This is the GDI+ Graphics bonus PDF download for Head First C#. GDI+ is the API that allows
WinForms programs to draw and print graphics. This PDF divided into three sections. The first
section is a review/preview chapter, which was originally published as Chapter 12 in the second
edition of Head First C#. In the first scetion, you’ll build a beehive simulator. That simulator will
serve as the basis for the project that you’ll build in the second section, in which you’ll learn about
the specific GDI+ graphics methods, classes, and structs, and how to use them in your programs.

review and pre\/ ew

*
* Knowledge, power, and
building ;ool stuff

T just know I read about how
upcasting and downcasting make
event handling easier somewhere....

Learning’s no good until you BUILD something.

Until you’ve actually written working code, it’s hard to be sure if you really get some of
the tougher concepts in C#. In this chapter, we're going to use what we’ve learned to
do just that. We'll also get a preview of some of the new ideas coming up soon. And
we’ll do all that by building phase | of a really complex application to make sure
you’ve got a good handle on what you’ve already learned from earlier chapters. So

buckle up...it's time to build some software!

Did you find an error in this PDF? Please submit it using the Errata page for Head First
C# (3rd edition) so we can fix it and upload an updated PDF as quickly as possible!

whttpsdwwwaioreilynetecosn/oreilly/authors/errata.csp?b=0636920027812



https://itbook.store/books/9781449343507

my brain’s full

Cnote from human resources:

You've come a long way, baby -

We’ve come a long way since we first used the IDE to help us rescue the
Objectville Paper Company. Here’s just a few of the things you've done
over the last several hundred pages:

You've used inheritante,
as interfaces and subela
to build object trees.

You've built forms, used the
NET Framework, and even

\asses, instantes...

ot ((babyl,
politially corveet. Please use 3

infant 4o avoid O‘F‘Fcndins readers.]

IS no lonacr
9e—challenged or

as well
sses,

talked with databases. )
Objects: ave
.NET Framework 3\l these strange Leems
( solutions ack of Your everyday Party
now ‘7 . \b o%- NumberOfPeople
pr OS\’a"‘"‘mS Jc,oo CostOfDecorations
[7,) \S % CalculateCostOfDecorations()
%}' Qliadion CalculateCost()
o
Foree Navigator /V
SetLocation()
Data access SetDestination() DinnerParty BirthdayParty
ModifyRoute ToAvoid() NumberOfPeople NumberOfPeople
ModifyRouteTolnclude() CostOfDecorations CostOfDecorations
GetRoute() CostOfBeveragesPerPerson CakeSize
GetTimeToDestination() HealthyOption CakeWriting
s like arvays TotalDistance() CalculateCostOfDecorations() | | CalculateCostOfDecorations()
EVCV\ Lom?lc* ‘{',\/PC N \l CalculateCost() CalculateCost()
are no big deal to work with. SetHealthyOption()

avigator:
4.2 miles

7 int variables

ylivillivivilvily

int int int int int int  int

BallinPlay eve

<
Dd"‘%i"ﬂ and exceptions Zient 55
are Par‘(‘, O‘c YOUV' FV'OHCm—

c'imina'ﬁihg ‘Ecchniqucs.

2 GDI+ bonus PDF for Head First C# * http://www.headfirstlabs.com/hfcsharp

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+ graphics

We've also become beekeepers

Back in Chapter 6, we built some bee classes. Remember these?

We had different bees
doing different Jjobs...

P

...aV\d even S‘\\‘(:‘hs
fhat the bees

on‘de on-

.

But we can do a lot better now... The stats window

You've learned a lot since Chapter 6, though. So let’s start from lets us monitor the
scratch, and build an animated beehive simulator over the simulation in detail
next few chapters. We’ll end up with a user interface that shows

us the hive and the field the bees are flying around, and even a

stats window letting users know what their bees are doing.

w shows

The Hive window
us what's happenind

=

We tan even watch the bees
work a field of flowers.

you are here » 3

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

The beehive simulator architecture

Here’s the architecture for the bee simulator. Even
though the simulator will be controlling a lot of different
bees, the overall object model is pretty simple.

The World object keeps track of
cvcry'l:hing in the simulator: the
state of the hive, every bee, and

This is the objeet for the main every flower.
\[\ window that shows the bee

stats and messages.

&

o
System .\N\“d

Eath bee knows its
)5 loda‘f:ion (ou‘l‘,sidc the

Hive® Ppoin 4—, 24)
and its state (“fi;
o Letture maps fo the » Y'n9
Everything in :CE\C\) a::h‘j::zhu::c’\\ build a QU toa 'F',?“:(CV' ) gafhcrin$
ovevall wovld ees nectar ) making honey”).
for in the next thapter- \/ !
World vepresents the The Hive is

entive thing,

N 6—{{3’6 bCCS.
-

O = )
~— — Pnd of tourse, we

tlass.
We’“ need F\OWC\’ Ob\')CC'tS ,\ccd a BCC
Sor eath flower.

ome base

4 GDI+ bonus PDF for Head First C# * http://www.headfirstlabs.com/hfcsharp

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+

Building the beehive simulator

Of course, we’ve never built anything this complex before,

so it’s going to take us a couple of chapters to put all the
pieces together. Along the way, you’ll add timers, LINQ,
and a lot of graphical skill to your toolkit.

Here’s what you’re going to do in this chapter (more to
come in the next):

Build a Flower class that ages, produces nectar,
and eventually wilts and dies.

Build a Bee class that has several different states
(gathering nectar from a flower, returning to the
hive), and knows what to do based on its state.

Build a Hive class that has an entrance, exit,
nursery for new bees, and honey factory for
turning collected nectar into honey.

Build a World class that manages the hive,
flowers, and bees at any given moment.

Build a main form that collects statistics from the
other classes and keeps the world going.

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

stop and smell the flowers

Let’s jump right into some code. First up, we need a Flower class. The Flower class has a
location defined by a point, an age, and a lifespan. As time goes on, the flower gets older. Then,
when its age reaches its lifespan, the flower dies. It's your job to put all this into action.

» st ks Q\c\d;
“skeleton s U8 -
. C\Ya::{i‘[ and method declaations,
pro ! tion.
0 Write the skeleton code for Flower with no implementa
Below is the class diagram for F1lower. Write the basic class skeleton. Location,
Age, Alive,Nectar, and NectarHarvested are automatic properties.

NectarHarvested is writable; the other four are read-only. For now, leave the methods
blank; we’ll come back to those in a minute.

All of these should b e t
ese should be Location: Point after the
vead—only properties Age: int The OfF

is the tyre
exeept Nectartarvested. ~>< | Alive: bool olon is the T

aviable...
Nectar: double the v

This is used only in the NectarHarvested: double
tlass, so it just needs to = |lifespan: int
be a private field.

HarvestNectar(): double } ~or the veturn type
Go() of the method.

e Add several constants to the class

We need lots of constants for flowers. Add six to your Flower class:

¢ LifeSpanMin, the shortest flower lifespan

’{; usuan\l
¢ LifeSpanMax, the longest flower lifespan FYl you donb n 3
show Constants In
¢ InitialNectar, how much nectar a flower starts with class diagram-

¢ MaxNectar, how much nectar a flower can hold

¢ NectarAddedPerTurn, how much nectar gets added each time the flower grows older
¢ NectarGatheredPerTurn, how much nectar gets collected during a cycle

You should be able to figure out the types for each constant based on their
values. Flowers live between 15,000 and 30,000 cycles, and have 1.5 units
of nectar when they start out. They can store up to 5 units of nectar. In
cach cycle of life, a flower adds 0.01 units of nectar, and in a single cycle,
0.3 units can be collected.

Since this simulator will be animated,
we'll be drawing it frame by frame. W'l
use the words “frame,” “C\/clc," and
“Lurn” in{:crchangcably.

6 GDI+ bonus PDF for Head First C# % http://www.headfirstlabs.com/hfcsharp

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+

You’ll need to add using System.Drawing; to the top of any class file that uses a Point.

9 Build the constructor
The constructor for Flower should take in a Point, indicating the flower’s location, and an
instance of the Random class. You should be able to use those arguments to set the location
of the flower, and then set its age to 0, set the flower to alive, and set its nectar to the initial
amount of nectar for a flower. Since no nectar has been harvested yet, set that variable
correctly, as well. Finally, figure out the flower’s lifespan. Here’s a line of code to help you:

lifeSpan = random.Next (LifeSpanMin, LifeSpanMax + 1);
K This will onl\/ wovk ik \,ou'vc go{: your

i I
ables and constants named vight, as we
‘;asrfhcc;rgtmcn{: 4o the Flower eonstruttor.

e Write code for the HarvestNectar () method
Every time this method is called, it should check to see if the nectar gathered every cycle
is larger than the amount of nectar left. If so, return 0. Otherwise, you should remove
the amount collected in a cycle from the nectar the flower has left, and return how much
nectar was collected. Oh, and don’t forget to add that amount to the NectarHarvested
variable, which keeps up with the total nectar collected from this particular flower.
/
Hint: You’ll use NCC'baréaﬁhcrchchwh,

Nectar, and NeetarHarvested in this method,
but nothing else.

e Write code for the Go() method
This is the method that makes the flower go. Assume every time this method is called, one
cycle passes, so update the flower’s age appropriately. You’ll also need to see if the age is
greater than the flower’s lifespan. If so, the flower dies.

Assuming the flower stays alive, you’ll need to add the amount of nectar each flower gets
in a cycle. Be sure and check against the maximum nectar your flower can store, and don’t
overrun that.

The final product will be animated, with little
pictures of bees ﬂ\/ing around. The §o0) method

will be called onte every Lrame, and theve will be .
several (:ramcs run pev setond. —_— ADSW ers on ﬂle next P ageﬁ’)’ and {\1111511
your code and compile it hefore peeking.

www.itbook.store/books/9781449343507



https://itbook.store/books/9781449343507

where have all the flowers gone?

add up over time.

Your job was to build the F1ower class for our beehive simulator. Flower
\ e Location: Point
RC|§Q class Flower { Age: int
soL!’t\oﬂ private const int LifeSpanMin = 15000; Alive: bool
private const int LifeSpanMax = 30000; Nectar: double
private const double InitialNectar = 1.5; NectarHarvested: double
private const double MaxNectar = 5.0; lifespan: int
private const double NectarAddedPerTurn = 0.01;
A private const double NectarGatheredPerTurn = 0.3; HarvestNectar(): double
; e
L°Ca+"°':; Nstj{:av public Point Location { get; private set; } Go()
. (4
A\Nc,“ah ad \\[ public int Age { get; private set; }
are all veadon , , . , .
au{'pma{:\& public bool Alive { get; private set; } NCC{aVHarvcs{cd
evties public double Nectar { get; private set; } will need to be
o : i
prof public double NectarHarvested { get; set; } ( ateessible 'boo-f;hcr
Classcs.

private int lifeSpan;

public Flower (Point location, Random random) {
Location = location;
Age = 0;
Alive = true;
Nectar = InitialNectar;
NectarHarvested = 0;
lifeSpan = random.Next (LifeSpanMin, LifeSpanMax + 1);

Flowers have vandom

liwccspans, so the field
lowers doesn’t 3|

thange at once.

} A bee calls HarvestNeetarQ) 4o aet
nettar out of a flower. A bee can
public double HarvestNectar () { on|\/ havvest a little bit o£ nettar

if (N h PerT > N .
i (NectarGatheredPerTurn ectar) a_{: 3 {jmc, © hc'll have {_p sr(', neav

t 0; :
elserf - the flower for several turns until

)
Nectar -= NectarGatheredPerTurn; {hcncdjrsangmw-
NectarHarvested += NectarGatheredPerTurn;
return NectarGatheredPerTurn;

}

As part of the
simulator’s ahimamloublic void Go() | Make sure the flower
the o) method will be Age++; stops adding nectar
ealled each frame. This if (Age > lifeSpan) after it's dead.
makes the ‘Flowcr age Alive = false; K
JV‘S{: a ‘{:i'\\/ little bit pevr else {
Leame. As the simulator Nectar += NectarAddedPerTurn;
vuns, +hose {:in\/ bits will if (Nectar > MaxNectar)

Nectar = MaxNectar;

}
} Point lives in the System.Drawing namespace, so make sure you
} added using System.Drawing; to the top of the class file.

8

GDI+ bonus PDF for Head First C# * http://www.headfirstlabs.com/hfcsharp

www.itbook.store/books/9781449343507



https://itbook.store/books/9781449343507

Life and death of a flower

Our flower goes through a basic turn, living, adding nectar,
having nectar harvested, and eventually dying:

8 3 flower is ch:{;cd, ':c\
| a sm
F > soe ok 03"
Flowet L

When

VT As the flower QCJ(',S
older, it produtes

move nettar:

age = 17809 |

¢ (:E,vcnfui“y, we'll have other
. g asses arvcs{:ing nettar, {oo.

Towe' So that reduces the ov:rafro
nectar the flower has.

age = 30291 | Euentually, the flover's
nectar = .83 |

alive = false

13} é__)
Q
&

the Llower dies-

PEA

Filowe!

aoe hits its lifespan, and

gdi+

therejare no o
Dumb Questions

Q,: It doesn’t look like

NectarHarvested is used anywhere in
the class, except where we increment it.
What’s that variable for?

- Good catch! We're planning ahead a
bit. Eventually, the simulator will keep an
eye on flowers, and how much total nectar
has been harvested, for our statistics
monitor. So leave it in, and our other
classes will use it shortly.

Q: Why all the read-only automatic
properties?

A: Remember Chapter 5, and hiding
our privates? Always a good practice.
Flowers can take care of those values, so
we've made them read-only. Other objects,
like bees and the hive, should be able

to read those properties, but not change
them. But remember, they’re only read-
only outside of the class—code inside the
class can access the private set accesor.

Q: My code looks different. Did | do
something wrong?

A: You might have your code in each
method in a different order, but as long
as your code functions the same way as
ours does, you'll be OK. That's another
aspect of encapsulation: the internals

of each class aren’t important to other
classes, as long as each class does what
it's supposed to do.

If Go () increases the age of the Flower by 1, and the lifespan range

is between 15,000 and 30,000, that means Go () will get called at least
15,000 times for each flower before it dies. How would you handle calling
the method that many times? What if there are 10 flowers? 100? 1,0007?

www.itbook.store/books/9781449343507



https://itbook.store/books/9781449343507

busy bee

Now we need a Bee class

With flowers ready to be harvested, we need a Bee class. Below is
the basic code for Bee. The Bee knows its age, whether or not it’s
in the hive, and how much nectar it can collect. We’ve also added a
method to move the bee toward a specific destination point.

class Bee {

private const double HoneyConsumed = 0.5;
private const int MoveRate = 3;

private const double MinimumFlowerNectar = 1.5;
private const int CareerSpan =

public int Age { get; private set; }
public bool InsideHive { get; private set; }
public double NectarCollected { get; private set;

private Point location;
public Point Location { get { return location; }

Each bee will be assigned its own
private int unique [D number.
private Flower destinationFlower;

public Bee(int id, Point location) {

this.ID = id;
Age = 0;
this.location = location;
InsideHive = true;
destinationFlower = null; Bees start °“{," inside the
NectarCollected = 0; hive, they don't have :\r\
} flower o 90 tor and the

don t have any nettar-

public void Go (Random random) {
Age+t++;

) ST

1000; how the bee fiaur.
K_/‘ whith ‘F,°ch-s a?.c €s ola'l:

Like the Flower tlass, theve
are severa) bce—spctific

tonstants we need to define.
MinimumFlowcrch:ar is

Lo hawcs{:i%. cligiblc

}

We used a backing ‘Ficld for lotation.
I we'd used an automatic property,
MoveTowardsLotation() wouldn't

be able to set its members divectly
(“Loca‘{:ion.)( —= MoveRate”).

K_/ A bee needs an ID and

an initial lotation.

We'll have to add 3 lot
more tode to Gol) before

we've done, but: this will

get us stavted.

10 GDI+ bonus PDF for Head First C# % http://www.headfirstlabs.com/hfcsharp

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+ graphics
Heve we used Math.AbsO 4o caleulate the absolute
value of the differente between the destination and
the turvent lotation.

private bool MoveTowardsLocation (Point destination) {
if (Mathdestination.X - location.X) <= MoveRate &&

€ the bee Math.Abs (destination.Y - location.Y) <= MoveRate) TMS .mc{:hod starts by
veached its return true; 9419 out if we've
dCS‘{:ina{:ion, / /::/;rcady wi{:hih our

the method if (destination.X > location.X) oveRate of bei"ﬂ at

veturns true; the dcsﬁhafion
otherwise, it

veturns false.

location.X += MoveRate;
else if (destination.X < location.X)

tocation.X -= MoveRate; [£ we've not tlose enough,
+hen we move toward the
if (destination.Y > location.Y) destination by our move vate.

location.Y += MoveRate;
else if (destination.Y < location.Y)

location.Y -= MoveRate; The MOVCTowaY'dSLoda‘EIOY)\O
destination moves the bee's

return false; < Wc{;rdwy\ false, sinte we've turvent lotation by ehanging
) not Yet at the destination the X and Y values of its

Point. We need to keep movin location Field. [t vetuens
) true if the bee's veathed its
destination.

Bees have lots of things they can do. Below is a list. Create a new enum that Bee uses called
BeeState. You should also create a read-only automatic property called CurrentState
for each Bee to track that bee’s state. Set a bee’s initial state to idle, and in the Go () method,
add a switch statement that has an option for each item in the enum.

The enum item L What the item means

[dle The bee isn't doing anything

Flying ToF lower The bee's ﬂ\/ing 1o a flower
GatheringNectar The bee’s gathering nectar from a flower
Returning ToHive The bee’s heading back to the hive
/V]akingHone\/ The bee's making honey

Retived The bee’s hung up his wings

you are here » 11

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

bee

Bees have lots of things they can do. Below is a list. Create a new enum that Bee uses
called BeeState. You should also create a private currentState field for each Bee to
track that bee’s state. Set a bee’s initial state to idle, and in the Go () method, add a switch
statement that has an option for each item in the enum.

enum BeeState {
Idle,
FlyingToFlower,
GatheringNectar, Heve's the enum with all
ReturningToHive, the different bee states
MakingHoney,
Retired

class Bee {
// constant declarations We also need a variable 4o brack

// variable declarations (? the state of eath bee.

public BeeState CurrentState { get; private set; }

public Bee(int ID, Point initiallLocation) {
this.ID = ID;
Age = 0;
location = initialLocation;
InsideHive = true;
CurrentState = BeeState.Idle; <&
destinationFlower = null; The bee starts out idle.
NectarCollected = 0;

Did you remember to add using System.Drawing; to the top of the
class file (because it uses Point)?

12

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+ graphics

We've filled out a few
. of the states. It's OK
ere's the switeh() statement 4o i you didn't come up

public void Go (Random random) {

Agett; & handl )
switch (CurrentState) { ¢ cach bee’s state. with this code, but 9o
case BeeState.Idle: ahead and add it in now.

if (Age > CareerSpan) {

CurrentState = BeeState. Retiref\

£he bee's lifespan,

} else { |§ 4he age veathes bees
// What do we do if we’re idle? the bee vetives. But helll {inish the
} curvent \)ob before he does:
break;
’ W Y . .
case BeeState.FlyingToFlower: ez 5 ;l'{': f'ﬁ this code i,
// move towards the flower we’re heading to dter.
break; havvest
case BeeState.GatheringNectar: P Hcv{c:,a wz ) :‘f o
m
double nectar = destinationFlower.HarvestNectar () ; nettar ) Kin
. . ) Flower we've working,...
if (nectar > 0) - and if there’s ne¢tar
NectarCollected += nectar; <= left, add it 4, what
)
You should have else we ve 3'V'€3d)’ colleeted...
eath of these CurrentState = BeeState.ReturningToHive; )
stakes covered- . )~ but if there's no neetar
{__s case BeeState.ReturningToHive: left, head for the hive.
) | . .
lf//( ! Insmliﬂlvei1 {th N - R_ctwning {0 the hive is
move towards the hive d"F\‘:Cchf based on whether
b else { we've already in the hive or not.
// what do we do if we’re inside the hive?
} break; The bee adds half a wnit of
case BeeState.MakingHoney: nettar to the hone QaL{:or\[
if (NectarCollected < 0.5) { st a time. |€ theve's no
NectarCollected = 0; enough nettar to gdd, £::
CurrentState = BeeState.Idle; fatkory cant use .|{-, so tne
} else { bee \')usjc distcavds it

// once we have a Hive, we’ll turn the nectar into honey
}
break;
case BeeState.Retired:
// Do nothing! We’re retired!
break;

you are here » 13

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

beehive hairdo

P A. H. B (Programwmers Against Homeless Bees)

We’ve got bees, and flowers full of nectar. We need to write code so
the bees can collect nectar, but before that happens, where do the

bees get created in the first place? And where do they take all that
nectar? That’s where a Hive class comes in.

The hive isn’t just a place for bees to come back to, though. It has
several locations within it, all with different points in the world.
There’s the entrance and the exit, as well as a nursery for birthing
more bees and a honey factory for turning nectar into honey.

Eath lotation is distinet,
and bees tan travel From
one o the other :)us{: like

they tan 90 Lrom the hive
K o a flower.

— >
Ncw bees are

tveated and z
start out in the

hive nuvsery: Bees come in the entrance,

and leave from the exit. [t's
all very orderly.

The hive runs on honey

The other big part that the hive plays is keeping up with how much

honey it has stored up. It takes honey for the hive to keep running, Think about this for a seeond...as time
and if new bees need to be created, that takes honey, too. On top passes, the hive uses h°"°\/.J°° vun, and to
of that, the honey factory has to take nectar that bees collect and S—— ctreate move bees. Meanwhile, other bees
turn that into honey. For every unit of nectar that comes in, .25 are bringing in nectar, Whi‘f’h 5&'5_ turned
units of honey can be created. into honey, which keeps things going longer-

H’,’S wp {‘.O \/ou (wi{‘)\ some hcl?) {‘,o modCl all
of +his in the simulator tode.

14 GDI+ bonus PDF for Head First C# % http://www.headfirstlabs.com/hfcsharp

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+ graphics

It's up to you to write the code for Hive.

Hive
e Write the skeleton code for Hive Honey: double
Like we did with the Flower class, you should start with locations: Dictionary<string, Point>
a basic skeleton for Hive. The class diagram is shown to beeCount: int

the right. Make Honey a read-only automatic property,
locations should be private, and beeCount is only
used internally, so can be a private field.

InitializeLocations()

AddHoney(Nectar: double): bool
ConsumeHoney(amount: double): bool
AddBee(random: Random)

@  Define the constants for the Hive Go(random: Random)
You need a constant for the initial number of bees (6), the amount | GetLocation(location: string): Point
of honey the hive starts with (3.2), the maximum amount of honey
the hive can store (15), the ratio of units of nectar produced from
units of honey (.25), the maximum number of bees (8), and the You'll have to ‘Cigwc out 900

minimum honey required for the hive to birth new bees (4). «—____¢ath, as well as the {ZY\’CS.- F°“ {\/chb n
don't just think about initial Va“ﬂ-cs,b )
also the values these t,av\s{avxts~ will Jdc\

e Write the code to work with Locations wsed with. Dovbles paiv best f‘“ﬂ‘ other

First, write the GetLocation () method. It should take in doubles, and ints with other ints.

a string, look up that string in the locations dictionary,

and return the associated point. If it’s not there, throw an

ArgumentException.

d names ‘(:or

Then, write the InitializeLocations () method. This
method should set up the following locations in the hive:

¢ Entrance, at (600, 100) Eath of these maps 1o a location
+  Nursery, at (95, 174) Z;th"‘ the 2D space that our hive
es up- Later on, we'll have +o
¢ HoneyFactory, at (157, 98) make sure the simulator makes Lhe
hi . ;.
* Exit,at(194,213) o Al e o e sl v 12
nth . ; e
. ) Wi
e Build the Hive constructor assuming one hive 4 wultiple
.. . . . . 1€ you wanted ™
When a hive 1s constructed, it should set its honey to the initial Yomb- Y . ke the
. . . w m\g\\‘h md .
amount of honey all hives have. It should set up the locations hives, you ™ Lhe hive,
. . . inks elative to
in the hive, and also create a new instance of Random. Then, points ¥ ovevall world-

'mshcad 0‘(: the

AddBee () should be called—passing in the Random instance you
just created—once for each bee that starts out in the hive.

/Q AddBee() needs 3 Random o\o\')ct,{: betause it adds

2 vandom value 1o the Nursery lotation—that way
the bees don't start on top of eath other.

you are here » 15

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

first design then build

Your job was to start building the Hive class.

Make sure you add “us'mg S\/s{:cm.

Dvawin{-);" betause this tode uses You might have different names
Point. | or Your Constants. That's 0K, as
class Hive { K_‘ . S?: ‘a:c\/ou re tonsistent in the
private const int InitialBees = 6; ‘ Your code.
private const double InitialHoney = 3.2; We made Maximumttoney
private const double MaximumHoney = 15.0; = a double, sinte it tan
private const double NectarHoneyRatio = .25; vange £rom Initialttoney
private const double MinimumHoneyForCreatingBees = 4.0; (3.2) to this value. Since
private const int MaximumBees = 8; [nitialttoney vill need to
. o . . . be a double, it’s best to
prllvate ]?lctlonary<str1ng, Point> locations; make +this a double, +oo.
private int beeCount = 0; ~ Remembey- dictionar:
. . ; . Ours sty 'Oha.k fes?
public double Honey { get; private set; } K Stores a location,

e ; .
private void InitializeLocations() { Yed with 5 s{:rmg value.

locations = new Dictionary<string, Point>();
locations.Add (“Entrance”, new Point (600, 100));
locations.Add (“Nursery”, new Point (95, 174));
locations.Add (“HoneyFactory”, new Point (157, 98));
locations.Add (“"Exit”, new Point (194, 213));

' L 4o treate 3
12:: {'\-’v\f:;v?:c of Dictionary:

or this wont work:

—
) The rest of 4
public Point GetLocation(string location) { :é:a'h‘;if Pv'cf‘éy
if (locations.Keys.Contains (location)) Introrward,
return locations[location];
else
throw new ArgumentException (“Unknown location:,” + location);
} This method proteets other ctlasses from
working with our locations dic{jona\r\l
public Hive () { and thanging something they shouldn't.
Honey = InitialHoney; [£'s an example of e_vx}_@\’ﬂt\_la_{'i%
InitializelLocations();
Random random = new Random() ;
for (int i = 0; i < InitialBees; i++) \{ou chould havc{:t,:“::;\\ bee
AddBee (random) ; ~__ __— AddB“O onte J:,s g
} that a hive tavts ¥
public bool AddHoney (double nectar) { return true; } We don'-E have code
public bool ConsumeHoney (double amount) { return true; } \Cor these c{:, but
private void AddBee (Random random) { } You should have built
public void Go (Random random) { } o CMP'E\/ methods as
} You tould also throw a Not|mplementedException in any method Yyou placeholders
haven't implemented yet. That's a great way to keep track of code you .
still have to build.

16 GDI+ bonus PDF for Head First C# % http://www.headfirstlabs.com/hfcsharp

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+

Isn't this sort of a weird
way to build code? Our bees don't know
about flowers yet, and our hive is full of
empty method declarations. Nothing actually
works yeft, right?

Real code is built bit by bit

It would be nice if you could write all the code for a single
class at one time, compile it, test it, and put it away, and
then start on your next class. Unfortunately, that’s almost
never possible.

More often than not, you’ll write code just the way we are
in this chapter: piece by piece. We were able to build pretty
much the entire F1ower class, but when it came to Bee,
we’ve still got some work to do (mostly telling it what to do
for each state).

And now, with Hive, we’ve got lots of empty methods to
fill in. Plus, we haven’t hooked any Bees up to the Hive.
And there’s still that nagging problem about how to call the
Go () method in all these objects thousands of times....

Butwe didn't really start out
by putting the classes together! We
figured out the architecture first, and
then started building.

First you design, then you build

We started out the project knowing exactly what we
wanted to build: a beehive simulator. And we know

a lot about how the bees, flowers, hive, and world all
work together. That’s why we started out with the
architecture, which told us how the classes would work
with each other. Then we could move on to each class,
designing them individually.

Projects always go a lot more smoothly if you have a good
idea of what you’re building before you start building it.
That seems pretty straightforward and common-sense. But
1t makes all the difference in the final product.

www.itbook.store/books/9781449343507

17


https://itbook.store/books/9781449343507

make the hive Go()

Filling out the Hive class

Let’s get back to the Hive class, and fill in a few of
those missing methods:

class Hive {
// constant declarations
// variable declarations

// InitializeLocations ()
// GetLocation ()
// Hive constructor

. how
Fivst, we Figuee ou‘t{:;:. tan

muth honey Ehis net

. be tonverted o
public bool AddHoney (double nectar) ({

double honeyToAdd = nectar * NectarHoneyRatio; ...and {?hcn see if theve’s
if (honeyToAdd + Honey > MaximumHoney) -~ voom in the hive for that
return false; muth more honcy_
: £ there e add the
Honey += honeyToAdd; &—— |£ thevre's room, w

return true; honey to the hive. .
} & This method {j,akcs an amoun{':{:
public bool ConsumeHoney (double amount) ({ honey, and {'xn,cs to tonsume i
if (amount > Honey) Lrom the hive’s stores.
return false; W— [f there's not enough honey in the hive
else { to meet the demand, we veturn false.
Honey -= amount; €
return true; |£ {:}‘evc's cnoug\r\, vemove it Lrom the
) hive’s stores and veturn true. N
} This treates a Yo'm{: within
& private void AddBee (Random random) { 50 units in b?{h the )ih
i and Y divection from the
This is beeCount++; d_/ ¢
i = nursery lotation.
‘,ﬂva{x._. int rl = random.Next (100) - 50; g
only Hive int r2 = random.Next (100) - 50; Add 5 e
instantes  Point startPoint = new Point(locations[“Nursery”].X + rl,  bee st {h,
can ereate locations[“Nursery”].Y + r2); dcsignafcd
bees. Bee newBee = new Bee (beeCount, startPoint); & = — location.

// Once we have a system, we need to add this bee to the system
}

Il Kini 0 and Kill in
public void Go (Random random) { } R/ wel Cinich AddBcc and B
| the Qo) method soon..

18 GDI+ bonus PDF for Head First C# % http://www.headfirstlabs.com/hfcsharp

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+

The hives Go() method

We’ve already written a Go () method for Flower, and a Go ()
method for Bee (even though we’ve got some additional code to

add in). Here’s the Go () method for Hive: The onl tonstrai
is the h>ilvc musza}l,h{: (ot least, for now)

av
public void Go (Random random) { k{//—ﬂnﬂxmmrbug c”w%hhwmyﬁ
if (Honey > MinimumHoneyForCreatingBees)

AddBee (random) ;
} N The same instance of Random that
got passed to Gol) gets sent to the
AddBee() method.

Unfortunately, this isn’t very realistic. Lots of times in a busy
hive, the queen doesn’t have time to create more bees. We don’t
have a QueenBee class, but let’s assume that when there’s
enough honey to create bees, a new bee actually gets created
10% of the time. We can model that like this:

public void Go (Random random) {

if (Honey > MinimumHoneyForCreatingBees

R This is an easy way 4o simulate a | :;\

|0 thante of a bee getting ereated:

fades frandom /\_' [+ comes wp with a vandom huvnbc.v |

} between O and 9 [£ the numbev is |,

Lhen ereate the bee.

One veason 1o leave it out is so that You
¢an save the Random seed—+that way
‘dlel'e are no . You £an vevun a sPcciacic simulation...if
Duml) QueStIQIlS You feel like doing that latev/

Q: So the hive can create an infinite Q: Couldn’t we assign that instance Q: I still don’t understand how all of

number of bees? of Random to a property of the class, these Go () methods are getting called.
instead of passing it on to AddBee () ?

A: Right now it can—or, at least, it's got . That's OK, we're just about to get to
a very large limit—but you're right, that's not > You sure could. Then AddBee could  that. First, though, we need one more object:
very realistic. Later on, we'll come back to use that property, rather than a parameter the Wor 1d class, which will keep track of
this, and add a constraint that only lets so passed in. There’s not really a right answer everything that's going on in the hive, track
many bees exist in our simulator world at to this one; it's up to you. all the bees, and even keep up with flowers.
one time.

19

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

take on the world

Wete ready for the World

With the Hive, Bee, and Flower classes in place, we can
finally build the Wor1d class. Wor1d handles coordination
between all the individual pieces of our simulator: keeping

up with all the bees, telling the hive if there is room for

more bees, locating flowers, etc.:

Our form, when we dcveloP it

uses the World ob:
up with what’ objeet 1o keep

$ 90ing on.

< ! 4@'
System .W“‘do

The World :‘.‘\“\_ L
\ \S
World is veally :)“SJC \j\'c‘;c\‘:z EI\WUS
a big tontainer an 4 the bees-
engine for all the o
individual parts \8
|.2
Js
e » HSt\of F\O\Ne
/0.

»
word®
/ ) N
[ ‘..g é’j

- e/,é? We don’t have
List of ©° 3ll the code for

The World object keeps everything Gol)ing

One of the biggest tasks of the World object is, for each turn in
the simulator, to call Go () on every Flower, Bee, and Hive
instance. In other words, Wor1d makes sure that life continues

in the simulator world.

4o0) in World ealls Go0) on 3|
the othev ob\)cc{:s in the world.

\
E
Main form 1 2
[7)
A
\ 4 &Q

\ these tlasses
] S—/ W\fif'l:en, bu'{: WC'VC
5 9ot the basie
\\HIVGO‘O\ Pak‘ts ih P’act
3
g
Q

(<)
L

foreach (Flower flower in Flowers)
flower.Go (random) ;

foreach (Bee bee in Bees) ——>

bee.Go (random) ;

B

£
Wo ‘»\660\ |hive.Go (random) ;|
sy & e | vith ﬁ
System Wit We still have to deal wi
La”in5 World's 60() method, ‘0\55’

but we'll come batk to that. FieO
20 GDI+ bonus PDF for Head First C# % http://www.headfirstlabs.com/hfcsharp

www.itbook.store/books/9781449343507



https://itbook.store/books/9781449343507

gdi+ graphics

Wete building a turn-based system

Our Go () methods in each object are supposed to run each turn, or cycle, of our Each “twrn” will be drawn
simulator. A turn in this case just means an arbitrary amount of time: for instance, a as a single frame of
turn could be every 10 seconds, or every 60 seconds, or every 10 minutes. animation, so the world

onl\/ needs to thange a
tiny little bit each tuen.

The main thing is that a turn affects every object in the world. The hive ages by one
“turn,” checking to see if it needs to add more bees. Then each bee takes a turn, moving
a very small distance toward its destination or doing one small action, and getting older.
Then each flower takes a turn, manufacturing a little nectar and getting older too. And
that’s what Wor1d does: it makes sure that every time its Go () method is called, every
object in the world gets a turn to act.

/ Evcry time §o() in World is
talled, every ochL‘l: in the world
Go () has 1o 56‘[‘, a tun to 600.

il ~
= T L

kFlO" A

Flower| Flo\

Bee [ Flower
Be« 3\
N Bee
Bee 7

&~ Eath Bee and eath Flower
must have Go() called, or the
simulator breaks down.

One of the big object-oriented principles we've been using in the simulator

\\ is encapsulation (flip back to Chapter 5 for a refresher). See if you can look
over the code we've developed so far and come up with two examples of
encapsulation for each class you've built.

ive Bee Flower

you are here » 21

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

what in the world are you doing? Encapsulation alert!

Take a look at the public Hive, Bees,

Hel’e's ‘l’he COde fOl’ WOl’ld and Flowers fields. Another class

The World class is actually one of the simpler classes in our simulator.
Here’s a starting point for the code. But if you look closely, you’ll notice
that it’s missing a few things (which you’ll add in just a minute).

using System.Drawing;

class World
private
private
private
private
private

public
public
public
public
Bee
Flo

Ran
for

}

public

for

dou
for

22 GDI+ bo

could accidentally reset any of
those to null, which would cause
serious problems! Can you think of
a way to use properties or methods
to encapsulate them better?

{
const double NectarHarvestedPerNewFlower = 50.0;

const int FieldMinX = 15; _
const int FieldMiny = 177; (_ These define the bounds of the

690 field, which is wheve flowevs ¢an live.
290;

const int FieldMaxX
const int FieldMaxY

Hive Hive; <——0 EVCY‘/ world has one hive, 3 list

List<Bee> Bees; < _ _ of bees, and 8 list of Flowers.

List<Flower> Flowers;

World() |

s = new List<Bee>();

wers = new List<Flower>();

dom random = new Randomf() ;
(int 1 = 0; i < 10; i++)
AddFlower (random) ;

When we treate 3 new world, WCKVC
inibialize owr lists, ereate a new hve,

and then add 10 witial Llowers.

void Go (Random random) { This is easy...we just tell the

Hive.Go (random); < — Hive to 430, Passing in a

Random instance.

(int 1 = Bees.Count - 1; i >= 0; i--) {
Bee bee = Bees[i]; g— We vun through all the curvent
bee.Go (random) ; bees and tell them Qo).
if (bee.CurrentState == BeeState.Retired) : _ 4o take
Bees.Remove (bee) ; < |Fabees vetived, we need
it out of the wovld-
ble totalNectarHarvested = 0; r/:;z"“#h‘m%h each flower
(int i = Flowers.Count - 1; i >= 0; i--) { nd tell it 4o 600

Flower flower = Flowers[i];
flower.Go () ; .
totalNectarHarvested += flower.NectarHarvested; =— We need to kcc\? up vith

if (!flower.Alive) how muth nc.c{:mr s bi;h
Flowers.Remove (flower) ; eollected this tuen, o
\ So we get that by summing

up the nettar collected

Just like bees
that die durir'\gw-c&h: ”“;“’;ap\y Hlowers from eath flower.

nus PDF for Head First C# * http://www.headfirstlabs.com/hfcsharp

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+

Heve ave the ones we tame

up with. Did you tome up

with any others?
1. The hive’s Lotations
dit‘{','lonav‘\/ is Yriva{e

2. |t aives the bees a
method to add honey

One of the big object-oriented principles we've been using in the simulator
is encapsulation (flip back to Chapter 5 for a refresher). See if you can look
over the code we've developed so far and come up with two examples of
encapsulation for each class you've built.

Bee Flower
1. The bee’s lotation is 1. The flower provides a
vead—only method to gather nectar

2. Sois its age. So other 2. And it keeps its alive
tlasses tan't write to them boolean private

if (totalNectarHarvested > NectarHarvestedPerNewFlower) {
foreach (Flower flower in Flowers) KB“S \:ollina{:c (:lowcrs as {hc\/ havvest

flower.NectarHarvested = 0; ! ted enough
¢tar. Onte theyve harvested
} AddFlower (random) ; < ::t,{:av Leom the flowers, {:hc\l/dvcjw 9y
. a a
} C £ there’s enough neetar in the field pollinated enough for the wor
the world adds a new flower-. ' new Flower.

private void AddFlower (Random random)

{

Point location =

Flower newFlower

new Point (random.Next (FieldMinX, FieldMaxX)

4
random.Next (FieldMinY, FieldMaxY));
new Flower (location, random);

Flowers.Add (newFlower) ; N with a vandom

This handles coming up

} .
} \/\ lotation in the field...

..and then adding a new flower
in that lotation.

Q: Why don’t you use foreach
loops to remove dead flowers and retired
bees?

A: Because you can’t remove items
from a collection from inside a foreach
loop that's iterating on it. If you do, .NET will
throw an exception.

www.itbook.store/books/9781449343507

therejare no
Dumb Questions

removes the flower at index #3, now the i

Q; OK, then why does each of those only has 4 flowers in it, and there’s a new

for loops start at the end of the list and

count down to 07 up getting skipped, because the next time

through the loop it'll look at index #4.

st

flower at index #3—and that flower will end

Aj Because each loop needs to preserve  If the loop starts at the end, then the flower

the numbering of the list. Let's say you that moves into the empty slot will already
started at the beginning of a list of five have been looked at by the loop, so there’s
flowers, and your loop discovered that one no chance of missing a flower.

of the flowers in the middle was dead. If it

23



https://itbook.store/books/9781449343507

With all four of our core classes in place, we've got some work to do to tie them all

. together. Follow the steps below, and you should have working Bee, Hive, Flower,
RC\SQ and Wor1d classes. But beware: you'll have to make changes to almost every class, in
several places, before you're done.

o Update Bee to take in a Hive and World reference.
Now that we've got a class for Hive and a class for Wor1d, Bee objects need to
know about both. Update your code to take in references to a bee’s hive and world as
parameters to its constructor and save those references for later use.

9 Update Hive to take in a World reference.
Just as a Bee needs to know about its Hive, a Hive needs to know about its
World. Update Hive to take in a Wor1d reference in its constructor, and save that
reference. You should also update the code in Hive that creates new bees to pass
into the Bee a reference to itself (the Hive) and the World.

9 Update World to pass itself into a new Hive.
Update your Wor1d class so that when it creates a new Hive, it
passes in a reference to itself.

STOP' At this ]ooint, you should he able to co:n}nile all of

your code. [ you can't, check through it and correct any
mistakes before continuing on.

e Place an upper limit on the bees that Hive can create.
The Hive class has a MaximumBees constant that determines
how many bees the Hive can support (inside and outside the hive, < )
combined). Now that the Hive has access to the Wor1d, you should Hink: |
be able to enforce that constraint. ook at code near where
You treate or add bees. Theve
are two Places where tode
9 When the Hive creates bees, let the World know. related to thi oturs in Hive,
The World class uses a List of bee objects to keep up with all the
bees that exist. When the Hive creates a new Bee, make sure that
Bee gets added to the overall list that the Wor1d is keeping up with.

24

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

therejare no
b Questions

Dum

Q/: Why did you throw an exception in the Hive class’s
GetLocation () method?

A: Because we needed a way to deal with bad data passed into
the parameter. The hive has a few locations, but the parameter to
GetLocations () can pass any string. What happens if there’s
a bug in the program that causes an invalid string (like an empty
string, or the name of a location that's not in the locations dictionary)
to be sent as the parameter? What should the method return?

When you've got an invalid parameter and it's not clear

what to do with it, it's always a good idea to throw a new
ArgumentException. Here’s how the GetLocation ()
method does it:

throw new ArgumentException (
“Unknown location: ” + location);

This statement causes the Hive class to throw an

ArgumentException with the message “Unknown location:”
that contains the location that it couldn't find.

The reason this is useful is that it immediately alerts you if a bad
location parameter is passed to the method. And by including the
parameter in the exception message, you're giving yourself some
valuable information that will help you debug the problem.

Q/: What's the point of storing all the locations in a Point if
we’re not drawing anything?

www.itbook.store/books/9781449343507

gdi+

A: Every bee has a location, whether or not you draw it on the

screen in that location. The job of the Bee object is to keep track
of where it is in the world. Each time its Go () method is called, it
needs to move a very small distance toward its destination.

Now, even though we may not be drawing a picture of the bee yet,
the bee still needs to keep track of where it is inside the hive or in the
field, because it needs to know if it's arrived at its destination.

Q/: Then why use Point to store the location, and not
something else? Aren’t Points specifically for drawing?

AI Yes, a Point is what all of the visual controls use for their
Location properties. Plus, it'll come in handy when we do the
animation. However, just because .NET uses them that way, that
doesn’t mean it's not also useful for us to keep track of locations. Yes,
we could have created our own BeeLocat ion class with integer
fields called X and Y. But why reinvent the wheel when C# and .NET
give us Point for free?

It's almost always easier to
repurpose or extend an existing
class that does MOSTLY what
you want it to Jo, rather than
creating an all-new class from
scratch.

25


https://itbook.store/books/9781449343507

With all four of our core classes in place, we've got some work to do to tie them all
together. Follow the steps below, and you should have working Bee, Hive, Flower,
and Wor1d classes. Here’s how we made the changes to put this into place.

o Update Bee to take in a Hive and World reference.
Now that we've got a class for Hive and a class for Wor1d, Bee objects need to
know about both. Update your code to take in references to a bee’s hive and world in
the constructor and save those references for later use.

class Bee {
// existing constant declarations
// existing variable declarations
private World world;
private Hive hive;

public Bee(int ID, Point Initiallocation, World world, Hive hive) ({
// existing code

this.world = world;

this.hive = hive; ~“—_ Tiis s prebby sbraightfonard.ake
: these in, assign them to yrwa{c ields.

e Update Hive to take in a World reference.
Just as a Bee needs to know about its Hive, a Hive needs to know about its
World. Update Hive to take in a Wor1d reference in its constructor, and save that
reference. You should also update the code in Hive that creates new bees to pass
into the Bee a reference to itself (the Hive) and the World.

class Hive {

private World world; More basie tode...get the
ﬁ "C‘Cﬂcm‘-e, set a private
public Hive (World world) ({ field. You want to assign

this.world = world; v the world FIRST betause New bees need 3

// existing code / the vest of the tonstructor CEI rente o the world,
} needs £o use it :dcloo the hive, now.
public void AddBee (Random random) {

// other bee creation code /\C

Bee newBee = new Bee (beeCount, startPoint, world, this);

26

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+

If you're having trouble getting this running, you can download the
code for this exercise (and all the others, too) from:

Lttp:/ /vrvww headfirstlabs.com/books/ Lfcsl‘arp/

6 Place an upper limit on the bees that Hive can create.
The Hive class has a MaximumBees constant that determines
how many bees the Hiwve can support (inside and outside the hive,
combined). Now that the Hive has access to the Wor1d, you should

be able to enforce that constraint. Wf tan use the World
°bJCC‘lZ to see how many

— total bees there are, and
tompare that to the

public void Go (Random random) {
if (world.Bees.Count < MaximumBees
&& Honey > MinimumHoneyForCreatingBees
&& random.Next (10) == 1) {
AddBee (random) ; 7

| We put tha
| voom for bees, no sens
enough honey 4o ereate bees:

avison fivst. [€ there's no
Lot ¢ in seeing if theres

e When the Hive creates bees, let the World know.
The Wworld class keeps up with all the bees that exist. When the
Hive creates a new Bee, make sure that Bee gets added to the
overall list that the Wor1d is keeping up with.

private void AddBee (Random random) {

beeCount++;
// Calculate the starting point
Point startPoint = // start the near the nursery

Bee newBee = new Bee (beeCount, startPoint, world, this);

world.Bees.Add (newBee) ; % This dgmonsb‘alccs one of u
} Q/WC add the new bee £o the the veasons we need 3 Wor

. . s.
WOY‘Id'S OVCV‘a“ bcc 'iS‘b YC‘(:C?CV\CC n {*\C HIVC L‘aS

9 Update World to pass itself into a new Hive.
Update your Wwor1d class so that when it creates a new Hive, it
passes in a reference to itself.

public World() {
Bees = new List<Bee>(); This passes in the veferente
Flowers = new List<Flower>(); 4o the Hive.
Hive = new Hive (this) ;
Random random = new Random() ;
for (int 1 = 0; 1 < 10; 1i++)
AddFlower (random) ;

maximum bees for this hive.

www.itbook.store/books/9781449343507

27


https://itbook.store/books/9781449343507

make the bees

Giving the bees behavior

The one big piece of code that’s missing in our current classes
is the Bee’s Go () method. We were able to code a few of
the states earlier, but there are plenty left (Id1e is incomplete,
FlyingToFlower, and part of MakingHoney).

Let’s finish up those remaining states now:

nd
1§ we've idle, we want bg}f;:\
havves :
public void Go (Random random) { another lower to
Age+t+;
switch (CurrentState) { See if theve are Flowers left, and
case peestate.ldle: then Consume encugh hoey o kecp o
i ge areerSpan 9oing. Otherwise, we've stuck.
CurrentState = BeeState.Retiredé'/( W; need another
} else if (world.Flowers.Count > 0

wina Flower with
&& hive.ConsumeHoney (HoneyConsumed)) { g,/ living
nettar.
Flower flower =
Assumi th world.Flowers[random.Next (world.Flowers.Count)] ;
wo\rksmg{; at all if (flower.Nectar >= MinimumFlowerNectar && flower.Alive) ({
new ,ou » 90 to the destinationFlower = flower;
awer: CurrentState = BeeState.FlyingToFlower;
}

}
break; Make sure the flower hasn't

case BeeState.FlyingToFlower: died as we've heading toward it
if (!'world.Flowers.Contains (destinationFlower))
CurrentState = BeeState.ReturningToHive;
else if (InsideHive) {

That's why we passed a if (MoveTowardsLocation (hive.GetLocation (“Exit”))) ({
veferente to the hive InsideHive = false;
to the Bee ConS‘f‘,\"uc{o’rA location = hive.GetLocation (“Entrance”) ; : L of the hive.
} I§ we ean ot 4o the exit, ’ch,cn we've ouﬂ\o e
} Update our lotation. Sinte we're now on the Ti€ ’

else we should ﬂ\/ out near the entrante.
if (MoveTowardsLocation (destinationFlower.Location))
CurrentState = BeeState.GatheringNectar;
N_ H_‘ WCIV‘C ou'l:

break; S— of
case BeeState.GatheringNectar: the hive, and the

double nectar = destinationFlower.HarvestNectar () ; lower is alive,

if (nectar > 0) 9et to it and
NectarCollected += nectar; start Safhcrina

else nettar.
CurrentState = BeeState.ReturningToHive;

break;

28

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+ graphics

mis is the exit. When ) This is the enbrance. When
the hive stoves its “Exit

the bees fly back to the
location, it torresponds to hive, they *ly toward the

the point on the Hive form  ntrante of the hive on
that shows the picture of the Sield form.

the exit.

That's why the lotation dit:tiona\ry stores two
separate “Exit” and “Entrante” lotations.

case BeeState.ReturningToHive:
if (!InsideHive) {
if (MoveTowardsLocation (hive.GetLocation (“Entrance”))) {
InsideHive = true; .
location = hive.GetLocation (“Exit”) ; £ we've made it to the hive,
} update our lotation and the
} insidetive status.
else
if (MoveTowardsLocation (hive.GetLocation (“HoneyFactory”)))
CurrentState = BeeState.MakingHoney;

break;
U
case BeeState.MakingHoney: {I:f we're a’\rcady in the hive head
if (NectarCollected < 0.5) { the honcy fac{;ory. s e
NectarCollected = 0;
CurrentState = BeeState.Idle; Try and aive 4hi
} 9ive this
else - nectar to the hive.

if (hive.AddHoney(0.5))

|€ the hive tould use the
NectarCollected -= 0.5;

1 nettar to make honey..-
else
NectarCollected = 0; (\ ~vemove it from the bee.
break; , 0 will
case BeeState.Retired: |€ £he hive's £, t‘dg‘::"iz{ dumps khe
// Do nothing! We’re retired! vetuen false, so Ehe J fly ouk
break; , vest 0‘(: the ncL{ZaV so he tan ¥lY
) Once the bee's vetived, he Just has to 4yer mission
} wait avound until the Hive vemoves him on

from the list. Then he's off to Miamil

-~ @RAN
PQOQWEWR
Suppose you wanted to change the simulator so it took two turns to reach
a flower, and two turns to go from a flower back to the hive. Without writing

any code, which methods of which classes would you have to change to
put this new behavior into place?

you are here » 29

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

pop goes the world

The main form tells the world to Gol)

OK, so you know that the world advances by one frame every
time its Go () method is called. But what calls that Go ()
method? Why, the main form, of course! Time to lay it out.

Go ahead and add a new form to your project. Make it look like
the form below. We’re using some new controls, but we’ll explain

them all over the next several pages.

The Toolg'{:\riy tontrol Pu{s
a toolstrip at the top of
ouwr form. You tan add

the two buttons using the
drop—down that appears ON
the ToolStrip when \/ou'rc
in the form designer. Set

The labels in the Vighf—hand tolumn
‘wi|| show the stats. Name them “Bees”,
‘Flowers”, “HoncylnHivc", ete.

Eath of these labels

lives in one tell of a
'léHcLa\/ou{:Pancl ¢ontrol.
Vou lay it out Jusf like a
{able in Mievosoft Word.
Cliek on the little black

avvow 4o add, vemove, and
/ vesize tolumns and rows.

eath button’s DisplayStyle
to Text.

Add a Timer tontrol
to the form. [t
doesn't show wp at
all—it’s a non—visua|

“—__ COmPoy.ch{: +h at the
form dcsigncr disylays
\ as an ion in 'l:hc SP&Cc
of below the form.
The ToolStrip tontrol adds a toolbar to the top

your £orm, and StatusStrip adds a status bar to the

o to the bottom. But they also appear as icons in the area

Weve f"‘i}\\l “’f::cg\e Wovld below the form, so You tan edit their properties.
tode that m

Jbjeet 3\0'\‘2/)

dd a StatusStrip to
¢u£ a status bar on the _—>
bottom. Use the drop-
down that appeavrs on
4he StatusStrip in
fhe designer to add a
StatusLabel to it

flower.Go (random) ;

foreach (Bee bee in Bees)
bee.Go (random) ;

&
System.\N““60

30 GDI+ bonus PDF for Head First C# % http:/www.headfirstlabs.com/hfcshar;

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+ graphics

We can use World to get statistics
This indieates how long passes for

Now we want to update all these controls. But we don’t need click handlers a turn...we'll have 1o send thi
for each one; instead, let’s use a single method that will update the different parameter in from somewh |s |

C . . , . ; v
statistics in the simulator window (we’ll explain framesRun shortly): /— in just a few Pages ere else,

Most of this :)“SJC

private void UpdateStats (TimeSpan frameDuration) { Liing
. e
Bees.Text = world.Bees.Count.ToString(); ‘“Vz};cérzm
Flowers.Text = world.Flowers.Count.ToString() ; i‘;c world and

HoneyInHive.Text = String.Format (“{0:£3}”, world.Hive.Honey); uvda{’«""‘b \abels.
/ double nectar = 0;
foreach (Flower flower in world.Flowers)
o mabth '\ nectar += flower.Nectar; Print the fivst parameter

our label NectarInFlowers.Text = String.Format (“{0:f3}”, nectar); 359 number with no
decimals, then a space, then

names on FramesRun.Text = framesRun.ToString(); )
Iy o B , o print the setond parameter
the form double milliSeconds = frameDuration.TotalMilliseconds; it .

1 your . - with one detimal followed
Wl‘{ld Yo if (milliSeconds != 0.0) = b\/ the letters “ms” Gin
tode FrameRate.Text = string.Format (“{0:£f0} ({1l:fl}ms)”, Parcn{:hcscs)

1000 / milliSeconds, milliSeconds) :;
else O The frame vate is the number of Lrames
) .
FrameRate.Text = “N/A”; vun per second. We've using a TimeSpan

ob\jcc{: to store how |on5 it took to vun the
frame. We divide 1000 by the number of
milliseconds it took 4o vun the frame—that
gives us the total number of milliseconds it
‘book ‘l:o run '{‘)\c Iach ‘F\ramc-

Add ‘thls mc{;hod

! Whoa! Where did that World object
into Forml.

come from..we haven't created that yet, have
we? And what's all that time and frame stuff?

()
0 We'll alk
ve ab
Let’s create a World more about
this when we
This tode uses the same You're right, we need to create the World object. Add this eveate that
Sfring-Formaﬁ() method you line to your form’s constructor: TimeSpan
used in the hex dump. But public Forml () { object.

instead of printing in hex InitializeComponent () ;

using “x2”, you use “f3” 4o world = new World() ;
display a number with three }

decimal places.
Go ahead and add a private Wor1d field to your form

called world.

That just leaves all the time-related code. We’ve always said
we needed a way to run Go () in World over and over...
sounds like we need some sort of timer.

you are here » 31

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

play it again Take a minute and treate a new project '
so You tan see how Limers work. Then we'll

' ' . et batk to the simulator and put your
Timers fire events over and over again % ioucier o ooe

Remember how you used a loop to animate the greyhounds? Well, there’s

a better way to do it. A timer is an especially useful component that r D 0O t IS *

triggers an event over and over again, up to a thousand times a second.

o Create a new project with a timer and three buttons
You don’t have to close your current project—just pop open a new instance of Visual
Studio and start up a new project. Drag a timer and three buttons onto the form. Click
on the timer icon at the bottom of the designer and set its Interval property to 1000. That
number is measured in milliseconds—it tells the timer to fire its tick event once a second.

\/ou ¢an also just
double—click on
the Timer iton

e Open the IDE's Properties window and click on the Events button. 1o add the event
(Remember, the Events button looks like a lightning bolt, and it lets you manage the handlev instead
events for any of your form’s controls.) The timer control has exactly one event, Tick. of using the
Click on the Timer icon in the designer, then double-click on its row in the Properties window.

Events page and the IDE will create a new event handler method for you and hook it up [
to the property automatically.

The Events button in the The Tim
Properties window lets you 0'\: cvénzvczﬁnjr?l'l' hljs
k with all the events £ ek
work w ¢ corbeols. [ You double—click heve,
for eath of Yyour the IDE creates an
event handler method

The bottom of the window ﬂ for rou au'l:oma-l;ically,

has & destription of the event. ikes th
This statement wn{f\c {; e

e Add code to the Tick event and to your buttons pucvent date and U

t
Here’s some code that will help you get a sense of how the timer works: ou‘{',\’u{l- Chetk the oui\;v "
window 4o make sure the

private void timerl Tick(object sender, EventArgs e) { ) £ ed onte @ setond
Console.WriteLine (DateTime.Now.ToString()) ;w EVC“{: |sIO|OVO '.\\\scLohdS)-
ever "
These buttons let ) 1

You F'a‘/ with the private void toggleEnabled Click(object sender, EventArgs e) {

Enablcd F*°PCV"£‘/ if (timerl.Enabled)

and the Start() timerl.Enabled = false/w_ The timer's Enabled property
and Stop() else e starts and stops the timer-
methods. The timerl.Enabled = true;

first one switehes |
Ehablcd bc{wccn private void startTimer Click(object sender, EventArgs e) {

true and ‘Falsc, and timerl.Start(); < The timer's Stavt() method
the other two eall Console.WriteLine (“Enabled = ” + timerl.Enabled); stavts the Limer and sets
the Start() and ! Enabled to true. The Stop()
S‘EOPO methods. private void stopTimer Click(object sender, EventArgs e) {method s{aoFs the timer and
timerl.Stop(); = __— sets Enabled 1o f3lse.

Console.WritelLine (“Enabled = ” + timerl.Enabled);
}
32 GDI+ bonus PDF for Head First C# % http://www.headfirstlabs.com/hfcsharp

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+ graphics
The timer's Tick event

The timer’s using an event ~ © 772 <<

event handler, \)us{:

1 like the ones to handle .
handler behind the scenes i« e Behind

How do C# and .NET tell the timer what to do every tick? How the Scenes
does the timerl Tick () method get run every time your

timer ticks? Well, we’re back to events and delegates, just

like we talked about in the last chapter. Use the IDE’s “Go To

Definition” feature to remind yourself how the EventHandler

delegate works:

e Right-click on your timerl variable and select "Go To Definition”
The “Go To Definition” feature will cause the IDE to automatically jump to the location in the code
where the timer1 variable is defined. The IDE will jump you to the code it created to add timerl asa
property in the Form1 object in Forml.Designer.cs. Scroll up in the file until you find this line:

this.timerl.Tick += new System.EventHandler (this.timerl Tick);

is is the Tiek event Here's one of the S stem’ ' bh method you
1;}2\ S\I:,r Limev tontrol: delegates: the basicycvcn-ts \-’\C:-,C;vt’:c, J(L'\mC\'I’_T\L\(O.
Vou've set £his +o ottur ha.ndlcv. [t's a delegate..a ‘l?su'rc kelling the delegate
every 1000 willisetonds- Pointer {0 one or more methods. {-: Yo\n{: to that method

e Now right-click on EventHandler and select "Go To Definition”
The IDE will automatically jump to the code that defines EventHandler. Take a look at the name
of the new tab that it opened to show you the code: “EventHandler [from metadata]”. This means
that the code to define EventHandler isn’t in your code. It’s built into the .NET Framework, and
the IDE generated a “fake” line of code to show you how it’s represented:

public delegate void EventHandler (object sender, EventArgs e);

Here's why every event in C# lly tak
lev- Y Y eve 9enera Y es
Each event is ot tyre Evfhg‘t‘: ‘C\:C an Objeet and EventAvgs parameter—that's
So our Tiek event now po the form of the delegate that CH# defines
Limevl TiekO method. for event handling,

@RA"«

‘PQAQWEWR
What code would you write to run the World’s Go() method
10 times a second in our beehive simulator?

you are here » 33

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

good

DateTime f‘ TimcS?ah

Add a timer to the simulator NET uses the DateTime elass to
store information about a time, and

Let’s add a timer to the simulator. You've already got a timer control, its Now Pv-o?ev-{:\/ veturns the turvent
probably called timer1. Instead of using the IDE to generate a date and time. |£ you want 4o find

timerl Tick () method, though, we can wire the timer to an event
handler method called RunFrame () manually:

the differente between two Limes, use
a TimeSpan objc(:{:i Jus{ subtract one

TimeSpan has properties like Days, Hours, DateTime object from another, and
Setonds, and Millisetonds that let you \/ that'll vedurn 3 TimeSpan object that

measure the span in different units.

public partial class Forml : Form { \{ou chould \\avgaWOY\d

World world; <= oooperty from eavlier:

holds the diffevente between them.

private Random random = new Random() ;

private DateTime start = DateTime.Now; < These will be used 4o figure out
private DateTime end; < how long the simulator’s been
private int framesRun = 0; vunning at any given point.

= We want to keep up with
how man\/ 1c!ramcs-—or
public Forml () { £urns—have passed.
InitializeComponent () ;
world = new World();

iseconds-

Run every M’/

timerl.Interval = 50;
timerl.Tick += new EventHandler (RunFrame) ;
timerl.Enabled = false; <= Timer skavts otk

UpdateStats (new TimeSpan()) ;

} )~ _~ We als? start out b\/ uFda{ing stats, with a
new TimeSpan (O time elapsed).

mc{:hod, RunFY'ach.

private void UpdateStats (TimeSpan frameDuration) {
// Code from earlier to update the statistics

public void RunFrame (object sender, EventArgs e) ({
framesRun++; [ntvease the frame tount, and
world.Go(random) ; =—— tell the world +o §o0).
end = DateTime.Now;
TimeSpan frameDuration = end - start;<—
start = end; <&—
UpdateStats (frameDuration) ;

Next, we figwc out the
time elapsed since the last

rame was run.

} Finally, update the s{:aks-again,
with the new ime duration.

34

www.itbook.store/books/9781449343507

& We set the handler to our o

A setond

is |000
millisetonds, so
our timer will
tick 20 times 3

setond.


https://itbook.store/books/9781449343507

gdi+

1. Initially, the first button should read “Start Simulation.”
Pressing it causes the simulation to start, and the
label to change to “Pause
Simulation.” If the simulation
is paused, the button should
read, “Resume simulation.”

I You haven't
dragged a ToolStrip
and S{:a{:usg{:riy out
of the toolbox and
onto Your form, do

I‘{: now.

2.The second button should

say “Reset”When it's
pressed, the world should
be recreated. If the timer is
paused, the text of the first
button should change from

“Resume simulation” to “Start
Simulation.”

Your job is to write the event handlers for the Start Simulation and
Reset buttons in the ToolStrip. Here’s what each button should do:

' { [ tion—we \')us{‘,
Theve's no single answer +o Jdu,s ques
wa:\{: You +o think about what's left to do.

\L Just double—tlick on a ToolStrip button

in the designer to make the IDE ;d&;cs
H vent handlev, iust like @ normal button-
daharpen your pencil <)

What do you think is left to be done in this phase
of the simulator? Try running the program. Write
down everything you think we still need to take
care of before moving on to the graphical stuff.

therejare no o
Dumb Questions

Q: We've been using the term
“turn,” but now you’re talking about
frames. What's the difference?

. Semantics, really. We're still
dealing in turns: little chunks of time
where every object in the world gets
to act. But since we'll soon be putting
some heavy-duty graphics in place,
we've started using “frame,” as in a
graphical game’s frame-rate.

www.itbook.store/books/9781449343507

35


https://itbook.store/books/9781449343507

& / 32\:9 Your job was to write the event handlers for the Start
\ .SQ Simulation and Reset buttons.
.XARCIO

SoLution

The existing code from the form
remains unchanged.

private void startSimulation Click (object sender, EventArgs e) {

C if (timerl.Enabled) {

“Resume simulation”;

— toolStripl.Items[0].Text = e
Be :wc timerl.Stop(); oo 1 1 JUL“\\C’
ou!
zov'm)s } else { and "Yda ¢
= “Pause simulation”;\ messd%®

Z toolStripl.Items[0] .Text

¢ontvol :
timerl.Start();

names
mateh up }

with what }

Youusein T =\

your tode. private void reset Click(object sender, EventArgs e) {

= .
a Resetting the simulator s
iust a matter of vetreating
the World instance and
vesetting LramesRun.

framesRun = 0;
world = new World() ;
if ('timerl.Enabled)
toolStripl.Items[0] .Text = “Start simulation”;
} The only time we need +o thange
} “{:hc first button’s label is if it says,
Rcsumc simulation.” £ it says, “Pause
simulation,” it doesn’t need to thange.

36

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+ graphics

Test drive

You've done a ton of work. Compile your
code, fix any typos, and run the simulator.
How’s it look?

Looks Py-e-(:.l: /
All these numbe:d'

should update s the

WOV"d moves a’ona.

Your start/pause and
veset buttons should
all wovrk.

Hmmm...our sfa{',us s*(‘,\riF
seems to be the only
fhing not working.

Here's your chance to put together everything you've learned. We need to
allow bees to tell our simulator what they’re doing. When they do, we want
our simulator to update the status message in the simulator.

% 0¥, one more
This time, it's up to you to not only write most of the code, but to figure out hink. \(ou:“ need to

what code you need to write. How can you have a method in your simulator ske thanges
that gets called every time a bee changes its state? "
g y 9 él\ M one your

To give you a little help, we've written the method to add to the form. The tlasses to make
Bee class should call this method any time its state changes: bhis wovk.

private void SendMessage (int ID, string Message) {
statusStripl.Items[0].Text = “Bee #” + ID + “: ” + Message;

you are here » 37

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

exercise solution

Your job was to come up with a way for bees to let the simulator know
about what they’re doing.

Heve's what we added £o the Bee class. We used a callbatk £ hook ach
individual bee objeet up to the
<‘> class Bee { form's SendMessage() method.
// all our existing code L/
public BeeMessage MessageSender; &

[£ uses 3 delegate called

public void Go (Random random) { Bcc/Vlcssagc that takes 3 bee [D
Age++; and a message. The bee uses it 4o
BeeState oldState = CurrentState; send messages back to the form.

switch (currentState) {
// the rest of the switch statement is the same
}
if (oldState !'= CurrentState
&& MessageSender != null)
MessageSender (ID, CurrentState.ToString()):;

}
} K/ I£ the status of the Bee thanged, we
call baeck the method our Bchcssage

dclcga{‘,c points 1o, and let that method

Heve ave the ehamags know about the status thange.

we made 1o the Hive.

é class Hive { Hive needs a dc\cga{ic bo& s} .
// all our existing code it tan pass on the '“c{-’;': s,r:
public BeeMessage MessageSender; &—— ¢ath bee to call wh(c)n ey

A,/ ereated in AddBeel).
public Hive (World world, BeeMessage MessageSender) ({
&

this.MessageSender = MessageSender; <
// existing constructor code

public void AddBee (Random random) {
// existing AddBee () code
Bee newBee = new Bee (beeCount, startPoint, world, this);
newBee .MessageSender += this.MessageSender;
world.Bees.Add (newBee) ; Q\_/ AddBee() now has {o make suy
that each new bee gets the ‘
method 4o Point at.

38 GDI+ bonus PDF for Head First C# % http://www.headfirstlabs.com/hfcsharp

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+ graphics

public delegate void BeeMessage (int ID, string Message) ;

BeeMessage is our delegate. [t's also

S~ h with the SendMessage()
2aten Le in the form. Add

. .
World elass vequived some thanges as wel thod we wro
Jhe ter ! :I:cbo its own file called BeeMessage-
class World { es—it should be in the namespate, bw
// all our existing code outside of any elass.
public World (BeeMessage messageSender) ({
Bees = new List<Bee>(); N
Flowers = new List<Flower>(); World doesn’t need to have 3
Hive = new Hive (this, messageSender) ; delegate of its own. It just passes
Random random = new Random() ; on the method o eall to the H;
, _ _ : . he Hive
for (int i = 0; 1 < 10; i++) instance.
AddFlower (random) ;
}
} Last but not least, here’s the
updated {form. A"YH‘."‘S not shown
J— stayed the same.
public partial class Forml : Form { We treate a new dclcga{:c From the
// variable declarations Bee tlass (make sure you detlared .
. BeeMessage ?ublic), and point it a
public Forml () { our SendMessage() method.

InitializeComponent () ;
world = new World(new BeeMessage (SendMessage)) ;
// the rest of the Forml constructor

private void reset Click(object sender, EventArgs e) {

framesRun = 0;
world = new World(new BeeMessage (SendMessage)) ;

if (!'timerl.Enabled) S Same thing heve_, L
toolStripl.Items[0].Text = “Start simulation”; world wit} 4}, r;'d:}fadeﬁfhc
} bees o call baek, "

private void SendMessage(int ID, string Message) ({
statusStripl.Items[0].Text = “Bee #” + ID + “: ” + Message;

} f _ This is the method we gave
} you...bc sure 1o add it in, too.

you are here » 39

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

Let’s work with groups of bees

Your bees should be buzzing around the hive and the field,
and your simulation should be running! How cool is that? But
since we don’t have the visual part of the simulator working
yet—that’s what we’re doing in the next chapter—all the
information we have so far is the messages that the bees are
sending back to the main form with their callbacks. So let’s
add more information about what the bees are doing.

You alvcady have the form

updating these stats and Qo ahead and add a
displaying the messages ListBox to Your form.
that the bees send as We'll use it to display
they do theiv jobs. some extra stats about

( the bees in the world.

theve ave 3 bunth of bees Q\\{mg around-

e bz'cs,JcB@A will display how many bees ag d:\:sg
e “'cw I‘ Lhis tase two bees are ‘(:\\{m(f.) to owers,
‘ad‘f)dl “(:\owcr gat\ncring nettar, one is vetuening
tc%j\s\cah\jc, and two ave in +he honey faetory

Lurning nettar into honey-

You know enough to gather the information you’d need to populate that

ListBox—take a minute and think through how that would work. But it's
a little more complex than it seems at first. What would you need to do to
figure out how many bees are in each of the various Bee. State states?

40 GDI+ bonus PDF for Head First C# % http://www.headfirstlabs.com/hfcsharp

www.itbook.store/books/9781449343507



https://itbook.store/books/9781449343507

gdi+

A collection collects...DATA

Our bees are stored in a List<Bee>, which is one of the
collection types. And collection types really just store data...a
lot like a database does. So each bee is like a row of data,
complete with a state, and ID, and so on. Here’s how our bees
look as a collection of objects:

currentState = MakingHoney

ID = 1982
currentState = GatheringNectar

There’s a lot of data in the Bee objects’ fields. You can almost
think of a collection of objects the same way you think of
rows in a database. Each object holds data in its fields, the
same way each row in a database holds data in its columns.

ID =987 currentState = MakingHoney

ID=12 | currentState = FlyingToFlower
’Q ID =1982 currentState = GatheringNectar

e A
DatabaS f:f:osc wF had a Bccs ‘{Zab'c, and M ll . . ll
row in the table had an D ost collections—especially

tolumn nd urren .
2 turventState cohumn when they hold ob]ects—
can be thought of as data
stores, just like a database.

41

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

missing

for working with databases.

This LIN® query
or a database.

var beeGroups =
from bee in world.Bees
group bee by bee.CurrentState
into beeGroup
orderby beeGroup.Key

Who cares if you can
think about a collection as a database if
you can't use a collection like a database?
What a total waste of time....

works essentially
L3 in a colleetion

select beeGroup;
LINQ

42

www.itbook.store/books/9781449343507

What if you could query collections,
databases, and even XML documents
with the same basic syntax?

C# has a really useful feature called LINQ (which
stands for Language INtegrated Query). The idea
behind LINQ) is that it gives you a way to take an array;,
list, stack, queue, or other collection and work with all
the data inside it all at once in a single operation.

But what’s really great about LINQ) is that you can use
the same syntax that works with collections as you can é7

T
Bees table 5557 | currentState = MakingHoney |

ID = 12] currentState = FlyingToFlower |
| ID = 1982 | currentState = GatheringNectar |

Dalabase [£ we had our bee data in a database—

or even an XML file—LIN® eould work
with them in exactly the same way.

<bee id="987" currentState="MakingHoney” />
XML |<bee id="12" currentState="FlyingToFlower” />
<bee id="1982" currentState="GatheringNectar” />



https://itbook.store/books/9781449343507

gdi+ graphics

LINQ makes working with data in
collections and databases easy

We’re going to spend an entire chapter on LINQ) before long, but we can

use LINQ and some Ready Bake Code to add some extra features to our Reapg BaKQ
simulator. Ready Bake Code is code you should type in, and it’s OK if
you don’t understand it all. You’ll learn how it all works in Chapter 15. CoDe

private void SendMessage (int ID, string Message) {
statusStripl.Items[0].Text = “Bee #” + ID + “:
var beeGroups = L
from bee Ei)n world.Bees & This is a LING query. [t takes all £he
. bees in the Bees eolleetion, and
group bee by bee.CurrentState into beeGroup them » dnd groups

“ + Message;

orderby beeGroup. Koy < ) by their CurventState property.
. The group’s Key is the bee's
select beeGroup; ) dev +h
listBoxl.Items.Clear(); CurventState, so that's the order the
— : : R s#a{:cs will be dis?la\/cd on the form.
Make suwee foreach (var group in beeGroups)
this matehes string s; § = beeBroups is from the LIN® query. We ¢an
the lis{:,bo*ﬂ if (group.Count() == 1) count the members, and iterate over them.
LOV\{',Y‘O‘S s = \\//; R . “l b )
name on else This bit of code makes sure it says, 1 bee
your foem. s = %57; € and “3 bees”, keeping the pluval right.
g listBoxl.Items.Add (group.Key.ToString() + “: £~ Fi"f‘y’(_aédkth; 2::‘7
+ group.Count () + “ bee” + s) ; sta f{_’; {:\nc\{ii box.
if (group.Key == BeeState.Idle Here’s another nice coun
&& group.Count () == world.Bees.Count () hcaf“"' Since we know
&& framesRun > 0) { e oW many bees are idle...

listBoxl.Items.Add (“"Simulation ended: all bees are idle”);
toolStripl.Items[0].Text = “Simulation ended”; z— £ ALL

, . , .we tan see !
statusStripl.Items[0].Text = “Simulation ended”; ‘bccs ave idle. |k so,
timerl.Enabled = false;

< the hive's out of honeys
| <o lek's stop the

S\mu\a‘{).\c“'

We’ll learn a lot more about LINQ in
upcoming chapters.

You don’t need to memorize LINQ syntax or
: try to drill all of this into your head right now.
¢ You’ll get a lot more practice working with LINQ in Chapter 15.

you are here » 43

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

save the

Test drive (Part 2)

Go ahead and compile your code and run your project. If
you get any errors, double-check your syntax, especially
with the new LINQ code. Then, fire up your simulator!

/%

The timer on your form You’ll add these standard items, and

con{‘(o

ls the running

event handlers to make them work

Lhe simulation

These stats tome from

/\ the Form al""\/i"a the
World ob\)cd{:.

When one obgcc’c has a

method that's hooked wp to

ﬁ a delegate or event han)dlcr

o in another object, Jch.a‘c sa

N vefevente that sevialization
y ‘(’\CCd o . will {:\ry +o ‘collow‘

data every turn.

44

So if you J(,\r\/ 4o sevialize an ob\')ccf
that's a0t an event handler listening
4o an event on 3 conbrol, then if you

: ) - alized] it
| batk your simulator don't mavk it [NonSeria .

%c:;CJ; u\’daJcZ fhe form every ey to sevialize the tontrol, wh'.ﬁh

{:mc fheiv status changes: will throw a SevializationExeeption.

[CNonSevialized] keeps data Lrom 3c{:‘[:in3 sevialized

Sometimes you want to serialize part of an object, not all of it. [t might have data that you don’t want
written to the disk. Let’s say you've building a system that a user logs into, and you want 1o save an
object that stores the user’s options and settings 4o a file. You might mark the password field with the
[NonSevialized] attvibute. That way, when you Serialize() the object, it will skip that field.

The [NonSevialized] attvibute is especially useful when your object has a vefevente to an object that is not
sevializable. For example, if you try 4o serialize a Form, Seralize() will throw a SevializationExeeption. So if
our object has a vefevente to a Form objeet, then when you try 1o sevialize it the serializer will follow that
link and try to sevialize the Form, too...whith will throw that exteption. But if you mavk the field that holds
the vefevente with the [NonSevialized] attribute, then Sevialize() won't follow the veference at all.

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+

One final challenge: Open and Save

We’re almost ready to take on graphics, and add some visual eye candy to
our simulator. First, though, let’s do one more thing to this version: allow
loading, saving, and printing of bee statistics.
You'll add the Print

o Add the Open, Save, and Print icons button now—we'll make
The ToolStrip control has a really useful feature—it can automatically insert it print a status Page
picture buttons for standard icons: new, open, save, print, cut, copy, paste, and help. for the hive in the
Just right-click on the ToolStrip icon at the bottom of the Form Designer window next chapter.
and select “Insert Standard Items”. Then click on the first item—that’s the

“new” icon—and delete it. Keep the next three items, because they’re the ones we
need (open, save, and print). After that comes a separator; you can either delete it
or move it between the Reset button and the save buton. Then delete the rest of
the buttons. Make sure you set its CanOverflow property to false (so it doesn’t add
an overflow menu button to the right-hand side of the toolbar) and its GripStyle
property to Hidden (so it removes the sizing grip from the left-hand side).

e Add the button event handlers
The new standard buttons are named openToolStripButton, saveToolStripButton,
and printToolStripButton. Just double-click on them to add their event handlers.

Add code to make the save and open buttons work.

1. Make the save button serialize the world to a file. The save button should stop the timer (it can restart it after
saving if the simulator was running). It should display a Save dialog box, and if the user specifies a filename then it
should serialize the Wor1d object, and the number of frames that have been run.

When you try to serialize the Wor 1d object, it will throw a SerializationException with this message: Type
‘Forml’is not marked as serializable. That's because the serializer found one of the BeeMessage fields and
tried to follow it. Since the delegate was hooked up to a field on the form, the serializer tried to serialize the form, too.

Fix this problem by adding the [NonSerialized] attribute to the MessageSender fields in the Hive and Bee
classes, so .NET doesn'’t try and serialize the code your delegates point to.

2. Make the open button deserialize the world from a file. Take care of the timer just like in the save button: pop up
an Open dialog box, and deserialize the world and the number of frames run from the selected file. Then you can hook
up the MessageSender delegates again and restart the timer (if necessary).

3. Don’t forget about exception handling! Make sure the world is intact if there’s a problem reading or writing the file.
Consider popping up a human-readable error message indicating what went wrong.

45

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

exercise solution

Your job was to make the Save and Open buttons work.

't forget the extra using statements.
using System.IO;

Don
K/

using System.Runtime.Serialization.Formatters.Binary;

) . [Serializable] [Serializable]
Zo;lancefla{:o makc.{i'he rllovrl;iv,hch, Flower, class World { class Flower {
n SS: .
o ah:: " © T;'ar'fgj.‘ i ;." d\/f’jc‘s [Serializable] [Serializable]
¢ world, - Wil Aind class Hive { class Bee {

vefeventes to Hive, Flower, and Bee objects
and sevialize them, too.
And make sure the MessageSender fields
[NonSerialized] in the Hive and Bee ¢lasses are marked
public BeeMessage MessageSender; [NonSevialized].

\( Here's the code for the Save button.
private void saveToolStripButton_Click (object sender, EventArgs e) {
bool enabled = timerl.Enabled;
if (enabled)
timerl.Stop();

We detided to use “bees”

SaveFileDialog saveDialog = new SaveFileDialog () ; as the extension for
saveDialog.Filter = “Simulator File (*.bees) |*.bees”; ﬂmubﬁWsaW<aks
saveDialog.CheckPathExists = true;

saveDialog.Title = “Choose a file to save the current simulation”;

if (saveDialog.ShowDialog() == DialogResult.OK) {
try |

n ' wheve BinaryFormatter bf = new BinaryFormatter();

eve

{hcvmﬂdis using (Stream output = File.OpenWrite (saveDialog.FileName)) {

wrﬁi&hOU{ bf.Serialize (output, world);d;\\\*R b

b s Ele. bf.Serialize (output, FramesRun); '{cm? er, when we sevialize World, everything

} 'C veterentes gets sevialized.. all the bees,

| lowers, and the hive.

catch (Exception ex) {
MessageBox.Show (“Unable to save the simulator file\r\n” + ex.Message,

“Bee Simulator Error”, MessageBoxButtons.OK, MessageBoxIcon.Error);

} After we save the file,
if (enabled) z/ we ¢an vestart the
timerl.Start(); timer (if we stopped it).

46 GDI+ bonus PDF for Head First C# % http://www.headfirstlabs.com/hfcsharp

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

Heve! gdi+ graphics
OCYCL the tode for the
Pen button.
~

private void openToolStripButton Click (object sender, EventArgs e) {
World currentWorld = world;

int currentFramesRun = framesRun; e— Before opening the file and reading from it,
save a veferente to the turrent world and

bool enabled = timerl .Enabled; ‘FVaMCSRUYL ,‘c ‘H’\CY‘C‘S a PV‘ObIC"\, \/OIA tan \"CVCV{
if (enabled) to these and kcc\? running.

timerl.Stop ()

OpenFileDialog openDialog = new OpenFileDialog() ; -
openDialog.Filter = “Simulator File (*.bees)|*.bees”;

openDialog.CheckPathExists = true;

openDialog.CheckFileExists = true; Set wp the Open
openDialog.Title = “Choose a file with a simulation to load”; File dialog box
if (openDialog.ShowDialog() == DialogResult.OK) { and pop it up-

try {
BinaryFormatter bf = new BinaryFormatter();

~—= using (Stream input = File.OpenRead (openDialog.FileName))

using ensures world = (World)bf.Deserialize (input); —_
the shream framesRun = (int)bf.Deserialize (input); <——

Here's where we desevialize
the world and £the number

55{5 ¢losed. : 1 of Lrames vun to the file.

catch (Exception ex) {
MessageBox.Show (“Unable to read the simulator file\r\n” + ex.Message,
“Bee Simulator Error”, MessageBoxButtons.OK, MessageBoxIcon.Error);
world = currentWorld; e=——

framesRUN - GUETOntFYAmeSRUNe £ gc file operations throw an exteption, we
)
} restore the turrent world and framcsRun.

world.Hive.MessageSender = new BeeMessage (SendMessage) ;
foreach (Bee bee in world.Bees)
bee.MessageSender = new BeeMessage (SendMessage) ;

if (enabled)

e st < Onte cvcr\/{:hing is loaded, we
hook up the delegates and

vestart the Limer.

You'll need to get your simulator up and running hefore you move on

to the next c]napter. You can download a wor]cing version from the

Head First Labs website: www.headfirstlabs.com/books/ ]nfcsltarp/
you are here » 47

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

Pages 49 through 106 of this PDF weve originally published as the
éDH' Lha‘?{:cr in Head Fiv-s‘l: C#, 2nd Edi‘{;ion. The vest O‘F the PDF
is Lab #3, in whith you'll build the [nvaders areade game. This is

the version from the setond edition of Head First C#, which was
designed to work with 4D+ graphics.

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

controls and graphics

* +*
+  Make it prefty +
x

Sometimes you have to take graphics into your own hands.

We've spent a lot of time relying on controls to handle everything visual in our applications.

But sometimes that's not enough—Ilike when you want to animate a picture. And once
you get into animation, you'll end up creating your own controls for your .NET programs,
maybe adding a little double buffering, and even drawing directly onto your forms.

It all begins with the Graphics object, bitmaps, and a determination to not accept the

graphics status quo.

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

pbiprtpoal

You've been using controls all along
to interact with your programs

TextBoxes, PictureBoxes, Labels...you've got a pretty good
handle by now on how you can use the controls in the IDE’s toolbox.
But what do you really know about them? There’s a lot more to a
control than just dragging an icon onto your form.

0 You can create your own controls
The controls in the toolbox are really useful for building forms and
applications, but there’s nothing magical about them. They’re just
classes, like the classes that you’ve been writing on your own. In fact,
C# makes it really easy for you to create controls yourself; just by
inheriting from the right base class.

You tan treate 3 elass
‘t\'\a{: inhcriJ(',S ‘C\'om any
of the cv«\sﬁv\E tontrol

0 Your custom controls show up in the IDE's toolbox
There’s also nothing mysterious about the toolbox in the IDE. It just
looks in your project’s classes and the built-in .NET classes for any

_ L)
controls. If it finds a class that implements the right interface, then (,\assc)5£ :‘:: ‘an\/ other
it displays an icon for it in the toolbox. If you add your own custom do:"_ t—and it

, . tode n it— .
controls, they’ll show up in the toolbox, too. automatically show up in
the +oolbox.

0 You can write code to add controls to your form, and even
remove controls, while your program’s running
Just because you lay out a form in the IDE’s form designer, it doesn’t mean
that it has to stay like that. You’ve already moved plenty of PictureBox
controls around (like when you built the greyhound race). But you can add or
remove controls, too. In fact, when you build a form in the IDE, all it’s doing
is writing the code that adds the controls to the form...which means you can
write similar code, and run that code whenever you want.

50

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+ graphics

Form controls are just objects

You already know how important coentrols are to your forms. You've been
using buttons, text boxes, picture boxes, checkboxes, group boxes, labels, and
other forms since Chapter 1. Well, it turns out that those controls are just
objects, just like everything else you've been working with.

A control is just an object, like any other object—it just happens to know how
to draw itself. The Form object keeps track of its controls using a special
collection called Controls, which you can use to add or remove controls in
your own code.

Heve's the form for a

simple application. |£s _—
Controls collettion keeps a

vefecente to eath of the

tontrol ob\)cd:s on the

‘(:ov'm-

Eath tontrol in the form
is Jus{: an instante of 3
yar{:icular ob\)ct‘{:- >

NE
u? RadloB&o
&
4{50
: &)
7}
System.W"“60 3
S
RaqioBu™®
There are 9 tontrols on
this form, so the Controls iy
eolleetion tontains 9 f
vefeventes to individual :g
tontrol obJCC‘ES- O R, &*\o
adioB

you are here » 51

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

pegecgual header

Use controls to animate the beehive simulator

You’ve built a cool simulator, but it’s not much to look at. It’s time to create a
really stunning visualization that shows those bees in action. You’re about to
build a renderer that animates the beehive...and controls are the key.

e The user interface shows you everything that's going on
Your simulator will have three different windows. You've already built the main “heads-up display”
stats window that shows stats about the current simulation and updates from the bees. Now you’ll
add a window that shows you what’s going in inside the hive, and a window that shows the field of

flowers where the bees gather nectar.

This window shows what’s
9oing on in the hive.

<

The form you built in the
\ast ehapter betomes the
heads—vp displdy for the
S\mu\a{‘,o‘f"
<
L . These two windows ave
b G o o —
and the bees \/?u minimize the ™ain
e thdow, the other two
. disappear alo,\3 with it

And when You move the
main window around, the

other two follow it.

e We'll make the Print button in the stats window work
The stats window has working Open and Save buttons, but the Print button
doesn’t work yet. We’ll be able to reuse a lot of the graphics code to get the Print
button on the ToolStrip to print an info page about what’s going on.

O

52 GDI+ bonus PDF for Head First C# % http://www.headfirstlabs.com/hfcsharp

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

e The hive window shows you what's going on inside the hi

gdi+ graphics

ve

As the bees fly around the world, you’ll need to animate each one. Sometimes they’re

inside the hive, and when they are, they show up in this window.

The hive has three

imPor{:an‘{: lotations in it
The bees are born in the
nursery, {:hc\/ have to 1c|\/
to the exit to leave the

hive to
the flo

gather nectar from
wers, and when the

tome back {:h?' need to 90

to the

honcy ac{-pr\/ +o

@c honcy.

e The field window is where the bees collect the nectar
Bees have one big job: to collect nectar from the flowers, and bring

The hive exit is on the hive £orm, and
Lhe entrante is on the field Lorm.
(That's why we put both of them in
the hive's lotations dic{‘,ionar\/.)

Heve's the entrante to the
hive. When bees (:l\/ into it,
they disappear From the
field form and veappear near

it back to the hive to make honey. Then they eat honey to give them fhe exit in the hive Lorm.

energy to fly out and get more nectar.

www.itbook.store/books/9781449343507

you are here »

53


https://itbook.store/books/9781449343507

payecgbai hdiilor

Add a renderer to your architecture e ey bih thse itk

We need another class that reads the information in the /—\__/\__j
world and uses it to draw the hive, bees, and flowers on Th .
5 5 e W I
the two new forms. We’ll add a class called Renderer ever {_j‘:nd IO:JE;:‘& k.ccyls ‘;;h‘nk of
to do exactly that. And since your other classes are well ota {_;/ o 2}‘: h;vi simula bv. ‘(:hcd
) every bee, an

en.capsulated, this won’t require a lot of changes to your every Llower-
existing code.

window {;}\a{; \/ou'vc alrcad\/ built. List of F\osﬂe'

{This is the ob)cd: for the main / /5

g
jec

)jec

C List of o

'Each bee knows its

. oca‘l:ion—ahd We £an us

Hiveo‘O\ that location 4o draw )
the bee on the form.

The Hive and 7

Field objects are

e e b The venderer veads the

- . orm. information from the Because Bee9
&og World obJCC'E and uses

Hiwe . that ih‘(:o\rma'{:ion ) Hlve, FI.OWQI', aﬂJ
update the two forms. [t
J keeps a reference o the WOI‘ lfI are __....‘Jel'l
&og World object, as well as
o\ the Hive form obieet and encap____sulat(%(i, a
the Field form of;\)cc{;. T

class that renders

ren-der, verb. those o]ojects can

to represent or depict artistically.

Sally’s art teacher asked the class to look be added Witllouj
at all of the shadows and lines in the lots of chan ges 1o

model and render them on the page.

existing code.

54 GDI+ bonus PDF for Head First C# % http://www.headfirstlabs.com/hfcsharp

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+ graphics

The renderer draws everything in
the world on the two forms

The World object keeps track of everything in the simulation: the

hive, the bees, and the flowers. But it doesn’t actually draw anything

or produce any output. That’s the job of the Renderer object. It

reads all of the information in the World, Hive, Bee, and Flower e
objects and draws them on the forms. et

checks fields for state

Q@
Wor\do \\_/ Rende(e(
returns the state of the objects )

The World is entapsulated, so Rendever only
needs to use the properties on World and
its velated objeets to get the information
it needs, and vender the information on the
dis?la\/ windows.

The simulator renders the world after each frame

After the main form calls the world’s Go () method, it should call the
renderer’s Render () method to redraw the display windows. For example,
cach flower will be displayed using a PictureBox control. But let’s go
further with bees and create an animated control. You'll create this new
control, called BeeControl, and define its behavior yourself.

The venderer keeps track of which visual °§
tontrol is used 1o vepresent a particular bee e

or flower using Dic{iona\ry ob\)cd‘,s, where the ‘

Bee or Flower object is the key.

you are here » 55
www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

pegegyoal graphics

Controls are well suited for
visval display elements

When a new bee is added to the hive, we’ll want our simulator to add a new
BeeControl to the Hive form and change its location as it moves around the
world. When that bee flies out of the hive, our simulator will need to remove the
control from the Hive form and add it to the Field form. And when it flies
back to the hive with its load of nectar, its control needs to be removed from the
Field form and added back to the Hive form. And all the while, we’ll want the
animated bee picture to flap its wings. Controls will make it easy to do all of that.

o The world adds a new bee, and the renderer creates a new BeeControl
and adds it to the Hive form’s Controls collection.

Controls.Add (new BeeControl());

=

object

J
Rendes® Hive"

e When the bee flies out of the hive and enters the field, the renderer
removes the BeeControl from the hive’s Controls collection and adds
it to the Field form’s Controls collection.

&og

Fie®

9 A bee will retire if it’s idle and it’s gotten too old. If the renderer checks the
world’s Bees list and finds that the bee is no longer there, it removes the
control from the Hive form.

Controls.Remove (theBee) ;

—

o‘f’jec’(

)
Rende‘e’( HNQK

56

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+

Can you figure out what each of these code snippets does? Assume
each snippet is inside a form, and write down your best guess.

this.Controls.Add (new Button()):;

Form2 childWindow = new Form2 () ;
childWindow.BackgroundImage =
Properties.Resources.Mosaic;
childWindow.BackgroundImageLayout =
Imagelayout.Tile;
childWindow.Show () ;

£ you've g0t a ListBox on your {orm,

You €an use its AddRanae() m
to add list items. e “thed

Label myLabel = new Label () ;

myLabel.Text = “What animal do you like?”;
myLabel.Location = new Point (10, 10);
ListBox myList = new ListBox();
myList.Items.AddRange ( new object][]

{ “Cat”, “Dog”, “Fish”, “None” } );
myList.Location = new Point (10, 40);
Controls.Add (myLabel) ;

Controls.Add (myList) ;

)
You don't need to write down
each line, as mueh as Summarize

what’s 90ing on in the code block.

Label controlToRemove = null;
foreach (Control control in Controls) {
if (control is Label
&& control.Text == “Bobby”)

controlToRemove = control as Label;
}
Controls.Remove (controlToRemove) ;

controlToRemove.Dispose () ;

Bonus question: Why do you think
we didn’t put the Controls.Remove ()
statement inside the foreach loop?

7

(- Tey it out if you want, and

write why You think you aot £h 57
vesult that .NET 533: ':/3: ‘

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

page goai buzzer

Can you figure out what each of these code snippets does? Assume
each snippet is inside a form, and write down what you think it does.

this.Controls.Add (new Button());

Form2 childWindow
childWindow.BackgroundImage

new Form2 () ;

Properties.Resources.Mosaic;

childWindow.BackgroundImageLayout
Imagelayout.Tile;
childWindow.Show () ;

Label myLabel new Label () ;
myLabel.Text = “What animal do you like?”;
10);

myLabel.Location

new Point (10,

ListBox myList new ListBox () ;
myList.Items.AddRange ( new object][]
{ “cat”, “Fish”,
myList.Location new Point (10,
Controls.Add (myLabel) ;

Controls.Add (myList) ;

“Dog", “None” }

40) ;

)

null;

(Control control in Controls) {

Label controlToRemove

foreach
if (control is Label

&& control.Text == “Bobby”)

controlToRemove

control as Label;
}
Controls.Remove (controlToRemove) ;

controlToRemove.Dispose () ;

Bonus question: Why do you think
we didn’t put the Controls.Remove()
statement inside the foreach loop?

Create a new button and add it to the

Wha{: hé)ﬂ?cns '|£ Jchcrc's no tontrol named
“Bobb\/" in the Controls co“cc{:ion‘?w

This. loop searehes. theough all. £he contyols. on..
the form until it. £inds. a.label. with. the. text. .
“Bobby’..Once. it £inds. the label, it. vemoves it..
Leom the form.

[ how|£
tey, NET will throw an c*CF? or .
t(:cc\’:: {:;c\l tolleetion intact, otherwise il \osi‘? ks
place and give You wnpredictable vesults. That's

why \Iou'd use 3 for loop for this instead.

58

GDI+ bonus PDF for Head First C#  http://www.headfirstlabs.com/hfcsharp

www.itbook.store/books/9781449343507



https://itbook.store/books/9781449343507

gdi+ graphics

Build your first animated control

You're going to build your own control that draws an animated bee
picture. If you’ve never done animation, it’s not as hard as it sounds: you
draw a sequence of pictures one after another, and produce the illusion of
movement. Lucky for us, the way C# and .NET handle resources makes it
really easy for us to do animation.

Onte You download the four bee
animation Pi(:‘:wcs (Bee animation I‘F"ﬂ
‘{:hrough Bee animation 4‘an3) from Head
Fiest Labs, you'll add them +o Your
projeet’s vesources. When you flash these
four bees quickly one after another, itll
look like their wings are ﬂaﬂ?ing‘

~

@)

We want a control in the toolbox Download the images for this c]napter
If you build BeeControl right, it'll appear as a control {rom tlle HeaC[ Fll" st Labs Wel)Site:

th,at you can qrag ouF of your toolbox apd onto your form. WWW.llea J{irstlabs.c om / [)OOI(S /
It'll look just like a PictureBox showing a picture of a

bee, except that it’ll have animated flapping wings. h{csharp /

long as we extend the r\gh{: ¢tlasses,
Pﬁﬁ_‘l,—n?ca\(cs tave of showing our
P ol in the DE tooloor

_

~

This is like a PietureBox, but the

Image is set, and there’s animation

that we'll build in. An\/ guesses as +o

what class BeeControl subtlasses?  you are here » 59

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

pdYe goat

BeeControl is LIKE a PictureBox...so0 let’s
start by INHERITING from PictureBox

Since every control in the toolbox is just an object, it’s easy to make a new control.
All you need to do 1s add a new class to your project that inherits from an existing
control, and add any new behavior you want your control to perform.

We want a control—let’s call it a BeeControl—that shows an animated
picture of a bee flapping its wings, but we’ll start with a control that shows
a non-animated picture, and then just add animation. So we’ll start with a

PictureBox, and then we’ll add code to draw an animated bee on it. [Anlm ate ‘d’lls.’

o Create a new project and add the four animation cells to the project’s resources, just like you added
the Objectville Paper Company logo to your project way back in Chapter 1. But instead of adding them
to the form resources, add them to the project’s resources. Find your project’s Resources.resx file in
the Solution Explorer (it’s under Properties). Double-click on it to bring up the project’s Resources page.

In Chapter |, we added the logo

vraphic to the Lorm's Resourees
zilc. This ime weve adding the

vesourtes o the Y_rg)c_c_{' s global

collection of vesourtes, whith —_—
makes them available to every These arpeae vt
e

tlass in the project (through th Your project, not 4

Pro\?er’cics‘Rcsowccs eollection). barbitulor o
Take a minute and ‘Cll? back Doublc—ﬂhf—k on Resourtes.
4o Chapter | to vemind vesk +o bring up the
\/ou\rscl(: how Yyou did this. Resourtes page.
e We’ve drawn a four-cell bee animation to import into your resources that you can

download from http:/ /www.headfirstlabs.com/books/hfcsharp/. Then, go
to the Resources page, select “Images” from the first drop-down at the top of the screen,
and select “Add Existing File...” from the “Add Resource” drop-down.

Bee animation 1.png Bee animation 2.png Bee animation 3.png Bee animation 4.png
7, . .
\—K lmport eath of these images into _~
% Nhe: Vro)cd:'s resowrtes:

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+ graphics

When the
. . ) 1
e When you add images or other resources to the project’s Resources file, you can access program s vunning,
them using the Properties.Resources class. Just go to any line in your code and eath ?"Cb*"‘ s

type Properties.Resourc as soon as you do, IntelliSense pops up a drop- stored in "“"‘°"ry
down list that shows all of the pictures youvei d. as a Bitmap °b\)d'+"
wn»
Note that “” af the end..that’s what

tells the [DE o Po i
P up the ti
and methods of the ¢lass YOI ?\;‘::d .c:

pictureBoxl.Image =

4_ _'}?roperties .Resources.Bee_animation_1;

This sets the image used for a
particular PictureBox’s image (and
for our s{:ar-ting image).

E ¢ skoced 35 You'll need to add 3

These mages & ¢ the “using System Windows.
wolie YonchC‘CS o Forms” line Lo "}:hzws

class:
- < Resourtes i
on\’Cr‘c\csR ittureBox and Timer-

o Now add your BeeControl! Just add this BeeControl class to your project:
class BeeControl : PictureBox { ,
Here's wheve You

rivate Timer animationTimer = new Timer () ; NEYRRT .
P 0 initialize the timer

Make sure You public BeeControl () { b\/ inS{:an‘Eia{:inS it
add “MS\V\S gxls£Cm. animationTimer.Tick += new EventHandler (animationTimer Tick); SC‘Hth its [nterval
Window&FOY"\S” animationTimer.Interval = 150; FY-OFCV{:Y, and then
4o the top of the animationTimer.Start(); adding its tick
class file. BackColor = System.Drawing.Color.Transparent; event handler.

BackgroundImageLayout = Imagelayout.Stretch;
}

private int cell = 0O;
void animationTimer Tick (object sender, EventArgs e) { Onte we 5c{: back to ‘(-‘ramc #I
- )
cell++; u/ we'll veset cell back 4o O.
switch (cell) {

Eath time the timer's
tick event fives, it
intrements cell, and
then does a switeh
based on it to assign

case 1l: BackgroundImage = Properties.Resources.Bee animation 1; break;
case 2: BackgroundImage = Properties.Resources.Bee animation 2; break;
case 3: BackgroundImage = Properties.Resources.Bee animation 3; break;
case 4: BackgroundImage = Properties.Resources.Bee animation 4; break;
case 5: BackgroundImage = Properties.Resources.Bee animation 3; break;

the Yiﬁh{_’ Pid:wc to default: BackgroundImage = Properties.Resources.Bee animation 2;
.hc ’magc Proycr{:\/ cell = 0; break; .
(inherited from } When You thange the code for a tontrol, you need to vebuild
PietureBox). ) } Your program to make your changes show up in the designer.

Then rebuild your program. Go back to the form designer and look in the toolbox, and the
BeeControl is there. Drag it onto your form—you get an animated bee!

you are here » 61

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

pagtrglsadre

Create a button to add the BeeControl to your form

It’s easy to add a control to a form—just add it to the Controls collection. And it’s just as
easy to remove it from the form by removing it from Controls. But controls implement * *
IDisposable, so make sure you always dispose your control after you remove it. KN OW C[O tl/l 18
o Remove the BeeControl from your form, and then add a button *
Go to the form designer and delete the BeeControl from the form. Then add a
button. We’ll make the button add and remove a BeeControl.
\/ou £an use an

ek iidial
e Add a button to add and remove the bee control ‘ ic tinitializer o
, , set the BeeControl

Here’s the event handler for it:

properties after
When You add BeeControl control = null; it’s instantiated
a conJCXO\ o private void buttonl Click(object sender, EventArgs e) ({ .
the Controls if (control == null) {
col\ccﬁom it control = new BeeControl() { Location = new Point (100, 100) };
appears on \/—‘5 Controls.Add (control) ;
£he form } else { We've taking advantage of a
immcd'la{'«c‘\l' using (control) { using statement 4o make suve
Controls.Remove (control) ; the tontrol is disposed after
} it’s vemoved from the Controls
control = null; eollection.

}
}
Now when you run your program, if you click the button once it’ll add a new BeeControl to
the form. Click it again and it’ll delete it. It uses the private control field to hold the reference
to the control. (It sets the reference to null when there’s no control on the form.)

You tan add Your own Behind e

tontrol 1o the toolbox just
by eveating a class {:hafcJ the Scenes

inherits from Contvol.

Every visual control in your
toolbox inherits from System.
Windows.Forms.Control. That
class has members that should be
pretty familiar by now: visible,
Width, Height, Text, Location,
BackColor, BackgroundImage...
all of those familiar properties you
see in the Properties window for
any control.

62

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+

Your controls need to dispose their controls, too!

There’s a problem with the BeeControl. Controls need to be disposed after The tontrol tlass implements
they’re done. But the BeeControl creates a new instance of Timer, which\‘\ [Disposable, so You need to make
is a control that shows up in the toolbox...and it never gets disposed! That’s a sure every control You use gets
problem. Luckily, it’s easy to fix—just override the Dispose () method. disposed.

9 Override the Dispose() method and dispose of the timer
Since BeeControl inherits from a control, then that control must have a Dispose () method. So we can
just override and extend that method to dispose our timer. Just go into the control and type override:
class BeeControl : PictureBox {

« .dc"
When you type overet
inside a class, the IDE

s up an ‘n{cnigcnsc
w i:f\dow with all of {:\\c.
methods you tan ovevvide.

Geleet the Dis‘?osc() .
method and £l £ill one in

(:ov \IOU!

As soon as you click on Dispose (), the IDE will fill in the method with a call to base.Dispose ():

protected override void Dispose (bool disposing) {

base.Dispose (disposing) ; Any ContrOl
}

that you write
e Add the code to dispose the timer

Add code to the end of the new Dispose () method that the IDE added for you so frOm scr atCII
thatit calls animationTimer.Dispose () if the disposing argument is true.

1S responsil)le

protected override void Dispose (bool disposing) {

base.Dispose (disposing) ; eve we're overviding a votetted 1 1
if (disposing) { DisPosc() method {:h?a'{:'sPca“cd b\/ '[OI' C[lSPOSlIIg
animationTimer.Dispose () ; {'—h_‘ C°“JCV°I)S_3”F|CNC"£3£i°" of any Otller
} lDlsPosablchnsPosc(). [£ should only
} dispose the timer if the disposing controls (OI'
a\rgumeh‘{: is true.
Now the BeeControl will dispose of its timer as part of its own Dispose () (Iisposal,le
method. It cleans up after itself!

But don’t take our word for it—set a breakpoint on the line you added and OL]eCtS) tl‘at

run your program. Every time a BeeControl object is removed from the form’s it creates
Controls collection, its Dispose () method is called. ¢

We won’t go into any more detail about this particular disposal pattern. But if you plan on building custom controls,
you definitely should read this: http://msdn.microsoft.com/en-usl/library/system.idisposable.aspx

63

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

page apodiols

A UserControl is an easy way to build a control

There’s an easier way to build your own toolbox controls. Instead of creating a

class that inherits from an existing control, all you need to do is use the IDE

to add a UserControl to your project. You work with a UserControl

just like a form. You can drag other controls out of the toolbox and onto it—it 31

*

Drag a button to the form and give it exactly the same code as to add and remove a BeeControl.

uses the normal form designer in the IDE. And you can use its events just like
you do with a form. So let’s rebuild the BeeControl using a UserControl. K

o Create a brand-new Windows Forms Application project. Add the four bee images to its resources.

e Right-click on the project in the Solution Explorer and select “Add >> User Control...”. Have the
IDE add a user control called BeeControl. The IDE will open up the new control in the
form designer.

Use the animationTimer_Tiek() method and
( the cell field from the old bee control.

e Drag a Timer control onto your user control. It'll show up at the bottom of the designer, just like
with a form. Use the Properties window to name it animationTimer and set its Interval
to 150 and its Enabled to true. Then double-click on it—the IDE will add its Tick event
handler. Just use the same Tick event handler that you used earlier to animate the first bee control.

e Now update the BeeControl’s constructor:

public BeeControl () {
InitializeComponent () ;
BackColor = System.Drawing.Color.Transparent;

BackgroundImagelLayout = ImagelLayout.Stretch;

} You tan also do this from the Properties }‘
page in the [DE, instead of using code.

e Now run your program—the button code should still work exactly the same as before, except
now it’s creating your new UserControl-based BeeControl. The button now adds and
removes your UserControl-based BeeControl.

A UserControl is an easy way to add a control to the toolbhox. Edit a
UserControl just like a form—you can Jrag other controls out of the
toolbox onto it, and you can use its events exactly like a form’s events.

64

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+

But T've been using
controls all this time, and I've
never disposed a single one of

them! Why should I start now?

You didn’t dispose your controls because your forms
did it for you.

But don’t take our word for it. Use the IDE’s search function to search
your project for the word “Dispose”, and you’ll find that the IDE added

a method in Forml .Designer.cs to override the Dispose ()
method that calls its own base . Dispose (). When the form is
disposed, it automatically disposes everything in its Controls
collection so you don’t have to worry about it. But once you start

removing controls from that collection or creating new instances
of controls (like the Timer in the BeeControl) outside of the
Controls collection, then you need to do the disposal yourself.

Q: Why does the form code for the
PictureBox-based BeeControl
work exactly the same with the
UserControl-based BeeControl?

A: Because the code doesn't care how
the BeeControl object is implemented.
It just cares that it can add the object to the
form’s Cont rols method.

Q; | double-clicked on my
OldBeeControl class in the
Solution Explorer, and it had a message
about adding components to my class.
What’s that about?

A: When you create a control by adding

a class to your project that inherits from
PictureBox or another control, the IDE
does some clever things. One of the things
it does is let you work with components,
those non-visual controls like Timer and

www.itbook.store/books/9781449343507

’dlel‘e are no °
Dumb Questions

OpenFileDialog that show up in the
space beneath your form when you work
with them.

Give it a try—create an empty class that
inherits from PictureBox. Then rebuild

your project and double-click on it in the IDE.

You'll get this message:

To add components to your class, drag
them from the Toolbox and use the
Properties window to set their properties.

Drag an OpenFileDialog out of
the toolbox and onto your new class. It'll
appear as an icon. You can click on it and
set its properties. Set a few of them. Now
go back to the code for your class. Check
out the constructor—the IDE added code
to instantiate the OpenFileDialog
object and set its properties.

Q- When | changed the properties

in the OpenFileDialog; | noticed
an error message in the IDE: “You must
rebuild your project for the changes to
show up in any open designers.” Why did
| get this error?

. Because the designer runs your
control, and until you rebuild your code it's
not running the latest version of the control.

Remember how the wings of the bee

were flapping when you first created your
BeeControl, even when you dragged

it out of the toolbox and into the designer?
You weren’t running your program yet, but
the code that you wrote was being executed.
The timer was firing its Tick event, and
your event handler was changing the picture.
The only way the IDE can make that happen
is if the code were actually compiled and
running in memory somewhere. So it's
reminding you to update your code so it can
display your controls properly.

65


https://itbook.store/books/9781449343507

e gadiat

Your simulator’s renderer will use your BeeControl
to draw animated bees on your forms

Now you’ve got the tools to start adding animation to your simulator. With a BeeControl You)“ want the hive and
class and two forms, you just need a way to position bees, move them from one form to the field forms “linked” +o
other, and keep up with the bees. You’ll also need to position flowers on the FieldForm, the stats Form—fha{; does

although since flowers don’t move, that’s pretty simple. All of this is code that we can put
into a new class, Renderer. Here’s what that class will do:

usc‘('\ul {:hings like minimizing
the hive and field forms

when You minimize the stats
Q The stats form will be the parent of the hive and field forms form. You tan do this by

The first step in adding graphics to the beehive simulator will be adding two {:c“ing Windows that the
We'll build the forms to the project. You'll add one called HiveForm (to show the inside of the stats form is their owner.
venderer in @ minute. hive) and one called FieldForm (which will show the field of flowers). Then

But before we Jump you’ll add lines to the main form’s constructor to show its two child forms. Pass a

in and start coding, reference to the main form to tell Windows that the stats form is their owner:

let’s take a m@uft Evcry form ob\)cc{: has a Show()

and ¢ome up with // other code in the Forml constructor method. £ You want to set another

a plan for how the

. hiveForm.Show (this) ; form as its owner, just pass a
er tlass will
R::Scr fieldForm. Show (this) ; %_\/_‘ vekevence to that Torm 4o Show).
e The renderer keeps a reference to the world and each child form
At the very top of the Renderer class you'll need a few important fields. The
class has to know the location of each bee and flower, so it needs a reference to the

World. And it'll need to add, move, and remove controls in the two forms, so it
needs a reference to each of those forms:

public Forml () {

class Renderer {

Start your Rendever

private World world; ¢lass with these lines.
private HiveForm hiveForm; we'll add 4o this elass
private FieldForm fieldForm; ‘f:h\roughou‘[: the ChaF‘Ecr.

e The renderer uses dictionaries to keep track of the controls
World keeps track of its Bee objects using a List<Bee> and a List<Flower> to store
its flowers. The renderer needs to be able to look at each of those Bee and Flower objects
and figure out what BeeControl and PictureBox they correspond to—or, if it can’t
find a corresponding control, it needs to create one. So here’s a perfect opportunity to use
dictionaries. We’ll need two more private fields in Renderer:

private Dictionary<Flower, PictureBox> flowerLookup =

new Dictionary<Flower, PictureBox>();

private Dictionary<Bee, BeeControl> beeLookup =

? new Dictionary<Bee, BeeControl>(); These two dic‘ho"‘a{j {'o‘i::d:hs
These dictionaries become one—to—one let the {:cy}dzrcr;(,hvi:c or !
mappings between a bee or flower and one ton Yih - ld
the eontrol ‘FOV' that bee or ‘Flowcr‘ -C‘OWCV' n e werE

66

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

Hwe

System. Wi

Fie®

The venderer is ac{:ing on the two
as well as all +he ob\)
last chapter for the simulator.

gdi+ graphics

‘Forms,

etts You built in the

e The bees and flowers already know their locations
There’s a reason we stored each bee and flower location using a Point. Once we have a

Bee object, we can easily look up its BeeControl and set its location.

beeControl = beelookup[bee];
beeControl.Location = bee.Location;

For eath bee or flower,

ma{u‘.hing tontrol. Then set that control
. ’ I
location to mateh the lotation of 'f:c;\hc ;:

or flower ob\)cc{;.

we £an look up the

If a bee doesn't have a control, the renderer adds it to the hive form

It’s easy enough for the renderer to figure out if a particular bee or flower has a control. If the
dictionary’s ContainsKey () method returns false for a particular Bee object, that means
there’s no control on the form for that bee. So Renderer needs to create a BeeControl, add it to
the dictionary, and then add the control to the form. (It also calls the control’s BringToFront ()
method, to make sure the control doesn’t get hidden behind the flower PictureBoxes.)

if (!beelookup.ContainsKey (bee)) {
beeControl new BeeControl ()
beelookup.Add (bee, beeControl);

hiveForm.Controls.Add (beeControl) ;

beeControl.BringToFront () ;

} else
beeControl = beelookup[bee];

Remember how a dic{:iona\r\/ ¢an use anything as a key?
Well, this one uses a Bee objeet as a key. The rcndcvr);;r
needs to know which BeeControl on the form bclongs
toa Pa!r{:i(,ubr bee. So it looks up that bee’s obJCC‘E

in the dic{:ionary, which spits out the corvect tontrol.
Now the venderer tan move it around.

www.itbook.store/books/9781449343507

{ Wwidth

40 };

Height

thh{:&ithcyO tells us if £he bee
exists in the dic{ionary. 1£ not, then
we need to add that bee, along with 3

torresponding eontrol.

40,

BvingTBF\rov\{:() ensures the bee

appears “on Jc,o\> g an\/ ‘C|owcrs on
J\Z FieldForm, and on top of the
background of the HiveForm.

you are here » 67


https://itbook.store/books/9781449343507

This is a PictureBox

frieape! tontrol with its
Backg\roundlmagc
i H ' set to the outside
Add the hive and field forms to the project hive pickure and
BaCkgroundlmacha\/ou{:

Now you need forms to put bees on. So start with your existing beehive simulator project, and .t {, Streteh. When you
use “Add >> Existing Item...” to add your new BeeControl user control. The UserControl |ad the hive pictures into
hasa .csfile,a .designer.csfie and a . resx file—you’ll need to add all three. Then openup )¢ Resourte Dcsigncr,
the code for both the . cs and .designer. cs files, and change the namespace lines so they match Jc\'\c\/’" show up in the

the namespace of your new project. Rebuild your project; the BeeControl should now show up in list of vesourees when

the toolbox. You’ll also need to add the graphics to the new project’s resources. Then add two more ou elick £he ... button
Windows forms to the project by right-clicking on the project in the Solution Explorer and choosing ,ext 4o Backsroundlmagc
“Windows Form...” from the Add menu. If you name the files HiveForm. cs and FieldForm.cs,

in the Properties window.
the IDE will automatically set their Name properties to HiveForm and FieldForm. You already

know that forms are just objects, so HiveForm and FieldForm are really just two more classes. x/
Make sure ?/ou'll need the inside and outside hive
You vesize 'magc.s_“H'iVC" (insidc).\?ns" and “Hive
both forms (outside).prg"—loaded into Your vesources.
so ‘{:hc\/ look Thcn’add these two ‘("orms. Set each
like these ﬁwm y F OV‘mBordch'l;\/lc PV°PCV+.\/ to
sereenshots. xedSingle (so The user can't vesize it),

</ k) the ControlBox property to false (4o take

awaY its minimize and maximize tontrols),

and StartPosition to Manual (so its

Set the form’s Background|mage property to the Lrotation proper Y is settable).
inside hive pictuve, and its Backgroundimagelayout

property to Streteh.

Remember, 9o to the Properties window, click on the lightning—bolt

. . iton 1o bring up the Events window, stroll down to the MouseClick vow
FlgUI'e OU‘r Where Y_O_QV loca‘no"s are and double—¢lick on it. The 'DE will add the event handler ('\o\r You.

You need to figure out where the hive is on your FieldForm. Using the Properties window, create ‘
a handler for the MouseClick event for the Hive form, and add this code: \ /
—

private void HiveForm MouseClick (object sender, MouseEventArgs e) {
MessageBox.Show (e.Location.ToString()) ; \
}

We’ll get your form running on the next few pages. Once it’s running, click on the exit of the hive in
the picture. The event handler will show you the exact coordinates of the spot that you clicked.

Add the same handler to the Field form, too. Then, by clicking, get the coordinates of the
exit, the nursery, and the honey factory. Using all these locations, you’ll be able to update the
InitializeLocations () method you wrote in the Hive class in the last chapter:

(4
Once You 3 t private void InitializeLocations|()
\Your snmula{‘pr {
running, \You locations = new Dictionary<string, Point>();
¢tan use this locations.Add (“"Entrance”, new Point (626, _110));
k th locations.Add (“Nursery”, new Point(77, 162))% R
to {:}wca e locations.Add (“HoneyFactory”, new Point (157, 78)); emove the mouse ¢lick
Hive's lotations locations.Add (“Exit”, new Point (175, 180));} handler when )'ou'\rc done
tollection.

These ave the coordinates that worked for us, but i your form You Just needed it to 9et the

68 fo5 heer BikgeCa- it/ oy dsaadibisstioi] dronds fesérds otations on your forms,

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

Build the renderer

Here’s the complete class. The main form calls this class’s method
right after it calls to draw the bees and flowers on the forms. You’ll
need to make sure that the flower graphic () is loaded into the
project, just like the animated bee images.

The vendever
khe world and
draws the bees on

class Renderer {
private World world;
private HiveForm hiveForm;
private FieldForm fieldForm;

private Dictionary<Flower,
new Dictionary<Flower, PictureBox>();

private List<Flower> deadFlowers =

BeeControl> beeLookup =
BeeControl> () ;
new List<Bee>();

private Dictionary<Bee,
new Dictionary<Bee,
private List<Bee> retiredBees =

public Renderer (World world, HiveForm hiveForm,
this.world = world;

gdi+ graphics

Renderer

All fields in the vendever

ave private betause no
other class needs to update

A

Render()
Reset()

any of its properties. [t's
‘Cu“\/ cm‘.a?sulafcd- The
world \")us{: calls Render()
4o draw the world to the

keeps YC‘CCYCV\LCS.{'D
the two Yorms i

PictureBox> flowerLookup =

new List<Flower>();

FieldForm fieldForm) {

Lorms, and Reset() to tlear
the tontrols on the Forms
if it needs to veset.

The world uses Bee and Flow '

to keep track of every bee a::i et
lo\fvcr in the world. The forms use

a PietureBox 4o display each flower

and a BeeControl 4o display each bee.

The venderer uses these dietionavies

to tonneet each bee and flower 4o its

own BeeControl oy PietureBox.

!

When a flower dies
or a bee vetives, it
uses the deadFlowers

this.hiveForm = hiveForm; i
this.fieldForm = fieldForm; Z:d{t£WCdBCCShﬂB
} The timer on the main form that vuns the . c. €an out the
dlt‘(:lonarics

animation calls the Render() method, which

public void Render () f{ £ updates the bees and the flowers, and then

DrawBees () ; tleans out its dictionavies.
DrawFlowers () ;

RemoveRetiredBeesAndDeadFlowers () ;

public void Reset () {

foreach
fieldForm.Controls.Remove (flower) ;
flower.Dispose() ;

}

foreach (BeeControl bee in beelLookup.Values)
hiveForm.Controls.Remove (bee) ;
fieldForm.Controls.Remove (bee) ;
bee.Dispose () ;

}

flowerLookup.Clear();

beelLookup.Clear () ;

www.itbook.store/books/9781449343507

(PictureBox flower in flowerLookup.Values)

{

{

I£ the simulator is veset, it ealls each
form’s Controls.Remove() method to
complc{:ciz tlear out the tontrols on
the two forms. [t finds all of +he
eontrols in each of its two dictionaries
and vemoves them from the forms,
talling Dispose() on eath of them. Then
it tlears the two dietionaries.

you are here » 69


https://itbook.store/books/9781449343507

pegEgtied headerer class
It 4akes 4o foreath loops to draw the Flowers. The first looks .
for new flowers and adds their PictureBoxes. The setond looks The fivst foreach loop uses

for dead Flowers and vremoves their PictureBoxes. :ccﬂxe:::o;rjwitthaw

private void DrawFlowers () { see if it's go{: a tontrol on
foreach (Flower flower in world.Flowers) the ‘FOW'L ,‘(—‘ it docsn'{:, it
if (!flowerLookup.ContainsKey (flower)) { treates a new PietureBox
PictureBox flowerControl = new PictureBox () { using an objcd; initializer,
DY‘&WFIOWCV‘SO uses -[',hc Width = 45, adds i't {')0 ‘{th ‘FOV‘M, and
Lotation yroycr'l:\/ in Height = 55, then adds it 4o the
the Flower objcé‘[: to Image = Properties.Resources.Flower, ‘("IOWCV‘LOOkUP dié‘(:iov\a\ry.
set the PietureBox’s SizeMode = PictureBoxSizeMode.StretchImage,
lotation on the Lorm. Location = flower.Location
}i
flowerLookup.Add (flower, flowerControl); The setond ‘(:orcadh Ioo‘?
fieldForm.Controls.Add (flowerControl) ; looks for any PictureBox in
} the ﬂowchooku? dib[',ionar\/
that’s no longer on the form
foreach (Flower flower in flowerLookup.Keys) { and removes it.
if (!world.Flowers.Contains (flower)) {
PictureBox flowerControlToRemove = flowerLookup[flower];

fieldForm.Controls.Remove (flowerControlToRemove) ;
flowerControlToRemove.Dispose () ;

deadFlowers. Add (Flower) ; After it vemoves the PietureBox, it calls its
K’ Dispose() method. Then it adds the Flower

} objeet to deadFlowers so it'll get cleared later.
private void DrawBees () { DY'QWBCCSO also uses two Forcach
BeeControl beeControl; looFs, and it does ‘U\c same basie
foreach (Bee bee in world.Bees) { {-),'.,,55 as DYawFlowc\rsO. But
beeControl = GetBeeControl (bee); it's a little more comylcx so we
. . . )
if (bee.InsideHive) { split some of its behavior out
if (fieldForm.Controls.Contains (beeControl)) jnifo scfara{:c methods to make it
. . [}
MoveBeeFromFieldToHive (beeControl) ; easier to understand.

} else if (hiveForm.Controls.Contains (beeControl))
MoveBeeFromHiveToField (beeControl) ;

beeControl.Location = bee.Location; DrawBecsO theeks i«(: a2 bee is in
/ the hive but its tontrol is on the
) FieldForm, or vite versa. |t uses
foreach (Bee bee in beelookup.Keys) { fwo exbra methods 4o move the
if (!world.Bees.Contains (bee
Once the BeeControl - (wor ins(bee)) BeeControls between the forms.

beeControl = beelLookup|[bee];
if (fieldForm.Controls.Contains (beeControl))
fieldForm.Controls.Remove (beeControl) ;

is removed, we need

+o call its Disyose()
method—the user

; if (hiveForm.Controls.Contains (beeControl)) The see.
control will dispose of . . Snese o.hd foreath loop works
conit hiveForm.Controls.Remove (beeControl) ; Jus{: like in DrawFlowers()
its timer for us. . : !
beeControl.Dispose () ; R exeept it needs to vemove the
} retiredBees.Add (bee) ; BeeControl from the righ-{:
} orm.

}
70 GDI+ bonus PDF for Head First C# % http://www.headfirstlabs.com/hfcsharp

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+ graphics

You’ll need to make sure you’ve got using System.Drawing

and using System.Windows.Forms at the top of the
Renderer class file.

private BeeControl GetBeeControl (Bee bee) {
BeeControl beeControl;
if (!beelookup.ContainsKey (bee)) {

6C£BccCon'{:\ro|O looks wp a bee in the
bchookuF dic{:ionar\/ and veturns it. ,‘F
it’s not there, it eveates a new 40 x 40
BeeControl and adds it 4o the hive form
(since that's wheve bees are born).

beeControl = new BeeControl () { Width = 40, Height = 40 };

Don't ‘F°r3d" that beeLookup.Add (bee, beeControl);
the ! means NOT. hiveForm.Controls.Add (beeControl) ;
beeControl.BringToFront () ;
}
else
beeControl = beelLookup|[bee];
return beeControl;

MoveBeeFromttive ToField() takes a sycci-(:ic
BeeControl out of the hive form's Controls
collection and adds it to the field form's
Controls ollection.

private void MoveBeeFromHiveToField (BeeControl beeControl) {

hiveForm.Controls.Remove (beeControl) ;
beeControl.Size = new Size (20,
fieldForm.Controls.Add (beeControl) ;
beeControl.BringToFront () ;

20 s The bees on the field form are smaller than
the ones on the hive ‘(:orm, so the method
needs to thange BeeControl’s Size property.

private void MoveBeeFromFieldToHive (BeeControl beeControl) { <ff:;’_‘7

fieldForm.Controls.Remove (beeControl) ;
beeControl.Size = new Size (40, 40);
hiveForm.Controls.Add (beeControl) ;
beeControl.BringToFront () ;

private void RemoveRetiredBeesAndDeadFlowers () {

foreach (Bee bee in retiredBees)
beeLookup.Remove (bee) ;

retiredBees.Clear () ;

foreach (Flower flower in deadFlowers)
flowerLookup.Remove (flower) ;

deadFlowers.Clear() ;

www.itbook.store/books/9781449343507

MoveBeeFromField ToHive() moves a
BeeControl back to the hive form.
[t has to make it bigger again.

- Whenever DrawBees() and DrawFlowers()
found that a flower or bee was no longer
in the world, it added them to the
deadFlowers and vetivedBees lists to be
vemoved at the end of the frame.

A§{xr all £he ontrols are moved around,
he vendever talls this method to ctlear
any dead Llowevs and vetived bees out of
the two dittionaries.

you are here » 71


https://itbook.store/books/9781449343507

pegé gogi header

Now connect the main form to your two new
forwms, HiveForm and FieldForm

It’s great to have a renderer, but so far, there aren’t any forms to render

onto. We can fix that by going back to the main Form class (probably When the main form | ds, i
called Forml) and making some code changes: instance of each of {::3 S{;: }:4: c'zca'l:zs an
They've just ob; whe other two forms.
ects
public partial class Forml : Form { ‘l‘,hey WO,{'{: b J in the hc3[’ for now—

private FieldForm fieldForm = new FieldForm()

di . .
private HiveForm hiveForm = new HiveForm() ; % methods are Za”I:ZPYCd until their Show()

private Renderer renderer;

The tode +o  // the rest of the fields

veset the world D [- Move the tode to instantiate the World

moved to the public Forml () {
ResetSimulator() InitializeComponent () ;

method.

into the ResetSimulator() method.

MoveChildForms () ; Levente
hiveForm.Show (this); = The form passes 3 vereren

fieldForm.Show (this); < 1o ikself into FOVm.S:ow() so
ResetSimulator () ; it becomes the pavent Torm-

timerl.Interval = 50;

timerl.Tick += new EventHandler (RunFrame) ;
timerl.Enabled = false;

UpdateStats (new TimeSpan());

<—The main form’s onstructor

moves the two child forms

in place, then displays them.
Then it calls ResetSimulator(),
which instantiates Renderer.

} Sine both ¢hild forms have StavtPosition set
to Manual, the main form £an move them using

private void MoveChildForms () { the Lotation property.
hiveForm.Location = new Point(Location.X + Width + 10
fieldForm.Location = new Point (Location.X,

, Location.Y);

& This tode moves the two

Location.Y + Math.Max (Height, hiveForm.Height) + 10); = [, < <o that the hive

}

public void RunFrame (object sender, EventArgs e) {
framesRun++; . )
world.Go (random) ; Add"‘ﬁ this one line o RunFrame makes the
renderer.Render(); _ S'mulalﬁor update the graphics each time Lhe
// previous code world’s Go() method is called.

}

private void Forml_ Move (object sender, EventArgs e) {

MoveChildForms () ; K= Use the Events button in the Properties

} wimdow to add the Move event-handler.

Make sure you've set the field and hive
forms’ StartPosition property to Manual,
or else MoveChildForms() won't work.

72 GDI+ bonus PDF for Head First C# % http://www.headfirstlabs.com/hfcsharp

www.itbook.store/books/9781449343507

Lorm is next to the main
stats form and the field
£orm is below both of them.

The Move event is fived

& every time the main

form is moved. Calling
MoveChildForms() makes
sure the ehild forms
a|wa\/s move along with
the main form.


https://itbook.store/books/9781449343507

gdi+

)
feve's where we eveate new instances of

the World and Rendever tlasses, which
vesets the simulator.

private void ResetSimulator () {

framesRun = 0;

world = new World(new BeeMessage (SendMessage)) ;
renderer = new Renderer (world, hiveForm, fieldForm) ;

}

private void reset Click(object sender, EventArgs e

renderer .Reset () ;
ResetSimulator () ;
if (!timerl.Enabled)

){[7

The Reset button needs to
eall Reset() to elear out all
the BeeControls and flower

toolStripl.Items[0].Text = “Start simulation”; P\LJCWCB°‘“S’ and then vese

}

the simulator-

private void openToolStripButton Click(object sender, EventArgs e) {
// The rest of the code in this button stays exactly the same.

renderer .Reset () ;

renderer = new Renderer (world, hiveForm, fieldForm) ;

Dum

Q,: | saw that you showed the form using a Show () method,

but | don't quite get what was going on with passing this as a
parameter.

A: This all comes down to the idea that a form is just another
class. When you display a form, you're just instantiating that class
and calling its Show () method. There’s an overloaded version of
Show () that takes one parameter, a parent window. When one
form is a parent of another, it causes Windows to set up a special
relationship between them—for example, when you minimize the
parent window, it automatically minimizes all of that form’s child
windows, too.

www.itbook.store/books/9781449343507

therejare no
b Questions

>

Fina“\/, \/ou)” need to add tode to
the Open button on the ToolStrip
to use the Reset() method to
remove the bees and flowers from
the +wo ‘(:orms' Controls Co”cc{ions,
and then treate a new vendever
using the newly loaded world.

Q,: Can you alter the preexisting controls and muck around
with their code?

- No, you can't actually access the code inside the controls
that ship with Visual Studio. However, every single one of those
controls is a class that you can inherit, just like you inherited from
PictureBox to create your BeeControl. If you want to
add or change behavior in any of those controls, you add your own
methods and properties that manipulate the ones in the base class.

73


https://itbook.store/books/9781449343507

pegefual’s:adeng

Test drive..ahewm...buzz

Compile all your code, chase down any errors you’re
getting, and run your simulator.

Your bees should be happily
flapping their wings nov:

Try thanging the
Consfah{:s on Your
simulator, and seeing how
the venderer handles more
bees or flowevs.

G

N\

W

74 GDI+ bonus PDF for Head First C# % http://www.headfirstlabs.com/hfcsharp

www.itbook.store/books/9781449343507

\\H/

1\


https://itbook.store/books/9781449343507

gdi+

Looks great, but something’s not quite right...

Look closely at the bees buzzing around the hive and the flowers, and you’ll
notice some problems with the way they’re being rendered. Remember

how you set each BeeControl’s BackColor property to Color.
Transparent? Unfortunately, that wasn’t enough to keep the simulator from
having some problems that are actually pretty typical of graphics programs.

o There are some serious performance issues
Did you notice how the whole simulator slows down when all the bees are inside the hive?
If not, try adding more bees by increasing the constants in the Hive class. Keep your eye
on the frame rate—add more bees, and it starts to drop significantly.

e The flowers’ “transparent” backgrounds aren't really transparent
And there’s another, completely separate problem. When we saved the graphics files for
the flowers, we gave them transparent backgrounds. But while that made sure that each
flower’s background matched the background of the form, it doesn’t look so nice when
flowers overlap each other.

When you set a PictureBox's

backg;/ound tolor to Transparent, it k " |

dvaws any franspavent pixels in the en one PietureBox overlaps

image so they mateh the background another, C# .draws e

of Lhe form..whith isn't always the transpavent: pivels o they math

ioht thing to do the form, not the other tontrol

vig) 9 that it overlaps, tausing weird
VCC{:ahgular ‘eut-outs” any time
two flowers overlap.

e The bees' backgrounds aren't transparent, either
It turns out that Color . Transparent really does have some limitations. When the
bees are hovering over the flowers, the same “cut-out” glitch happens. Transparency
works a little better with the hive form, where the form’s background image does show
through the transparent areas of the bee graphics. But when the bees overlap, the same
problems occur. And if you watch closely as the bees move around the hive, you’ll see
some glitches where the bee images are sometimes distorted when they move.

75

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

page goal

Let’s take a closer look at those performance issues

Each bee picture you downloaded is big. Really big. Pop one of them open in Windows
Picture Viewer and see for yourself. That means the PictureBox needs to shrink it
down every time it changes the image, and scaling an image up or down takes time. The
reason the bees move a lot slower when there’s a lot of them flying around inside the

hive is that the inside hive picture is HUGE. And when you made the background for the
BeeControl transparent, it needs to do double work: first it has to shrink the bee picture
down, and then it needs to shrink a portion of the form’s background down so that it can
draw it in the transparent area behind the bee.

Bee animation 1.png

The bee picture is
veally big, and the
PietureBox needs
-{jmc 'bo sh‘rink i{’,
down every time
it d]s‘?la\/s a new
animation frame.

)

The graphics files for the bees
are really BIG. The PictureBox
needs to scale the picture down
to size every time it displays a
new animation frame. That takes
a lot of time...

Hive (Inside).png

The inside hive picture is huge.
Evcv-\/ time a bee flies in front
of it, its PietureBox needs to
stale it down to the size of the
tontrol. [t needs to do that

to show part of the picture

any place the bee picture’s
transparent batkground lets it
show {:hrough.

...S0 all we need to do to speed up the simulator’s performance
is to shrink down all the pictures before we try to display them.

76

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+
All we need to do to speed up the graphics performance is add a method
to the renderer that scales any image to a different size. Then we can

resize each picture once when it’s loaded, and only use the scaled- DQ tbls *
down version in the bee control and for the hive form’s background. * *
Q Add the ResizeImage method to the renderer
All of the pictures in your project (like Properties.Resources.Flower) are stored as
Bitmap objects. Here’s a static method that resizes bitmaps—add it to the Renderer class:

public static Bitmap ResizelImage (Bitmap picture, int width, int height) {
Bitmap resizedPicture = new Bitmap (width, height);

using (Graphics graphics = Graphics.FromImage (resizedPicture)) {
graphics.DrawImage (picture, 0, 0, width, height);
} We'll £ake a eloser look at what this Graphics ochct is

| return resizedPicture; and how this method works in the next few pages
e Add this ResizeCells method to your BeeControl
Your BeeControl can store its own Bitmap objects—in this case, an array of four of them. Here’s a

control that’ll populate that array, resizing each one so that it’s exactly the right size for the control:

1 ; These lines take eath of “the Bitmap objects that store the bee pictures

private Bitmap[] cells = new Bitmap[4

private void ResizeCells() { " and shrink them down using the Rcsnulmagc() method we wrote.
cells[0] = Renderer.ResizeImage (Properties .Resources.Bee_anlmatlon_l, Width, Height);
cells[1] = Renderer.ResizeImage (Properties.Resources.Bee animation 2, Width, Height);
cells[2] = Renderer.ResizelImage (Properties.Resources.Bee animation 3, Width, Height);
cells[3] = Renderer.ResizeImage (Properties.Resources.Bee animation 4, Width, Height);

}

@ Change the switch statement so that it uses the cells array, not the resources
The BeeControl’s Tick event handler has a switch statement that sets its BackgroundImage:

BackgroundImage = Properties.Resources.Bee animation 1;
Replace Properties.Resources.Bee_animation_1 with cells[0]. Now replace the rest of the
case lines, so that case 2 uses cells[1], case 3 uses cells[2], case 4 uses cells[3], case 5 uses
cells[2], and the default case uses cells[1]. That way only the resized image is displayed.

e Add calls to ResizeCells () to the BeeControl
You’ll need to add two calls to the new ResizeCells () method. First, add it to the bottom of the
constructor. Then go back to the IDE designer by double-clicking on the BeeControl in the Properties
window. Go over to the Events page in the Properties window (by clicking on the lightning-bolt icon), scroll
down to Resize, and double-click on it to add a Resize event handler. Make the new Resize event

handler call ResizeCells (), too—that way it’ll resize its animation pictures every time the form is
resized.

e Set the form's background image manually
Go to the Properties window and set the hive form’s background image to (none). Then go to its
constructor and set the image to one that’s sized properly.

publéib?iit;iiegii;?) H?veForm Pororm A Your form has a Clncn{:Rcctanﬁlc property that
InitializeComponent () ; eontains RCC{Z&'\ﬁIC that has the dimensions o‘p

BackgroundImage = Renderer.ResizeImage ( ldeHPbyarca
Properties.Resources.Hive inside ,
ClientRectangle.Width, ClientRectangle.Height);

Now run the simulator—it’s much faster!

77

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

Pigingakeper

You resized your Bitmaps using a Graphics object T o contrels e 8

— Crca{:céra\?hics() method
that veturns a new Qraphits

Let’s take a closer look at that ResizeImage () method you added to the biect. \/ou,” see 3 lot move

renderer. The first thing it does is create a new Bitmap object that’s the size that /

the picture will be resized to. Then it uses Graphics.FromImage () to create about that ShorH\/.

a new Graphics object. It uses that Graphics object’s DrawImage ()

method to draw the picture onto the Bitmap. Notice how you passed the width

and height parameters to DrawImage () —that’s how you tell it to scale the \/ou pass a Pid:wc into the

image down to the new size. Finally you returned the new Bitmap you created, so method, 810h3 with a new

it can be used as the form’s background image or one of the four animation cells. width and height that it'll
be resized to.

public static Bitmap ResizeImage (Bitmap picture, int width, int height) {
Bitmap resizedPicture = new Bitmap (width, height);
using (Graphics graphics = Graphics.FromImage (resizedPicture)) ({

graphics.DrawImage (picture, 0, 0, width, height);

method veturns a new Graphics object that lets

m|maae() !
} &_ The Fromlmage to that image. Take a minute and use the [DE’s

ou dvaw graphits on

. . : : I
return resizedPicture; : look 3t the methods in the Graphits class. thn You €3
I’E\tﬂjlgv::;:(;oi’(j;\’ics £he image into the vesizedPicture bitmap at the
} loeation (0, 0) and staled to the width and height parameters.
Let’s see image resizing in action y Just do this temporavily.
Dcle{;c the button and

Drag a button onto the Field form and add this code. It creates a new
PictureBox control that’s 100 x100 pixels, setting its border to a black line so
you can see how big it is. Then it uses ResizeImage () to make a bee picture

tode when you)vc done.

ropens Onee the P stm et & added e the form e vee o gipiavea. . The Resizelmage()

private void buttonl Click(object sender, EventArgs e) metltO(I creates a

{ PictureBox beePicture = new PictureBox (); Grap]mics OlljeCt
recictime.ire - mew use 100, 10015 to draw on an

beePicture.BorderStyle = BorderStyle.FixedSingle; . . Ll B'
beePicture.Image = Renderer.ResizeImage ( nvisible ltmaP

Properties.Resources.Bee animation 1, 80, 40);
Controls.Add (beePicture) ;

object. It returns

} You tan see the image vesizing in tllat Bltma]) 50 lt
action—the squished bee image is — > l) c[ l c[
muth smaller than the PictureBox. can be ISP aye

RCSizc'mach squished it down. on a {Orm or ln a

78 PictureBox.

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

Your image resources are stored in Bitmap objects

When you import graphics files into your project’s resources,
what happens to them? You already know that you can access
them using Properties.Resources. But what, exactly, is
your program doing with them once they’re imported?

NET turns your image into a new Bitmap object:

gdi+

£ you don't see any
performante problems,
keep adding bees until
ﬂ\c program slows down!

The Bitmap class has several overloaded

tonstruetors. This one loads 3 graphics File

Lrom disk. You tan also pass it

integers

for width and height—that'll eveate a new

g Bifmap with no pictuve.

Bitmap bee = new Bitmap (“Bee animation 1.png”)

Bee animation 1.png

This call g¢
4o dvaw on

us\hS

Then each Bitmap is drawn to the screen
Once your images are in objects, your form draws them to
the screen with a call like this:
using (Graphics g = CreateGraphics()) ({
g.DrawImage (myBitmap, 30, 30, 150, 150);
L A N~————

Drawlmagc() takes a Bitmap, (\
the image {0 draw...

..a starting X, Y toordinate...

ts a Graphics object
the form. We use 3

skatment to make sure the
Qraphits ob\')cct is dis\?oscd.

K
...and a size, 150x/50 pixels.

Resizing images takes a

lot of processing power! If

The bigger they are...

Did you notice those last two parameters to DrawImage () ?
What if the image in the Bitmap is 175 by 175? The
graphics library must then resize the image to fit 150 by 150.
What if the Bitmap contains an image that’s 1,500 by 2,025?
Then the scaling becomes even slower....

— =lo>

This image, whith is
300x300 Vi%cls... 150

g \L
7
9ets shrunk 4o Lhis size, which is (for

example) 150x150 pixels. And that
Your simulator down/

www.itbook.store/books/9781449343507

SIOWS

you do it once, it’s no big
deal. But if you do it EVERY
FRAME, your program will
slow down. We gave you
REALLY BIG images for the
bees and the hive. When
the renderer moves the
bees around (especially

in front of the inside hive
picture), it has to resize
them over and over again.
And that was causing the
performance problems!

79


https://itbook.store/books/9781449343507

pagé&gaatontrolrwhen you don’t use controls

Use System.Prawing to TAKE CONTROL
of graphics yourself

System.Drawing

The graphics methods in the System.

The Graphics object is part of the System.Drawing namespace. The rawing namespate ave sometimes
NET Framework comes with some pretty powerful graphics tools that go a lot veferved 4o as 6DI+’ which stands £
further than the simple PictureBox control that’s in the toolbox. You can 6raphics Device Intevface. When >
draw shapes, use fonts, and do all sorts of complex graphics...and it all starts draw 9graphies with 4DI+, vou s"(:ao-z
with a Graphics object. Any time you want to add or modify any object’s with a Graphies object fi:aZ’s h ':
graphics or images, you’ll create a Graphics object that’s linked to the to a Bi-{;,,.a‘,' form contrel, or 00 zd up
object you want to draw on, and then use the Graphics object’s methods °bjC¢'l: that You want 4o d\:-aw e ?'CV
to draw on your target. the 6,.3‘,'“ o5 Ochc 25 mebhods on using

e Start with the object you want to draw on
For instance, think about a form. When you call the form’s
CreateGraphics () method, it returns an instance of
Graphics that’s set up to draw on itself. The form ean eall its own
CreateGraphics() method,

or another ob\)cc‘{: tan eall
& it Either way, the method
this. CreateGraphics ( veturns a vefevente 4o 3

/—ﬁ Graphies objeet whose methods

will dra it
4\ é) won it

' e Gram\o‘?’
~ Call Lhis instance of )
System.Wm6° éia;}:';s a‘C‘CCC‘{Z the form that You d ?h L draw on the
eveated the Graphits objett Graphis obiect itself
You only use it to draw
on other Ob\jcel:s.

e Use the Graphics object's methods to draw on your object
Every Graphics object has methods that let you draw on the object that
created it. When you call methods in the Graphics object to draw lines, circles,
rectangles, text, and images, they appear on the form.

Even though you've
calling methods in
this Qraphics object, g/ﬁraw—m‘new’%
the actual graphies
appear on the Ob\)CC{"
that eveated it
L/ The DrawLines() method,
G,.ap\,(\cﬁ for example, draws a bunth
lines on whatever object
treated the Graphics instante.

Bect

80 GDI+ bonus PDF for Head First C# % http://www.headfirstlabs.com/hfcsharp

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+ graphics
)
You'll need 4o make sure You've 9ot a

. using System. rawing; line 3
A 30-second tour of GPI+ graphics oF o oy 2vin e 3t he top

¢ methods.
| Or, when You add a form to vour
There are all sorts of shapes and pictures that you can draw once you’ve Preject, the IDE adds that ,Y o
created a Graphics object. All you need to do is call its methods, and it’ll four torm tlass auﬁoma{:ically h

draw directly onto the object that created it.

o The first step is always to grab yourself a Graphics object. Use a form’s CreateGraphics ()
method, or have a Graphics object passed in. Remember, Graphics implements the
IDisposable () interface, so if you create a new one, use a using statement:

using (Graphics g = this.CreateGraphics()) { Remember, this draws on the Ob\)CC{'«
that ereated this instance.

e If you want to draw a line, call DrawLine () with a starting point and ending point, each

represented by X and Y coordinates: | ————— The start so0, dinat
. . e...
g.DrawlLine (Pens.Blue, 30, 10, 100, 45);
~————

<~ _— .and the end toordinate.

or you can do it using a couple of Points:

g.DrawLine (Pens.Blue, new Point (30, 45), new Point (100, 10));

e Here’s code that draws a filled slate gray rectangle, and then gives it a sky blue border. It uses a There ave a whole

Rectangle to define the dimensions—in this case, the upper left-hand corner is at (150, 15), lot of "'°.|°‘f5 You
and it’s 140 pixels wide and 90 pixels high. Lan use—just type
Color" « CV\S"
. ) ) or
g.FillRectangle (Brushes.SlateGray, new Rectangle (150, 15, 140, 90)); “Biuches” 1co||owcd
g.DrawRectangle (Pens.SkyBlue, new Rectangle (150, 15, 140, 90)); b\/ a dot, and the

IntelliSense window
e You can draw an ellipse or a circle using the DrawCircle () or FillCircle () methods, will diSFla\/ them.
which also use a Rectangle to specify how big the shape should be. This code draws two
ellipses that are slightly offset to give a shadow effect:

g.FillEllipse (Brushes.DarkGray, new Rectangle (45, 65, 200, 100));
g.FillEllipse (Brushes.Silver, new Rectangle (40, 60, 200, 100));

e Use the DrawString () method to draw text in any font and color. To do that, you’ll need to
create a Font object. It implements IDisposable, so use a using statement:

using (Font arial24Bold = new Font (“Arial”, 24, FontStyle.Bold)) {
g.DrawString (“Hi there!”, arial24Bold, Brushes.Red, 50, 75);

[§ 4he above statements ave _= @ @

exetuted in order, this is what wil There’s no step | on

this itture, si
d the form. Eath of the —=D - Pt e ot
:Eakgn::ics above matehes up with @" gas C\r.ca ‘tmg et
the numbers here. The upper left- @ raphies Ob\jcc{.
hand torner is toordinate (0, 0).

you are here » 81

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

pegye gosit

Use graphics to draw a picture on a form *

Let’s create a new Windows application that draws a . S
1

picture on a form when you click on it. DT aW tk

Q Start by adding a Click event to the form
Go to the Events page in the Properties window (by clicking on the
lightning-bolt icon), scroll down to the Click event, and double-click on it.

Start the event handler with a using line to create the Graphics
object. When you work with GDI+, you use a lot of objects that
implement IDisposable. If you don’t dispose of them, they’ll slowly
suck up your computer’s resources until you quit the program. So you’ll

end up wing @ lot of using satements Heve's the first line in your Forml_Cliek()

using (Graphics g = CreateGraphics()) { event handler method. We'll give you all
the lines for the event handler—put them
together to draw the picture.

e Pay attention to the order you draw things on our form
We want a sky blue background for this picture, so you’ll draw a big blue rectangle first—then
anything else you draw afterward will be drawn on top of it. You'll take advantage of one of
the form’s properties called ClientRectangle. It’'s a Rectangle that defines the boundaries
of the form’s drawing area. Rectangles are really useful—you can create a new rectangle by
specifying a Point for its upper left-hand corner, and its width and height. Once you do that,
it'll automatically calculate its Top, Left, Right, and Bot tom properties for you. And it’s got
useful methods like Contains (), which will return true if a given point is inside it.
This will come in veally handy
later on in the book! What
do You +hink \/ou,“ be doing

9 Draw the bee and the flower with Contains()?

You already know how the DrawImage () method works. Make sure you add the image resources.

g.FillRectangle (Brushes.SkyBlue, ClientRectangle);

g.Drawlmage (Properties.Resources.Bee animation 1, 50, 20, 75, 75);
g.DrawImage (Properties.Resources.Flower, 10, 130, 100, 150);
Pens are for drawing lines, and they have a
ﬁ[‘ width. [ You want to draw a filled shape or
@  Add a pen that you can draw with some text, you'll need a Brush.
Every time you draw a line, you use a Pen object to determine its color and thickness. There’s a
built-in Pens class that gives you plenty of pens (Pens.Red is a thin red pen, for example). But
you can create your own pen using the Pen class constructor, which takes a Brush object and a
thickness (it’s a float, so make sure it ends with F). Brushes are how you draw filled graphics (like
filled rectangles and ellipses), and there’s a Brushes class that gives you brushes in various colors.

using (Pen thickBlackPen = new Pen (Brushes.Black, 3.0F)) {

82

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+

This 9oes inside the innevr using
statement that cveated the Pen.

Add an arrow that points to the flower

There are some Graphics methods that take an array of Points, and connect them using a
series of lines or curves. We’ll use the DrawLines () method to draw the arrow head, and the
DrawCurve () method to draw its shaft. There are other methods that take point arrays, too (like
DrawPolygon (), which draws a closed shape, and Fil1Polygon (), which fills it in).

g.DrawlLines (thickBlackPen, new Point[] {
new Point (130, 110), new Point (120, 160), new Point (155, 163)});
g.DrawCurve (thickBlackPen, new Point[] {

new Point (120, 160), new Point (175, 120), new Point (215, 70) });

} , When You pass an arvay O‘F
Hcv—‘cs where the using blotk ends—we points o DrawCurve0), it
domf, need the thickBlackPen any more, dvaws 3 smooth curve that
so it'll get disposed. tonnetts them all in order.

Add a font to draw the text

Whenever you work with drawing text, the first thing you need to do is create a Font object.

Again, use a using statement because Font implements IDisposable. Creating a font is
straightforward. There are several overloaded constructors—the simplest one takes a font name, font
size, and FontStyle enum.

using (Font font = new Font (“Arial”, 16, FontStyle.Italic)) {

Add some text that says “Nectar here”

Now that you’ve got a font, you can figure out where to put the string by measuring how big it will be
when it’s drawn. The MeasureString () method returns a SizeF that defines its size. (SizeF is
just the £1loat version of Size—and both of them just define a width and height.) Since we know
where the arrow ends, we’ll use the string measurements to position its center just above the arrow.

SizeF size = g.MeasureString(“Nectar here”, font);
g.DrawString (“Nectar here”, font, Brushes.Red, new Point (
215 - (int)size.Width / 2, 70 - (int)size.Height));
}

K Make sure you tlose out both using blotks.

You can create a Rectangle by giving it a point
and a Size (or width and height). Once you've
got it, you can find its boundaries and check
its Contains() method to see if it contains a

Point.

www.itbook.store/books/9781449343507

83


https://itbook.store/books/9781449343507

pdge’g dtal

_ G harpen our pencil
S Y

1. Most of your work with Graphics will involve thinking
about your forms as a grid of X, Y coordinates. Here’s the
code to build the grid shown below; your job is to fill in
the missing parts.

using (Graphics g = this.CreateGraphics())
using (Font f = new Font (“Arial”, 6, FontStyle.Regular)) {
for (int x = 0; x < this.Width; x += 20) {

for (int y = 0; y < this.Height; y += 20) {

2. Can you figure out what happens when you run the code
below? Draw the output onto the form, using the grid you
just rendered for locating specific points.

using (Pen pen =
new Pen (Brushes.Black, 3.0F)) {
g.DrawCurve (pen, new Point[] {
new Point (80, 60),
new Point (200,40),
new Point (180, 60),
new Point (300,40),
1)
g.DrawCurve (pen, new Point[] {
new Point (300,180), new Point (180, 200),
new Point (200,180), new Point (80, 200),
);
.DrawLine (pen, 300, 40, 300, 180);
.DrawLine (pen, 80, 60, 80, 200);
.DrawEllipse (pen, 40, 40, 20, 20);
.DrawRectangle (pen, 40, 60, 20, 300);
.DrawLine (pen, 60, 60, 80, 60);
.DrawLine (pen, 60, 200, 80, 200);

Q Q Q Qo Q9 -

84

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+

3. Here’s some more graphics code, dealing with irregular
shapes. Figure out what's drawn using the grid we've given

you below.

g.FillPolygon (Brushes.Black,
Point (60,40),
Point (300, 80),
Point (320, 180)
Point (340, 340)
(
(

new
new
new
new
Point (20, 320),
40, 220),

new
new Point
1)

(Font big

.DrawString (“Pow!”, big,
big,
big,
big,
big,

v

.DrawString (“Pow!”,

v

‘Pow!”,

v

.DrawString

(
(

.DrawString (
(“Pow!"”,
(

.DrawString (“Pow!”,

new Point[] {
new Point (140,80),
new Point (380,60),
, new Point (380,240),
, new Point (240,320),
new Point (60,
new Point (80,160),

new Font (“Times New

Brushes
Brushes
Brushes
Brushes
Brushes

.White,
.White,
.White,
.White,
.White,

Fi“PolygonO, D\rawLincsO, and a
methods have 3 tonstruetor that
that define the vertices of a sevi

few other graphics
takes an array of Points

es of tonnetted lines.

new Point (200,40),

new Point (340,140),
new Point (320,300),
new Point (180,340),

280), new Point (100, 240),

Roman”, 24,

new

FontStyle.Italic)) {
Point (80, 80));
Point (120, 120));
(160, 160));
Point (200, 200));
Point (240, 240));

new
new Point
new

new

www.itbook.store/books/9781449343507

85


https://itbook.store/books/9781449343507

Jjes g dycnclmapt .

_ G harpen Your pencil
two chunks of code on the grids.

using (Graphics g = this.CreateGraphics())

Fiest we draw for (int x = 0; x < this.Width; x += 20) {
;c:; J\;i\r’cical ;i"“ ﬁ 5.DrawLinc(Pcns.Black, %, O, %, thisHeight);

& num IO S IR D T D N
along the Y axi DrawStrina(x TeString(), £, Brushes Black, %, 0);
There’s 3 vertieal }
line every 20 for (int y = 0; y < this.Height; y += 20) {
Pixels along the X o ) )
axis 9 DrawLine(Pens Black, O, y, thisWidth, y);

\x solutlon Your job was to fill in the missing code to draw a grid, and plot

using (Font f = new Font (“Arial”, 6, FontStyle.Regular)) { We used usin5

statements to
N make sure the

Graphies and

Font ob‘)cc{:s 3:{:

disposed after the

)
orm s drawn.

Next we draw the hovizontal
lines and X axis numbers. To
draw a horizontal line, you
thoose a Y value and dvaw a
line ‘C\rom (0, \/) on the |C‘H‘,—-
hand side of the form 1o (0,
this.Width) on the righ{:——hand
side of the form.

86 GDI+ bonus PDF for Head First C# % http://www.headfirstlabs.com/hfcsharp

www.itbook.store/books/9781449343507



https://itbook.store/books/9781449343507

gdi+
The venderer drew the bees

Graphics can fix our transparency problem... % 2l =

when they overlapped.
Remember those pesky graphics glitches? Let’s tackle them! DrawImage () v
1s the key to fixing the problem in the renderer where the images were y h,.r.,

drawing those boxes around the bees and flowers that caused the overlap

issues. We’ll start out by going back to our Windows application with the [-.Dill 1 S

picture and changing it to draw a bunch of bees that overlap each other * ‘i L2 Es

without any graphics glitches.
o Add a DrawBee () method that draws a bee on any Graphics object. It uses
the overloaded DrawImage () constructor that takes a Rectangle to determine
where to draw the image, and how big to draw it.

Exit

g.DrawImage (Properties.Resources.Bee animation 1, rect); Much better—tlick on the Lorm
} and the bees overlap just fine.

public void DrawBee (Graphics g, Rectangle rect) {

e Here’s the new Click event handler for the form. Take a close look at
how it works—it draws the hive so that its upper left-hand corner is way off
the form, at location (-Width, -Height), and it draws it at twice the
width and height of the form—so you can resize the form and it’ll still draw
OK. Then it draws four bees using the DrawBee () method.

private void Forml Click(object sender, EventArgs e) ({
using (Graphics g = CreateGraphics()) {

g.DrawImage (Properties.Resources.Hive inside ,

First we'll draw the hive -Width, -Height, Width * 2, Height * 2);

backoround, with its Size size = new Size(Width / 5, Height / 5);

corner far off the page DrawBee (g, new Rectangle (

so we only see a small new Point (Width / 2 - 50, Height / 2 - 40), size));
Ficte o«c it. Then well DrawBee (g, new Rectangle (

draw four bees so that new Point (Width / 2 - 20, Height / 2 - 60), size));
they overlap—if they DrawBee (g, new Rectangle (

dont, make your form
bigger and then click on
it a0ain so {’)\c\/ do.

}

new Point (Width / 2
DrawBee (g, new Rectangle (
new Point (Width / 2

80, Height / 2 - 30), size));

90, Height / 2 - 80), size));
}

) But look what happens if You
drag it off the side of the ~
Lbut ‘l’hel’e's a cafch sereen and back! Oh nol

e Run your program and click on the form, and watch it draw the bees! But
something’s wrong. When you drag the form off the side of the screen and
back again, the picture disappears! Now go back and check the “Nectar
here” program you wrote a few pages ago—it’s got the same problem!

What do you think happened?

87

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

k troal
pagk tpoa Forms and controls

have a Paint event

Use the Paint event to make your graphics stick gives you a

What good are graphics if they disappear from your form as soon as part of your Graphics ol;ject.
form gets covered up? They’re no good at all. Luckily, there’s an easy way to make

sure your graphics stay on your form: just write a Paint event handler. Your Anyﬂung you Jraw
form fires a Paint event every time it needs to redraw itself—like when it’s dragged L. .

off the screen. One of the properties of its PaintEventArgs parameter is a on 1t 1s rePalnteJ
Graphics object called Graphics, and anything that you draw with it will “stick.” automati call y.

6 Add a Paint event handler
Double-click on “Paint” in the Events page in the Properties window to add a Paint event handler.
The Paint event is fired any time the image on your form gets “dirty.”” So drawing your graphics
inside of it will make your image stick around.

Double—click on Paint to add a Paint event handler. [ts

PaintEventhrgs has a property called Graphics—and _’_,_%
anyjching You dvaw with it will stiek to Your Lorm.

e Use the Graphics object from the Paint event’'s EventArgs

Instead of starting with a using statement, make your event handler start like this:

private void Forml Paint (object sender, PaintEventArgs e) {

Graphics g = e.Graphics;

You don’t have to use a using statement—since you didn’t create it, you don’t have to dispose it.

e Copy the code that draws the overlapping bees and hive
Add the new DrawBee () method from the previous page into your new user control. Then copy
the code from the C1ick event into your new Paint event—except for the first line with the
using statement, since you already have a Graphics object called g. (Since you don’t have
the using statement anymore, make sure you take out its closing curly bracket.) Now run your
program. The graphics stick! B\\ Do the same with Yyour “Nettar here
drawing o make it stick, too.

Forms and controls redvaw themselves all the Lime

I+ may not look like it, but your forms have to redraw themselves all the time.

: I(-'Z;n, :hc\/ i displayi.ug graphics—labels display text, but-tons display a picture of a button, cheekboxes dva
ittle box with an X in it. You work with them as tontrols that You drag around, but eath control ac{:uall\/w

draws its own image. Any time you drag a form off the screen or under another £

: rm and then draq it back
or uncover it, the part of the form that was covered wp is now invalid, which means that it no lon:e\:- sh
OowWS

2\: irj:gc .&:}_-a: it's .SuPPoscd to. That's when .NET sends a message to the form telling it to vedvaw itself. Th
c : Iw;s a Pém’c event any time it's “dir{:y" and needs to be vedrawn. [£ You ever want your form ov- .
ontrol to vedraw itself, You ean tell NET 4o make it “di\r{y" by calling its [nvalidate() method -

An\/ time You have ¢ontrols on

88

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+

See if you can combine your knowledge of forms and user controls—and get a little more
e practice using Bitmap objects and the DrawImage () method—by building a user control
RC\SQ that uses TrackBars to zoom an image in and out.

Q Add two TrackBar controls to a new user control
Create a new Windows Application project. Add a UserControl—call it Zoomer—and set its
Size property to (300, 300). Drag two TrackBar controls out of the toolbox and onto it. Drag
trackBarl to the bottom of the control. Then drag trackBar? to the right-hand side of
the control and set its Orientation property to Vertical. Both should have the Minimum
property set to 1, Maximum set to 175, Value set to 175, and TickStyle set to None. Set
cach TrackBar’s background color to white. Finally, double-click on cach TrackBar to add a
Scroll event handler. Make both event handlers call the control’s Invalidate () method.

Your user control has a Paint T
event, and it works just like the one

you just used in the form. Just use

its PaintEventArgs parameter e.

It has a property called Graphics,

and anything that you draw with that

Graphics object will be painted

onto any instance of the user

control you drag out of the toolbox. )

Give the two tratkbars
white backgrounds
betause \/ou'll be drawing
a white vettangle behind
cvcr\/{hing, and you want
them to blend in.

e Load a picture into a Bitmap object and draw it on the control
Add a private Bitmap field called photo to your Zoomer user control. When you create the instance
of Bitmap, use its constructor to load your favorite image file—we used a picture of a flufty dog.
Then add a Paint event to the control. The event handler should create a graphics object to draw
on the control, draw a white filled rectangle over the entire control, and then use DrawImage () to
draw the contents of your photo field onto your control so its upper left-hand corner is at (10, 10), its
width 1s trackBarl.Value, and its height is trackBar2.Value. Then drag your control onto
the form—make sure to resize the form so the trackbars are at the edges.

Whenever the user scrolls one of the
. TrackBars, they call the user control’s
Leackbavs, the picture Invalidate () method. That will cause
will shink and grow. the user control to fire its Paint event and
\) resize the photo. Remember, since you

7 didn’t create the Graphics object—it was
passed to you in PaintEventArgs—you
don’t need to dispose it. So you don’t have
to use a using statement with it. Just draw
the image inside the Paint event handler.

When You move the

89

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

pegethocldintideent works

Get a little more practice using Bitmap objects

and the DrawImage () method by building a This Particular Bit
form that uses them to load a picture from a file its picture £rom aI E?: 'I:J:rh struetor loads
and zoom it in and out. overloaded tonstructors 3ok other

lets you spec; intluding one {
Petify 3 wi "3 one that
public partial class Zoomer : UserControl { one treafes a");:l’r)#bb{and he.gh{;—fhaf
"'\QP.

Bitmap photo = new Bitmap (@”c:\Graphics\fluffy dog.Jjpg”); é>

public Zoomer() { Substitute your own file—the Bitmap construttor ean
InitializeComponent () ; take many zilc formats. Even better, see if you tan
} use an chnFichialog 1o zoom any image you want!

private void Zoomer Paint(object sender, PaintEventArgs e) {
Graphics g = e.Graphics;
g.FillRectangle (Brushes.White, 0, 0, Width, Height);
g.DrawImage (photo, 10, 10, trackBarl.Value, trackBar2.Value) ;
} First we draw a big white vectangle so it fills up the whole C°'f+‘r°l’ {"hfh w:(:
draw the photo on top of it The last two pavameters determine the =€
the image being drawn—trackBarl sets the width, trackBarL sets the height.
private void trackBarl Scroll (object sender, EventArgs e) {
Invalidate() ;
}
private void trackBar2 Scroll (object sender, EventArgs e) {

Invalidate() ; Every time the user slides one of the tratkbar tontrols, it fives off a
} & Sevoll event. By making the event handlers call the tontrol’s [nvalidate()
method, we cause the form 4o vepaint itself..and when it does, it draws
} a new eopy of the image with a different size.
Each dvag here is tausing another image

vesize from Drawlmage().
ﬁ l

g.DrawImage (myBitmap, 30, 30, 150, 150) ;
<222 >

90 GDI+ bonus PDF for Head First C# % http://www.headfirstlabs.com/hfcsharp

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+

A closer look at how forms and Behind
controls repaint themselves

Earlier, we said that when you start working with Graphics objects, you’re really taking

control of graphics. It’s like you tell NET, “Hey, I know what I'm doing, I can handle the extra
responsibility.” In the case of drawing and redrawing, you may not want to redraw when a form
is minimized and maximized...or you may want to redraw more often. Once you know what’s
going on behind the scenes with your form or control, you can take control of redrawing yourself:

the Scenes

o Every form has a Paint event that draws the graphics on the form
Go to the event list for any form and find the event called Paint. Whenever the form has to repaint itself]
this event is fired. Every form and control uses a Paint event internally to decide when to redraw itself. But
what fires that event? It’s called by a method called OnPaint that the form or user control inherits from the
Control class. (That method follows the pattern you saw in Chapter 11, where methods that fire an event are
named “On” followed by the event name.) Go to any form and override OnPaint: Do this Jus-f; like you did

Overvide OnPaint  protected override void OnPaint (PaintEventArgs e) | eavlier with D'SP“CO

on any ‘Fo\rm and P———}Console .WritelLine (“OnPaint {0} {1}”, DateTime.Now, e.ClipRectangle) ;
add this line. base.OnPaint (e) ;
}

Drag your form around—drag it halfway off the screen, minimize it, hide it behind other windows. Look closely
at the output that it writes. You'll see that your OnPaint method fires off a Paint event any time part of it

1s “dirty”—or invalid—and needs to be redrawn. And if you look closely at the C1ipRectangle, you’'ll see
that it’s a rectangle that describes the part of the form that needs to be repainted. That gets passed to the Paint
event’s PaintEventArgs so it can improve performance by only redrawing the portion that’s invalid.

lnvalida‘cc() csscn{',ia“\/

e Invalidate() controls when to redraw, and WHAT to redraw says that S°"“_Yar£b
NET fires the Paint event when something on a form is interfered with, covered up, of {hc"(:orm mugHZ {:\: .
or moved offscreen, and then shown again. It calls Invalidate (), and passes the “invalid,” so vedraw . {)a
method a Rectangle. The Rectangle tells the Invalidate () method what yar{: to make st e
part of the form needs to be redrawn...1.e., what part of the form is “dirty.” Then 50%, the ﬁﬁh{” things

NET calls OnPaint to tell your form to fire a Paint event and repaint the dirty area. ~ showind:

1

9 The Update () method gives your Invalidate request top priority hen vou tall it
You may not realize it, but your form is getting messages all the time. The same S0 w TE 1 ve Lelling
system that tells it that it’s been covered up and calls OnPaint has all sorts of other \/og:[s_c H: \{,-,ouow whole form
messages it needs to send. See for yourself: type override and scroll through all the N {::o\ :Is invalid, and
methods that start with “On”—every one of them is a message your form responds to. or ton

‘ : 4he whole £hing needs to
The Update () method moves the Invalidate message to the top of the message list. ke vedvaun Vo tan pass

, . : clip veetangle
e The form's Refresh () method is Invalidate () plus Update () 'JZ. your :wa;__g\ e ‘5‘2
Forms and controls give you a shortcut. They have a Refresh () method that first ' \/O‘; wl " 4o the Paint
calls Invalidate () to mvalidate the whole client area (the area of the form where passe ) 2 0?5 A
cvcn{:s PAInJCEVC“ \gs-

graphics appear), and then calls Update () to make sure that message moves to the
top of the list.

91

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

pdpd’g ot the

Q- It still seems like just resizing
the graphics in a program like Paint or
PhotoShop would be better. Why can’t |
do that?

A: You can, if you're in control of the
images you work with in your applications,
and if they'll always stay the same size. But
that's not often the case. Lots of times, you'll
get images from another source, whether it's
online or a co-worker in the design group. Or,
you may be pulling an image from a read-

only source, and you'll have to size it in code.

Q/: But if | can resize it outside of .NET,
that’s better, right?

A: If you're sure you'll never need a larger
size, it could be. But if your program might
need to display the image in multiple sizes
during the program, you'll have to resize at
some point anyway. Plus, if your image ever
needs to be displayed larger than the resize,
you'll end up in real trouble. It's much easier
to size down than it is to size up.

More often than not, it’s better to be able to
resize an image programmatically, than to be
limited by an external program or constraints
like read-only files.

Q/: | get that CreateGraphics ()
gets the Graphics object for

drawing on a form, but what was

that FromImage () call in the
ResizeImage () method about?

A: FromImage () retrieves the
Graphics object for a Bi tmap object.
And justas CreateGraphics ()
called on a form returns the Graphics
object for drawing on that form,
FromImage () refrievesa Graphics
object for drawing on the Bi tmap the
method was called on.

92

www.itbook.store/books/9781449343507

thereqare no o
Dumb Questions

Q,: So a Graphics object isn't just
for drawing on a form?

A: Actually, a Graphics object is for
drawing on, well, anything that gives you a
Graphics object. The Bitmap gives
youa Graphi cs object that you can use
to draw onto an invisible image that you can
use later. And you'll find Graphics objects
on a lot more than forms. Drag a button onto
a form, then go into your code and type its
name followed by a period. Check out the
IntelliSense window that popped up—it's got
aCreateGraphics () method that
retums a Graphics object. Anything

you draw on it will show up on the button!
Same goes for Label, PictureBox,
StatusStrip...amost every toolbox
control has a Graphics object.

Q: Wait, | thought using was just
something | used with streams. Why am |
using using with graphics?

A: The using keyword comes in
handy with streams, but it's something that
you use with any class that implements
the IDisposable interface. When
you instantiate a class that implements
IDisposable, you should always call
its Dispose () method when you're
done with the object. That way it knows

to clean up after itself. With streams, the
Dispose () method makes sure that any
file that was opened gets closed.

Graphics, Pen, and Brush objects
are also disposable. When you create any
of them, they take up some small amount
of memory and other resources, and they
don't always give them back immediately.
If you're just drawing something once, you
won't notice a difference. But most of the
time, your graphics code will be called
over and over and over again—like in a

Paint event handler, which could get
called many times a second for a particularly
busy form. That's why you should always
Dispose () of your graphics-related
objects. And the easiest way to make sure
that you do is to use a usingline, and let
.NET worry about disposal. Any object you
create with us ing will automatically have
its Dispose () method called at the end
of the block following the us ing statement.
That will guarantee that your program won't
slowly take up more and more memory if it
runs for a long time.

Q- If ’'m creating a new control, should
luse aUserControl or should |
create a class that inherits from one of
the toolbox controls?

A: That depends on what you want your
new control to do. If you're building a control
that's really similar to one that's already

in the toolbox, then you'll probably find it
easiest to inherit from that control. But most
of the time, when programmers create new
controls in C#, they use user controls. One
advantage of a user control is that you can
drag toolbox controls onto it. It works a
lot like a GroupBox or another container
control—you can drag a button or checkbox
onto your user control, and work with them
just like you'd work with controls on a form.
The IDE’s form designer becomes a powerful
tool to help you design user controls.

A user control can
host other controls.
The IDE’s form
c[esigner lets you
c[rag controls out of
the toolbox and onto
yOur new user control.


https://itbook.store/books/9781449343507

gdi+

I noticed a whole lot of flickering in my Zoomer
control. With all this talk of taking control of
graphics, L'll bet there's something we can do about
that! But why does it happen?

Even without resizing, it takes time
to draw an image onto a form.

Suppose you’ve got every image in the simulator
resized. It still takes time to draw all those bees and
flowers and the hive. And right now, we’re drawing
right to the Graphics object on the form. So if
your eye catches the tail end of a render, you’re
going to perceive it as a little flicker.

The problem is that a lot of drawing is happening,
so there’s a good chance that some flickering will
occur, even with our resizing. And that’s why you
run into problems with some amateur computer
games, for example: the human eye catches the
end of a rendering cycle, and perceives it as a little
bit of flickering on the screen.

_ @y VAN
‘PQOQWEWR
How could you get rid of this flicker? If drawing lots
of images onto the form causes flickering, and you

have to draw lots of images, how do you think you
might be able to avoid all the flickering?

Here’s a quick tip to make your resized graphics look better. Before you call a Graphics object’s DrawImage ()

method, try setting its InterpolationMode property to InterpolationMode.HighQualityBicubic. (You’ll need to add

“using System.Drawing.2D;” to the top of your code.) You can learn more about how InterpolationMode
works here: http://msdn.microsoft.com/en-usl/library/kOfsyd4e.aspx

93

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

pege gwalr animation

Pouble buffering makes animation look a lot smoother

Go back to your image zoomer and fiddle with the trackbars. Notice how there’s a
whole lot of flickering when you move the bars? That’s because the Paint event
handler first has to draw the white rectangle and then draw the image every time the
trackbar moves a tiny little bit. When your eyes see alternating white rectangles and
images many times a second, they interpret that as a flicker. It’s irritating...and it’s
avoidable using a technique called double buffering. That means drawing each
frame or cell of animation to an invisible bitmap (a “buffer”), and only displaying the
new frame once it’s been drawn entirely. Here’s how it would work with a Bitmap:

o Here’s a typical program that draws some graphics on a form using its Graphics object.

) =
5>
=
o 3
5 g
R
o O®
5
o
ea) .
In}
% [0
\§ )
S|
"™s. Form

2 The user
§\ liek .CSSawalo{;olF
Renges® itkering because each frame &
was drawn in Pietes. &

o
System.W\“6

e To do double buffering, we can add a object to the program to act as a buffer. Every
time our form or control needs to be repainted, instead of drawing the graphics directly

on the form, we draw on the buffer instead.

voing (Graphice o - By drawing cach frame 1o
Graphics.rromfmage (bitmap)) | ‘/' an invisible bitmap, the users
Drawonerrame (g) 5 | won't see the flicker any more.
They'll only see the finished
g )@( 3,3 F\r&mc. when we eopy it from
§. 63\, the bchmap back to the form.
Rende(e( GrapY(\oé

e Now that the frame is completely drawn out to the invisible Bitmap object, we can
use DrawImageUnscaled () to copy the object back to the form’s Graphics. It
all gets copied at once, and that eliminates the flicker.

us ' phlcs Led (b‘ltmap’ 0, 0) E

- @

%]

8 13

94

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+

Double buffering is built into forms and controls When you use
the Paint event

for all your

You can do double buffering yourself using a Bitmap, but C# and .NET make it
even easier with built-in support for double buffering. All you need to do is set its
DoubleBuffered property to true. Iry it out on your Zoomer user control—go

to its Properties window, set DoubleBuffered to true, and your control will stop gra l‘ics ou
flickering! Now go back to your BeeControl and do the same. That won’t fix all P ! y

of the graphics problems—we’ll do that in a minute—but it i/ make a difference. can turn on

Now you’re ready to fix the graphics problems in the simulator! (:[0 UI)l e L u {_f er ec[
Overhaul the beehive simulator painting Slmply
In the next exercise, you’ll take your beehive simulator and completely overhaul l)y Cllang lng one
it. You’ll probably want to create a whole new project and use “Add >> Existing

Item...” to add the current files to it so you have a backup of your current PI' OPerty.

simulator. (Don’t forget to change their namespace to match your new project.)

Here’s what you’re going to do:

o You'll start by removing the BeeControl user control
There won’t be any controls on the hive and field at all. No BeeControls, no PictureBoxes,
nothing. The bees, flowers, and hive pictures will all be drawn using GDI+ graphics. So right-
click on BeeControl.cs in the Solution Explorer and click Delete—they’ll be removed from
the project and permanently deleted.

e You'll need a timer to handle the bee wing flapping
The bees flap their wings much more slowly than the simulator’s frame rate, so you'll need a
second, slower timer. This shouldn’t be too surprising, since the BeeControl had its own timer
to do the same thing

e The big step: overhaul the renderer
You’ll need to throw out the current renderer entirely, because it does everything with controls.
You won’t need those lookup dictionaries, because there won’t be any PictureBoxes or
BeeControls to look up. Instead, it’ll have two important methods: DrawHive (g) will draw
a Hive form on a graphics object, and DrawField (g) will draw a Field form.

o Last of all, you'll hook up the new renderer
The Hive and Field forms will need Paint event handlers. Each of them will call the Renderer
object’s DrawField (g) or DrawHive (g) methods. The two timers—one for telling the simulator
to draw the next frame, and the other to flap the bees’ wings—will call the two forms” Invalidate ()
methods to repaint themselves. When they do, their Paint event handlers will render the frame.

Let’s get started! >

95

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

pgyeilgiotitle’ vearitarer

It's time to get rid of the graphics glitches in the beehive simulator. Use graphics and double
buffering to make the simulator look polished.

Q Change the main form's RunFrame () method
You’ll need to remove the call to Renderer.Render () and add two Invalidate ()
statements.

public void RunFrame (object sender, EventArgs e) {
framesRun++; You'll need to vemove the ¢all 4o venderer-Render(),

world.Go (random) ; 6__/" sinte that method will g0 away.

end = DateTime.Now;
TimeSpan frameDuration = end - start;

start = end; As long as you keep the Id

Ug.)datestats (fr:?lmeDuration) ; have a rc(—'zrencc J:o the wr::dc:fr?biiic :l?d :)uot:cﬁoms

h:.l.veForm. Invalnfiate 0 to do to animate them is call their fnvalida{:c\{) methods

fieldForm.Invalidate() ; Their Paint event handlers will take care of the vest .
} .

e Add a second timer to the main form to make the bees’ wings flap
Drag a new timer onto the main form and set its Interval to 150ms and Enabled to
true. Then double-click on it and add this event handler:

private void timer2 Tick(object sender, EventArgs e) {
renderer.AnimateBees () ;

}
Then add this AnimateBees () method to the renderer to make the bees’ wings flap:

private int cell = 0;
private int frame = 0;

public void AnimateBees () { The whole idea heve is to set 3 field ealled
'frame++; \<_/ Cell that You £an use when \/ou'\rc d\rawing
;ianiirim(oe ->: ® the bees in the renderer. Make sure \/ou'rc
switch (f]lfame) { always drawing BeeAnimationLargelCell] in
the hive form and BCCAnimationgma”[Cc”J in

case 0: cell = 0; break; )
case 1: cell = 1; break; the field form. The timer will COns£an{:ly eall
case 2: cell = 2; break; the AnimateBees() method, which will cause
case 3: cell = 3; break; the eell field to keep thanging, which will
case 4: cell = 2; break; ¢ause Yyour bees to (:Iay their w'mgs.
case 5: cell = 1; break;
default: cell = 0; break; .
} If your bees are flying to the wrong places,

hiveForm.Invalidate () ; make sure your quatiqns are correct! U§e the
fieldForm.Invalidate () ; event trick from garller in t!'ue chapter to find the
) right coordinates.

96 GDI+ bonus PDF for Head First C# % http://www.headfirstlabs.com/hfcsharp

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+

9 The hive form and field form both need a public property
Add a public Renderer property to the hive form and the field form:

public Renderer Renderer { get; set; }é——Add {:his to both corms.

)
Don't To make this work, you’ll need to change the declaration of your Renderer to add the public
ﬁorge{: to modifier: public class Renderer. Youll also need to do the same for the World, Hive, Bee, and
add these Flower classes and the BeeState enum—add the public access modifier to each of their declarations.
actc.ss. (See Leftover #2 in the Appendix to understand why!)
modifiers!

There are two places where you create a new Renderer (): in the open button (underneath a call to
renderer.Reset () and in the ResetSimulator () method. Remove all calls to . Then update
your Renderer’s constructor to set each form’s Renderer property:

hiveForm.Renderer = this: All the Reset() method did was vemove the tontrols from the
fieldForm.Renderer = this; ‘porms, and ‘H’\CY‘C won’{‘, bC ah\/ COV\'EY‘O'S +,O reémove.

e Set up the hive and field forms for double-buffered animation
Remove the code from the hive form’s constructor that sets the background image. Then remove all controls
from both forms and set their DoubleBuffered properties to true. Finally add a Paint event
handler to each of them. Here’s the handler for the hive form—the field form’s Paint event handler is
identical, except that it calls Renderer.PaintField () instead of Renderer.PaintHive ():

private void HiveForm Paint (object sender, PaintEventArgs e) { b ‘C‘(: _
Renderer.PaintHive (e.Graphics) ; Make sure You turn on dolublc uttering,
} or Your Lorms will Flicker!

e Overhaul the renderer by removing control-based code and adding graphics
Here’s what you need to do to fix the renderer:

* Remove the two dictionaries, since there aren’t any more controls. And while you’re at it, you don’t
need the BeeControl anymore, or the Render (), DrawBees (), or DrawFlowers () methods.

% Add some Bitmap fields called HiveInside, HiveOutside, and Flower to store the images.
Then create two Bitmap [ ] arrays called BeeAnimationLarge and BeeAnimationSmall.
Each of them will hold four bee pictures—the large ones are 40x40 and the small are 20x20. Create
amethod called ITnitializeImages () to resize the resources and store them in these fields, and
call it from the Renderer class constructor.

* Add the PaintHive () method that takes a Graphics object as a parameter and paints the hive
form onto it. First draw a sky blue rectangle, then use DrawImageUnscaled () to draw the inside
hive picture, then use DrawImageUnscaled () to draw cach bee that is inside the hive.

* Finally, add the PaintField () method. It should draw a sky blue rectangle on the top half of
the form, and a green rectangle on the bottom half. You’ll find two form properties helpful for this:
ClientSize and ClientRectangle tell you how big the drawing area is, so you can find
half of its height using ClientSize.Height / 2. Thenuse FillEllipse () todrawa
yellow sun in the sky, DrawLine () to draw a thick line for a branch the hive can hang from, and
DrawImageUnscaled () to draw the outside hive picture. Then draw each flower onto the form.
Finally, draw each bee (using the small bee pictures)—draw them last so they’re in front of the flowers.

* When you’re drawing the bees, remember that AnimateBees () sets the cell field.

97

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

pagrcip@ai Gledilar

It's time to get rid of the graphics glitches in the beehive simulator. Use graphics and double
buffering to make the simulator look polished.

Heve's the tomplete Rendever class, intluding the

AnimateBees() method that we gave you. Make
using System.Drawing; /' sure \/ou make all {:hc modi‘(:ica{:ions {',o {hc {‘)\\rcc
forms—espetially the Paint event handlers in

public‘ class Renderer {. the hive and field forms. Those event handlers
private World world; el H\C rcndcvcr’s Pain{:Hivc() and Pain{:Ficld()

private HiveForm hiveForm; A . .
private FieldForm fieldForm; mc{',hods, which do all °£ the animation

public Renderer (World TheWorld, HiveForm hiveForm, FieldForm fieldForm) ({
this.world = TheWorld;

this.hiveForm = hiveForm; * Don't forgcﬁ to thange the tlass detlaration in Renderercs from
this.fieldForm = fieldForm; tlass Rendever to F“bhc tlass Renderer, and then do the same for
fieldForm.Renderer = this; World, Hive, Flower, and Bee; otherwise, )'ou'” et a build ervor about
hiveForm.Renderer = this; field and ‘E‘/PC 3¢C655ibi|i'{iy- F'iP to Leftover #2 in the APPcndix +o
InitializeImages(); learn about wh\/ You need to do +his.

public static Bitmap ResizelImage (Image ImageToResize, int Width, int Height) {
Bitmap bitmap = new Bitmap (Width, Height);
using (Graphics graphics = Graphics.FromImage (bitmap)) {
graphics.DrawImage (ImageToResize, 0, 0, Width, Height);
}

return bitmap;

The [nitializelmages() method vesizes all of
the image vesources and stores them in Bitmap

Bitmap HivelInside; fields inside the Rendever ob\)cbﬁ. That way the
Bitmap HiveOutside; PaintHive() and PaintForm() methods tan draw
Bitmap Flower; the imagcs unstaled usina the ‘(:orms' 6"‘3?“("5
Bitmap[] BeeAnimationSmall; °b\)CC£S) Drawlmagcunscalcd() methods.

Bitmap[] BeeAnimationLarge;

private void InitializeImages () {
HiveOutside = Resizelmage (Properties.Resources.Hive outside , 85, 100);
Flower = Resizelmage (Properties.Resources.Flower, 75, 75);
HiveInside = ResizeImage (Properties.Resources.Hive inside ,

hiveForm.ClientRectangle.Width, hiveForm.ClientRectangle.Height) ;

BeeAnimationLarge = new Bitmap[4];
BeeAnimationLarge[0] = ResizelImage (Properties.Resources.Bee animation 1, 40, 40)
BeeAnimationLarge[l] = ResizelImage (Properties.Resources.Bee animation 2, 40, 40)
BeeAnimationLarge[2] = ResizeImage (Properties.Resources.Bee animation 3, 40, 40);
BeeAnimationLarge[3] = Resizelmage (Properties.Resources.Bee animation 4, 40, 40)
BeeAnimationSmall = new Bitmap[4];

]
]
]
]

BeeAnimationSmall[0] = Resizelmage (Properties.Resources.Bee animation 1, 20, 20);

BeeAnimationSmall[l] = Resizelmage (Properties.Resources.Bee animation 2, 20, 20);

BeeAnimationSmall[2] = Resizelmage (Properties.Resources.Bee animation 3, 20, 20);
1 ( )

BeeAnimationSmall[3] = ResizelImage (Properties.Resources.Bee animation 4, 20, 20

}

98 GDI+ bonus PDF for Head First C# % http://www.headfirstlabs.com/hfcsharp

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+ graphics

public void PaintHive (Graphics g) {
g.FillRectangle (Brushes.SkyBlue, hiveForm.ClientRectangle) ;
g.DrawImageUnscaled (HiveInside, 0, 0);
foreach (Bee bee in world.Bees) {
if (bee.InsideHive)
g.DrawImageUnscaled (BeeAnimationLarge[cell],
bee.Location.X, bee.Location.Y);

) A form’s ClientSize yroyer{;\/ is a Ra{a,\gk
that tells You how bi5 its d\raWina area is.
public void PaintField (Graphics g) {
using (Pen brownPen = new Pen (Color.Brown, 6.0F)) {
g.FillRectangle (Brushes.SkyBlue, 0, O,
fieldForm.ClientSize.Width, fieldForm.ClientSize.Height / 2);
g.FillEllipse (Brushes.Yellow, new RectangleF (50, 15, 70, 70));
g.FillRectangle (Brushes.Green, 0, fieldForm.ClientSize.Height / 2,
fieldForm.ClientSize.Width, fieldForm.ClientSize.Height / 2);
g.DrawLine (brownPen, new Point (593, 0), new Point (593, 30));
g.DrawImageUnscaled (HiveOutside, 550, 20);
foreach (Flower flower in world.Flowers) {
g.DrawImageUnscaled (Flower, flower.Location.X, flower.Location.Y);
}
foreach (Bee bee in world.Bees) {
if ('bee.InsideHive)
g.DrawImageUnscaled (BeeAnimationSmall[cell],
bee.Location.X, bee.Location.Y);

| The PaintFieldO method looks at {:\.\c bcc? and
Llowers in the world and dvaws 3 field us:?t )
their lotations: Fivst it dvaws the sky and the

private int cell = 0; vound, then it dvaws the sun, and then the 4 the
private int frame = 0; % hive A‘C{:cv' that, it draws the flowers an :
public void AnimateBees () { ce ). ta t{matcvﬂy{hmgiSdYaW“lh
frame++; bees. [t's important 4o draw the flowers
if (£ rar,ne >= 6) the ':'SH-’ o‘rdcr—“‘: e 1d look like
frame = 0; before the bees, then the bCE‘S wou
= U . . evs.
switch (frame) { Jd\c\, weve -(:\\["\3 behind the *low
case 0: cell = 0; break;
case 1: cell = 1; break;
case 2: cell = 2; break;
case 3: cell = 3; break;
case 4: cell = 2; break; Here’s th
es B
case 5: cell = 1; break; ame A"'”‘achces()

exertise. [{ tyeles +

default: cell = 0; break; Frame ‘Fie'd-—f;m{: .hlr'ouah the animations
)

} : shows ¢e| using the
hiveForm.Invalidate (); way ::: 3:; ah(‘iﬁ{:mh baek to 2:’ Oh,ey;l;?c: ;?” /_,r{;].,ch
field . lid ; ng tlapp; . L In.

} ieldForm.Invalidate () 9 Pphaam”a£Whlssmoofa hat

you are here » 99

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

pagéiggaises too

Use a Graphics object and an event handler for printing

The Graphics methods you've been using to draw on your forms are the same

ones you use to print. NET’s printing objects in System.Drawing.Printing

make it really easy to add printing and print preview to your applications. All

you need to do is create a PrintDocument object. It’s got an event called *
PrintPage, which you can use exactly like you use a timer’s Tick event. Then call . .
the PrintDocument object’s Print () method, and it prints the document. And r lnt tllls

remember, the IDE makes it especially easy to add the event handler. Here’s how:

o Start a new Windows application and add a button to the form. Go to the form code
and add a using System.Drawing.Printing; line to the top. Double-click on the button
and add the event handler. Watch what happens as soon as you type +=:

private void buttonl Click(object sender, EventArgs e) {
PrintDocument document = new PrintDocument () ;
document.PrintPage +=

e Press Tab and the IDE automatically fills in the rest of the line. This is just like how you added
event handlers in Chapter 11:

private void buttonl Click(object sender, EventArgs e) {
PrintDocument document = new PrintDocument () ;

document.PrintPage += new PrintPageEventHandler (document PrintPage);

e As soon as you press Tab, the IDE generates an event handler method and adds it to the form.

void document PrintPage (object sender, PrintPageEventArg

e) { )

throw new NotImplementedException () ; Now You £an YU{Z ﬁN\/ SrthlCS tode hfrc?us{: ¢

} N veplace the throw line and use c.éra?h-m or all o
the drawing. We'll show you how in a minute....

The PrintPageEventArgs parameter € has a Graphics property. Just replace the throw

statement with code that calls the e . Graphics object’s drawing methods.

e Now finish off the buttonl Click event handler by calling document.Print (). When that
method is called, the PrintDocument object creates a Graphics object and then fires off a
PrintPage event with the Graphics object as a parameter. Anything that the event handler draws
onto the Graphics object will get sent to the printer.

private void buttonl Click(object sender, EventArgs e) {
PrintDocument document = new PrintDocument () ;
document.PrintPage += new PrintPageEventHandler (document PrintPage);
document.Print () ;

100

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+

PrintPocument works with the print
dialog and print preview window objects

Adding a print preview window or a print dialog box is a lot like adding an open or save Onte \/ou've 50{: a

dialog box. All you need to do is create a PrintDialog or PrintPreviewDialog PeintDotument and an
object, set its Document property to your Document object, and then call the dialog’s event handler to print
Show () method. The dialog will take care of sending the document to the printer—no the page, you £an pop up
need to call its Print () method. So let’s add this to the button you created in Step 1: 3 yr‘m{: preview window
private void buttonl Click(object sender, EventArgs e) { J"ﬂ:by 01a£mga new

PrintPreviewDialog ob\')cc{z

PrintDocument document = new PrintDocument () ;

e document.PrintPage += new PrintPageEventHandler (document PrintPage);
PrintPreviewDialog preview = new PrintPreviewDialog();
preview.Document = document;
preview.ShowDialog (this) ;

}
void document PrintPage (object sender,
- PrintPageEventArgs e) {
DrawBee (e.Graphics, new Rectangle (0, 0, 300, 300));

b Well v—ch; our DrawBee() method from a few Pages ago.
Use e.HasMorePages to print multipage documents

If you need to print more than one page, all you need to do is have your
PrintPage event handler set e . HasMorePages to true. That tells
the Document that you’ve got another page to print. It'll call the event
handler over and over again, once per page, as long as the event handler
keeps setting e . HasMorePages to true. So modify your Document’s
event handler to print two pages:

bool firstPage = true;
void document PrintPage (object sender, PrintPageEventArgs e) {
e DrawBee (e.Graphics, new Rectangle (0, 0, 300, 300));
using (Font font = new Font (“Arial”, 36, FontStyle.Bold)) {
if (firstPage) {
e.Graphics.DrawString (“First page”, font, Brushes.Black, 0, 0);

e.HasMorePages = true; £ you set e.HasMorePages +o .
; 9es to true, the Dotument obiect will
firstPage = false; +he event handler again to Frin{; the exd Pa;\&n ovject wi eall
} else {

e.Graphics.DrawString (“Second page”, font, Brushes.Black, 0, 0);
firstPage = true;

} Now vun Your program again, and make sure it's
} displaying two pages in the print preview.

101

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

page geal

Write the code for the Print button in the simulator so that it pops up a print preview window
showing the bee stats and pictures of the hive and the field.

0 Make the button pop up a print preview window
Add an event handler for the button’s click event that pauses the simulator, pops up the print
preview dialog, and then resumes the simulator when it’s done. (If the simulator is paused when
the button is clicked, make sure it stays paused after the preview is shown.)

e Create the document’s PrintPage event handler
It should create a page that looks exactly like the one on the facing page. We’ll start you oft:

private void document PrintPage (object sender, PrintPageEventArgs e) {
Graphics g = e.Graphics;
Size stringSize;
using (Font arial24bold = new Font (“Arial”, 24, FontStyle.Bold)) {

stringSize = Size.Ceiling(
We U1a£“%£bc°Yd g.MeasureString (“"Bee Simulator”, arial24bold));
W&h{x*k'“'£“““5£hc //)77g.FillEllipse(Brushes.Gray,
Nkamntsthngo method, new Rectangle (e.MarginBounds.X + 2, e.MarginBounds.Y + 2,
which veturns a Size that stringSize.Width + 30, stringSize.Height + 30));
contains the size of a g.FillEllipse (Brushes.Black,

. new Rectangle (e.MarginBounds.X, e.MarginBounds.Y,
string. We df“” ““,""a_' stringSize.Width + 30, stringSize.Height + 30));
and{x$£{m¢c{ogwtl£ g.DrawString (“Bee Simulator”, arial24bold,
ashadwucﬁcctb Brushes.Gray, e.MarginBounds.X + 17, e.MarginBounds.Y + 17);
g.DrawString (“Bee Simulator”, arial24bold,
Brushes.White, e.MarginBounds.X + 15, e.MarginBounds.Y + 15);
}
Y%d”rmcd int tableX = e.MarginBounds.X + (int)stringSize.Width + 50;
. int tableWidth = e.MarginBounds.X + e.MarginBounds.Width - tableX - 20;
these to build int firstColumnX = tableX + 2;
the table. int secondColumnX = tableX + (tableWidth / 2) + 5;

int tableY = e.MarginBounds.Y; .

// Your job: fill in the rest of the method to make it print this

e This PrintTableRow () method will come in handy
You’ll find this method useful when you create the table of bee stats at the top of the page.

private int PrintTableRow (Graphics printGraphics, int tableX,
int tableWidth, int firstColumnX, int secondColumnX,
int tableY, string firstColumn, string secondColumn) {
Font ariall2 = new Font (“Arial”, 12);
Size stringSize = Size.Ceiling(printGraphics.MeasureString (firstColumn, ariall2));
tableY += 2;
printGraphics.DrawString (firstColumn, ariall2, Brushes.Black,
firstColumnX, tableY);
printGraphics.DrawString (secondColumn, ariall2, Brushes.Black,
secondColumnX, tableY);
tableY += (int)stringSize.Height + 2;
printGraphics.DrawLine (Pens.Black, tableX, tableY, tableX + tableWidth, tableY);

iall2.Di ;
i;iirn taéig?fe O & Each time you call PrintTableRow(), it adds the height of
the vow it printed to tableY and veturns the new value.

102

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+ graphics

Take a close look at the notes we wrote on the printout. This is a little complex—take your time!

We u;ed e.MarginBounds to keep

aleft mavgin. This ellipse starts
at e.MarginBounds.X + 2.

Use the vendever
to draw the hive
form. Draw a black
vectangle around

it with a width

of 2. Use the
Width property in
c-Ma\rginBounds to
make it half the
width of the page.

Use the PrintTableRow() method
to ?\rin{: the vows of the 'EaHCQ

Then use the
venderer to do the
same for the field
form—make it the
£ull page width using
the X and Y Ffields
in c.MarginBow\ds-
See if Yyou tan oive
them the same
?royor{:ions as the

+wo Lorms.

N\
Once you Figure out how tall to make the hive
picture, align it to the bottom of the page.

Heve’s a hint: To Lind the height of each form, £ind the vatio of its height divided by its width and
multiply that by the final width. You tan loeate the top of the field form by subtracting its height
from the bottom margin of the page: (c.MarginBounds,\/ + c-MavginBouv\ds.Hcigh{: - \cicldHcigh’c)-

you are here »

www.itbook.store/books/9781449343507

103


https://itbook.store/books/9781449343507

pagrcip@ai Gledilar

Write the code for the Print button in the simulator so that it pops up a print preview
window showing the bee stats and pictures of the hive and the field.

Here's the event handler for the D '
Prin{:Pagc event. | goes ino{:hc EOW:CW"C"{S

using System.Drawing.Printing;

private void document PrintPage (object sender, PrintPageEventArgs e) {
Graphics g = e.Graphics;

Size stringSize;
using (Font arial24bold = new Font (“Arial”, 24, FontStyle.Bold))
stringSize = Size.Ceiling(
g.MeasureString (“Bee Simulator”, arial24bold));
g.FillEllipse (Brushes.Gray,

{ .
WC Savc \,ou ‘H’\\s
part alveady- 1t
deaws the oval

new Rectangle (e.MarginBounds.X + 2, e.MarginBounds.Y + 2, d

stringSize.Width + 30, stringSize.Height + 30)); header, ane o
g.FillEllipse (Brushes.Black, sctsuvfaﬂa es

new Rectangle (e.MarginBounds.X, e.MarginBounds.Y, {hakyou“‘ﬁc*p

draw the table
of bee stats:

stringSize.Width + 30, stringSize.Height + 30));
g.DrawString (“Bee Simulator”, arial24bold,
Brushes.Gray, e.MarginBounds.X + 17, e.MarginBounds.Y + 17);
g.DrawString (“Bee Simulator”, arial24bold,
Brushes.White, e.MarginBounds.X + 15, e.MarginBounds.Y + 15);
}

int tableX = e.MarginBounds.X + (int)stringSize.Width + 50;

int tableWidth = e.MarginBounds.X + e.MarginBounds.Width - tableX - 20;
int firstColumnX = tableX + 2;

int secondColumnX = tableX + (tableWwidth / 2) + 5;
int tableY = e.MarginBounds.Y; i
Did Yyou ‘ciﬂ""'c out how the

tableY = PrintTableRow (g, tableX, tableWidth, firstColumnX, Pﬁ"£7§HCRow()mcfhod works?
secondColumnX, tableY, “Bees”, Bees.Text); £ A” You need to do is eall it '
tableY = PrintTableRow (g, tableX, tableWidth, firstColumnX, mﬁc[%rrow,andifFrmfs
secondColumnX, tableY, “Flowers”, Flowers.Text); Whafmmr{xx{YOu“ﬂhfi
tableY = PrintTableRow (g, tableX, tableWidth, firstColumnX, fhe{WOCOhmn& Thc{rki'
secondColumnX, tableY, “Honey in Hive”, HoneyInHive.Text); fhafifvtfmmsfhcncW{HbT
tableY = PrintTableRow(g, tableX, tableWidth, firstColumnX, Vﬂuc‘brfhchexfrow CY

secondColumnX, tableY, “Nectar in Flowers”, NectarInFlowers.Text);
tableY = PrintTableRow (g, tableX, tableWidth, firstColumnX,
secondColumnX, tableY, “Frames Run”, FramesRun.Text);
tableY = PrintTableRow (g, tableX, tableWidth, firstColumnX,
secondColumnX, tableY, “Frame Rate”, FrameRate.Text);

DOV\,‘{: ‘FOY'SC‘{-’ +o draw
g.DrawRectangle (Pens.Black, tableX, e.MarginBounds.Y, khcrcdﬁ“\ca“”“d{hc
tableWidth, tableY - e.MarginBounds.Y); ta\o\c and the line between
g.DrawlLine (Pens.Black, secondColumnX, e.MarginBounds.Y, {hccdumh$

secondColumnX, tableY);

104 GDI+ bonus PDF for Head First C# % http.//www.headfirstlabs.com/hfcsharp

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

gdi+ graphics

o Youll need a black pen that’s 2 pixels wide o

using (Pen blackPen = new Pen (Brushes.Black, 2)) draw the lines around the streenshots.

using

Since the
pen and the
+wo bifma‘?s
need to be
disFoscd, we
put them all
in one bi

using block.

fieldForm.ClientSize.Height)) J jc¢3, so Clien
tomes in hand‘l'
using (Graphics hiveGraphics = Graphics.FromImage (hiveBitmap))

: The PaintHive() method needs a
renderer.PaintHive (hiveGraphics) ; éraphic: Ob\)d{-‘ to draw on so this
) i
} tode eveates an c»\P'f:y Bi{:maF ob\)cc{:

int hiveWidth = e.MarginBounds.Width / 2; and Passes it to PaintHive(.
float ratio = (float)hiveBitmap.Height / (float)hiveBitmap.Width;

int hiveHeight = (int) (hiveWidth * ratio);

int hiveX = e.MarginBounds.X + (e.MarginBounds.Width - hiveWidth) / 2;
int hiveY = e.MarginBounds.Height / 3;

g.DrawImage (hiveBitmap, hiveX, hiveY, hiveWidth, hiveHeight);
g.DrawRectangle (blackPen, hiveX, hiveY, hiveWidth, hiveHeight);

using (Graphics fieldGraphics = Graphics.FromImage (fieldBitmap))

| e.MarginBounds Width has the wic)ikh of Jc.hc

} printable area of the page. That's how wide
int fieldWidth = e.MarginBounds.width; the Field seveenshot should be dvawn.

ratio = (float)fieldBitmap.Height / (float)fieldBitmap.Width;

int fieldHeight = (int) (fieldWidth * ratio); Here’s where the height of the sereenshot

renderer.PaintField (fieldGraphics);

int fieldX = e.MarginBounds.X; K/ caleulated using the Lorm’s hcigh{—wid{h vatio.

int fieldY = e.MarginBounds.Y + e.MarginBounds.Height - fieldHeight?
g.DrawImage (fieldBitmap, fieldX, fieldY, fieldWidth, fieldHeight);
g.DrawRectangle (blackPen, fieldX, fieldY, fieldWidth, fieldHeight);

private void printToolStripButtonl Click(object sender, EventArgs e) {
. - )
bool stoppedTimer = false; Heve's the code for the print button. [t pauses the

if (timerl.Enabled) {

}

. simulator (i‘(: it's \running), treates a Prin‘l:DocumCh‘{:
t 1.5t ; . ’
Sigg; - dTir?;rf) L true; hooks it up to the PrintPage event handler, shows

the dialog, and then vestarts the simulator.

PrintPreviewDialog preview = new PrintPreviewDialog() ;

PrintDocument document = new PrintDocument () ;

preview.Document = document;

document.PrintPage += new PrintPageEventHandler (document PrintPage);
preview.ShowDialog (this) ;

if (stoppedTimer)

timerl.Start () ;

(Bitmap hiveBitmap = new Bitmap (hiveForm.ClientSize.Width, The b]{-‘ma‘;s need {'ﬁ
hiveForm.ClientSize.Height)) be Lhe same size as
using (Bitmap fieldBitmap = new Bitmap(fieldForm.ClientSize.Width, \ i, Lorm's drawing

ize

is

you are here »

www.itbook.store/books/9781449343507

105


https://itbook.store/books/9781449343507

pegelgoal

There’s so much wmore to be done...

You've built a pretty neat little simulator, but why stop now?
There’s a whole lot more that you can do on your own. Here are
some ideas—see if you can implement some of them.

Add a control panel
Convert the constants in the World and Hive classes to properties. Then
add a new form with a control panel that has sliders to control them.

Add enemies
Add enemies that attack the hive. The more flowers there are, the more
enemies are attracted to the hive. Then add Sting Patrol bees to defend
against the enemies, and Hive Maintenance bees to defend and repair
the hive. Those bees take extra honey.
A a00d

Add hive up grades simulation will
If the hive gets enough honey, it gets bigger. A bigger hive can hold more have lots of
bees, but takes more honey and attracts more enemies. If enemies cause tradeokfs, and

t00 much damage, the hive gets smaller again. :’;lclrﬁ'\:;\/fh{;

Add a queen bee who lays eggs decide &“‘“‘

The eggs need Baby Bee Care worker bees to take care of them. More Ka:;f:c ;;

honey in the hive causes the queen to lay more eggs, which need more influence the

workers to care for them, who consume more honey. Zra;fss of
¢ hive.

Add animation

Animate the background of the Hive form so the sun slowly travels
across the sky. Make it et dark at night, and draw stars and a moon.
Add some perspective—make the bees get smaller the further they get
from the hive in the field of flowers.

Use your imagination!

Try to think of other ways you can make the simulation more interesting

Or more interactive.

Did yOu come up with a cool modification to the simulator? Show
off your skills—upload your Project’s source code to the Head First
C# forums at www.headfirstlabs.com/books/ 11‘[(!31131'})/ .

1060 €

www.itbook.store/books/9781449343507


https://itbook.store/books/9781449343507

Date: QD

C# Lab

Invaders

This lab gives you a spec that describes a program
for you to build, using the knowledge you've gained
throughout this book.

This project is bigger than the ones you've seen so
far. So read the whole thing before you get started,
and give yourself g little time. And don’t worry if
you get stuck—there’s nothing new in here, so you
can move on in the book and come back to the lab
later.

We've filled in a few design details for you, and
we've made sure you've got all the pieces you
need...and nothing else.

It’s up to you to finish the job. You can download
an executable for this lab from the website...but we
won'’t give you the code for the answer.

C# Lab 107



https://itbook.store/books/9781449343507

Invaders

The grandfather of video games

In this lab you’ll pay homage to one of the most popular, revered,
and replicated icons in video game history, a game that needs no
further introduction. It’s time to build Invaders.

As the player destroys the
invaders, the store goes up.
[t's displayed in the upper
left—hand corner. A

The player moves the ship left
and vight, and Fives shots at
the invaders. [£ a shot hits an
invader, the invader is destroyed
and the player’s seore goes up-

The invaders attack in waves of 30.
The fivst wave moves slowly and Lives

3 few shots at a time. The next wave
moves Faster, and fives more shots more
frcqucn{:l\/. [€ all 30 invaders in @ wave
ave destroyed, the next wave attacks.

The invaders vetuwrn Live. 1§ one of the sbo’cs hits
the ship, the player loses a life. Onee all lives ave

gone, or if the invaders veach Jch“c bottom he
streen, the game ends and 3 big GAME OVER" is

dis\?la\/cd in the middle of the streen.

The player starts out with three
ships. The Liest ship is in Pla\/,
and the other £wo ave kept in
vesevve. His spare ships are shown
in the upper vight—hand torner.

The multitolored
stavs in the

of +he backyround £winkle

on and off, but
don't affect

9ameplay at all.



https://itbook.store/books/9781449343507

Invaders

Your wmission: defend the planet
against wave after wave of invaders

The invaders attack in waves, and each wave is a tight formation

of 30 individual invaders. As the player destroys invaders, his score

goes up. The bottom invaders are shaped like stars and worth 10

points. The spaceships are worth 20, the saucers are worth 30, the Theve ave five different 'E\/ch of invadevs,

bugs are worth 40, and the satellites are worth 50. The player starts but they all behave the same way. They start

with three lives. If he loses all three lives or the invaders reach the at the top of the sereen and move left until

bottom of the screen, the game’s over. they veach the edge. Then they drop down
and start moving vight. When they veach the
vight—hand boundary, they dvop down and
move left again. I£ the invaders veah the
bottom of the sereen, the game’s over.

The Fivest wave of
invadevs tan five two

shots at onte—the
invadevs will hold their —>

Five if there are move
£han two shots on the
streen. The next wave
fives three, the next The 9ame should keep
fives four, ete. track of which keys
The syacchV\ Sh;"i" but :‘rc Cws\rcn{ly being held
e Two own. i ;
{-\;\\\:\;:rcinoz Zy\ the streen and :Pa:cE;:sizglg okt
at onte. s soon 3s 3 shot £ a shot hits tause the ship to move
hiks something o disag\vcavs, an invader, both to the vight and five
another shot ¢an be fived. disappear- Otherwise, (if two shots aven't

fire! the shot disappears  alveady on £h ).
( | SPACE /l/ - when it gets to the v e
top of the seveen.

< LEFT RIGHT -

The left arrow moves the The vight arrow key mov
s:n? J(Ziinagf Hc\:cl:f{:—ha“d the ship to the rish):[;, o
edge € s ’



https://itbook.store/books/9781449343507

Invaders

The architecture of Invaders

Invaders needs to keep track of a wave of 30 invaders
(including their location, type, and score value), the player’s
ship, shots that the player and invaders fire at each other, and
stars in the background. As in the Quest lab, you’ll need a

Game object to keep up with all this and coordinate between
the form and the game objects.

Here’s an overview of what you’ll need to create:

q-§;7
o>

Game

The form is pretty simple. [t's got
Limevrs to Lell the game to 9o, it
passes on kc\/ presses, and it animates
£he invaders and twinkling stars. And

The Game objett manages the 9ameplay.
[ keeps track of how many lives the
player has lef£ and how many waves of
s got a Paint event handler to invaders have attacked. When the game’s
draw the graphics, which just ealls over, it vaises a GameOver event 4o tell
the Game object’s Draw() method. the form to stop its timers.



https://itbook.store/books/9781449343507

Invaders

All of the invaders on the sereen are
stored in a List. When an invader is
destroyed, it's vemoved from the list
so the game stops drawing it

»

(@]
o
R
S

D Q ;
The object that vepresents the
ship keeps track of its position
and moves itself left and vight,

making sure it doesn't move off
the side of the sereen.

L

O
463

The game keeps two
= lists of Shot objects:
a list of shots the
player fived at the
£ invaders, and a list
of shots the invaders

(@]
fived back.
Liev :

&2

The Stavs ob‘)cc{: keeps a List of Star struets
(eath of whith tontains a Point and a Pen).
Stars also has a Twinkle() method that removes
five stavs at vandom and adds five new ones—
the game calls Twinkle() seveval times a second
4o make the stars twinkle in the backgvound-



https://itbook.store/books/9781449343507

Invaders

Pesign the lnvaders form The form fives 3 KeyDown event. any

time a kcy is pressed, and it fives a

The Invaders form has only two controls: a timer to trigger Keyup event whenever 3 kc\/ is veleased
is released.

animation (making the stars twinkle and the invaders animate
by changing each invader picture to a different frame), and
a timer to handle gameplay (the invaders marching left and
right, the player moving, and the player and invaders shooting
at each other). Other than that, the only intelligence in the
form is an event handler to handle the game’s GameOver . i Game object,
event, and KeyUp and KeyDown event handlers to manage ;f Passes its C'iC"'ERCC‘l:anglc to it so .%;
the keyboard input. nows the boundaries of the form. So vou
tan thange the size of the battlefield
Just by changing the size of the form

When the form initializes its

+o F'nccdginglc and
off its MinimizeBox

You should add two timers: Set the form's FormBorderStyle property

Inimats i . . (Leved pr evty to true, turn .

out to the width you want the game area +o be.



https://itbook.store/books/9781449343507

Invaders

The animation timer handles the eye candy

The stars in the game’s background and the invader animation
don’t affect gameplay, and they continue when the game is
paused or stopped. So we need a separate timer for those.

Add code for the animation timer’s tick event

Your code should have a counter that cycles from 0 to 3 and then back down
to 0. That counter is used to update each of the four-cell invader animations —
(creating a smooth animation). Your handler should also call the Game

object’s Twinkle () method, which will cause the stars to twinkle. Finally, it

needs to call the form’s Refresh () method to repaint the screen. 7“.’:;2 5““?’1)’ doesn’t.
means that fhc

Try a timer interval of 33ms, which will give you about 30 frames per second. vs twinkle and th

Make sure you set the game timer to a shorter interval, though. The ship invaders animate eve . £

should move and gameplay should occur more quickly than the stars twinkle. the 9ame is ovey Pau: ld
) e

or hasn't been, started.

Ahim&fion ollurs evep,

)

Adjust the timers for smooth animation

With a 33ms interval for animation, set the game timer to 10ms. That way, the
main gameplay will occur more quickly than the animation (which is really just
background eye candy). At the same time, the Go () method in Game (fired

by the game timer, which we’ll talk about in a little bit) can take a lot of CPU
cycles. If the CPU is busy handling gameplay, the animation timer will just wait

until the CPU gets to it, and then fire (and animate the stars and invaders). I€ the animation timer is

set 1o 33ms, but the Game

Alternately, you can just set both timers to an interval of 5ms, and the game ob\)d{;’s Go() method takes
will run and animate about as fast as your system can handle (although on fast  longer than that £o vun,
machines, animation could get annoyingly quick). then animation will ottur

onte éoo Lom?lcfcs.

An invader starts with cell o, T

90es to eell |, then 2, then 3. We tried things out on a slow mathine, and
found that setting the animation interval
o 100ms and the Bamcylay timer interval

40 50ms gave us a trame vate of about
10 frames per second, which was dc«cini{:cly
playable. Try starting theve and veduting
each intevval until you've happy.

and then veverses, 909 batk
o2, then |, then O



https://itbook.store/books/9781449343507

Invaders

Respond to keyboard input

Before we can code the game timer, we need to write event

handlers for the KeyDown and KeyUp events. KeyDown is

triggered when a key is pressed, and KeyUp when a key is So if the player’s holding down
released. For most keys, we can simply take action by firing a the left arcow and spatebar at
shot or quitting the game. the same time, the list will eontain

) ) KC\/&LC‘H‘, and KCYS-SFSCC.
For some keys, like the right or left arrow, we’ll want to store /

those in a list that our game timer can then use to move the

EL?ZE:S ship. So we’ll also need a list of pressed keys in the form We need a list of keys so we tan

Lrack which keys have been yrcs.scd.
£— Our game timer will need that list

List<Keys> keysPressed = new List<Keys>(); for movement in \')“si a bit.

private void Forml KeyDown (object sender, KeyEventArgs e) {
if (e.KeyCode == Keys.Q)

w 0; S The @ kcy alu.l{:s the yime: But we onl‘/ want this to work
The Keys

if (gameOver) «—— |£ the game has ended, veset S—_if the ?amci:vzv' P;cszi?hifs
"‘"‘c"‘ I if (e.KeyCode == Keys.S) f{ the game and start over. shouldn't vestart a gam
detines a

i \ress.
fhe k // code to reset the game and restart the timers alrcady n prod
e keys return;

you might : K— You'll need to £ill in this tode.

wan{: ‘bo
theck kcy

if (e.KeyCode == Keys.Space) The syaccba\r Fives a shot.
L°d.“£ game.FireShot () ; -
a9ainst- if (keysPressed.Contains (e.KeyCode))
keysPressed.Remove (e.KeyCode) ;

ina the key and then ve—adding
keysPressed.Add(e.KeyCode)}; B\/ removing Y

NN - it, the key becomes {').\c last (most N
b The key that's pressed gets added to curvent) item in the list.

our kc\/ list, which we'll use in a setond. e wa,ﬁ;k{-,hc mos{:d .
turvren c\/ presse
at the very top of the
list, so that if the player
mashes a few keys at
K’ the same time, the 51»\1
. . ha
hen a kcy is veleased, we vemove it Yc:s":?zsmtos{ft:c::zl\f
Wi
e kcys‘ Then, when he lets up one
key, the game rcs\?ondss{: to
in the list.
Flip back to the KeyGame project ot ek one in the l
you built in Chapter 4. You used a
KeyDown event handler there, too!

private void Forml KeyUp (object sender, KeyEventArgs e) {
if (keysPressed.Contains (e.KeyCode))
keysPressed.Remove (e.KeyCode) ;

rom our |ist oﬁ



https://itbook.store/books/9781449343507

Invaders

The game timer handles movement and gameplay

The main job of the form’s game timer is to call Go () in the
Game class. But it also has to respond to any keys pressed, so it
has to check the keysPressed list to find any keys caught by
the KeyDown and KeyUp events:

evs “mash’ a bunch of keys

|
' g £ we want the game to

at onte. |

This timer makes the game advance by one Lrame.
So the first thing it does is call the Game
objcé{'s éo() method to let 5amq>lay tontinue.

private void gameTimer_ Tick (object sender, EventArgs e) .
keysPressed is Your List<Keys>
object managed by the KeyDown
and KeyUp event handlevs. [£

{
game.Go () ;
foreach (Keys key in keysPressed)

be vobust, it needs {0 be ab)\c bo.
handle that. That's why we've using
the ke\/stcsscd list.

{ N contains every key the player

The keysPressed if
list has the keys  {
in the order that
they've pressed.
This foreach loop }
9oes through them else if (key == Keys.Right)
wntil it finds 3 {
Left or Right key,
then moves Lhe
Fla\/c\r and veturns. } Shots move up and down,
} the player zovcs left and
} vight, and the invaders
The KeyDown event handler Jjust handles the move lc-(:{:; vight, am.i —
space, S, and @ kc\/s‘f:\'okcs without adding them down. \/ou I hcclf £{h|s
to the keysPressed list. What would happen if erum to keep all those
You moved the tode for ‘Firing the shot when divections s{:\ralgh{:-
the space key is pressed to this event handler?

One wmore form detail: the GameOver event

Add a private bool field called gameOver to the form that’s t rue only when
the game 1s over. Then add an event handler for the Game object’s GameOver
event that stops the game timer (but not the animation timer, so the stars still
twinkle and the invaders still animate), sets gameOver to true, and calls the
form’s Invalidate () method.

(key == Keys.Left)

game .MovePlayer (Direction.Left);
return;

game .MovePlayer (Direction.Right) ;
return;

When you write the form’s Paint event handler, have it check gameOver. If
it’s t rue, have it write GAME OVER in big yellow letters in the middle of the
screen. Then have it write “Press S to start a new game or Q) to quit” in the
lower right-hand corner. You can start the game out in this state, so the user has
to hit S to start a new game.

curvently has \WCSSCd'

The KeyUp and KeyDown
events use the Keys enum
to specify a key. We'll use
Kc\/s.Lc«c{: and KeysRight
1o move the ship.

enum Direction {

Left,
Right,
Up,
Down,

< Heves 3

n example of adding

Lhev event ko a foem
i:z\\ou{: using the lDE This is

all manua\ toding

t and its
he oame over ever
‘gc\ccg)a’cc live in the Game tj\ass,c
whith \Iou’“ see in :)usjc, 3 minute:



https://itbook.store/books/9781449343507

Invaders

The forms game timer tells the game to Gol)

In addition to handling movement left and right, the main job of the game timer is to
call the Game object’s Go () method. That’s where all of the gameplay is managed.
The Game object keeps track of the state of the game, and its Go () method advances
the game by one frame. That involves:

o Checking to see if the player died, using its Alive property. When the player dies,
the game shows a little animation of the ship collapsing (using DrawImage () to squish
the ship down to nothing). The animation is done by the PlayerShip class, so Go () just
needs to check to see if it’s dead. If it is, it returns—that way, it keeps the invaders from
moving or shooting while the player gets a small break (and watches his ship get crushed).

Moving each of the shots. Shots fired by the invaders move down, and shots fired by the
player move up. Game keeps two List<Shot> objects, one for the invaders’ shots and one
for the player’s. Any shot that’s moved off the screen needs to be removed from the list.

Moving each of the invaders. Game calls each Invader object’s Move () method,
and tells the invaders which way to move. Game also keeps up with where the invaders are
in case they need to move down a row or switch directions. Then, Game checks to see if it’s
time for the invaders to return fire, and if so, it adds new Shot objects to the List<>.

Checking for hits. If a player’s shot hit any invaders, Game removes the invaders from the
appropriate List<>. Then Game checks to see if any of the invader shots have collided with
the player’s ship, and if so, it kills the player by setting its Alive property to false. If the
player’s out of lives, then Game raises the GameOver event to tell the form that the game’s «
over. The form’s GameOver event handler stops its game timer, so Go () isn’t called again>

Heve's where that
@chovcr event ‘From {:hc

/g_a_mef-go()\ last page comes into play.

The game timer fives move often ) in the Game Ob\')cc‘c handles
than the animation timer, making QO(Y “'c\h'mg Ceom
gameplay happen quickly. c:o {:Is L ehecking

nvadevrs have been WL

movemen

Lo see ik ships o



https://itbook.store/books/9781449343507

Invaders

Taking control of graphics

In earlier labs, the form used controls for the graphics. But now
that you know how to use Graphics and double-buffering, the
Game object should handle a lot of the drawing;

So the form should have a Paint event handler (make sure you
set the form’s DoubleBuffered property to truel!). You’ll
delegate the rest of the drawing to the Game object by calling its
Draw () method every time the form’s Paint event fires.

Evcr\/‘{:hmg that happens visually
in {:hc 5amc ha\?Pcns n {hc
(—\orm s Paint event handler.

Paint event
fires

game - DEaY (9, a“lmatlonCell

The game tells each
invader which eell 4o
dvaw bascd on {:he
animationCell passed
b\/ fhc ‘Co\rm

stars.Draw (
The Qame ob eet’s Draw() method foreach (Invader vader in invaders)

calls the Draw() methods on all of invader.Draw animationCell) ;
the other objects. You'll see how playerShip.Draw (g) ;

eath of the o{:hcr tlasses’ Draw() foreach (Shot shot in playerShots)
methods work in the next few pages. shot.Draw(qg) ;

\—z foreach (Shot shot in invaderShots)
shot.Draw (

Staps 003 LISVS' % ayero®

9game whith eell to draw.

The invaders have a four—cell
animation sequente, $o the
’%m 00 form passes an int telling the

Q

L 5—‘45 L S—‘L5



https://itbook.store/books/9781449343507

Invaders

Building the Gawme class

The Game class is the controller for the Invaders game. Here’s a
start on what this class should look like, although there’s lots of
work still for you to do.
The store, livesLeft, and wave fields
class Game | kCCF track 04(: some basie iwporma{:ion

about the state of the game.

private int score = 0;
private int livesLeft = 2;
private int wave = 0; \/ou'” use the frame field to slow down the
private int framesSkipped = 0; & inaders early on in the game—the fivst wave
should skip b frames before they move to the

private Rectangle boundaries; left, the next wave should skip 5, the next
private Random random; should skip &, ete.

This List<> of Invader objects keeps track of all of
the invaders in the turrent wave. When an invader is
destroyed, it's vemoved from the list. The game thetks
peviodically to make suve the list isn't empty—if it is, it
sends in the next wave of invaders.

private Direction invaderDirection;
private List<Invader> invaders;

private PlayerShip playerShip;
private List<Shot> playerShots;
private List<Shot> invaderShots;

private Stars stars; <\

This Stars object keeps tratk of the
multicolored stavs in the background.

public event EventHandler GameOver; N The Qame ob\)ct{ vaises its QameOver
event when the player dies and doesn’t
have any move lives left. You'll build
the event handler method in the form,
and hook it into the Qame objeet’s
QameOver event.

// etc...

Game
GameOver: event

Draw(g: Graphics, animationCell: int)
MOS‘{: O‘c {',\'\CSC Twmkle() RCMCMbCV‘, 'H’\CSC are ‘{')\C

methods combine MovePlayer(direction: Direction) %‘t M' You may need
methods on other FireShot() a lot more tha{.’c methods to
ob\')c ets 4o make 3 Go() strueture Your tode in a way

cpeti Fie action ottur. that makes sense to you.



https://itbook.store/books/9781449343507

Invaders

The Game class methods

The Game class has five public methods that get triggered
by different events happening in the form.

Q The Draw () method draws the game on a Graphics object
The Draw () method takes two parameters: a Graphics object and an integer that contains
the animation cell (a number from 0 to 3). First, it should draw a black rectangle that fills up
the whole form (using the display rectangle stored in boundaries, received from the form).
Then the method should draw the stars, the invaders, the player’s ship, and then the shots.
Finally, it should draw the score in the upper left-hand corner, the player’s ships in the upper
right-hand corner, and a big “GAME OVER” in yellow letters if gameOver is true.

The Twinkle () method twinkles the stars
The form’s animation timer event handler needs to be able to twinkle the stars, so the Game
object needs a one-line method to call stars.Twinkle ().

R__— We'll write eode for the Stars
objett in few move pages-

The MovePlayer () method moves the player
The form’s keyboard timer event handler needs to move the player’s ship, so the Game object
also needs a two-line method that takes a Direction enum as a parameter, checks whether
or not the player’s dead, and calls playerShip.Move () to affect that movement.

The Fireshot () method makes the player fire a shot at the invaders
The FireShot () method checks to see if there are fewer than two player shots on screen. If
so, the method should add a new shot to the playerShots list at the right location.

The Go () method makes the game go

The form’s animation timer calls the Game object’s Go () method anywhere between 10
and 30 times a second (depending on the computer’s CPU speed). The Go () method does
everything the game needs to do to advance itself by a frame:

#*  The game checks if the player’s dead using its Alive property. If he’s still alive, the
game isn’t over yet—if it were, the form would have stopped the animation timer with
its Stop () method. So the Go () method won’t do anything else until the player is
alive again—it’ll just return.

Every shot needs to be updated. The game needs to loop through both List<Shot>
objects, calling each shot’s Move () method. If any shot’s Move () returns false, that
means the shot went off the edge of the screen—so it gets deleted from the list.

The game then moves each invader, and allows them to return fire.

Finally, it checks for collisions: first for any shot that overlaps an invader (and removing
both from their List<T> objects), and then to see if the player’s been shot. We’ll add
a Rectangle property called Area to the Invader and PlayerShip classes—so we
can use the Contains () method to see if the ship’s area overlaps with a shot.



https://itbook.store/books/9781449343507

Invaders

Filling out the Gawme class

The problem with class diagrams is that they usually leave out
any non-public properties and methods. So even after you've
got the methods from page 119 done, you've still got a lot of
work to do. Here are some things to think about:

The constructor sets everything up

The Game object needs to create all of the other objects—the Invader

objects, the PlayerShip object, the List objects to hold the shots, and the

Stars object. The form passes in an initialized Random object and its own N\

ClientRectangle struct (so the Game can figure out the boundaries of we'll £alk about most of these
the battlefield, which it uses to determine when shots are out of range and individual ob\')cd:s over the next
when the invaders reach the edge and need to drop and reverse direction). Then, seveval pages of this lab.

your code should create everything else in the game world.

Build a NextWave() method

A simple method to create the next wave of invaders will come in handy. It should
assign a new List of Invader objects to the invaders field, add the 30 invaders
in 6 columns so that they’re in their starting positions, increase the wave field by 1,
and set the invaderDirection field to start them moving toward the right-
hand side of the screen. You'll also change the framesSkipped field.

Heve's an example of 3 private
method that will veally help out

A few other ideas for private methods Your Game ¢lass organization.

Here are a few of the private method ideas you might play with, and see if these

would also help the design of your Game class:
v’ A method to see if the player’s been hit (CheckForPlayerCollisions ())
v A method to see if any invaders have been hit (CheckForInvaderCollisions ())
v A method to move all the invaders (MoveInvaders())

v A method allowing invaders to return fire (ReturnFire ())

_ @wn\u«
‘PQWEWR
It's possible to show protected and private properties

and methods in a class diagram, but you'll rarely see
that put into practice. Why do you think that is?



https://itbook.store/books/9781449343507

Invaders

[N ] [ s This seems veally ¢ |
LINQ makes collision detection much easier when you Fist vead 1
. . bu": eath L’NQ "l""‘/ is
You've got collections of invaders and shots, and you need to search through those justae ouple of lines of
collections to find certain invaders and shots. Any time you hear collections and tode. Heve's a hint: do i}
searching in the same sentence, you should think LINQ). Here’s what you need to do: overeomplicate it! - den

o Figure out if the invaders’ formation has reached the edge of the battlefield
The invaders need to change direction if any one invader is within 100 pixels of the edge of the battlefield.
When the invaders are marching to the right, once they reach the right-hand side of the form the game
needs to tell them to drop down and start marching to the left. And when the invaders are marching to
the left, the game needs to check if they’ve reached the left edge. To make this happen, add a private
MoveInvaders () method that gets called by Go () . The first thing it should do is check and update the
private framesSkipped field, and return if this frame should be skipped (depending on the level).
Then it should check which direction the invaders are moving, If the invaders are moving to the right,
MoveInvaders () should use LINQ to search the invaderCollection list for any invader whose
location’s X value is within 100 pixels of the right-hand boundary:. If it finds any, then it should tell the
invaders to march downward and then set invaderDirection equal to Direction.Left;if not, it
can tell each invader to march to the right. On the other hand, if the invaders are moving to the left, then
it should do the opposite, using another LINQ) query to see if the invaders are within 100 pixels of the
left-hand boundary, marching them down and changing direction if they are.

Determine which invaders can return fire

Add a private method called ReturnFire () that gets
called by Go () . First, it should return if the invaders’
shot list already has wave + 1 shots. It should also
returnif random.Next (10) < 10 - wave.
(That makes the invaders fire at random, and not all

the time.) If it gets past both tests, it can use LINQ) to
group the invaders by their Location.X and sort them
descending. Once it’s got those groups, it can choose
a group at random, and use its First () method to
find the invader at the bottom of the column. All right,
now you’ve got the shooter—you can add a shot to the
invader’s shot list just below the middle of the invader
(use the invader’s Area to set the shot’s location).

Check for invader and player collisions

You’ll want to create a method to check for collisions. There are three collisions to check for, and the
Rectangle struct’s Contains () method will come in really handy—just pass it any Point, and it'll return
true if that point is inside the rectangle.

*  Use LINQ to find any dead invaders by looping through the shots in the player’s shot list and selecting
any invader where invader.Area contains the shot’s location. Remove the invader and the shot.

* Add a query to figure out if any invaders reached the bottom of the screen—if so, end the game.

You don’t need LINQ) to look for shots that collided with the player, just a loop and the player’s Area
property. (Remember, you can’t modify a collection inside a foreach loop. If you do, you’ll get
an InvalidOperationException with a message that the collection was modified.)



https://itbook.store/books/9781449343507

Invaders

Crafting the Invader class

The Invader class keeps track of a single invader. So when the Game

object creates a new wave of invaders, it adds 30 instances of Invader to

a List<Invader> object. Every time its Go () method is called, it calls

each invader’s Move () method to tell it to move. And every time its Draw ()
method is called, it calls each invader object’s Draw () method. So you’ll need
to build out the Move () and Draw () methods. You’ll want to add a private
method called InvaderImage (), too—it’'ll come in really handy when
you’re drawing the invader. Make sure you call it inside the Draw () method to
keep the image field up to date:

Invader

Location: Point
InvaderType: ShipType
Area: Rectangle
Score: int

Draw(g: Graphics, animationCell: int)
Move(direction: Direction)

class Invader { The HOY'iZOV\{',&”V\‘{',CY‘VGl COV\S‘taY\{Z

private const int HorizontallInterval = 10; determines ho.w many pixels al"ai’ad"
private const int VerticallInterval = 40; moves every time it marthes lett or

vight. Verticallnterval is the number of

private Bitmap image; P]ﬁcls 'r{; dv-o?s down when ‘H\C ‘coYma‘{liOh

veathes the edge of the battlefield.

public Point Location { get; private set; }
public ShipType InvaderType { get; private set;

public Rectangle Area { get {

Cheek out what we did with the
Avea property. Since we know the
invader’s lotation and we know

return new Rectangle (location, image.Size); } ks size (Feom its mage (:icld),
F/ we tan add a get ateessor that

public int Score { get; private set;

caleulates a Reetangle for the

avea it tovers...

public Invader (ShipType invaderType, Point location, int score) {

this.InvaderType = invaderType;
this.Location = location;
this.Score = score;

image = InvaderImage (Q) ;

}

// Additional methods will go here

...which means you £an use
the Rectangle's Contains()
method inside a LIN® query
to detett any shots that
tollided with an invader.

An [nvader ob\)cc{: uses
the ShiFTch enum to
‘('\igwc out what kind of

enemy ship it is.
~—

enum ShipType {

Bug,
Saucer,
Satellite,
Spaceship,
Star,



https://itbook.store/books/9781449343507

Build the Invaders’ methods

The three core methods for Invader are Move (), Draw (), and
InvaderImage (). Let’s look at each in turn.

Move the invader ships

First, you need a method to move the invader ships. The Game object should
send in a direction, using the Direction enum, and then the ship should
move. Remember, the Game object handles figuring out if an invader needs to
move down or change direction, so your Invader class doesn’t have to worry
about that.

public void Move (Direction direction) {
// This method needs to move the ship in the
// specified direction

Praw the ship—and the right animation cell

Each Invader knows how to draw itself. Given a Graphics object to draw
to, and the animation cell to use, the invader can display itself onto the game
board using the Graphics object the Game gives it.

public void Draw (Graphics g, int animationCell) {
// This method needs to draw the image of
// the ship, using the correct animation cell

Get the right invader image

You’re going to need to grab the right image based on the animation
cell alot, so you may want to pull that code into its own method.
Build an InvaderImage () method that returns a specific Bitmap
given an animation cell.
private Bitmap InvaderImage (int animationCell) {
// This is mostly a convenience method, and

// returns the right bitmap for the specified cell

}

Invaders

Theve ave five types of invaders,
and eath of them has four
diﬁ:crcn‘{: animation ¢ell ?ié'{:wcs.

b

l/_\ Eath invader knows its
type. So if you give its
lnvadcrlmagc() method a
number for its animation
eell, it tan return 3

Bitmap that’s 9ot the

Remember, you can download these gt’aPlliCS from vight. araphic in it.

http:/ [vrvew headtirstlabs.com/ 11‘[(!31[31"])/ .



https://itbook.store/books/9781449343507

Invaders

The players ship can move and die

The PlayerShip class keeps track of the
player’s ship. It’s similar to the Invaders class,
but even simpler.

The Lotation and Avea
properties are exactly like PlayerShip

the ones in the [nvader class Location: Point
Area: Recta%-/

| Alive: bool

The Draw() method just draws = Draw(g: Graphics)
the player’s ship in {:\l)nc vight /
lotation—unless the player
died, in which ease it draws an
animation of the ship gc{:{:ing
trushed b\/ the shot.

Animate the player ship when it’s hit

Move(direction: Direction).——

When the ship’s hit with a shot,
the game sets the ship’s Alive
property to false. The game
then keeps the invaders from
moving until the ship vesets its
Alive property back to true.

The Move() method takes
one pavameter, 3 Divection
enum, and moves the player

in that divection. S

PlayerShip needs to take
ina Rcd:anglc with the

game’s boundaries in its

The Draw () method should take a Graphics object as a parameter. Then it checks tonstruttor, and make
)

its Alive property. If it’s alive, it draws itself using its Location property. If it’s

suce the ship doesn't get

dead, then instead of drawing the regular bitmap on the graphics, the PlayerShip moved out of the game’s

object uses its private deadShipHeight field to animate the player ship slowly

boundavies in Movel().

getting crushed by the shot. After three seconds of being dead, it should flip its Alive

property back to true.

Waiting three seconds is casy—'us{: use the Alive yroycr{;\/'s set accc'ssor {0 set a
private DateTime field 4o DafeTime.Now. The fiest thing the ship’s o) method

\” does is use a TimeSpan to theek if three setonds have elapsed. [£ three seconds
haven't elapsed, tontinue doing the trushing ship animation. As soon as three
setonds have elapsed, set Alive back to true so the game knows it should continue
gameplay. (You used a similav trick in the beehive simulator.)

— —

public void Draw(Graphics g) {
if (!'Alive) {
Reset the deadShipHeight field and draw the ship.

} else {

_—

Check the deadShipHeight field. If it's greater than zero, decrease it by 1

and use DrawlImage() to draw the ship a little flatter.



https://itbook.store/books/9781449343507

Invaders

“Shots fired!”

Game has two lists of Shot objects: one for the player’s shots moving
up the screen, and one for enemy shots moving down the screen.
Shot only needs a few things to work: a Point location, a method
to draw the shot, and a method to move. Here’s the class diagram:

Shot Draw() handles drawing the little vectangle
Location: Point for this shot. Game will eall £his every time

Draw(g: Graphics) | the sereen needs to be updated.

Move(): bool<—— | povel) moves the shot up

or down, and keeps up with
whether £he shot is within the
3amc's boundaries.

Here’s a start on the Shot class:

class Shot {
private const int moveInterval = 20; ou tan adjust these to make the game
private const int width = 5; easier or havder...smallev shots are easiev
private const int height = 15; to dodge, faster shots are harder to avoid.

public Point Location { get; private set; } The shot updates its own lotation in

fR__ +he Move() method, so lotation tan
be a vead—only automatic property.

private Direction direction;
private Rectangle boundaries;

Divettion is the e i
public Shot (Point location, Direction direction, . mim with MP
- and Down defined.
Rectangle boundaries) { V
this.Location = location;
this.direction = direction;

} this.boundaries = boundaries; ih{'ﬁ ‘{th COV\S‘EV‘UC{',OY‘)S boundarics Faramc{:cr so

the shot ¢an tell when it’s off of the seveen.

The game passes the form’s display vectangle

// Your code goes here

Your job is to make sure Draw () takes in a Graphics object
and draws the shot as a yellow rectangle. Then, Move () should
move the shot up or down, and return true if the shot is still
within the game boundaries.



https://itbook.store/books/9781449343507

Invaders

[ H [ )

Twinkle, twinkle...it’s up to you Heve's another hinks start ot
the ?\ro\')ec{: with 3us{: a form,

The last class you'll need is the Stars class. There are 300 stars, and this a Qame ¢tlass, and Stavs class.

class keeps up with all of them, causing 5 to display and 5 to disappear every See if You €an get it to draw

time Twinkle () is called. a black sky with twinkling

stars. That'll give you a solid

foundation o add the other

private struct Star { tlasses and methods.

public Point point; <—= Each star has a point (its location)

public Pen pen; ‘_/ and a pen (For its color).

First, though, you’ll need a struct for each star:

public Star (Point point, Pen pen) {
this.point = point; )
this.pen = pen; Q Al Skar does is hold this
data...no behavior-

The Stars class should keep a List<Star> for storing 300 of these Star

structs. You'll need to build a constructor for Stars that populates that

list. The constructor will get a Rectangle with the display boundaries, and

a Random instance for use in creating the random Points to place each star - Lhe Stav
in a random location. You tan define the

|
side Stavs.ts) s only
el ek et

Z/’//)

Here’s the class diagram for Stars, with the other methods you’ll need:

Stars

Draw() dvaws all
300 stavs... : i
" —>| Draw(g: Graphics) —— Game maintains an

Twinkle(random: Random) instance of Random

...and Twinkle() that all the ObJCC'Es
pulls 5 stars and €an use.
adds 5 new ones.

Draw () should draw all the stars in the list, and Twinkle () should
remove five random stars and add five new stars in their place.

You might also want to create a RandomPen () method so you can get
a random color for every new star you create. It should return one of
the five possible star colors, by generating a number between 0 and 4,
and selecting the matching Pen object.



https://itbook.store/books/9781449343507

Invaders

And yet there’s more to do...

Think the game’s looking pretty good? You can take it to the
next level with a few more additions:

Add animated explosions
Make each invader explode after it’s hit, then briefly display & number to
tell the player how many points the invader was worth.

Add a mothership

Once in a while, a mothership worth 250 points can travel across the top

of the battlefield. If the player hits it, he gets a bonus.

Add shields n paking the
Add floating shields the player can hide behind. You can add simple ,ccwe:hfa‘%;
shields that the enemies and player can’s shoot through. Then, if you levels of the 532:"
really want your game to shine, add breakable shields that the player and <=—

invaders can blast holes through after a certain number of hits.

Add divebombers

Create a special type of enemy that divebombs the player. A divebombing
enemy should break formation, take off toward the player, fly down
around the bottom of the screen, and then resume its position.

Add more weapons

Start an arms race! Smart bombs, lasers, guided missiles...there are all
sorts of weapons that both the player and the invaders can use to attack
each other. See if you can add three new weapons to the game.

Add more graphics A nood tlass desian
You can go to www.headfirstlabs.com/books/hfesharp/ to find more shgu\d let you thange
graphics files for simple shields, a mothership, and more. We provided out gvaphics with
blocky, pixelated graphics to give it that stylized '80s look. Can you come  minimal eode thanges
up with your own graphics to give the game a new style?

This is your chance to show off! Did you come up with a cool

new version of the game? Uploac[ it to CodePlex and claim your
l)ragging rigltts: www.headlirstlabs.com/hooks/ Mcsharp/



https://itbook.store/books/9781449343507

