typed in.

These images are stored a
s

public properties
of the

Properties.Resources class.

Now add your BeeControl! Just add this BeeControl class to your project:

class BeeControl : PictureBox {

 private Timer animationTimer = new Timer();

 public BeeControl() {
 animationTimer.Tick += new EventHandler(animationTimer_Tick);
 animationTimer.Interval = 150;
 animationTimer.Start();
 BackColor = System.Drawing.Color.Transparent;
 BackgroundImageLayout = ImageLayout.Stretch;
 }

 private int cell = 0;
 void animationTimer_Tick(object sender, EventArgs e) {
 cell++;
 switch (cell) {
 case 1: BackgroundImage = Properties.Resources.Bee_animation_1; break;
 case 2: BackgroundImage = Properties.Resources.Bee_animation_2; break;
 case 3: BackgroundImage = Properties.Resources.Bee_animation_3; break;
 case 4: BackgroundImage = Properties.Resources.Bee_animation_4; break;
 case 5: BackgroundImage = Properties.Resources.Bee_animation_3; break;
 default: BackgroundImage = Properties.Resources.Bee_animation_2;
 cell = 0; break;
 }
 }
}

Then rebuild your program. Go back to the form designer and look in the toolbox, and the
BeeControl is there. Drag it onto your form—you get an animated bee!

4

When you change the code for a control, you need to rebuild
your program to make your changes show up in the designer.

Here’s where you
initialize the timer
by instantiating it,
setting its Interval
property, and then
adding its tick
event handler.

Each time the timer’s
tick event fires, it
increments cell, and
then does a switch
based on it to assign
the right picture to
the Image property
(inherited from
PictureBox).

Once we get back to frame #1,
we’ll reset cell back to 0.

You’ll need to add a “using System.Windows.Forms” line for the PictureBox and Timer.

When the
program’s running,
each picture is
stored in memory
as a Bitmap object.

Make sure you
add “using System.
Windows.Forms”
to the top of the
class file.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

62   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

Create a button to add the BeeControl to your form
It’s easy to add a control to a form—just add it to the Controls collection. And it’s just as
easy to remove it from the form by removing it from Controls. But controls implement
IDisposable, so make sure you always dispose your control after you remove it.

Every visual control in your
toolbox inherits from System.
Windows.Forms.Control. That
class has members that should be
pretty familiar by now: Visible,
Width, Height, Text, Location,
BackColor, BackgroundImage…
all of those familiar properties you
see in the Properties window for
any control.

Behind
the Scenes

You can add your own
control to the toolbox just
by creating a class that
inherits from Control.

Remove the BeeControl from your form, and then add a button
Go to the form designer and delete the BeeControl from the form. Then add a
button. We’ll make the button add and remove a BeeControl.

1

When you add
a control to
the Controls
collection, it
appears on
the form
immediately.

Add a button to add and remove the bee control
Here’s the event handler for it:

BeeControl control = null;
private void button1_Click(object sender, EventArgs e) {
 if (control == null) {
 control = new BeeControl() { Location = new Point(100, 100) };
 Controls.Add(control);
 } else {
 using (control) {
 Controls.Remove(control);
 }
 control = null;
 }
}

Now when you run your program, if you click the button once it’ll add a new BeeControl to
the form. Click it again and it’ll delete it. It uses the private control field to hold the reference
to the control. (It sets the reference to null when there’s no control on the form.)

2

We’re taking advantage of a
using statement to make sure
the control is disposed after
it’s removed from the Controls
collection.

Now do this

controls are disposable

You can use an
object initializer to
set the BeeControl
properties after
it’s instantiated.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   63

gdi+ graphics

Override the Dispose() method and dispose of the timer
Since BeeControl inherits from a control, then that control must have a Dispose() method. So we can
just override and extend that method to dispose our timer. Just go into the control and type override:

 class BeeControl : PictureBox {
	

As soon as you click on Dispose(), the IDE will fill in the method with a call to base.Dispose():

 protected override void Dispose(bool disposing) {
 base.Dispose(disposing);
 }

3

Add the code to dispose the timer
Add code to the end of the new Dispose() method that the IDE added for you so
that it calls animationTimer.Dispose() if the disposing argument is true.

 protected override void Dispose(bool disposing) {
 base.Dispose(disposing);
 if (disposing) {
 animationTimer.Dispose();
 }
 }

Now the BeeControl will dispose of its timer as part of its own Dispose()
method. It cleans up after itself !

But don’t take our word for it—set a breakpoint on the line you added and
run your program. Every time a BeeControl object is removed from the form’s
Controls collection, its Dispose() method is called.

4

Your controls need to dispose the ir controls, too!
There’s a problem with the BeeControl. Controls need to be disposed after
they’re done. But the BeeControl creates a new instance of Timer, which
is a control that shows up in the toolbox…and it never gets disposed! That’s a
problem. Luckily, it’s easy to fix—just override the Dispose() method.

When you type “override”
inside a class, the IDE
pops up an IntelliSense
window with all of the
methods you can override.
Select the Dispose()
method and it’ll fill one in
for you!

Any control
that you write
from scratch
is responsible
for disposing
any other
controls (or
disposable
objects) that
it creates.

The control class implements
IDisposable, so you need to make
sure every control you use gets
disposed.

Here we’re overriding a protected
Dispose() method that’s called by
the control’s implementation of
IDisposable.Dispose(). It should only dispose the timer if the disposing
argument is true.

We won’t go into any more detail about this particular disposal pattern. But if you plan on building custom controls,
you definitely should read this: http://msdn.microsoft.com/en-us/library/system.idisposable.aspx

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

64   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

A UserControl is an easy way to build a control
There’s an easier way to build your own toolbox controls. Instead of creating a
class that inherits from an existing control, all you need to do is use the IDE
to add a UserControl to your project. You work with a UserControl
just like a form. You can drag other controls out of the toolbox and onto it—it
uses the normal form designer in the IDE. And you can use its events just like
you do with a form. So let’s rebuild the BeeControl using a UserControl.

A UserControl is an easy way to add a control to the toolbox. Edit a
UserControl just like a form—you can drag other controls out of the
toolbox onto it, and you can use its events exactly like a form’s events.

Create a brand-new Windows Forms Application project. Add the four bee images to its resources.
Drag a button to the form and give it exactly the same code as to add and remove a BeeControl.

1

Do this

Right-click on the project in the Solution Explorer and select “Add >> User Control…”. Have the
IDE add a user control called BeeControl. The IDE will open up the new control in the
form designer.

2

Drag a Timer control onto your user control. It’ll show up at the bottom of the designer, just like
with a form. Use the Properties window to name it animationTimer and set its Interval
to 150 and its Enabled to true. Then double-click on it—the IDE will add its Tick event
handler. Just use the same Tick event handler that you used earlier to animate the first bee control.

3

Now update the BeeControl’s constructor:

 public BeeControl() {

 InitializeComponent();

 BackColor = System.Drawing.Color.Transparent;

 BackgroundImageLayout = ImageLayout.Stretch;

 }

4

Now run your program—the button code should still work exactly the same as before, except
now it’s creating your new UserControl-based BeeControl. The button now adds and
removes your UserControl-based BeeControl.

5

You can also do this from the Properties
page in the IDE, instead of using code.

Use the animationTimer_Tick() method and
the cell field from the old bee control.

user controls make it easy

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   65

gdi+ graphics

But I’ve been using
controls all this time, and I’ve

never disposed a single one of
them! Why should I start now?

You didn’t dispose your controls because your forms
did it for you.

But don’t take our word for it. Use the IDE’s search function to search
your project for the word “Dispose”, and you’ll find that the IDE added
a method in Form1.Designer.cs to override the Dispose()
method that calls its own base.Dispose(). When the form is
disposed, it automatically disposes everything in its Controls
collection so you don’t have to worry about it. But once you start
removing controls from that collection or creating new instances
of controls (like the Timer in the BeeControl) outside of the
Controls collection, then you need to do the disposal yourself.

Q: Why does the form code for the
PictureBox-based BeeControl
work exactly the same with the
UserControl-based BeeControl?

A: Because the code doesn’t care how
the BeeControl object is implemented.
It just cares that it can add the object to the
form’s Controls method.

Q: I double-clicked on my
OldBeeControl class in the
Solution Explorer, and it had a message
about adding components to my class.
What’s that about?

A: When you create a control by adding
a class to your project that inherits from
PictureBox or another control, the IDE
does some clever things. One of the things
it does is let you work with components,
those non‑visual controls like Timer and

OpenFileDialog that show up in the
space beneath your form when you work
with them.
Give it a try—create an empty class that
inherits from PictureBox. Then rebuild
your project and double-click on it in the IDE.
You’ll get this message:
To add components to your class, drag
them from the Toolbox and use the
Properties window to set their properties.
Drag an OpenFileDialog out of
the toolbox and onto your new class. It’ll
appear as an icon. You can click on it and
set its properties. Set a few of them. Now
go back to the code for your class. Check
out the constructor—the IDE added code
to instantiate the OpenFileDialog
object and set its properties.

Q: When I changed the properties
in the OpenFileDialog, I noticed
an error message in the IDE: “You must
rebuild your project for the changes to
show up in any open designers.” Why did
I get this error?

A: Because the designer runs your
control, and until you rebuild your code it’s
not running the latest version of the control.
Remember how the wings of the bee
were flapping when you first created your
BeeControl, even when you dragged
it out of the toolbox and into the designer?
You weren’t running your program yet, but
the code that you wrote was being executed.
The timer was firing its Tick event, and
your event handler was changing the picture.
The only way the IDE can make that happen
is if the code were actually compiled and
running in memory somewhere. So it’s
reminding you to update your code so it can
display your controls properly.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

66   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

Your simulator ’s renderer wil l use your BeeControl
to draw animated bees on your forms
Now you’ve got the tools to start adding animation to your simulator. With a BeeControl
class and two forms, you just need a way to position bees, move them from one form to the
other, and keep up with the bees. You’ll also need to position flowers on the FieldForm,
although since flowers don’t move, that’s pretty simple. All of this is code that we can put
into a new class, Renderer. Here’s what that class will do:

The renderer keeps a reference to the world and each child form
At the very top of the Renderer class you’ll need a few important fields. The
class has to know the location of each bee and flower, so it needs a reference to the
World. And it’ll need to add, move, and remove controls in the two forms, so it
needs a reference to each of those forms:

class Renderer {

 private World world;

 private HiveForm hiveForm;

 private FieldForm fieldForm;

2

The renderer uses dictionaries to keep track of the controls
World keeps track of its Bee objects using a List<Bee> and a List<Flower> to store
its flowers. The renderer needs to be able to look at each of those Bee and Flower objects
and figure out what BeeControl and PictureBox they correspond to—or, if it can’t
find a corresponding control, it needs to create one. So here’s a perfect opportunity to use
dictionaries. We’ll need two more private fields in Renderer:

 private Dictionary<Flower, PictureBox> flowerLookup =

 new Dictionary<Flower, PictureBox>();

 private Dictionary<Bee, BeeControl> beeLookup =

 new Dictionary<Bee, BeeControl>();

3

These two dictionary collections
let the renderer store exactly
one control for each bee or
flower in the world.

Start your Renderer
class with these lines.
We’ll add to this class
throughout the chapter.

These dictionaries become one-to-one mappings between a bee or flower and the control for that bee or flower.

The stats form will be the parent of the hive and field forms
The first step in adding graphics to the beehive simulator will be adding two
forms to the project. You’ll add one called HiveForm (to show the inside of the
hive) and one called FieldForm (which will show the field of flowers). Then
you’ll add lines to the main form’s constructor to show its two child forms. Pass a
reference to the main form to tell Windows that the stats form is their owner:

public Form1() {

 // other code in the Form1 constructor

 hiveForm.Show(this);

 fieldForm.Show(this);

1

Every form object has a Show()
method. If you want to set another
form as its owner, just pass a
reference to that form to Show().

You’ll want the hive and
field forms “linked” to
the stats form—that does
useful things like minimizing
the hive and field forms
when you minimize the stats
form. You can do this by
telling Windows that the
stats form is their owner.

here’s what you’ll do…

We’ll build the
renderer in a minute.
But before we jump
in and start coding,
let’s take a minute
and come up with
a plan for how the
Renderer class will
work…

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   67

gdi+ graphics

The bees and flowers already know their locations
There’s a reason we stored each bee and flower location using a Point. Once we have a
Bee object, we can easily look up its BeeControl and set its location.

 beeControl = beeLookup[bee];

 beeControl.Location = bee.Location;

4

For each bee or flower, we can look up the matching control. Then, set that control’s location to match the location of the bee or flower object.

If a bee doesn’t have a control, the renderer adds it to the hive form
It’s easy enough for the renderer to figure out if a particular bee or flower has a control. If the
dictionary’s ContainsKey() method returns false for a particular Bee object, that means
there’s no control on the form for that bee. So Renderer needs to create a BeeControl, add it to
the dictionary, and then add the control to the form. (It also calls the control’s BringToFront()
method, to make sure the control doesn’t get hidden behind the flower PictureBoxes.)

 if (!beeLookup.ContainsKey(bee)) {
 beeControl = new BeeControl() { Width = 40, Height = 40 };
 beeLookup.Add(bee, beeControl);
 hiveForm.Controls.Add(beeControl);
 beeControl.BringToFront();

 } else

 beeControl = beeLookup[bee];

5

ContainsKey() tells us if the bee exists in the dictionary. If not, then we need to add that bee, along with a corresponding control.

BringToFront() ensures the bee
appears “on top of” any flowers on
the FieldForm, and on top of the
background of the HiveForm.

The renderer is acting on the two forms, as well as all the objects you built in the last chapter for the simulator.

Remember how a dictionary can use anything as a key? Well, this one uses a Bee object as a key. The renderer needs to know which BeeControl on the form belongs to a particular bee. So it looks up that bee’s object in the dictionary, which spits out the correct control. Now the renderer can move it around.

Hive fo

rm

Renderer obje
ct

System.Window
s.

Fo
rm

s.
Fo

rmMain form

Field fo

rm

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

68   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

Add the hi ve and f ie ld forms to the project

Figure out where your locations are
You need to figure out where the hive is on your FieldForm. Using the Properties window, create
a handler for the MouseClick event for the Hive form, and add this code:

 private void HiveForm_MouseClick(object sender, MouseEventArgs e) {
 MessageBox.Show(e.Location.ToString());
 }

We’ll get your form running on the next few pages. Once it’s running, click on the exit of the hive in
the picture. The event handler will show you the exact coordinates of the spot that you clicked.

Add the same handler to the Field form, too. Then, by clicking, get the coordinates of the
exit, the nursery, and the honey factory. Using all these locations, you’ll be able to update the
InitializeLocations() method you wrote in the Hive class in the last chapter:

Now you need forms to put bees on. So start with your existing beehive simulator project, and
use “Add >> Existing Item…” to add your new BeeControl user control. The UserControl
has a .cs file, a .designer.cs file, and a .resx file—you’ll need to add all three. Then open up
the code for both the .cs and .designer.cs files, and change the namespace lines so they match
the namespace of your new project. Rebuild your project; the BeeControl should now show up in
the toolbox. You’ll also need to add the graphics to the new project’s resources. Then add two more
Windows forms to the project by right-clicking on the project in the Solution Explorer and choosing

“Windows Form…” from the Add menu. If you name the files HiveForm.cs and FieldForm.cs,
the IDE will automatically set their Name properties to HiveForm and FieldForm. You already
know that forms are just objects, so HiveForm and FieldForm are really just two more classes.

This is a PictureBox
control with its
BackgroundImage
set to the outside
hive picture and
BackgroundImageLayout
set to Stretch. When you
load the hive pictures into
the Resource Designer,
they’ll show up in the
list of resources when
you click the “…” button
next to BackgroundImage
in the Properties window.

Set the form’s BackgroundImage property to the inside hive picture, and its BackgroundImageLayout property to Stretch.

private void InitializeLocations()
{
 locations = new Dictionary<string, Point>();
 locations.Add(“Entrance”, new Point(626, 110));
 locations.Add(“Nursery”, new Point(77, 162));
 locations.Add(“HoneyFactory”, new Point(157, 78));
 locations.Add(“Exit”, new Point(175, 180));}

You’ll need the inside and outside hive images—“Hive (inside).png” and “Hive (outside).png”—loaded into your resources. Then add these two forms. Set each form’s FormBorderStyle property to FixedSingle (so the user can’t resize it), the ControlBox property to false (to take away its minimize and maximize controls), and StartPosition to Manual (so its Location property is settable).

Remove the mouse click handler when you’re done…you just needed it to get the locations on your forms.These are the coordinates that worked for us, but if your form
is a little bigger or smaller, your coordinates will be different.

Remember, go to the Properties window, click on the lightning-bolt
icon to bring up the Events window, scroll down to the MouseClick row
and double-click on it. The IDE will add the event handler for you.

Make sure
you resize
both forms
so they look
like these
screenshots.

let’s get started!

Once you get
your simulator
running, you
can use this
to tweak the
Hive’s locations
collection.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   69

gdi+ graphics

Renderer

Render()
Reset()

Here’s the complete class. The main form calls this class’s method
right after it calls to draw the bees and flowers on the forms. You’ll
need to make sure that the flower graphic () is loaded into the
project, just like the animated bee images.

Build the renderer All fields in the renderer
are private because no
other class needs to update
any of its properties. It’s
fully encapsulated. The
world just calls Render()
to draw the world to the
forms, and Reset() to clear
the controls on the forms
if it needs to reset.

class Renderer {
 private World world;
 private HiveForm hiveForm;
 private FieldForm fieldForm;

 private Dictionary<Flower, PictureBox> flowerLookup =
 new Dictionary<Flower, PictureBox>();
 private List<Flower> deadFlowers = new List<Flower>();

 private Dictionary<Bee, BeeControl> beeLookup =
 new Dictionary<Bee, BeeControl>();
 private List<Bee> retiredBees = new List<Bee>();

 public Renderer(World world, HiveForm hiveForm, FieldForm fieldForm) {
 this.world = world;
 this.hiveForm = hiveForm;
 this.fieldForm = fieldForm;
 }

 public void Render() {
 DrawBees();
 DrawFlowers();
 RemoveRetiredBeesAndDeadFlowers();
 }

 public void Reset() {
 foreach (PictureBox flower in flowerLookup.Values) {
 fieldForm.Controls.Remove(flower);
 flower.Dispose();
 }
 foreach (BeeControl bee in beeLookup.Values) {
 hiveForm.Controls.Remove(bee);
 fieldForm.Controls.Remove(bee);
 bee.Dispose();
 }
 flowerLookup.Clear();
 beeLookup.Clear();
 }

The renderer keeps references t
o

the world and the two forms it
draws the bees on. The world uses Bee and Flower objects to keep track of every bee and flower in the world. The forms use a PictureBox to display each flower and a BeeControl to display each bee. The renderer uses these dictionaries to connect each bee and flower to its own BeeControl or PictureBox.

When a flower dies or a bee retires, it uses the deadFlowers and retiredBees lists to clean out the dictionaries.
The timer on the main form that runs the
animation calls the Render() method, which
updates the bees and the flowers, and then
cleans out its dictionaries.

If the simulator is reset, it calls each form’s Controls.Remove() method to completely clear out the controls on the two forms. It finds all of the controls in each of its two dictionaries and removes them from the forms, calling Dispose() on each of them. Then it clears the two dictionaries.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

70   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

 private void DrawFlowers() {
 foreach (Flower flower in world.Flowers)
 if (!flowerLookup.ContainsKey(flower)) {
 PictureBox flowerControl = new PictureBox() {
 Width = 45,
 Height = 55,
 Image = Properties.Resources.Flower,
 SizeMode = PictureBoxSizeMode.StretchImage,
 Location = flower.Location
 };
 flowerLookup.Add(flower, flowerControl);
 fieldForm.Controls.Add(flowerControl);
 }

 foreach (Flower flower in flowerLookup.Keys) {
 if (!world.Flowers.Contains(flower)) {
 PictureBox flowerControlToRemove = flowerLookup[flower];
 fieldForm.Controls.Remove(flowerControlToRemove);
 flowerControlToRemove.Dispose();
 deadFlowers.Add(flower);
 }
 }
 }

 private void DrawBees() {
 BeeControl beeControl;
 foreach (Bee bee in world.Bees) {
 beeControl = GetBeeControl(bee);
 if (bee.InsideHive) {
 if (fieldForm.Controls.Contains(beeControl))
 MoveBeeFromFieldToHive(beeControl);
 } else if (hiveForm.Controls.Contains(beeControl))
 MoveBeeFromHiveToField(beeControl);
 beeControl.Location = bee.Location;
 }

 foreach (Bee bee in beeLookup.Keys) {
 if (!world.Bees.Contains(bee)) {
 beeControl = beeLookup[bee];
 if (fieldForm.Controls.Contains(beeControl))
 fieldForm.Controls.Remove(beeControl);
 if (hiveForm.Controls.Contains(beeControl))
 hiveForm.Controls.Remove(beeControl);
 beeControl.Dispose();
 retiredBees.Add(bee);
 }
 }
 }

The first foreach loop uses
the flowerLookup dictionary
to check each flower to
see if it’s got a control on
the form. If it doesn’t, it
creates a new PictureBox
using an object initializer,
adds it to the form, and
then adds it to the
flowerLookup dictionary.

It takes two foreach loops to draw the flowers. The first looks
for new flowers and adds their PictureBoxes. The second looks
for dead flowers and removes their PictureBoxes.

DrawFlowers() uses the
Location property in
the Flower object to
set the PictureBox’s
location on the form.

The second foreach loop
looks for any PictureBox in
the flowerLookup dictionary
that’s no longer on the form
and removes it.

After it removes the PictureBox, it calls its
Dispose() method. Then it adds the Flower
object to deadFlowers so it’ll get cleared later.

DrawBees() also uses two foreach loops, and it does the same basic things as DrawFlowers(). But it’s a little more complex, so we split some of its behavior out into separate methods to make it easier to understand.

DrawBees() checks if a bee is in
the hive but its control is on the
FieldForm, or vice versa. It uses
two extra methods to move the
BeeControls between the forms.

The second foreach loop works
just like in DrawFlowers(),
except it needs to remove the
BeeControl from the right
form.

Once the BeeControl
is removed, we need
to call its Dispose()
method—the user
control will dispose of
its timer for us.

here’s the renderer class

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   71

gdi+ graphics

 private BeeControl GetBeeControl(Bee bee) {
 BeeControl beeControl;
 if (!beeLookup.ContainsKey(bee)) {
 beeControl = new BeeControl() { Width = 40, Height = 40 };
 beeLookup.Add(bee, beeControl);
 hiveForm.Controls.Add(beeControl);
 beeControl.BringToFront();
 }
 else
 beeControl = beeLookup[bee];
 return beeControl;
 }

 private void MoveBeeFromHiveToField(BeeControl beeControl) {
 hiveForm.Controls.Remove(beeControl);
 beeControl.Size = new Size(20, 20);
 fieldForm.Controls.Add(beeControl);
 beeControl.BringToFront();
 }

 private void MoveBeeFromFieldToHive(BeeControl beeControl) {
 fieldForm.Controls.Remove(beeControl);
 beeControl.Size = new Size(40, 40);
 hiveForm.Controls.Add(beeControl);
 beeControl.BringToFront();
 }

 private void RemoveRetiredBeesAndDeadFlowers() {
 foreach (Bee bee in retiredBees)
 beeLookup.Remove(bee);
 retiredBees.Clear();
 foreach (Flower flower in deadFlowers)
 flowerLookup.Remove(flower);
 deadFlowers.Clear();
 }
}

GetBeeControl() looks up a bee in the
beeLookup dictionary and returns it. If
it’s not there, it creates a new 40 x 40
BeeControl and adds it to the hive form
(since that’s where bees are born).

Don’t forget that
the ! means NOT.

MoveBeeFromHiveToField() takes a specific
BeeControl out of the hive form’s Controls
collection and adds it to the field form’s
Controls collection.

MoveBeeFromFieldToHive() moves a
BeeControl back to the hive form.
It has to make it bigger again.

The bees on the field form are smaller than
the ones on the hive form, so the method
needs to change BeeControl’s Size property.

After all the controls are moved around,
the renderer calls this method to clear
any dead flowers and retired bees out of
the two dictionaries.

Whenever DrawBees() and DrawFlowers()
found that a flower or bee was no longer
in the world, it added them to the
deadFlowers and retiredBees lists to be
removed at the end of the frame.

You’ll need to make sure you’ve got using System.Drawing
and using System.Windows.Forms at the top of the
Renderer class file.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

72   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

public partial class Form1 : Form {
 private HiveForm hiveForm = new HiveForm();
 private FieldForm fieldForm = new FieldForm();
 private Renderer renderer;

 // the rest of the fields

 public Form1() {
 InitializeComponent();

 MoveChildForms();
 hiveForm.Show(this);
 fieldForm.Show(this);
 ResetSimulator();

 timer1.Interval = 50;
 timer1.Tick += new EventHandler(RunFrame);
 timer1.Enabled = false;
 UpdateStats(new TimeSpan());
 }

 private void MoveChildForms() {
 hiveForm.Location = new Point(Location.X + Width + 10, Location.Y);
 fieldForm.Location = new Point(Location.X,
 Location.Y + Math.Max(Height, hiveForm.Height) + 10);
 }

 public void RunFrame(object sender, EventArgs e) {
 framesRun++;
 world.Go(random);
 renderer.Render();
 // previous code
 }

 private void Form1_Move(object sender, EventArgs e) {
 MoveChildForms();
 }

The main form’s constructor
moves the two child forms
in place, then displays them.
Then it calls ResetSimulator(),
which instantiates Renderer.

The form passes a reference
to itself into Form.Show() so
it becomes the parent form.

When the main form loads, it creates an instance of each of the other two forms. They’re just objects in the heap for now—they won’t be displayed until their Show() methods are called.

This code moves the two
forms so that the hive
form is next to the main
stats form and the field
form is below both of them.

Adding this one line to RunFrame makes the simulator update the graphics each time the world’s Go() method is called.
The Move event is fired
every time the main
form is moved. Calling
MoveChildForms() makes
sure the child forms
always move along with
the main form.

Use the Events button in the Properties
window to add the Move event.handler.

Now connect the main form to your t wo new
forms, Hi veForm and Fie ldForm
It’s great to have a renderer, but so far, there aren’t any forms to render
onto. We can fix that by going back to the main Form class (probably
called Form1) and making some code changes:

Move the code to instantiate the World
into the ResetSimulator() method.

The code to
reset the world
moved to the
ResetSimulator()
method.

hook it up

Make sure you’ve set the field and hive
forms’ StartPosition property to Manual,
or else MoveChildForms() won’t work.

Since both child forms have StartPosition set
to Manual, the main form can move them using
the Location property.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   73

gdi+ graphics

 private void ResetSimulator() {
 framesRun = 0;
 world = new World(new BeeMessage(SendMessage));
 renderer = new Renderer(world, hiveForm, fieldForm);
 }

 private void reset_Click(object sender, EventArgs e) {
 renderer.Reset();
 ResetSimulator();
 if (!timer1.Enabled)
 toolStrip1.Items[0].Text = “Start simulation”;
 }

 private void openToolStripButton_Click(object sender, EventArgs e) {
 // The rest of the code in this button stays exactly the same.

 renderer.Reset();
 renderer = new Renderer(world, hiveForm, fieldForm);
 }
}

Finally, you’ll need to add code to the Open button on the ToolStrip to use the Reset() method to remove the bees and flowers from the two forms’ Controls collections, and then create a new renderer using the newly loaded world.

The Reset button needs to
call Reset() to clear out all
the BeeControls and flower
PictureBoxes, and then reset
the simulator.

Here’s where we create new instances of the World and Renderer classes, which
resets the simulator.

Q: I saw that you showed the form using a Show() method,
but I don’t quite get what was going on with passing this as a
parameter.

A: This all comes down to the idea that a form is just another
class. When you display a form, you’re just instantiating that class
and calling its Show() method. There’s an overloaded version of
Show() that takes one parameter, a parent window. When one
form is a parent of another, it causes Windows to set up a special
relationship between them—for example, when you minimize the
parent window, it automatically minimizes all of that form’s child
windows, too.

Q:Can you alter the preexisting controls and muck around
with their code?

A:No, you can’t actually access the code inside the controls
that ship with Visual Studio. However, every single one of those
controls is a class that you can inherit, just like you inherited from
PictureBox to create your BeeControl. If you want to
add or change behavior in any of those controls, you add your own
methods and properties that manipulate the ones in the base class.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

74   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

Test dri ve…ahem…buzz
Compile all your code, chase down any errors you’re
getting, and run your simulator.

Your bees should be happily
flapping their wings now.

Try changing the
constants on your
simulator, and seeing how
the renderer handles more
bees or flowers.

something’s wrong

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   75

gdi+ graphics

Looks great, but something’s not quite r ight…
Look closely at the bees buzzing around the hive and the flowers, and you’ll
notice some problems with the way they’re being rendered. Remember
how you set each BeeControl’s BackColor property to Color.
Transparent? Unfortunately, that wasn’t enough to keep the simulator from
having some problems that are actually pretty typical of graphics programs.

The flowers’ “transparent” backgrounds aren’t really transparent
And there’s another, completely separate problem. When we saved the graphics files for
the flowers, we gave them transparent backgrounds. But while that made sure that each
flower’s background matched the background of the form, it doesn’t look so nice when
flowers overlap each other.

2

The bees’ backgrounds aren’t transparent, either
It turns out that Color.Transparent really does have some limitations. When the
bees are hovering over the flowers, the same “cut-out” glitch happens. Transparency
works a little better with the hive form, where the form’s background image does show
through the transparent areas of the bee graphics. But when the bees overlap, the same
problems occur. And if you watch closely as the bees move around the hive, you’ll see
some glitches where the bee images are sometimes distorted when they move.

3

When you set a PictureBox’s
background color to Transparent, it
draws any transparent pixels in the
image so they match the background
of the form…which isn’t always the
right thing to do.

When one PictureBox overlaps
another, C# draws the
transparent pixels so they match the form, not the other control that it overlaps, causing weird
rectangular “cut-outs” any time two flowers overlap.

There are some serious performance issues
Did you notice how the whole simulator slows down when all the bees are inside the hive?
If not, try adding more bees by increasing the constants in the Hive class. Keep your eye
on the frame rate—add more bees, and it starts to drop significantly.

1

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

76   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

Let’s take a closer look at those performance issues
Each bee picture you downloaded is big. Really big. Pop one of them open in Windows
Picture Viewer and see for yourself. That means the PictureBox needs to shrink it
down every time it changes the image, and scaling an image up or down takes time. The
reason the bees move a lot slower when there’s a lot of them flying around inside the
hive is that the inside hive picture is HUGE. And when you made the background for the
BeeControl transparent, it needs to do double work: first it has to shrink the bee picture
down, and then it needs to shrink a portion of the form’s background down so that it can
draw it in the transparent area behind the bee.

…so all we need to do to speed up the simulator’s performance
is to shrink down all the pictures before we try to display them.

Bee animation 1.png

Hive (Inside).png

The graphics files for the bees
are really BIG. The PictureBox
needs to scale the picture down
to size every time it displays a
new animation frame. That takes
a lot of time…

The bee picture is
really big, and the
PictureBox needs
time to shrink it
down every time
it displays a new
animation frame.

The inside hive picture is huge.
Every time a bee flies in front
of it, its PictureBox needs to
scale it down to the size of the
control. It needs to do that
to show part of the picture
any place the bee picture’s
transparent background lets it
show through.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   77

gdi+ graphics
All we need to do to speed up the graphics performance is add a method
to the renderer that scales any image to a different size. Then we can
resize each picture once when it’s loaded, and only use the scaled-
down version in the bee control and for the hive form’s background.

public static Bitmap ResizeImage(Bitmap picture, int width, int height) {
 Bitmap resizedPicture = new Bitmap(width, height);
 using (Graphics graphics = Graphics.FromImage(resizedPicture)) {
 graphics.DrawImage(picture, 0, 0, width, height);
 }
 return resizedPicture;
}

Add the ResizeImage method to the renderer
All of the pictures in your project (like Properties.Resources.Flower) are stored as
Bitmap objects. Here’s a static method that resizes bitmaps—add it to the Renderer class:

1

We’ll take a closer look at what this Graphics object is
and how this method works in the next few pages

Add this ResizeCells method to your BeeControl
Your BeeControl can store its own Bitmap objects—in this case, an array of four of them. Here’s a
control that’ll populate that array, resizing each one so that it’s exactly the right size for the control:

2

 Do this

Set the form’s background image manually
Go to the Properties window and set the hive form’s background image to (none). Then go to its
constructor and set the image to one that’s sized properly.

5

public partial class HiveForm : Form {
 public HiveForm() {
 InitializeComponent();
 BackgroundImage = Renderer.ResizeImage(
 Properties.Resources.Hive__inside_,
 ClientRectangle.Width, ClientRectangle.Height);
 }
}

Your form has a ClientRectangle property that contains a Rectangle that has the dimensions of its display area.

Now run the simulator—it’s much faster!

private Bitmap[] cells = new Bitmap[4];
private void ResizeCells() {
 cells[0] = Renderer.ResizeImage(Properties.Resources.Bee_animation_1, Width, Height);
 cells[1] = Renderer.ResizeImage(Properties.Resources.Bee_animation_2, Width, Height);
 cells[2] = Renderer.ResizeImage(Properties.Resources.Bee_animation_3, Width, Height);
 cells[3] = Renderer.ResizeImage(Properties.Resources.Bee_animation_4, Width, Height);
}

Change the switch statement so that it uses the cells array, not the resources
The BeeControl’s Tick event handler has a switch statement that sets its BackgroundImage:

 BackgroundImage = Properties.Resources.Bee_animation_1;

Replace Properties.Resources.Bee_animation_1 with cells[0]. Now replace the rest of the
case lines, so that case 2 uses cells[1], case 3 uses cells[2], case 4 uses cells[3], case 5 uses
cells[2], and the default case uses cells[1]. That way only the resized image is displayed.

3

Add calls to ResizeCells() to the BeeControl
You’ll need to add two calls to the new ResizeCells() method. First, add it to the bottom of the
constructor. Then go back to the IDE designer by double-clicking on the BeeControl in the Properties
window. Go over to the Events page in the Properties window (by clicking on the lightning-bolt icon), scroll
down to Resize, and double-click on it to add a Resize event handler. Make the new Resize event
handler call ResizeCells(), too—that way it’ll resize its animation pictures every time the form is
resized.

4

These lines take each of the Bitmap objects that store the bee pictures
and shrink them down using the ResizeImage() method we wrote.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

78   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

You resized your Bitmaps using a Graphics object
Let’s take a closer look at that ResizeImage() method you added to the
renderer. The first thing it does is create a new Bitmap object that’s the size that
the picture will be resized to. Then it uses Graphics.FromImage() to create
a new Graphics object. It uses that Graphics object’s DrawImage()
method to draw the picture onto the Bitmap. Notice how you passed the width
and height parameters to DrawImage()—that’s how you tell it to scale the
image down to the new size. Finally you returned the new Bitmap you created, so
it can be used as the form’s background image or one of the four animation cells.

public static Bitmap ResizeImage(Bitmap picture, int width, int height) {

 Bitmap resizedPicture = new Bitmap(width, height);

 using (Graphics graphics = Graphics.FromImage(resizedPicture)) {

 graphics.DrawImage(picture, 0, 0, width, height);

 }

 return resizedPicture;

}

private void button1_Click(object sender, EventArgs e)
{
 PictureBox beePicture = new PictureBox();
 beePicture.Location = new Point(10, 10);
 beePicture.Size = new Size(100, 100);
 beePicture.BorderStyle = BorderStyle.FixedSingle;
 beePicture.Image = Renderer.ResizeImage(
 Properties.Resources.Bee_animation_1, 80, 40);
 Controls.Add(beePicture);
}

Let’s see image resizing in act ion
Drag a button onto the Field form and add this code. It creates a new
PictureBox control that’s 100 ×100 pixels, setting its border to a black line so
you can see how big it is. Then it uses ResizeImage() to make a bee picture
that’s squished down to 80×40 pixels and assigns that new picture to its Image
property. Once the PictureBox is added to the form, the bee is displayed.

You can see the image resizing in
action—the squished bee image is
much smaller than the PictureBox.
ResizeImage() squished it down.

Just do this temporarily.
Delete the button and
code when you’re done.

You pass a picture into the
method, along with a new
width and height that it’ll
be resized to.

The FromImage() method returns a new Graphics object that lets
you draw graphics onto that image. Take a minute and use the IDE’s

IntelliSense to look at the methods in the Graphics class. When you call

DrawImage(), it copies the image into the resizedPicture bitmap at the

location (0, 0) and scaled to the width and height parameters.

Forms and controls have a
CreateGraphics() method
that returns a new Graphics
object. You’ll see a lot more
about that shortly.

The ResizeImage()
method creates a
Graphics object
to draw on an
invisible Bitmap
object. It returns
that Bitmap so it
can be displayed
on a form or in a
PictureBox.

digging deeper into graphics

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   79

gdi+ graphics

Your image resources are stored in Bitmap objects
When you import graphics files into your project’s resources,
what happens to them? You already know that you can access
them using Properties.Resources. But what, exactly, is
your program doing with them once they’re imported?

.NET turns your image into a new Bitmap object:

Bitmap bee = new Bitmap(“Bee animation 1.png”)

Bee animation 1.png

Bitmap obje
ct

The Bitmap class has several overloaded constructors. This one loads a graphics file from disk. You can also pass it integers for width and height—that’ll create a new Bitmap with no picture.

Then each Bitmap is drawn to the screen
Once your images are in objects, your form draws them to
the screen with a call like this:

using (Graphics g = CreateGraphics()) {

 g.DrawImage(myBitmap, 30, 30, 150, 150);

}

This call gets a Graphics object

to draw on the form. We use a

using statment to make sure the

Graphics object is disposed.

DrawImage() takes a Bitmap, the image to draw…
…a starting X, Y coordinate…

…and a size, 150x150 pixels.

The bigger they are…
Did you notice those last two parameters to DrawImage()?
What if the image in the Bitmap is 175 by 175? The
graphics library must then resize the image to fit 150 by 150.
What if the Bitmap contains an image that’s 1,500 by 2,025?
Then the scaling becomes even slower.…

This image, which is
300x300 pixels…

…gets shrunk to this size, which is (for example) 150x150 pixels. And that slows your simulator down!

150

150

Resizing images takes a
lot of processing power! If
you do it once, it’s no big
deal. But if you do it EVERY
FRAME, your program will
slow down. We gave you
REALLY BIG images for the
bees and the hive. When
the renderer moves the
bees around (especially
in front of the inside hive
picture), it has to resize
them over and over again.
And that was causing the
performance problems!

If you don’t see any
performance problems,
keep adding bees until
the program slows down!

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

80   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

Use System.Drawing to TAKE CONTROL
of graphics yourself
The Graphics object is part of the System.Drawing namespace. The
.NET Framework comes with some pretty powerful graphics tools that go a lot
further than the simple PictureBox control that’s in the toolbox. You can
draw shapes, use fonts, and do all sorts of complex graphics…and it all starts
with a Graphics object. Any time you want to add or modify any object’s
graphics or images, you’ll create a Graphics object that’s linked to the
object you want to draw on, and then use the Graphics object’s methods
to draw on your target.

System.Drawing
The graphics methods in the System.Drawing namespace are sometimes referred to as GDI+, which stands for Graphics Device Interface. When you draw graphics with GDI+, you start with a Graphics object that’s hooked up to a Bitmap, form, control, or another object that you want to draw on using the Graphics object’s methods.

System.Window
s.

Fo
rm

s.
Fo

rm

Graphics obj
ec

t

this.CreateGraphics()

The form can call its own CreateGraphics() method, or another object can call it. Either way, the method returns a reference to a Graphics object whose methods will draw on it.

Graphics obj
ec

t

System.Window
s.

Fo
rm

s.
Fo

rm

 g.DrawLi
nes()

The DrawLines() method, for example, draws a bunch of lines on whatever object created the Graphics instance.

Use the Graphics object’s methods to draw on your object
Every Graphics object has methods that let you draw on the object that
created it. When you call methods in the Graphics object to draw lines, circles,
rectangles, text, and images, they appear on the form.

2

Start with the object you want to draw on
For instance, think about a form. When you call the form’s
CreateGraphics() method, it returns an instance of
Graphics that’s set up to draw on itself.

1

Even though you’re
calling methods in
this Graphics object,
the actual graphics
appear on the object
that created it.

Calls on this instance of
Graphics affect the form that
created the Graphics object.

You don’t draw on the Graphics object itself. You only use it to draw on other objects.

you’re in control when you don’t use controls

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   81

gdi+ graphics

A 30-second tour of GDI+ graphics
There are all sorts of shapes and pictures that you can draw once you’ve
created a Graphics object. All you need to do is call its methods, and it’ll
draw directly onto the object that created it.

The first step is always to grab yourself a Graphics object. Use a form’s CreateGraphics()
method, or have a Graphics object passed in. Remember, Graphics implements the
IDisposable() interface, so if you create a new one, use a using statement:

 using (Graphics g = this.CreateGraphics()) {

1

If you want to draw a line, call DrawLine() with a starting point and ending point, each
represented by X and Y coordinates:

 g.DrawLine(Pens.Blue, 30, 10, 100, 45);

or you can do it using a couple of Points:

 g.DrawLine(Pens.Blue, new Point(30, 45), new Point(100, 10));

2

Here’s code that draws a filled slate gray rectangle, and then gives it a sky blue border. It uses a
Rectangle to define the dimensions—in this case, the upper left-hand corner is at (150, 15),
and it’s 140 pixels wide and 90 pixels high.

 g.FillRectangle(Brushes.SlateGray, new Rectangle(150, 15, 140, 90));

 g.DrawRectangle(Pens.SkyBlue, new Rectangle(150, 15, 140, 90));

3

You can draw an ellipse or a circle using the DrawCircle() or FillCircle() methods,
which also use a Rectangle to specify how big the shape should be. This code draws two
ellipses that are slightly offset to give a shadow effect:

 g.FillEllipse(Brushes.DarkGray, new Rectangle(45, 65, 200, 100));

 g.FillEllipse(Brushes.Silver, new Rectangle(40, 60, 200, 100));

4

Use the DrawString() method to draw text in any font and color. To do that, you’ll need to
create a Font object. It implements IDisposable, so use a using statement:

 using (Font arial24Bold = new Font(“Arial”, 24, FontStyle.Bold)) {

 g.DrawString(“Hi there!”, arial24Bold, Brushes.Red, 50, 75);

 }

5

You’ll need to make sure you’ve got a using System.Drawing; line at the top of your class to use these methods. Or, when you add a form to your project, the IDE adds that line to your form class automatically.

2 3

4

5

If the above statements are
executed in order, this is what will
end up on the form. Each of the
statements above matches up with
the numbers here. The upper left-
hand corner is coordinate (0, 0).

Remember, this draws on the object
that created this instance.

There’s no step 1 on this picture, since that was creating the actual Graphics object.

The start coordinate…

…and the end coordinate.

There are a whole
lot of colors you
can use—just type

“Color”, “Pens”, or
“Brushes” followed
by a dot, and the
IntelliSense window
will display them.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

82   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

Start the event handler with a using line to create the Graphics
object. When you work with GDI+, you use a lot of objects that
implement IDisposable. If you don’t dispose of them, they’ll slowly
suck up your computer’s resources until you quit the program. So you’ll
end up using a lot of using statements:

using (Graphics g = CreateGraphics()) {

Use graphics to draw a picture on a form
Let’s create a new Windows application that draws a
picture on a form when you click on it. Draw this

Start by adding a Click event to the form
Go to the Events page in the Properties window (by clicking on the
lightning-bolt icon), scroll down to the Click event, and double-click on it.

1

Pay attention to the order you draw things on our form
We want a sky blue background for this picture, so you’ll draw a big blue rectangle first—then
anything else you draw afterward will be drawn on top of it. You’ll take advantage of one of
the form’s properties called ClientRectangle. It’s a Rectangle that defines the boundaries
of the form’s drawing area. Rectangles are really useful—you can create a new rectangle by
specifying a Point for its upper left-hand corner, and its width and height. Once you do that,
it’ll automatically calculate its Top, Left, Right, and Bottom properties for you. And it’s got
useful methods like Contains(), which will return true if a given point is inside it.

 g.FillRectangle(Brushes.SkyBlue, ClientRectangle);

2

Draw the bee and the flower
You already know how the DrawImage() method works. Make sure you add the image resources.

 g.DrawImage(Properties.Resources.Bee_animation_1, 50, 20, 75, 75);
 g.DrawImage(Properties.Resources.Flower, 10, 130, 100, 150);

3

Add a pen that you can draw with
Every time you draw a line, you use a Pen object to determine its color and thickness. There’s a
built-in Pens class that gives you plenty of pens (Pens.Red is a thin red pen, for example). But
you can create your own pen using the Pen class constructor, which takes a Brush object and a
thickness (it’s a float, so make sure it ends with F). Brushes are how you draw filled graphics (like
filled rectangles and ellipses), and there’s a Brushes class that gives you brushes in various colors.

 using (Pen thickBlackPen = new Pen(Brushes.Black, 3.0F)) {

4

Here’s the first line in your Form1_Click()
event handler method. We’ll give you all
the lines for the event handler—put them
together to draw the picture.

Pens are for drawing lines, and they have a
width. If you want to draw a filled shape or
some text, you’ll need a Brush.

This will come in really handy
later on in the book! What
do you think you’ll be doing
with Contains()?

draw a picture

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   83

gdi+ graphics

Add an arrow that points to the flower
There are some Graphics methods that take an array of Points, and connect them using a
series of lines or curves. We’ll use the DrawLines() method to draw the arrow head, and the
DrawCurve() method to draw its shaft. There are other methods that take point arrays, too (like
DrawPolygon(), which draws a closed shape, and FillPolygon(), which fills it in).

 g.DrawLines(thickBlackPen, new Point[] {
 new Point(130, 110), new Point(120, 160), new Point(155, 163)});
 g.DrawCurve(thickBlackPen, new Point[] {
 new Point(120, 160), new Point(175, 120), new Point(215, 70) });
}

5

This goes inside the inner using
statement that created the Pen.

Here’s where the using block ends—we don’t need the thickBlackPen any more, so it’ll get disposed.
Add a font to draw the text
Whenever you work with drawing text, the first thing you need to do is create a Font object.
Again, use a using statement because Font implements IDisposable. Creating a font is
straightforward. There are several overloaded constructors—the simplest one takes a font name, font
size, and FontStyle enum.

 using (Font font = new Font(“Arial”, 16, FontStyle.Italic)) {

6

Add some text that says “Nectar here”
Now that you’ve got a font, you can figure out where to put the string by measuring how big it will be
when it’s drawn. The MeasureString() method returns a SizeF that defines its size. (SizeF is
just the float version of Size—and both of them just define a width and height.) Since we know
where the arrow ends, we’ll use the string measurements to position its center just above the arrow.

 SizeF size = g.MeasureString(“Nectar here”, font);
 g.DrawString(“Nectar here”, font, Brushes.Red, new Point(
 215 - (int)size.Width / 2, 70 - (int)size.Height));
 }
}

7

Make sure you close out both using blocks.

You can create a Rectangle by giving it a point
and a Size (or width and height). Once you’ve
got it, you can find its boundaries and check
its Contains() method to see if it contains a
Point.

When you pass an array of
points to DrawCurve(), it
draws a smooth curve that
connects them all in order.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

84   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

using (Graphics g = this.CreateGraphics())

using (Font f = new Font(“Arial”, 6, FontStyle.Regular)) {

 for (int x = 0; x < this.Width; x += 20) {

 }

 for (int y = 0; y < this.Height; y += 20) {

 }

}

2. Can you figure out what happens when you run the code
below? Draw the output onto the form, using the grid you
just rendered for locating specific points.

using (Pen pen =
 new Pen(Brushes.Black, 3.0F)) {
 g.DrawCurve(pen, new Point[] {
 new Point(80, 60),
 new Point(200,40),
 new Point(180, 60),
 new Point(300,40),
 });
 g.DrawCurve(pen, new Point[] {
 new Point(300,180), new Point(180, 200),
 new Point(200,180), new Point(80, 200),
 });
 g.DrawLine(pen, 300, 40, 300, 180);
 g.DrawLine(pen, 80, 60, 80, 200);
 g.DrawEllipse(pen, 40, 40, 20, 20);
 g.DrawRectangle(pen, 40, 60, 20, 300);
 g.DrawLine(pen, 60, 60, 80, 60);
 g.DrawLine(pen, 60, 200, 80, 200);
}

1. Most of your work with Graphics will involve thinking
about your forms as a grid of X, Y coordinates. Here’s the
code to build the grid shown below; your job is to fill in
the missing parts.

what’s it look like?

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   85

gdi+ graphics

g.FillPolygon(Brushes.Black, new Point[] {
 new Point(60,40), new Point(140,80), new Point(200,40),
 new Point(300,80), new Point(380,60), new Point(340,140),
 new Point(320,180), new Point(380,240), new Point(320,300),
 new Point(340,340), new Point(240,320), new Point(180,340),
 new Point(20,320), new Point(60, 280), new Point(100, 240),
 new Point(40, 220), new Point(80,160),
 });

using (Font big = new Font(“Times New Roman”, 24, FontStyle.Italic)) {
 g.DrawString(“Pow!”, big, Brushes.White, new Point(80, 80));
 g.DrawString(“Pow!”, big, Brushes.White, new Point(120, 120));
 g.DrawString(“Pow!”, big, Brushes.White, new Point(160, 160));
 g.DrawString(“Pow!”, big, Brushes.White, new Point(200, 200));
 g.DrawString(“Pow!”, big, Brushes.White, new Point(240, 240));
}

3. Here’s some more graphics code, dealing with irregular
shapes. Figure out what’s drawn using the grid we’ve given
you below.

FillPolygon(), DrawLines(), and a few other graphics methods have a constructor that takes an array of Points that define the vertices of a series of connected lines.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

86   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

Your job was to fill in the missing code to draw a grid, and plot
two chunks of code on the grids.

using (Graphics g = this.CreateGraphics())

using (Font f = new Font(“Arial”, 6, FontStyle.Regular)) {

 for (int x = 0; x < this.Width; x += 20) {

 g.DrawLine(Pens.Black, x, 0, x, this.Height);
 g.DrawString(x.ToString(), f, Brushes.Black, x, 0);
 }

 for (int y = 0; y < this.Height; y += 20) {

 g.DrawLine(Pens.Black, 0, y, this.Width, y);
 g.DrawString(y.ToString(), f, Brushes.Black, 0, y);
 }

}

Next we draw the horizontal
lines and X axis numbers. To
draw a horizontal line, you
choose a Y value and draw a
line from (0, y) on the left-
hand side of the form to (0,
this.Width) on the right-hand
side of the form.

First we draw the vertical lines and the numbers along the Y axis. There’s a vertical line every 20 pixels along the X axis.

We used using
statements to
make sure the
Graphics and
Font objects get
disposed after the
form’s drawn.

looks good, except…

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   87

gdi+ graphics

private void Form1_Click(object sender, EventArgs e) {

 using (Graphics g = CreateGraphics()) {

 g.DrawImage(Properties.Resources.Hive__inside_,

 -Width, -Height, Width * 2, Height * 2);

 Size size = new Size(Width / 5, Height / 5);

 DrawBee(g, new Rectangle(

 new Point(Width / 2 - 50, Height / 2 - 40), size));

 DrawBee(g, new Rectangle(

 new Point(Width / 2 - 20, Height / 2 - 60), size));

 DrawBee(g, new Rectangle(

 new Point(Width / 2 - 80, Height / 2 - 30), size));

 DrawBee(g, new Rectangle(

 new Point(Width / 2 - 90, Height / 2 - 80), size));
 }
 }
}

Graphics can f ix our transparency problem…
Remember those pesky graphics glitches? Let’s tackle them! DrawImage()
is the key to fixing the problem in the renderer where the images were
drawing those boxes around the bees and flowers that caused the overlap
issues. We’ll start out by going back to our Windows application with the
picture and changing it to draw a bunch of bees that overlap each other
without any graphics glitches.

public void DrawBee(Graphics g, Rectangle rect) {

 g.DrawImage(Properties.Resources.Bee_animation_1, rect);

}

Add a DrawBee() method that draws a bee on any Graphics object. It uses
the overloaded DrawImage() constructor that takes a Rectangle to determine
where to draw the image, and how big to draw it.

1

Here’s the new Click event handler for the form. Take a close look at
how it works—it draws the hive so that its upper left-hand corner is way off
the form, at location (-Width, -Height), and it draws it at twice the
width and height of the form—so you can resize the form and it’ll still draw
OK. Then it draws four bees using the DrawBee() method.

2

Do this

The renderer drew the bees
so that they looked weird
when they overlapped.

Run your program and click on the form, and watch it draw the bees! But
something’s wrong. When you drag the form off the side of the screen and
back again, the picture disappears! Now go back and check the “Nectar
here” program you wrote a few pages ago—it’s got the same problem!

What do you think happened?

3

Much better—click on the form
and the bees overlap just fine.

But look what happens if you
drag it off the side of the
screen and back! Oh no!

First we’ll draw the hive
background, with its
corner far off the page
so we only see a small
piece of it. Then we’ll
draw four bees so that
they overlap—if they
don’t, make your form
bigger and then click on
it again so they do.

…but there’s a catch

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

88   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

Use the Paint event to make your graphics stick
What good are graphics if they disappear from your form as soon as part of your
form gets covered up? They’re no good at all. Luckily, there’s an easy way to make
sure your graphics stay on your form: just write a Paint event handler. Your
form fires a Paint event every time it needs to redraw itself—like when it’s dragged
off the screen. One of the properties of its PaintEventArgs parameter is a
Graphics object called Graphics, and anything that you draw with it will “stick.”

Forms and controls redraw themselves all the timeIt may not look like it, but your forms have to redraw themselves all the time. Any time you have controls on a form, they’re displaying graphics—labels display text, buttons display a picture of a button, checkboxes draw a little box with an X in it. You work with them as controls that you drag around, but each control actually draws its own image. Any time you drag a form off the screen or under another form and then drag it back or uncover it, the part of the form that was covered up is now invalid, which means that it no longer shows the image that it’s supposed to. That’s when .NET sends a message to the form telling it to redraw itself. The form fires off a Paint event any time it’s “dirty” and needs to be redrawn. If you ever want your form or user control to redraw itself, you can tell .NET to make it “dirty” by calling its Invalidate() method.

Add a Paint event handler
Double-click on “Paint” in the Events page in the Properties window to add a Paint event handler.
The Paint event is fired any time the image on your form gets “dirty.” So drawing your graphics
inside of it will make your image stick around.

1

Use the Graphics object from the Paint event’s EventArgs
Instead of starting with a using statement, make your event handler start like this:

private void Form1_Paint(object sender, PaintEventArgs e) {
 Graphics g = e.Graphics;

You don’t have to use a using statement—since you didn’t create it, you don’t have to dispose it.

2

Forms and controls
have a Paint event
that gives you a
Graphics object.
Anything you draw
on it is repainted
automatically.

Copy the code that draws the overlapping bees and hive
Add the new DrawBee() method from the previous page into your new user control. Then copy
the code from the Click event into your new Paint event—except for the first line with the
using statement, since you already have a Graphics object called g. (Since you don’t have
the using statement anymore, make sure you take out its closing curly bracket.) Now run your
program. The graphics stick!

3

Double-click on Paint to add a Paint event handler. Its
PaintEventArgs has a property called Graphics—and
anything you draw with it will stick to your form.

Do the same with your “Nectar here”
drawing to make it stick, too.

back to events

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   89

gdi+ graphics

See if you can combine your knowledge of forms and user controls—and get a little more
practice using Bitmap objects and the DrawImage() method—by building a user control
that uses TrackBars to zoom an image in and out.

Add two TrackBar controls to a new user control
Create a new Windows Application project. Add a UserControl—call it Zoomer—and set its
Size property to (300, 300). Drag two TrackBar controls out of the toolbox and onto it. Drag
trackBar1 to the bottom of the control. Then drag trackBar2 to the right-hand side of
the control and set its Orientation property to Vertical. Both should have the Minimum
property set to 1, Maximum set to 175, Value set to 175, and TickStyle set to None. Set
each TrackBar’s background color to white. Finally, double-click on each TrackBar to add a
Scroll event handler. Make both event handlers call the control’s Invalidate() method.

1

Load a picture into a Bitmap object and draw it on the control
Add a private Bitmap field called photo to your Zoomer user control. When you create the instance
of Bitmap, use its constructor to load your favorite image file—we used a picture of a fluffy dog.
Then add a Paint event to the control. The event handler should create a graphics object to draw
on the control, draw a white filled rectangle over the entire control, and then use DrawImage() to
draw the contents of your photo field onto your control so its upper left-hand corner is at (10, 10), its
width is trackBar1.Value, and its height is trackBar2.Value. Then drag your control onto
the form—make sure to resize the form so the trackbars are at the edges.

2

Give the two trackbars
white backgrounds
because you’ll be drawing
a white rectangle behind
everything, and you want
them to blend in.

When you move the
trackbars, the picture
will shrink and grow!

Whenever the user scrolls one of the
TrackBars, they call the user control’s
Invalidate() method. That will cause
the user control to fire its Paint event and
resize the photo. Remember, since you
didn’t create the Graphics object—it was
passed to you in PaintEventArgs—you
don’t need to dispose it. So you don’t have
to use a using statement with it. Just draw
the image inside the Paint event handler.

Your user control has a Paint
event, and it works just like the one
you just used in the form. Just use
its PaintEventArgs parameter e.
It has a property called Graphics,
and anything that you draw with that
Graphics object will be painted
onto any instance of the user
control you drag out of the toolbox.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

90   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

v

Each drag here is causing another image
resize from DrawImage().

???

???

g.DrawImage(myBitmap, 30, 30, 150, 150);

Get a little more practice using Bitmap objects
and the DrawImage() method by building a
form that uses them to load a picture from a file
and zoom it in and out.

public partial class Zoomer : UserControl {

 Bitmap photo = new Bitmap(@”c:\Graphics\fluffy_dog.jpg”);

 public Zoomer() {
 InitializeComponent();
 }

 private void Zoomer_Paint(object sender, PaintEventArgs e) {
 Graphics g = e.Graphics;
 g.FillRectangle(Brushes.White, 0, 0, Width, Height);
 g.DrawImage(photo, 10, 10, trackBar1.Value, trackBar2.Value);
 }

 private void trackBar1_Scroll(object sender, EventArgs e) {
 Invalidate();
 }
 private void trackBar2_Scroll(object sender, EventArgs e) {
 Invalidate();
 }
}

First we draw a big white rectangle so it fills up the whole control, then we
draw the photo on top of it. The last two parameters determine the size of
the image being drawn—trackBar1 sets the width, trackBar2 sets the height.

Every time the user slides one of the trackbar controls, it fires off a
Scroll event. By making the event handlers call the control’s Invalidate()
method, we cause the form to repaint itself…and when it does, it draws
a new copy of the image with a different size.

This particular Bitmap constructor loads its picture from a file. It’s got other overloaded constructors, including one that lets you specify a width and height—that one creates an empty bitmap.

how the paint event works

Substitute your own file—the Bitmap constructor can
take many file formats. Even better, see if you can
use an OpenFileDialog to zoom any image you want!

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   91

gdi+ graphics

Behind
the Scenes

Invalidate() essentially
says that some part
of the form might be
“invalid,” so redraw that
part to make sure it’s
got the right things
showing.

The form’s Refresh() method is Invalidate() plus Update()
Forms and controls give you a shortcut. They have a Refresh() method that first
calls Invalidate() to invalidate the whole client area (the area of the form where
graphics appear), and then calls Update() to make sure that message moves to the
top of the list.

4

A closer look at how forms and
controls repaint themselves
Earlier, we said that when you start working with Graphics objects, you’re really taking
control of graphics. It’s like you tell .NET, “Hey, I know what I’m doing, I can handle the extra
responsibility.” In the case of drawing and redrawing, you may not want to redraw when a form
is minimized and maximized…or you may want to redraw more often. Once you know what’s
going on behind the scenes with your form or control, you can take control of redrawing yourself:

Invalidate() controls when to redraw, and WHAT to redraw
.NET fires the Paint event when something on a form is interfered with, covered up,
or moved offscreen, and then shown again. It calls Invalidate(), and passes the
method a Rectangle. The Rectangle tells the Invalidate() method what
part of the form needs to be redrawn…i.e., what part of the form is “dirty.” Then
.NET calls OnPaint to tell your form to fire a Paint event and repaint the dirty area.

2

Every form has a Paint event that draws the graphics on the form
Go to the event list for any form and find the event called Paint. Whenever the form has to repaint itself,
this event is fired. Every form and control uses a Paint event internally to decide when to redraw itself. But
what fires that event? It’s called by a method called OnPaint that the form or user control inherits from the
Control class. (That method follows the pattern you saw in Chapter 11, where methods that fire an event are
named “On” followed by the event name.) Go to any form and override OnPaint:

 protected override void OnPaint(PaintEventArgs e) {
 Console.WriteLine(“OnPaint {0} {1}”, DateTime.Now, e.ClipRectangle);
 base.OnPaint(e);
 }

Drag your form around—drag it halfway off the screen, minimize it, hide it behind other windows. Look closely
at the output that it writes. You’ll see that your OnPaint method fires off a Paint event any time part of it
is “dirty”—or invalid—and needs to be redrawn. And if you look closely at the ClipRectangle, you’ll see
that it’s a rectangle that describes the part of the form that needs to be repainted. That gets passed to the Paint
event’s PaintEventArgs so it can improve performance by only redrawing the portion that’s invalid.

1

Override OnPaint
on any form and
add this line.

The Update() method gives your Invalidate request top priority
You may not realize it, but your form is getting messages all the time. The same
system that tells it that it’s been covered up and calls OnPaint has all sorts of other
messages it needs to send. See for yourself: type override and scroll through all the
methods that start with “On”—every one of them is a message your form responds to.
The Update() method moves the Invalidate message to the top of the message list.

3
So when you call it
yourself, you’re telling
.NET that your whole form
or control is invalid, and
the whole thing needs to
be redrawn. You can pass
it your own clip rectangle
if you want—that’ll get
passed along to the Paint
event’s PaintEventArgs.

Do this just like you did earlier with Dispose()

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

92   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

Q: It still seems like just resizing
the graphics in a program like Paint or
PhotoShop would be better. Why can’t I
do that?

A:You can, if you’re in control of the
images you work with in your applications,
and if they’ll always stay the same size. But
that’s not often the case. Lots of times, you’ll
get images from another source, whether it’s
online or a co-worker in the design group. Or,
you may be pulling an image from a read-
only source, and you’ll have to size it in code.

Q: But if I can resize it outside of .NET,
that’s better, right?

A:If you’re sure you’ll never need a larger
size, it could be. But if your program might
need to display the image in multiple sizes
during the program, you’ll have to resize at
some point anyway. Plus, if your image ever
needs to be displayed larger than the resize,
you’ll end up in real trouble. It’s much easier
to size down than it is to size up.
More often than not, it’s better to be able to
resize an image programmatically, than to be
limited by an external program or constraints
like read-only files.

Q:I get that CreateGraphics()
gets the Graphics object for
drawing on a form, but what was
that FromImage() call in the
ResizeImage() method about?

A:FromImage() retrieves the
Graphics object for a Bitmap object.
And just as CreateGraphics()
called on a form returns the Graphics
object for drawing on that form,
FromImage() retrieves a Graphics
object for drawing on the Bitmap the
method was called on.

Q: So a Graphics object isn’t just
for drawing on a form?

A: Actually, a Graphics object is for
drawing on, well, anything that gives you a
Graphics object. The Bitmap gives
you a Graphics object that you can use
to draw onto an invisible image that you can
use later. And you’ll find Graphics objects
on a lot more than forms. Drag a button onto
a form, then go into your code and type its
name followed by a period. Check out the
IntelliSense window that popped up—it’s got
a CreateGraphics() method that
returns a Graphics object. Anything
you draw on it will show up on the button!
Same goes for Label, PictureBox,
StatusStrip…almost every toolbox
control has a Graphics object.

Q: Wait, I thought using was just
something I used with streams. Why am I
using using with graphics?

A:The using keyword comes in
handy with streams, but it’s something that
you use with any class that implements
the IDisposable interface. When
you instantiate a class that implements
IDisposable, you should always call
its Dispose() method when you’re
done with the object. That way it knows
to clean up after itself. With streams, the
Dispose() method makes sure that any
file that was opened gets closed.
Graphics, Pen, and Brush objects
are also disposable. When you create any
of them, they take up some small amount
of memory and other resources, and they
don’t always give them back immediately.
If you’re just drawing something once, you
won’t notice a difference. But most of the
time, your graphics code will be called
over and over and over again—like in a

Paint event handler, which could get
called many times a second for a particularly
busy form. That’s why you should always
Dispose() of your graphics-related
objects. And the easiest way to make sure
that you do is to use a using line, and let

.NET worry about disposal. Any object you
create with using will automatically have
its Dispose() method called at the end
of the block following the using statement.
That will guarantee that your program won’t
slowly take up more and more memory if it
runs for a long time.

Q:If I’m creating a new control, should
I use a UserControl or should I
create a class that inherits from one of
the toolbox controls?

A:That depends on what you want your
new control to do. If you’re building a control
that’s really similar to one that’s already
in the toolbox, then you’ll probably find it
easiest to inherit from that control. But most
of the time, when programmers create new
controls in C#, they use user controls. One
advantage of a user control is that you can
drag toolbox controls onto it. It works a
lot like a GroupBox or another container
control—you can drag a button or checkbox
onto your user control, and work with them
just like you’d work with controls on a form.
The IDE’s form designer becomes a powerful
tool to help you design user controls.

A user control can
host other controls.
The IDE’s form
designer lets you
drag controls out of
the toolbox and onto
your new user control.

what’s with the flickering?

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   93

gdi+ graphics

Even without resizing, it takes time
to draw an image onto a form.

Suppose you’ve got every image in the simulator
resized. It still takes time to draw all those bees and
flowers and the hive. And right now, we’re drawing
right to the Graphics object on the form. So if
your eye catches the tail end of a render, you’re
going to perceive it as a little flicker.

The problem is that a lot of drawing is happening,
so there’s a good chance that some flickering will
occur, even with our resizing. And that’s why you
run into problems with some amateur computer
games, for example: the human eye catches the
end of a rendering cycle, and perceives it as a little
bit of flickering on the screen.

I noticed a whole lot of flickering in my Zoomer
control. With all this talk of taking control of

graphics, I’ll bet there’s something we can do about
that! But why does it happen?

How could you get rid of this flicker? If drawing lots
of images onto the form causes flickering, and you
have to draw lots of images, how do you think you
might be able to avoid all the flickering?

Here’s a quick tip to make your resized graphics look better. Before you call a Graphics object’s DrawImage()
method, try setting its InterpolationMode property to InterpolationMode.HighQualityBicubic. (You’ll need to add
“using System.Drawing.2D;” to the top of your code.) You can learn more about how InterpolationMode

works here: http://msdn.microsoft.com/en-us/library/k0fsyd4e.aspx

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

94   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

Double buffering makes animation look a lot smoother
Go back to your image zoomer and fiddle with the trackbars. Notice how there’s a
whole lot of flickering when you move the bars? That’s because the Paint event
handler first has to draw the white rectangle and then draw the image every time the
trackbar moves a tiny little bit. When your eyes see alternating white rectangles and
images many times a second, they interpret that as a flicker. It’s irritating…and it’s
avoidable using a technique called double buffering. That means drawing each
frame or cell of animation to an invisible bitmap (a “buffer”), and only displaying the
new frame once it’s been drawn entirely. Here’s how it would work with a Bitmap:

Graphics obj
ec

t

using (graphics g =
 Graphics.FromImage(bitmap)) {
 DrawOneFrame(g); }

By drawing each frame to an invisible bitmap, the users won’t see the flicker any more. They’ll only see the finished frame when we copy it from the bitmap back to the form.

To do double buffering, we can add a object to the program to act as a buffer. Every
time our form or control needs to be repainted, instead of drawing the graphics directly
on the form, we draw on the buffer instead.

2

Now that the frame is completely drawn out to the invisible Bitmap object, we can
use DrawImageUnscaled() to copy the object back to the form’s Graphics. It
all gets copied at once, and that eliminates the flicker.

3

Renderer o
bj

ec
t

System.Window
s.

Fo
rm

s.
Fo

rm

Renderer o
bj

ec
t

Renderer o
bj

ec
t

System.Window
s.

Fo
rm

s.
Fo

rm

Here’s a typical program that draws some graphics on a form using its Graphics object.1

The users saw a lot of flickering because each frame was drawn in pieces.

using (g
raphics

g =

 Form.Cr
eateGrap

hics())
{

 Draw
OneFrame

(g); }

using (g
raphics

g =

 Form.Cr
eateGrap

hics())
{

 g.Dr
awImageU

nscaled(
bitmap,

0, 0); }

Graphics obj
ec

t

make your animation smoother

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   95

gdi+ graphics

Double buffering is built into forms and controls
You can do double buffering yourself using a Bitmap, but C# and .NET make it
even easier with built-in support for double buffering. All you need to do is set its
DoubleBuffered property to true. Try it out on your Zoomer user control—go
to its Properties window, set DoubleBuffered to true, and your control will stop
flickering! Now go back to your BeeControl and do the same. That won’t fix all
of the graphics problems—we’ll do that in a minute—but it will make a difference.

Now you’re ready to fix the graphics problems in the simulator!

When you use
the Paint event
for all your
graphics, you
can turn on
double buffered
painting simply
by changing one
property.

Overhaul the beehive simulator
In the next exercise, you’ll take your beehive simulator and completely overhaul
it. You’ll probably want to create a whole new project and use “Add >> Existing
Item…” to add the current files to it so you have a backup of your current
simulator. (Don’t forget to change their namespace to match your new project.)

Here’s what you’re going to do:

You’ll start by removing the BeeControl user control
There won’t be any controls on the hive and field at all. No BeeControls, no PictureBoxes,
nothing. The bees, flowers, and hive pictures will all be drawn using GDI+ graphics. So right-
click on BeeControl.cs in the Solution Explorer and click Delete—they’ll be removed from
the project and permanently deleted.

1

You’ll need a timer to handle the bee wing flapping
The bees flap their wings much more slowly than the simulator’s frame rate, so you’ll need a
second, slower timer. This shouldn’t be too surprising, since the BeeControl had its own timer
to do the same thing.

2

The big step: overhaul the renderer
You’ll need to throw out the current renderer entirely, because it does everything with controls.
You won’t need those lookup dictionaries, because there won’t be any PictureBoxes or
BeeControls to look up. Instead, it’ll have two important methods: DrawHive(g) will draw
a Hive form on a graphics object, and DrawField(g) will draw a Field form.

3

Last of all, you’ll hook up the new renderer
The Hive and Field forms will need Paint event handlers. Each of them will call the Renderer
object’s DrawField(g) or DrawHive(g) methods. The two timers—one for telling the simulator
to draw the next frame, and the other to flap the bees’ wings—will call the two forms’ Invalidate()
methods to repaint themselves. When they do, their Paint event handlers will render the frame.

4

Let’s get started!

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

96   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

Change the main form’s RunFrame() method
You’ll need to remove the call to Renderer.Render() and add two Invalidate()
statements.

public void RunFrame(object sender, EventArgs e) {
 framesRun++;
 world.Go(random);
 end = DateTime.Now;
 TimeSpan frameDuration = end - start;
 start = end;
 UpdateStats(frameDuration);
 hiveForm.Invalidate();
 fieldForm.Invalidate();
}

1

It’s time to get rid of the graphics glitches in the beehive simulator. Use graphics and double
buffering to make the simulator look polished.

Add a second timer to the main form to make the bees’ wings flap
Drag a new timer onto the main form and set its Interval to 150ms and Enabled to
true. Then double-click on it and add this event handler:

private void timer2_Tick(object sender, EventArgs e) {
 renderer.AnimateBees();
}

Then add this AnimateBees() method to the renderer to make the bees’ wings flap:

private int cell = 0;
private int frame = 0;
public void AnimateBees() {
 frame++;
 if (frame >= 6)
 frame = 0;
 switch (frame) {
 case 0: cell = 0; break;
 case 1: cell = 1; break;
 case 2: cell = 2; break;
 case 3: cell = 3; break;
 case 4: cell = 2; break;
 case 5: cell = 1; break;
 default: cell = 0; break;
 }
 hiveForm.Invalidate();
 fieldForm.Invalidate();
}

2

The whole idea here is to set a field called
Cell that you can use when you’re drawing
the bees in the renderer. Make sure you’re
always drawing BeeAnimationLarge[Cell] in
the hive form and BeeAnimationSmall[Cell] in
the field form. The timer will constantly call
the AnimateBees() method, which will cause
the cell field to keep changing, which will
cause your bees to flap their wings.

As long as you keep the world up to date and both forms have a reference to the renderer object, all you need to do to animate them is call their Invalidate() methods. Their Paint event handlers will take care of the rest.

You’ll need to remove the call to renderer.Render(),
since that method will go away.

rebuild the renderer

If your bees are flying to the wrong places,
make sure your locations are correct! Use the

event trick from earlier in the chapter to find the
right coordinates.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   97

gdi+ graphics

Set up the hive and field forms for double-buffered animation
Remove the code from the hive form’s constructor that sets the background image. Then remove all controls
from both forms and set their DoubleBuffered properties to true. Finally, add a Paint event
handler to each of them. Here’s the handler for the hive form—the field form’s Paint event handler is
identical, except that it calls Renderer.PaintField() instead of Renderer.PaintHive():

private void HiveForm_Paint(object sender, PaintEventArgs e) {
 Renderer.PaintHive(e.Graphics);
}

4

The hive form and field form both need a public property
Add a public Renderer property to the hive form and the field form:

public Renderer Renderer { get; set; }

To make this work, you’ll need to change the declaration of your Renderer to add the public
modifier: public class Renderer. You’ll also need to do the same for the World, Hive, Bee, and
Flower classes and the BeeState enum—add the public access modifier to each of their declarations.
(See Leftover #2 in the Appendix to understand why!)

There are two places where you create a new Renderer(): in the open button (underneath a call to
renderer.Reset() and in the ResetSimulator() method. Remove all calls to . Then update
your Renderer’s constructor to set each form’s Renderer property:

 hiveForm.Renderer = this;
 fieldForm.Renderer = this;

3

Overhaul the renderer by removing control-based code and adding graphics
Here’s what you need to do to fix the renderer:

≥≥ Remove the two dictionaries, since there aren’t any more controls. And while you’re at it, you don’t
need the BeeControl anymore, or the Render(), DrawBees(), or DrawFlowers() methods.

≥≥ Add some Bitmap fields called HiveInside, HiveOutside, and Flower to store the images.
Then create two Bitmap[] arrays called BeeAnimationLarge and BeeAnimationSmall.
Each of them will hold four bee pictures—the large ones are 40×40 and the small are 20x20. Create
a method called InitializeImages() to resize the resources and store them in these fields, and
call it from the Renderer class constructor.

≥≥ Add the PaintHive() method that takes a Graphics object as a parameter and paints the hive
form onto it. First draw a sky blue rectangle, then use DrawImageUnscaled() to draw the inside
hive picture, then use DrawImageUnscaled() to draw each bee that is inside the hive.

≥≥ Finally, add the PaintField() method. It should draw a sky blue rectangle on the top half of
the form, and a green rectangle on the bottom half. You’ll find two form properties helpful for this:
ClientSize and ClientRectangle tell you how big the drawing area is, so you can find
half of its height using ClientSize.Height / 2. Then use FillEllipse() to draw a
yellow sun in the sky, DrawLine() to draw a thick line for a branch the hive can hang from, and
DrawImageUnscaled() to draw the outside hive picture. Then draw each flower onto the form.
Finally, draw each bee (using the small bee pictures)—draw them last so they’re in front of the flowers.

≥≥ When you’re drawing the bees, remember that AnimateBees() sets the cell field.

5

Make sure you turn on double buffering,
or your forms will flicker!

All the Reset() method did was remove the controls from the
forms, and there won’t be any controls to remove.

Add this to both forms.
Don’t
forget to
add these
access
modifiers!

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

98   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

using System.Drawing;

public class Renderer {
 private World world;
 private HiveForm hiveForm;
 private FieldForm fieldForm;

 public Renderer(World TheWorld, HiveForm hiveForm, FieldForm fieldForm) {
 this.world = TheWorld;
 this.hiveForm = hiveForm;
 this.fieldForm = fieldForm;
 fieldForm.Renderer = this;
 hiveForm.Renderer = this;
 InitializeImages();
 }

 public static Bitmap ResizeImage(Image ImageToResize, int Width, int Height) {
 Bitmap bitmap = new Bitmap(Width, Height);
 using (Graphics graphics = Graphics.FromImage(bitmap)) {
 graphics.DrawImage(ImageToResize, 0, 0, Width, Height);
 }
 return bitmap;
 }

 Bitmap HiveInside;
 Bitmap HiveOutside;
 Bitmap Flower;
 Bitmap[] BeeAnimationSmall;
 Bitmap[] BeeAnimationLarge;
 private void InitializeImages() {
 HiveOutside = ResizeImage(Properties.Resources.Hive__outside_, 85, 100);
 Flower = ResizeImage(Properties.Resources.Flower, 75, 75);
 HiveInside = ResizeImage(Properties.Resources.Hive__inside_,
 hiveForm.ClientRectangle.Width, hiveForm.ClientRectangle.Height);
 BeeAnimationLarge = new Bitmap[4];
 BeeAnimationLarge[0] = ResizeImage(Properties.Resources.Bee_animation_1, 40, 40);
 BeeAnimationLarge[1] = ResizeImage(Properties.Resources.Bee_animation_2, 40, 40);
 BeeAnimationLarge[2] = ResizeImage(Properties.Resources.Bee_animation_3, 40, 40);
 BeeAnimationLarge[3] = ResizeImage(Properties.Resources.Bee_animation_4, 40, 40);
 BeeAnimationSmall = new Bitmap[4];
 BeeAnimationSmall[0] = ResizeImage(Properties.Resources.Bee_animation_1, 20, 20);
 BeeAnimationSmall[1] = ResizeImage(Properties.Resources.Bee_animation_2, 20, 20);
 BeeAnimationSmall[2] = ResizeImage(Properties.Resources.Bee_animation_3, 20, 20);
 BeeAnimationSmall[3] = ResizeImage(Properties.Resources.Bee_animation_4, 20, 20);
 }

It’s time to get rid of the graphics glitches in the beehive simulator. Use graphics and double
buffering to make the simulator look polished.

Here’s the complete Renderer class, including the
AnimateBees() method that we gave you. Make
sure you make all the modifications to the three
forms—especially the Paint event handlers in
the hive and field forms. Those event handlers
call the renderer’s PaintHive() and PaintField()
methods, which do all of the animation.

The InitializeImages() method resizes all of the image resources and stores them in Bitmap fields inside the Renderer object. That way the PaintHive() and PaintForm() methods can draw the images unscaled using the forms’ Graphics objects’ DrawImageUnscaled() methods.

exercise solution

* Don’t forget to change the class declaration in Renderer.cs from class Renderer to public class Renderer, and then do the same for World, Hive, Flower, and Bee; otherwise, you’ll get a build error about field and type accessibility. Flip to Leftover #2 in the Appendix to learn about why you need to do this.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   99

gdi+ graphics

 public void PaintHive(Graphics g) {
 g.FillRectangle(Brushes.SkyBlue, hiveForm.ClientRectangle);
 g.DrawImageUnscaled(HiveInside, 0, 0);
 foreach (Bee bee in world.Bees) {
 if (bee.InsideHive)
 g.DrawImageUnscaled(BeeAnimationLarge[cell],
 bee.Location.X, bee.Location.Y);
 }
 }

 public void PaintField(Graphics g) {
 using (Pen brownPen = new Pen(Color.Brown, 6.0F)) {
 g.FillRectangle(Brushes.SkyBlue, 0, 0,
 fieldForm.ClientSize.Width, fieldForm.ClientSize.Height / 2);
 g.FillEllipse(Brushes.Yellow, new RectangleF(50, 15, 70, 70));
 g.FillRectangle(Brushes.Green, 0, fieldForm.ClientSize.Height / 2,
 fieldForm.ClientSize.Width, fieldForm.ClientSize.Height / 2);
 g.DrawLine(brownPen, new Point(593, 0), new Point(593, 30));
 g.DrawImageUnscaled(HiveOutside, 550, 20);
 foreach (Flower flower in world.Flowers) {
 g.DrawImageUnscaled(Flower, flower.Location.X, flower.Location.Y);
 }
 foreach (Bee bee in world.Bees) {
 if (!bee.InsideHive)
 g.DrawImageUnscaled(BeeAnimationSmall[cell],
 bee.Location.X, bee.Location.Y);
 }
 }
 }

 private int cell = 0;
 private int frame = 0;
 public void AnimateBees() {
 frame++;
 if (frame >= 6)
 frame = 0;
 switch (frame) {
 case 0: cell = 0; break;
 case 1: cell = 1; break;
 case 2: cell = 2; break;
 case 3: cell = 3; break;
 case 4: cell = 2; break;
 case 5: cell = 1; break;
 default: cell = 0; break;
 }
 hiveForm.Invalidate();
 fieldForm.Invalidate();
 }

}

The PaintField() method looks at the bees and

flowers in the world and draws a field using

their locations. First it draws the sky and the

ground, then it draws the sun, and then the

beehive. After that, it draws the flowers and the

bees. It’s important that everything is drawn in

the right order—if it were to draw the flowers

before the bees, then the bees would look like

they were flying behind the flowers.

Here’s the same AnimateBees() method from the exercise. It cycles through the animations using the
Frame field—first it shows cell 0, then cell 1, then
2, then 3, and then back to 2, then 1 again. That
way the wing flapping animation is smooth.

A form’s ClientSize property is a Rectangle
that tells you how big its drawing area is.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

100   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

Use a Graphics object and an event handler for print ing
The Graphics methods you’ve been using to draw on your forms are the same
ones you use to print. .NET’s printing objects in System.Drawing.Printing
make it really easy to add printing and print preview to your applications. All
you need to do is create a PrintDocument object. It’s got an event called
PrintPage, which you can use exactly like you use a timer’s Tick event. Then call
the PrintDocument object’s Print() method, and it prints the document. And
remember, the IDE makes it especially easy to add the event handler. Here’s how:

Start a new Windows application and add a button to the form. Go to the form code
and add a using System.Drawing.Printing; line to the top. Double-click on the button
and add the event handler. Watch what happens as soon as you type +=:

private void button1_Click(object sender, EventArgs e) {
 PrintDocument document = new PrintDocument();
 document.PrintPage +=

1

Press Tab and the IDE automatically fills in the rest of the line. This is just like how you added
event handlers in Chapter 11:

private void button1_Click(object sender, EventArgs e) {
 PrintDocument document = new PrintDocument();
 document.PrintPage += new PrintPageEventHandler(document_PrintPage);

2

As soon as you press Tab, the IDE generates an event handler method and adds it to the form.

void document_PrintPage(object sender, PrintPageEventArgs e) {
 throw new NotImplementedException();
}

The PrintPageEventArgs parameter e has a Graphics property. Just replace the throw
statement with code that calls the e.Graphics object’s drawing methods.

3

Now finish off the button1_Click event handler by calling document.Print(). When that
method is called, the PrintDocument object creates a Graphics object and then fires off a
PrintPage event with the Graphics object as a parameter. Anything that the event handler draws
onto the Graphics object will get sent to the printer.

private void button1_Click(object sender, EventArgs e) {
 PrintDocument document = new PrintDocument();
 document.PrintPage += new PrintPageEventHandler(document_PrintPage);
 document.Print();
}

4

Now you can put ANY graphics code here—just
replace the throw line and use e.Graphics for all of
the drawing. We’ll show you how in a minute….

Print this

printing uses graphics too

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   101

gdi+ graphics

PrintDocument works with the print
dialog and print prev iew window objects
Adding a print preview window or a print dialog box is a lot like adding an open or save
dialog box. All you need to do is create a PrintDialog or PrintPreviewDialog
object, set its Document property to your Document object, and then call the dialog’s
Show() method. The dialog will take care of sending the document to the printer—no
need to call its Print() method. So let’s add this to the button you created in Step 1:

Use e .HasMorePages to print mult ipage documents
If you need to print more than one page, all you need to do is have your
PrintPage event handler set e.HasMorePages to true. That tells
the Document that you’ve got another page to print. It’ll call the event
handler over and over again, once per page, as long as the event handler
keeps setting e.HasMorePages to true. So modify your Document’s
event handler to print two pages:

private void button1_Click(object sender, EventArgs e) {

 PrintDocument document = new PrintDocument();

 document.PrintPage += new PrintPageEventHandler(document_PrintPage);

 PrintPreviewDialog preview = new PrintPreviewDialog();

 preview.Document = document;

 preview.ShowDialog(this);

}

void document_PrintPage(object sender,
 PrintPageEventArgs e) {

 DrawBee(e.Graphics, new Rectangle(0, 0, 300, 300));

}

Once you’ve got a
PrintDocument and an
event handler to print
the page, you can pop up
a print preview window
just by creating a new
PrintPreviewDialog object.

bool firstPage = true;
void document_PrintPage(object sender, PrintPageEventArgs e) {
 DrawBee(e.Graphics, new Rectangle(0, 0, 300, 300));
 using (Font font = new Font(“Arial”, 36, FontStyle.Bold)) {
 if (firstPage) {
 e.Graphics.DrawString(“First page”, font, Brushes.Black, 0, 0);
 e.HasMorePages = true;
 firstPage = false;
 } else {
 e.Graphics.DrawString(“Second page”, font, Brushes.Black, 0, 0);
 firstPage = true;
 }
 }
}

If you set e.HasMorePages to true, the Document object will call the event handler again to print the next page.

5

6

Now run your program again, and make sure it’s
displaying two pages in the print preview.

We’ll reuse our DrawBee() method from a few pages ago.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

102   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

private int PrintTableRow(Graphics printGraphics, int tableX,
 int tableWidth, int firstColumnX, int secondColumnX,
 int tableY, string firstColumn, string secondColumn) {
 Font arial12 = new Font(“Arial”, 12);
 Size stringSize = Size.Ceiling(printGraphics.MeasureString(firstColumn, arial12));
 tableY += 2;
 printGraphics.DrawString(firstColumn, arial12, Brushes.Black,
 firstColumnX, tableY);
 printGraphics.DrawString(secondColumn, arial12, Brushes.Black,
 secondColumnX, tableY);
 tableY += (int)stringSize.Height + 2;
 printGraphics.DrawLine(Pens.Black, tableX, tableY, tableX + tableWidth, tableY);
 arial12.Dispose();
 return tableY;
}

private void document_PrintPage(object sender, PrintPageEventArgs e) {
 Graphics g = e.Graphics;
 Size stringSize;
 using (Font arial24bold = new Font(“Arial”, 24, FontStyle.Bold)) {
 stringSize = Size.Ceiling(
 g.MeasureString(“Bee Simulator”, arial24bold));
 g.FillEllipse(Brushes.Gray,
 new Rectangle(e.MarginBounds.X + 2, e.MarginBounds.Y + 2,
 stringSize.Width + 30, stringSize.Height + 30));
 g.FillEllipse(Brushes.Black,
 new Rectangle(e.MarginBounds.X, e.MarginBounds.Y,
 stringSize.Width + 30, stringSize.Height + 30));
 g.DrawString(“Bee Simulator”, arial24bold,
 Brushes.Gray, e.MarginBounds.X + 17, e.MarginBounds.Y + 17);
 g.DrawString(“Bee Simulator”, arial24bold,
 Brushes.White, e.MarginBounds.X + 15, e.MarginBounds.Y + 15);
 }
 int tableX = e.MarginBounds.X + (int)stringSize.Width + 50;
 int tableWidth = e.MarginBounds.X + e.MarginBounds.Width - tableX - 20;
 int firstColumnX = tableX + 2;
 int secondColumnX = tableX + (tableWidth / 2) + 5;
 int tableY = e.MarginBounds.Y;
 // Your job: fill in the rest of the method to make it print this

Write the code for the Print button in the simulator so that it pops up a print preview window
showing the bee stats and pictures of the hive and the field.

Make the button pop up a print preview window
Add an event handler for the button’s click event that pauses the simulator, pops up the print
preview dialog, and then resumes the simulator when it’s done. (If the simulator is paused when
the button is clicked, make sure it stays paused after the preview is shown.)

1

Create the document’s PrintPage event handler
It should create a page that looks exactly like the one on the facing page. We’ll start you off:

2

This PrintTableRow() method will come in handy
You’ll find this method useful when you create the table of bee stats at the top of the page.

3

We created the oval
with text in it using the
MeasureString() method,
which returns a Size that
contains the size of a
string. We drew the oval
and text twice to give it
a shadow effect.

You’ll need
these to build
the table.

Each time you call PrintTableRow(), it adds the height of
the row it printed to tableY and returns the new value.

print the world

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   103

gdi+ graphics

We used e.MarginBounds to keep
a left margin. This ellipse starts
at e.MarginBounds.X + 2.

Use the PrintTableRow() method
to print the rows of the table.

Use the renderer
to draw the hive
form. Draw a black
rectangle around
it with a width
of 2. Use the
Width property in
e.MarginBounds to
make it half the
width of the page.

Then use the
renderer to do the
same for the field
form—make it the
full page width using
the X and Y fields
in e.MarginBounds.
See if you can give
them the same
proportions as the
two forms.

Once you figure out how tall to make the hive
picture, align it to the bottom of the page.

Here’s a hint: To find the height of each form, find the ratio of its height divided by its width and multiply that by the final width. You can locate the top of the field form by subtracting its height from the bottom margin of the page: (e.MarginBounds.Y + e.MarginBounds.Height - fieldHeight).

Take a close look at the notes we wrote on the printout. This is a little complex—take your time!

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

104   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

 using System.Drawing.Printing;

 private void document_PrintPage(object sender, PrintPageEventArgs e) {
 Graphics g = e.Graphics;

 Size stringSize;
 using (Font arial24bold = new Font(“Arial”, 24, FontStyle.Bold)) {
 stringSize = Size.Ceiling(
 g.MeasureString(“Bee Simulator”, arial24bold));
 g.FillEllipse(Brushes.Gray,
 new Rectangle(e.MarginBounds.X + 2, e.MarginBounds.Y + 2,
 stringSize.Width + 30, stringSize.Height + 30));
 g.FillEllipse(Brushes.Black,
 new Rectangle(e.MarginBounds.X, e.MarginBounds.Y,
 stringSize.Width + 30, stringSize.Height + 30));
 g.DrawString(“Bee Simulator”, arial24bold,
 Brushes.Gray, e.MarginBounds.X + 17, e.MarginBounds.Y + 17);
 g.DrawString(“Bee Simulator”, arial24bold,
 Brushes.White, e.MarginBounds.X + 15, e.MarginBounds.Y + 15);
 }

 int tableX = e.MarginBounds.X + (int)stringSize.Width + 50;
 int tableWidth = e.MarginBounds.X + e.MarginBounds.Width - tableX - 20;
 int firstColumnX = tableX + 2;
 int secondColumnX = tableX + (tableWidth / 2) + 5;
 int tableY = e.MarginBounds.Y;

 tableY = PrintTableRow(g, tableX, tableWidth, firstColumnX,
 secondColumnX, tableY, “Bees”, Bees.Text);
 tableY = PrintTableRow(g, tableX, tableWidth, firstColumnX,
 secondColumnX, tableY, “Flowers”, Flowers.Text);
 tableY = PrintTableRow(g, tableX, tableWidth, firstColumnX,
 secondColumnX, tableY, “Honey in Hive”, HoneyInHive.Text);
 tableY = PrintTableRow(g, tableX, tableWidth, firstColumnX,
 secondColumnX, tableY, “Nectar in Flowers”, NectarInFlowers.Text);
 tableY = PrintTableRow(g, tableX, tableWidth, firstColumnX,
 secondColumnX, tableY, “Frames Run”, FramesRun.Text);
 tableY = PrintTableRow(g, tableX, tableWidth, firstColumnX,
 secondColumnX, tableY, “Frame Rate”, FrameRate.Text);

 g.DrawRectangle(Pens.Black, tableX, e.MarginBounds.Y,
 tableWidth, tableY - e.MarginBounds.Y);
 g.DrawLine(Pens.Black, secondColumnX, e.MarginBounds.Y,
 secondColumnX, tableY);

We gave you this
part already. It
draws the oval
header, and
sets up variables
that you’ll use to
draw the table
of bee stats.

Did you figure out how the PrintTableRow() method works? All you need to do is call it once per row, and it prints whatever text you want in the two columns. The trick is that it returns the new tableY value for the next row.

Don’t forget to draw
the rectangle around the
table and the line between
the columns.

Write the code for the Print button in the simulator so that it pops up a print preview
window showing the bee stats and pictures of the hive and the field.

Here’s the event handler for the Document’s PrintPage event. It goes in the form.

exercise solution

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   105

gdi+ graphics

 using (Pen blackPen = new Pen(Brushes.Black, 2))
 using (Bitmap hiveBitmap = new Bitmap(hiveForm.ClientSize.Width,
 hiveForm.ClientSize.Height))
 using (Bitmap fieldBitmap = new Bitmap(fieldForm.ClientSize.Width,
 fieldForm.ClientSize.Height))
 {
 using (Graphics hiveGraphics = Graphics.FromImage(hiveBitmap))
 {
 renderer.PaintHive(hiveGraphics);
 }

 int hiveWidth = e.MarginBounds.Width / 2;
 float ratio = (float)hiveBitmap.Height / (float)hiveBitmap.Width;
 int hiveHeight = (int)(hiveWidth * ratio);
 int hiveX = e.MarginBounds.X + (e.MarginBounds.Width - hiveWidth) / 2;
 int hiveY = e.MarginBounds.Height / 3;
 g.DrawImage(hiveBitmap, hiveX, hiveY, hiveWidth, hiveHeight);
 g.DrawRectangle(blackPen, hiveX, hiveY, hiveWidth, hiveHeight);

 using (Graphics fieldGraphics = Graphics.FromImage(fieldBitmap))
 {
 renderer.PaintField(fieldGraphics);
 }
 int fieldWidth = e.MarginBounds.Width;
 ratio = (float)fieldBitmap.Height / (float)fieldBitmap.Width;
 int fieldHeight = (int)(fieldWidth * ratio);
 int fieldX = e.MarginBounds.X;
 int fieldY = e.MarginBounds.Y + e.MarginBounds.Height - fieldHeight;
 g.DrawImage(fieldBitmap, fieldX, fieldY, fieldWidth, fieldHeight);
 g.DrawRectangle(blackPen, fieldX, fieldY, fieldWidth, fieldHeight);
 }
}

private void printToolStripButton1_Click(object sender, EventArgs e) {
 bool stoppedTimer = false;
 if (timer1.Enabled) {
 timer1.Stop();
 stoppedTimer = true;
 }
 PrintPreviewDialog preview = new PrintPreviewDialog();
 PrintDocument document = new PrintDocument();
 preview.Document = document;
 document.PrintPage += new PrintPageEventHandler(document_PrintPage);
 preview.ShowDialog(this);
 if (stoppedTimer)
 timer1.Start();
}

You’ll need a black pen that’s 2 pixels wide to draw the lines around the screenshots.

The PaintHive() method needs a Graphics object to draw on, so this code creates an empty Bitmap object and passes it to PaintHive().

e.MarginBounds.Width has the width of the
printable area of the page. That’s how wide
the field screenshot should be drawn.

Here’s where the height of the screenshot is calculated using the form’s height-width ratio.

Here’s the code for the print button. It pauses the
simulator (if it’s running), creates a PrintDocument,
hooks it up to the PrintPage event handler, shows
the dialog, and then restarts the simulator.

Since the
pen and the
two bitmaps
need to be
disposed, we
put them all
in one big
using block.

The bitmaps need to
be the same size as
the form’s drawing
area, so ClientSize
comes in handy.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

page goal header

106   GDI+ bonus PDF for Head First C# ≥ http://www.headfirstlabs.com/hfcsharp

There’s so much more to be done…
You’ve built a pretty neat little simulator, but why stop now?
There’s a whole lot more that you can do on your own. Here are
some ideas—see if you can implement some of them.

Did you come up with a cool modification to the simulator? Show
off your skills—upload your project’s source code to the Head First
C# forums at www.headfirstlabs.com/books/hfcsharp/.

Add a control panel
Convert the constants in the World and Hive classes to properties. Then
add a new form with a control panel that has sliders to control them.

Add enemies
Add enemies that attack the hive. The more flowers there are, the more
enemies are attracted to the hive. Then add Sting Patrol bees to defend
against the enemies, and Hive Maintenance bees to defend and repair
the hive. Those bees take extra honey.

Add hive upgrades
If the hive gets enough honey, it gets bigger. A bigger hive can hold more
bees, but takes more honey and attracts more enemies. If enemies cause
too much damage, the hive gets smaller again.

Add a queen bee who lays eggs
The eggs need Baby Bee Care worker bees to take care of them. More
honey in the hive causes the queen to lay more eggs, which need more
workers to care for them, who consume more honey.

Add animation
Animate the background of the Hive form so the sun slowly travels
across the sky. Make it get dark at night, and draw stars and a moon.
Add some perspective—make the bees get smaller the further they get
from the hive in the field of flowers.

Use your imagination!
Try to think of other ways you can make the simulation more interesting
or more interactive.

A good
simulation will
have lots of
tradeoffs, and
will give the
user ways to
decide which
tradeoffs
to make to
influence the
progress of
the hive.

mini lab

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

this is a new chapter   107C# Lab   107

Name: Date:

C# Lab   107

C# Lab
Invaders

This lab gives you a spec that describes a program
for you to build, using the knowledge you’ve gained
throughout this book.
This project is bigger than the ones you’ve seen so
far. So read the whole thing before you get started,
and give yourself a little time. And don’t worry if
you get stuck—there’s nothing new in here, so you
can move on in the book and come back to the lab
later.
We’ve filled in a few design details for you, and
we’ve made sure you’ve got all the pieces you
need…and nothing else.
It’s up to you to finish the job. You can download
an executable for this lab from the website…but we
won’t give you the code for the answer.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

108   Chapter 12

page goal header

108   Head First Lab #1

Invaders

The grandfather of v ideo games
In this lab you’ll pay homage to one of the most popular, revered,
and replicated icons in video game history, a game that needs no
further introduction. It’s time to build Invaders.

As the player destroys the
invaders, the score goes up.
It’s displayed in the upper
left-hand corner.

The player starts out with three
ships. The first ship is in play,
and the other two are kept in
reserve. His spare ships are shown
in the upper right-hand corner.

The multicolored
stars in the
background twinkle
on and off, but
don’t affect
gameplay at all.

The invaders return fire. If one of the shots hits
the ship, the player loses a life. Once all lives are
gone, or if the invaders reach the bottom of the
screen, the game ends and a big “GAME OVER” is
displayed in the middle of the screen.

The player moves the ship left
and right, and fires shots at
the invaders. If a shot hits an
invader, the invader is destroyed
and the player’s score goes up.

The invaders attack in waves of 30.
The first wave moves slowly and fires
a few shots at a time. The next wave
moves faster, and fires more shots more
frequently. If all 30 invaders in a wave
are destroyed, the next wave attacks.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   109you are here 4   109

Invaders

RIGHT 

SPACE

Your mission: defend the planet
against wave af ter wave of invaders
The invaders attack in waves, and each wave is a tight formation
of 30 individual invaders. As the player destroys invaders, his score
goes up. The bottom invaders are shaped like stars and worth 10
points. The spaceships are worth 20, the saucers are worth 30, the
bugs are worth 40, and the satellites are worth 50. The player starts
with three lives. If he loses all three lives or the invaders reach the
bottom of the screen, the game’s over.

The left arrow moves the
ship toward the left-hand
edge of the screen.

The right arrow key moves the ship to the right.

The game should keep
track of which keys
are currently being held
down. So pressing right
and spacebar would
cause the ship to move
to the right and fire
(if two shots aren’t
already on the screen).

The spacebar shoots, but
there can only be two
player shots on the screen
at once. As soon as a shot
hits something or disappears,
another shot can be fired.

Fire!

If a shot hits
an invader, both
disappear. Otherwise,
the shot disappears
when it gets to the
top of the screen.

There are five different types of invaders, but they all behave the same way. They start at the top of the screen and move left until they reach the edge. Then they drop down and start moving right. When they reach the right-hand boundary, they drop down and
move left again. If the invaders reach the
bottom of the screen, the game’s over.

The first wave of
invaders can fire two
shots at once—the
invaders will hold their
fire if there are more
than two shots on the
screen. The next wave
fires three, the next
fires four, etc.

 LEFT

10 20 30 40 50

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

110   Chapter 12

page goal header

110   Head First Lab #1

Invaders

The architecture of Invaders
Invaders needs to keep track of a wave of 30 invaders
(including their location, type, and score value), the player’s
ship, shots that the player and invaders fire at each other, and
stars in the background. As in the Quest lab, you’ll need a
Game object to keep up with all this and coordinate between
the form and the game objects.

Here’s an overview of what you’ll need to create:

 Game obje
ct

 Form obje

ct

The form is pretty simple. It’s got
timers to tell the game to go, it
passes on key presses, and it animates
the invaders and twinkling stars. And
it’s got a Paint event handler to
draw the graphics, which just calls
the Game object’s Draw() method.

The Game object manages the gameplay.
It keeps track of how many lives the
player has left and how many waves of
invaders have attacked. When the game’s
over, it raises a GameOver event to tell
the form to stop its timers.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   111you are here 4   111

Invaders

PlayerShip
o b

je
c

t
 List<Inva

de
r>

 List<S

ho
t>

Stars objec
t

All of the invaders on the screen are
stored in a List. When an invader is
destroyed, it’s removed from the list
so the game stops drawing it.

The object that represents the
ship keeps track of its position
and moves itself left and right,
making sure it doesn’t move off
the side of the screen.

The game keeps two
lists of Shot objects:
a list of shots the
player fired at the
invaders, and a list
of shots the invaders
fired back.

The Stars object keeps a List of Star structs
(each of which contains a Point and a Pen).
Stars also has a Twinkle() method that removes
five stars at random and adds five new ones—
the game calls Twinkle() several times a second
to make the stars twinkle in the background.

 List<Shot
>

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

112   Chapter 12

page goal header

112   Head First Lab #1

Invaders

Design the Invaders form
The Invaders form has only two controls: a timer to trigger
animation (making the stars twinkle and the invaders animate
by changing each invader picture to a different frame), and
a timer to handle gameplay (the invaders marching left and
right, the player moving, and the player and invaders shooting
at each other). Other than that, the only intelligence in the
form is an event handler to handle the game’s GameOver
event, and KeyUp and KeyDown event handlers to manage
the keyboard input.

Set the form’s FormBorderStyle property to FixedSingle and
its DoubleBuffered property to true, turn off its MinimizeBox
and MaximizeBox properties, set its title, and then stretch it
out to the width you want the game area to be.

When the form initializes its Game object, it passes its ClientRectangle to it so it knows the boundaries of the form. So you can change the size of the battlefield just by changing the size of the form.

You should add two timers: animationTimer and gameTimer.

The form fires a KeyDown event any time a key is pressed, and it fires a KeyUp event whenever a key is released.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   113you are here 4   113

Invaders

The animation t imer handles the eye candy
The stars in the game’s background and the invader animation
don’t affect gameplay, and they continue when the game is
paused or stopped. So we need a separate timer for those.

Add code for the animation t imer ’s t ick event
Your code should have a counter that cycles from 0 to 3 and then back down
to 0. That counter is used to update each of the four-cell invader animations
(creating a smooth animation). Your handler should also call the Game
object’s Twinkle() method, which will cause the stars to twinkle. Finally, it
needs to call the form’s Refresh() method to repaint the screen.

Try a timer interval of 33ms, which will give you about 30 frames per second.
Make sure you set the game timer to a shorter interval, though. The ship
should move and gameplay should occur more quickly than the stars twinkle.

If the animation timer is
set to 33ms, but the Game
object’s Go() method takes
longer than that to run,
then animation will occur
once Go() completes.

We tried things out on a slow machine, and
found that setting the animation interval
to 100ms and the gameplay timer interval
to 50ms gave us a frame rate of about
10 frames per second, which was definitely
playable. Try starting there and reducing
each interval until you’re happy.

Adjust the t imers for smooth animation
With a 33ms interval for animation, set the game timer to 10ms. That way, the
main gameplay will occur more quickly than the animation (which is really just
background eye candy). At the same time, the Go() method in Game (fired
by the game timer, which we’ll talk about in a little bit) can take a lot of CPU
cycles. If the CPU is busy handling gameplay, the animation timer will just wait
until the CPU gets to it, and then fire (and animate the stars and invaders).

Alternately, you can just set both timers to an interval of 5ms, and the game
will run and animate about as fast as your system can handle (although on fast
machines, animation could get annoyingly quick).

Animation occurs even when gameplay doesn’t. That means that the stars twinkle and the invaders animate even if the game is over, paused, or hasn’t been started.

An invader starts with cell 0, goes to cell 1, then 2, then 3…

…and then reverses, g
oing back

to 2, then 1, then 0.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

114   Chapter 12

page goal header

114   Head First Lab #1

Invaders

Respond to keyboard input
Before we can code the game timer, we need to write event
handlers for the KeyDown and KeyUp events. KeyDown is
triggered when a key is pressed, and KeyUp when a key is
released. For most keys, we can simply take action by firing a
shot or quitting the game.

For some keys, like the right or left arrow, we’ll want to store
those in a list that our game timer can then use to move the
player’s ship. So we’ll also need a list of pressed keys in the form
object:

List<Keys> keysPressed = new List<Keys>();

private void Form1_KeyDown(object sender, KeyEventArgs e) {
 if (e.KeyCode == Keys.Q)
 Application.Exit();

 if (gameOver)
 if (e.KeyCode == Keys.S) {
 // code to reset the game and restart the timers
 return;
 }

 if (e.KeyCode == Keys.Space)
 game.FireShot();
 if (keysPressed.Contains(e.KeyCode))
 keysPressed.Remove(e.KeyCode);
 keysPressed.Add(e.KeyCode);
}

private void Form1_KeyUp(object sender, KeyEventArgs e) {
 if (keysPressed.Contains(e.KeyCode))
 keysPressed.Remove(e.KeyCode);
}

We need a list of keys so we can
track which keys have been pressed.
Our game timer will need that list
for movement in just a bit.

The ‘Q’ key quits the game.

If the game has ended, reset
the game and start over.

You’ll need to fill in this code.

The spacebar fires a shot.

The Keys
enum
defines all
the keys
you might
want to
check key
codes
against.

By removing the key and then re-adding
it, the key becomes the last (most
current) item in the list.The key that’s pressed gets added to

our key list, which we’ll use in a second.

When a key is released, we remove it from our list of pressed keys.

We want the most
current key pressed to be
at the very top of the
list, so that if the player
mashes a few keys at
the same time, the game
responds to the one that
was hit most recently.
Then, when he lets up one
key, the game responds to
the next one in the list.

So if the player’s holding down the left arrow and spacebar at the same time, the list will contain Keys.Left and Keys.Space.

But we only want this to work
if the game’s over. Pressing S
shouldn’t restart a game that’s
already in progress.

Flip back to the KeyGame project
you built in Chapter 4. You used a
KeyDown event handler there, too!

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   115you are here 4   115

Invaders

private void gameTimer_Tick(object sender, EventArgs e)
{
 game.Go();
 foreach (Keys key in keysPressed)
 {
 if (key == Keys.Left)
 {
 game.MovePlayer(Direction.Left);
 return;
 }
 else if (key == Keys.Right)
 {
 game.MovePlayer(Direction.Right);
 return;
 }
 }
}

One more form detail: the GameOver event
Add a private bool field called gameOver to the form that’s true only when
the game is over. Then add an event handler for the Game object’s GameOver
event that stops the game timer (but not the animation timer, so the stars still
twinkle and the invaders still animate), sets gameOver to true, and calls the
form’s Invalidate() method.

When you write the form’s Paint event handler, have it check gameOver. If
it’s true, have it write GAME OVER in big yellow letters in the middle of the
screen. Then have it write “Press S to start a new game or Q to quit” in the
lower right-hand corner. You can start the game out in this state, so the user has
to hit S to start a new game.

The KeyUp and KeyDown
events use the Keys enum
to specify a key. We’ll use
Keys.Left and Keys.Right
to move the ship.

keysPressed is your List<Keys>
object managed by the KeyDown
and KeyUp event handlers. It
contains every key the player
currently has pressed.The keysPressed

list has the keys
in the order that
they’re pressed.
This foreach loop
goes through them
until it finds a
Left or Right key,
then moves the
player and returns.

The game t imer handles movement and gameplay
The main job of the form’s game timer is to call Go() in the
Game class. But it also has to respond to any keys pressed, so it
has to check the keysPressed list to find any keys caught by
the KeyDown and KeyUp events:

This timer makes the game advance by one frame.
So the first thing it does is call the Game
object’s Go() method to let gameplay continue.

Here’s an example of adding

another event to a for
m

without using the IDE. This is

all manual coding.

The game over event and its

delegate live in the Game class,

which you’ll see in just a
minute.

enum Direction {
 Left,
 Right,
 Up,
 Down,
}

Shots move up and down,
the player moves left and
right, and the invaders
move left, right, and
down. You’ll need this
enum to keep all those
directions straight.

Players “mash” a bunch of keys
at once. If we want the game to
be robust, it needs to be able to
handle that. That’s why we’re using
the keysPressed list.

The KeyDown event handler just handles the
space, S, and Q keystrokes without adding them
to the keysPressed list. What would happen if
you moved the code for firing the shot when
the space key is pressed to this event handler?

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

116   Chapter 12

page goal header

116   Head First Lab #1

Invaders

The form’s game t imer te l ls the game to Go()
In addition to handling movement left and right, the main job of the game timer is to
call the Game object’s Go() method. That’s where all of the gameplay is managed.
The Game object keeps track of the state of the game, and its Go() method advances
the game by one frame. That involves:

Checking to see if the player died, using its Alive property. When the player dies,
the game shows a little animation of the ship collapsing (using DrawImage() to squish
the ship down to nothing). The animation is done by the PlayerShip class, so Go() just
needs to check to see if it’s dead. If it is, it returns—that way, it keeps the invaders from
moving or shooting while the player gets a small break (and watches his ship get crushed).

1

Moving each of the shots. Shots fired by the invaders move down, and shots fired by the
player move up. Game keeps two List<Shot> objects, one for the invaders’ shots and one
for the player’s. Any shot that’s moved off the screen needs to be removed from the list.

2

Moving each of the invaders. Game calls each Invader object’s Move() method,
and tells the invaders which way to move. Game also keeps up with where the invaders are
in case they need to move down a row or switch directions. Then, Game checks to see if it’s
time for the invaders to return fire, and if so, it adds new Shot objects to the List<>.

3

Checking for hits. If a player’s shot hit any invaders, Game removes the invaders from the
appropriate List<>. Then Game checks to see if any of the invader shots have collided with
the player’s ship, and if so, it kills the player by setting its Alive property to false. If the
player’s out of lives, then Game raises the GameOver event to tell the form that the game’s
over. The form’s GameOver event handler stops its game timer, so Go() isn’t called again.

4

 Game obj
e c

t

 game.Go()

 Form obje
ct

The game timer fires more often
than the animation timer, making
gameplay happen quickly.

Go() in the Game object handles

everything from movement to

shots to checking to
 see if ships or

invaders have been h
it.

Here’s where that
GameOver event from the last page comes into play.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   117you are here 4   117

Invaders

 Game obj
e c

t

 game
.Draw(g, animationCell);

The invaders have a four-cell
animation sequence, so the
form passes an int telling the
game which cell to draw. The game tells each

invader which cell to
draw based on the
animationCell passed
by the form.

The Game object’s Draw() method
calls the Draw() methods on all of
the other objects. You’ll see how
each of the other classes’ Draw()
methods work in the next few pages.

 Form obje
ct

stars.Draw(g);
foreach (Invader invader in invaders)
 invader.Draw(g, animationCell);
playerShip.Draw(g);
foreach (Shot shot in playerShots)
 shot.Draw(g);
foreach (Shot shot in invaderShots)
 shot.Draw(g);

~
Paint event

fires

Everything that happens visually
in the game happens in the
form’s Paint event handler.

Taking control of graphics
In earlier labs, the form used controls for the graphics. But now
that you know how to use Graphics and double-buffering, the
Game object should handle a lot of the drawing.

So the form should have a Paint event handler (make sure you
set the form’s DoubleBuffered property to true!). You’ll
delegate the rest of the drawing to the Game object by calling its
Draw() method every time the form’s Paint event fires.

 List<Shot
>

PlayerShip
o b

je
c

t List<Inva
de

r>

 List<Shot
>

Stars objec
t

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

118   Chapter 12

page goal header

118   Head First Lab #1

Invaders

Building the Game class

class Game {
 private int score = 0;
 private int livesLeft = 2;
 private int wave = 0;
 private int framesSkipped = 0;

 private Rectangle boundaries;
 private Random random;

 private Direction invaderDirection;
 private List<Invader> invaders;

 private PlayerShip playerShip;
 private List<Shot> playerShots;
 private List<Shot> invaderShots;

 private Stars stars;

 public event EventHandler GameOver;

 // etc...
}

Game

Draw(g: Graphics, animationCell: int)
Twinkle()
MovePlayer(direction: Direction)
FireShot()
Go()

GameOver: event

The score, livesLeft, and wave fields keep track of some basic information about the state of the game.

You’ll use the frame field to slow down the
invaders early on in the game—the first wave
should skip 6 frames before they move to the
left, the next wave should skip 5, the next
should skip 4, etc.

This List<> of Invader objects keeps track of all of
the invaders in the current wave. When an invader is
destroyed, it’s removed from the list. The game checks
periodically to make sure the list isn’t empty—if it is, it
sends in the next wave of invaders.

This Stars object keeps track of the
multicolored stars in the background.

The Game object raises its GameOver event when the player dies and doesn’t have any more lives left. You’ll build the event handler method in the form, and hook it into the Game object’s GameOver event.

The Game class is the controller for the Invaders game. Here’s a
start on what this class should look like, although there’s lots of
work still for you to do.

Remember, these are the
public methods. You may need
a lot more private methods to
structure your code in a way
that makes sense to you.

Most of these
methods combine
methods on other
objects to make a
specific action occur.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   119you are here 4   119

Invaders

The Game class methods
The Game class has five public methods that get triggered
by different events happening in the form.

The Draw() method draws the game on a Graphics object
The Draw() method takes two parameters: a Graphics object and an integer that contains
the animation cell (a number from 0 to 3). First, it should draw a black rectangle that fills up
the whole form (using the display rectangle stored in boundaries, received from the form).
Then the method should draw the stars, the invaders, the player’s ship, and then the shots.
Finally, it should draw the score in the upper left-hand corner, the player’s ships in the upper
right-hand corner, and a big “GAME OVER” in yellow letters if gameOver is true.

1

The Twinkle() method twinkles the stars
The form’s animation timer event handler needs to be able to twinkle the stars, so the Game
object needs a one-line method to call stars.Twinkle().

2

The MovePlayer() method moves the player
The form’s keyboard timer event handler needs to move the player’s ship, so the Game object
also needs a two-line method that takes a Direction enum as a parameter, checks whether
or not the player’s dead, and calls playerShip.Move() to affect that movement.

3

The FireShot() method makes the player fire a shot at the invaders
The FireShot() method checks to see if there are fewer than two player shots on screen. If
so, the method should add a new shot to the playerShots list at the right location.

4

The Go() method makes the game go
The form’s animation timer calls the Game object’s Go() method anywhere between 10
and 30 times a second (depending on the computer’s CPU speed). The Go() method does
everything the game needs to do to advance itself by a frame:

≥≥ The game checks if the player’s dead using its Alive property. If he’s still alive, the
game isn’t over yet—if it were, the form would have stopped the animation timer with
its Stop() method. So the Go() method won’t do anything else until the player is
alive again—it’ll just return.

≥≥ Every shot needs to be updated. The game needs to loop through both List<Shot>
objects, calling each shot’s Move() method. If any shot’s Move() returns false, that
means the shot went off the edge of the screen—so it gets deleted from the list.

≥≥ The game then moves each invader, and allows them to return fire.

≥≥ Finally, it checks for collisions: first for any shot that overlaps an invader (and removing
both from their List<T> objects), and then to see if the player’s been shot. We’ll add
a Rectangle property called Area to the Invader and PlayerShip classes—so we
can use the Contains() method to see if the ship’s area overlaps with a shot.

5

We’ll write code for the Stars
object in a few more pages.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

120   Chapter 12

page goal header

120   Head First Lab #1

Invaders

The constructor sets everything up
The Game object needs to create all of the other objects—the Invader
objects, the PlayerShip object, the List objects to hold the shots, and the
Stars object. The form passes in an initialized Random object and its own
ClientRectangle struct (so the Game can figure out the boundaries of
the battlefield, which it uses to determine when shots are out of range and
when the invaders reach the edge and need to drop and reverse direction). Then,
your code should create everything else in the game world.

Build a NextWave() method
A simple method to create the next wave of invaders will come in handy. It should
assign a new List of Invader objects to the invaders field, add the 30 invaders
in 6 columns so that they’re in their starting positions, increase the wave field by 1,
and set the invaderDirection field to start them moving toward the right-
hand side of the screen. You’ll also change the framesSkipped field.

A few other ideas for pri vate methods
Here are a few of the private method ideas you might play with, and see if these
would also help the design of your Game class:

We’ll talk about most of these
individual objects over the next
several pages of this lab.

Here’s an example of a private method that will really help out your Game class organization.

 A method to see if the player’s been hit (CheckForPlayerCollisions())

 A method to see if any invaders have been hit (CheckForInvaderCollisions())

 A method to move all the invaders (MoveInvaders())

 A method allowing invaders to return fire (ReturnFire())

Fil ling out the Game class
The problem with class diagrams is that they usually leave out
any non-public properties and methods. So even after you’ve
got the methods from page 119 done, you’ve still got a lot of
work to do. Here are some things to think about:

It’s possible to show protected and private properties
and methods in a class diagram, but you’ll rarely see
that put into practice. Why do you think that is?

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   121you are here 4   121

Invaders

LINQ makes col lision detect ion much easier
You’ve got collections of invaders and shots, and you need to search through those
collections to find certain invaders and shots. Any time you hear collections and
searching in the same sentence, you should think LINQ. Here’s what you need to do:

Figure out if the invaders’ formation has reached the edge of the battlefield
The invaders need to change direction if any one invader is within 100 pixels of the edge of the battlefield.
When the invaders are marching to the right, once they reach the right-hand side of the form the game
needs to tell them to drop down and start marching to the left. And when the invaders are marching to
the left, the game needs to check if they’ve reached the left edge. To make this happen, add a private
MoveInvaders() method that gets called by Go().The first thing it should do is check and update the
private framesSkipped field, and return if this frame should be skipped (depending on the level).
Then it should check which direction the invaders are moving. If the invaders are moving to the right,
MoveInvaders() should use LINQ to search the invaderCollection list for any invader whose
location’s X value is within 100 pixels of the right-hand boundary. If it finds any, then it should tell the
invaders to march downward and then set invaderDirection equal to Direction.Left; if not, it
can tell each invader to march to the right. On the other hand, if the invaders are moving to the left, then
it should do the opposite, using another LINQ query to see if the invaders are within 100 pixels of the
left‑hand boundary, marching them down and changing direction if they are.

1

Determine which invaders can return fire
Add a private method called ReturnFire() that gets
called by Go(). First, it should return if the invaders’
shot list already has wave + 1 shots. It should also
return if random.Next(10) < 10 - wave.
(That makes the invaders fire at random, and not all
the time.) If it gets past both tests, it can use LINQ to
group the invaders by their Location.X and sort them
descending. Once it’s got those groups, it can choose
a group at random, and use its First() method to
find the invader at the bottom of the column. All right,
now you’ve got the shooter—you can add a shot to the
invader’s shot list just below the middle of the invader
(use the invader’s Area to set the shot’s location).

2

If any invader reaches the bottom of the screen, the game’s over.
Check for invader and player collisions
You’ll want to create a method to check for collisions. There are three collisions to check for, and the
Rectangle struct’s Contains() method will come in really handy—just pass it any Point, and it’ll return
true if that point is inside the rectangle.

≥≥ Use LINQ to find any dead invaders by looping through the shots in the player’s shot list and selecting
any invader where invader.Area contains the shot’s location. Remove the invader and the shot.

≥≥ Add a query to figure out if any invaders reached the bottom of the screen—if so, end the game.

≥≥ You don’t need LINQ to look for shots that collided with the player, just a loop and the player’s Area
property. (Remember, you can’t modify a collection inside a foreach loop. If you do, you’ll get
an InvalidOperationException with a message that the collection was modified.)

3

This seems really complex when you first read it, but each LINQ query is just a couple of lines of code. Here’s a hint: don’t overcomplicate it!

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

122   Chapter 12

page goal header

122   Head First Lab #1

Invaders

class Invader {
 private const int HorizontalInterval = 10;
 private const int VerticalInterval = 40;

 private Bitmap image;

 public Point Location { get; private set; }

 public ShipType InvaderType { get; private set; }

 public Rectangle Area { get {
 return new Rectangle(location, image.Size); }
 }

 public int Score { get; private set; }

 public Invader(ShipType invaderType, Point location, int score) {
 this.InvaderType = invaderType;
 this.Location = location;
 this.Score = score;
 image = InvaderImage(0);
 }

 // Additional methods will go here
}

Craf t ing the Invader class
Invader

Draw(g: Graphics, animationCell: int)
Move(direction: Direction)

Location: Point
InvaderType: ShipType
Area: Rectangle
Score: int

Check out what we did with the
Area property. Since we know the
invader’s location and we know
its size (from its image field),
we can add a get accessor that
calculates a Rectangle for the
area it covers…

An Invader object uses
the ShipType enum to
figure out what kind of
enemy ship it is.

The Invader class keeps track of a single invader. So when the Game
object creates a new wave of invaders, it adds 30 instances of Invader to
a List<Invader> object. Every time its Go() method is called, it calls
each invader’s Move() method to tell it to move. And every time its Draw()
method is called, it calls each invader object’s Draw() method. So you’ll need
to build out the Move() and Draw() methods. You’ll want to add a private
method called InvaderImage(), too—it’ll come in really handy when
you’re drawing the invader. Make sure you call it inside the Draw() method to
keep the image field up to date:

The HorizontalInterval constant
determines how many pixels an invader
moves every time it marches left or
right. VerticalInterval is the number of
pixels it drops down when the formation
reaches the edge of the battlefield.

enum ShipType {
 Bug,
 Saucer,
 Satellite,
 Spaceship,
 Star,
 }

…which means you can use
the Rectangle’s Contains()
method inside a LINQ query
to detect any shots that
collided with an invader.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   123you are here 4   123

Invaders

Build the Invaders’ methods
The three core methods for Invader are Move(), Draw(), and
InvaderImage(). Let’s look at each in turn.

Move the invader ships
First, you need a method to move the invader ships. The Game object should
send in a direction, using the Direction enum, and then the ship should
move. Remember, the Game object handles figuring out if an invader needs to
move down or change direction, so your Invader class doesn’t have to worry
about that.

public void Move(Direction direction) {
 // This method needs to move the ship in the
 // specified direction
}

Draw the ship—and the r ight animation ce l l
Each Invader knows how to draw itself. Given a Graphics object to draw
to, and the animation cell to use, the invader can display itself onto the game
board using the Graphics object the Game gives it.

public void Draw(Graphics g, int animationCell) {
 // This method needs to draw the image of
 // the ship, using the correct animation cell
}

Get the r ight invader image
You’re going to need to grab the right image based on the animation
cell a lot, so you may want to pull that code into its own method.
Build an InvaderImage() method that returns a specific Bitmap
given an animation cell.

private Bitmap InvaderImage(int animationCell) {
 // This is mostly a convenience method, and
 // returns the right bitmap for the specified cell
}

There are five types of invaders,
and each of them has four
different animation cell pictures.

Each invader knows its
type. So if you give its
InvaderImage() method a
number for its animation
cell, it can return a
Bitmap that’s got the
right graphic in it.Remember, you can download these graphics from

http://www.headfirstlabs.com/hfcsharp/.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

124   Chapter 12

page goal header

124   Head First Lab #1

Invaders

The player ’s ship can move and die
The PlayerShip class keeps track of the
player’s ship. It’s similar to the Invaders class,
but even simpler.

Animate the player ship when it’s hit
The Draw() method should take a Graphics object as a parameter. Then it checks
its Alive property. If it’s alive, it draws itself using its Location property. If it’s
dead, then instead of drawing the regular bitmap on the graphics, the PlayerShip
object uses its private deadShipHeight field to animate the player ship slowly
getting crushed by the shot. After three seconds of being dead, it should flip its Alive
property back to true.

public void Draw(Graphics g) {

 if (!Alive) {

 Reset the deadShipHeight field and draw the ship.
 } else {

 Check the deadShipHeight field. If it's greater than zero, decrease it by 1
 and use DrawImage() to draw the ship a little flatter.
 }

}

Draw(g: Graphics)
Move(direction: Direction)

Location: Point
Area: Rectangle
Alive: bool

PlayerShip
The Location and Area
properties are exactly like
the ones in the Invader class.

The Move() method takes
one parameter, a Direction
enum, and moves the player
in that direction.

The Draw() method just draws
the player’s ship in the right
location–unless the player
died, in which case it draws an
animation of the ship getting
crushed by the shot.

PlayerShip needs to take
in a Rectangle with the
game’s boundaries in its
constructor, and make
sure the ship doesn’t get
moved out of the game’s
boundaries in Move().

Waiting three seconds is easy—just use the Alive property’s set accessor to set a
private DateTime field to DateTime.Now. The first thing the ship’s Go() method
does is use a TimeSpan to check if three seconds have elapsed. If three seconds
haven’t elapsed, continue doing the crushing ship animation. As soon as three
seconds have elapsed, set Alive back to true so the game knows it should continue
gameplay. (You used a similar trick in the beehive simulator.)

When the ship’s hit with a shot,
the game sets the ship’s Alive
property to false. The game
then keeps the invaders from
moving until the ship resets its
Alive property back to true.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   125you are here 4   125

Invaders

class Shot {
 private const int moveInterval = 20;
 private const int width = 5;
 private const int height = 15;

 public Point Location { get; private set; }

 private Direction direction;
 private Rectangle boundaries;

 public Shot(Point location, Direction direction,
 Rectangle boundaries) {
 this.Location = location;
 this.direction = direction;
 this.boundaries = boundaries;
 }

 // Your code goes here
}

“Shots f ired!”
Game has two lists of Shot objects: one for the player’s shots moving
up the screen, and one for enemy shots moving down the screen.
Shot only needs a few things to work: a Point location, a method
to draw the shot, and a method to move. Here’s the class diagram:

ou can adjust these to make the game
easier or harder…smaller shots are easier
to dodge, faster shots are harder to avoid.

The shot updates its own location in
the Move() method, so location can
be a read-only automatic property.

The game passes the form’s display rectangle
into the constructor’s boundaries parameter so
the shot can tell when it’s off of the screen.

Draw() handles drawing the little rectangle
for this shot. Game will call this every time
the screen needs to be updated.

Move() moves the shot up
or down, and keeps up with
whether the shot is within the
game’s boundaries.

Here’s a start on the Shot class:

Your job is to make sure Draw() takes in a Graphics object
and draws the shot as a yellow rectangle. Then, Move() should
move the shot up or down, and return true if the shot is still
within the game boundaries.

Shot

Draw(g: Graphics)
Move(): bool

Location: Point

Direction is the enum with Up
and Down defined.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

126   Chapter 12

page goal header

126   Head First Lab #1

Invaders

Stars

Draw(g: Graphics)
Twinkle(random: Random)

private struct Star {
 public Point point;
 public Pen pen;

 public Star(Point point, Pen pen) {
 this.point = point;
 this.pen = pen;
 }
}

±

±

±

±

±

Twinkle, t winkle…it’s up to you
The last class you’ll need is the Stars class. There are 300 stars, and this
class keeps up with all of them, causing 5 to display and 5 to disappear every
time Twinkle() is called.

First, though, you’ll need a struct for each star:

Each star has a point (its location)
and a pen (for its color).

All Star does is hold this
data…no behavior.

The Stars class should keep a List<Star> for storing 300 of these Star
structs. You’ll need to build a constructor for Stars that populates that
list. The constructor will get a Rectangle with the display boundaries, and
a Random instance for use in creating the random Points to place each star
in a random location.

Here’s the class diagram for Stars, with the other methods you’ll need:

Draw() should draw all the stars in the list, and Twinkle() should
remove five random stars and add five new stars in their place.

You might also want to create a RandomPen() method so you can get
a random color for every new star you create. It should return one of
the five possible star colors, by generating a number between 0 and 4,
and selecting the matching Pen object.

Draw() draws all
300 stars…

…and Twinkle()
pulls 5 stars and
adds 5 new ones.

Game maintains an instance of Random that all the objects can use.

You can define the Star

struct inside Stars.cs, as
 only

Stars needs to use that
struct.

Here’s another hint: start out
the project with just a form,
a Game class, and Stars class.
See if you can get it to draw
a black sky with twinkling
stars. That’ll give you a solid
foundation to add the other
classes and methods.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4   127you are here 4   127

Invaders

And yet there’s more to do…
Think the game’s looking pretty good? You can take it to the
next level with a few more additions:

Add animated explosions
Make each invader explode after it’s hit, then briefly display a number to
tell the player how many points the invader was worth.

Add a mothership
Once in a while, a mothership worth 250 points can travel across the top
of the battlefield. If the player hits it, he gets a bonus.

Add shields
Add floating shields the player can hide behind. You can add simple
shields that the enemies and player can’t shoot through. Then, if you
really want your game to shine, add breakable shields that the player and
invaders can blast holes through after a certain number of hits.

Add divebombers
Create a special type of enemy that divebombs the player. A divebombing
enemy should break formation, take off toward the player, fly down
around the bottom of the screen, and then resume its position.

Add more weapons
Start an arms race! Smart bombs, lasers, guided missiles…there are all
sorts of weapons that both the player and the invaders can use to attack
each other. See if you can add three new weapons to the game.

Add more graphics
You can go to www.headfirstlabs.com/books/hfcsharp/ to find more
graphics files for simple shields, a mothership, and more. We provided
blocky, pixelated graphics to give it that stylized ’80s look. Can you come
up with your own graphics to give the game a new style?

This is your chance to show off! Did you come up with a cool
new version of the game? Upload it to CodePlex and claim your
bragging rights: www.headfirstlabs.com/books/hfcsharp/

A good class design
should let you change
out graphics with
minimal code changes.

Try making the shields last for fewer hits at higher levels of the game.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

