Thevre are many projects | i

. jects in Head Fivst C# whevre buil
Wu:lcliows Store apps that requive Windows 8. | 'l:hi);o:yp:lnjix
Youll use WPF to build them as desktop apps instead.)

appendix ii: Windows Presentation Foundation

« WPF Learner’s Guide
to Head First C# +

GOOD NEWS! T JUST
APPROVED YOUR REQUEST
TO UPGRADE YOUR DESKTOP
TO WINDOWS 2003 -

SUZIE GOT HER OFFICE DESKTOP UPGRADED IN JUST
SIXTEEN MONTHS- 4 NEW COMPANY RECORD!

Not running Windows 8? Not a problem.

We wrote many chapters in the third edition of Head First C# using the latest technology

available from Microsoft, which requires Windows 8 and Visual Studio 2013. But what
if you're using this book at work, and you can'’t install the latest version? That's where
Windows Presentation Foundation (or WPF) comes in. It's an older technology, so it
works with Visual Studio 2010 and 2008 running on Windows editions as mature as 2003.

But it's also a core C# technology, so even if you're running Windows 8 it's a good idea

to get some experience with WPF. In this appendix, we’ll guide you through building

most of the Windows Store projects in the book using WPF.

this is an appendix 1

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

same programs

Why you should learn WPF

Windows Presentation Foundation, or WPE, is a technology
that’s used to build user interfaces for programs written in .NET.
WPF programs typically run on the Windows desktop and display
their user interfaces in windows. WPF is one of the most popular
technologies for developing Windows software, and familiarity
with WPF is considered by many employers to be a required skill

for professional C# and .NET developers. Some 'Ehi'\f)s; like

app bars and

WPF programs use XAML (Extensible Application Markup page navigation,
Language) to lay out their Uls. This is great news for Head First ave specikie to
(# readers who have been reading about Windows Store apps. Windows Store
Most of the Windows Store projects in the book can be built for K apps. In this
WPF with few or no modifications to the XAML code. appendix, we
show you WPF

alternatives
wherever possible.

I’M RUNNING WINDOWS 8
AND VISUAL STUDIO 2013,50 T
DON'T CARE ABOUT WPF... RIGHT?

Every C# developer should work with WPF.

Almost every programming language can be used in lots of different
environments and operating systems, and C# is no exception. If
your goal is to improve as a C# developer, you should go out of
your way to work with as many different technologies as possible.
And WPF in particular is especially important for C# developers,
because there are many programs that use WPF in companies,

and this will continue for a long time. If your goal is to use C# in a
professional environment, WPT is technology you’ll want to list on
your resumé.

Learning WPT is also great for a hobby programmer who’s using
Windows 8 and can build all of the code in Head First C#. One of
the most effective learning tools you have as a developer is seeing
the same problem solved in different ways. This appendix
will guide you through building many of the projects in Head First
C# using WPE. Seeing those projects built in WPF and Windows 8
will give you valuable perspective, and that’s one of the things that
helps turn good programmers into great developers.

You can download the code for all of the projects in this appendix. Go to the Head First
Labs website for more information: http:/www.headfirstlabs.com/hfcsharp

2

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

Build WPF projects in Visval Studio

Creating a new WPF application in Visual Studio works just like creating other kinds of
desktop applications. If you’re using Visual Studio Express 2013, make sure you’re using
Visual Studio 2013 Express for Desktop (the edition for Windows 8 will not create WPF
projects). You can also create programs using Visual Studio 2013 Professional, Premium,

or Ultimate. When you create a new project, Visual Studio displays a “New Project” dialog.
Make sure you select Visual C#, and then choose :

b Recent Sort by: Default ME Search Installed Templates (Ctrl+E) R ~
4 Installed (<]
Windows Forms Application Visual C# Type: Visual G
4 Templates ‘Windows Presentation Foundation client
b Visual Basic ﬂ WPF Application Visual C# application
4 Visual C# o+
Windows E Console Application Visual C#
Test s
b Visual C++ En:i! Class Library Visual G#
SQL Server -Ct !
Python &_‘] Empty Project Visual C#
Visual Studio Solutions
Samples
b Online
Click here to go online and find templates.
Name: WpfApplication1
Location: C\Users\Public\Documents\Visual Studio 2013\Projects\ M
Solution name: ‘WpfApplication1 Create directory for solution
[] Add to source control

You can also create C# WPF applications using all editions of Visual Studio 2010, Visual C#
2010 Express, and Visual Studio 2008. Note that if you use the Express editions of Visual Studio
2010 or 2008, the project files are initially created in a temporary folder and are not saved to the
location specified in the New Project dialog until you use Save or Save All to save your files.

WPF can also be used to build XAML browser applications that run inside Internet
Explorer and other browsers. We won’t be covering it in this appendix, but you can
learn more about it here: http://msdn.microsoft.com/en-us/library/aa970060.aspx

Microsoft has yet another technology that also uses XAML. It’s called Silverlight,
and you can read about it here: http://www.microsoft.com/silverlight/

Did you find an error in this appendix? Please submit it using the Errata page for Head
First C# (3rd edition) so we can fix it as quickly as possible!

http://www.oreilly.com/catalog/errata.csp?isbn=0636920027812

you are here » 3

www.itbook.store/books/9781449343507

http://www.oreilly.com/catalog/errata.csp?isbn=0636920027812
https://itbook.store/books/9781449343507

let’s started

How tfo use this appendix

This appendix contains complete replacements for pages in Head First C# (3rd edition). We've divided
this appendix up into individual guides for each chapter, starting with an overview page that has
specific instructions for how to work through that chapter: what pages to replace in the chapter, what
to read in it, and any specific instructions to help you get the best learning experience.

If you’re using an old version of Visual Studio, you’ll be able to do these
projects... but things will be a little harder for you.

The team at Microsoft did a really good job of improving the user interface of Visual Studio 2013,
especially when it comes to editing XAML. One important feature of Head First C# is its use of the
Visual Studio IDE as a tool for teaching, learning, and exploration. This is why we strongly recommend
that you use the latest version of Visual Studio if possible.

However, we do understand that some readers cannot install Visual Studio 2013. (For example, a lot of
our readers are using a computer provided by an employer, and do not have administrative privileges

to install new software.) We still want you to be able to use our book, even if you’re stuck using an old
version of Visual Studio! We’ll do our best to give you as much guidance as we can. But we also need to
strike a balance here, because we’re being careful not to compromise the learning for the majority of our
readers who are using the latest version of Visual Studio.

If you’re using Visual Studio 2010 or earlier, and you find yourself stuck because the IDE’s user interface
doesn’t look right or menu options aren’t where you expect them to be, we recommend that you
enter the XAML and C# code by hand—or even better, copy it and paste it into Visual Studio.
Once the XAML is correct, it’s often easier to track down the feature in the IDE that generated it.

We’ve made all of the source code in the book available for download, and

we encourage you to copy and paste it into your programs anytime you get

stuck. Go to the book’s website(http:/www.headfirstlabs.com/hfcsharp) for
more details and links to the source code.

You can download the source code directly from http://hfcsharp.codeplex.
com/ — but for the replacement chapters in this appendix, make sure that you
sure you download the code from the WPF folder. If you try to use the Windows

Store code in a WPF project, you'll get frustrating errors.

One more thing. This appendix has replacements for pages that you’ll find
in the printed or PDF version this book, and you can find those pages using
their page numbers. However, if you’re using a Kindle or another eBook
reader, you might not be able to use the page numbers. Instead, just use the
section heading to look up the section to replace. For example, this appendix
has replacements for pages 72 and 73 section called Build an app from the
ground up, which you can find in your eBook reader’s Table of Contents
underneath Chapter 2. (Exercises like the one on page 83 and the solution on
page 85 might not show up in your reader’s Table of Contents, but you’ll get
to the exercises as you go through each chapter.) This will be much easier

for you if you download the PDF of this appendix from the book’s website.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows foundation

x *
. Chapter 1 |

YOU CAN BUILD THE ENTIRE

Save THE HUMANS GAME IN WPF
USING THESE REPLACEMENTS FOR
PAGES 12-47.

Build a game, and get a feel for the IDE.
The first project in the book walks you through building a
complete—and fun!-—video game. The goal of the project
1s to help you get used to creating user interfaces and
writing C# code using the Visual Studio IDE.

We recommend that you read through page 11 in the main
part of the book, and then flip to the next page in this
appendix. We designed pages 12-47 in this appendix so
that they can be 100% replacements for the corresponding
pages in the book. Once you've finished building the WPF

version of Save the Humans, you can go on to Chapter 2 in
the book.

The streenshots in this thapter ave from Visual Studio 2013 for
Windows Desktop, the latest version of Visual Studio available at 4his
time. [£ \/oul\rc using Visual Studio 2010, some of the menu oF'[;ions
and windows in the [DE will be different. We'll give You guidance to
hc|\7 You find the righ‘{: menu oF{:ions.

We worked really hard to keep the page ﬂipping to a minimum, because l)y reJucing
distractions we make it easier for you to learn important C# concepts. After you read
the first 11 pages of C]mapter 1, you won't have to ilip back to the main part of the
book at all for the rest of the c]mapter. Then there are Just fi_vg pages that you need
in this appeno[ix for Clxapter 2. After tliat, the hook concentrates on lyuilu[ing Jesktop
applications, which you can build with any version of Windows. You won't need this
appenJix again until you get to C]napter 10.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

fill in the blanks

|£ Your code filenames don’t end in “es”
. . . you may have accidentally ereated a
Start with a blank application JavaSevipt, Visual Basie, or Viscal O+

program. You ean fix this b\/ closing the

Every great app starts with a new project. Choose New Project from the solution and s{:ar-[;ing over. £ You want
File menu. Make sure you have Visual C#—~>Windows selected and choose to keep the ?ro\)cc{: name “Save the
WPF Application as the project type. Type “Save the Humans™ as the Humans,” then you'll need to delete the
project name. previous project folder.

Your starting point is the Designer window. Double-click on MainWindow.xaml in the Solution
@ Explorer to bring it up (if it's not already displayed). Find the zoom drop-down in the lower-left
corner of the designer and choose “Fit all” to zoom it out.

Dq Save the Humans - Microsoft Visual Studio Express 2012 for Windows... Quick Launch (Ctrl+Q) P = 0O X
FILE EDIT VIEW PROJECT BUID DEBUG TEAM DESIGN FORMAT TOOLS TEST WINDOW HELP
i@ - e~ T ~ -~ P Start ¥ Debug ~ AnyCPU ~ A -
=
S LEIIGEEISENIIE IS MainWindow.xaml.cs v
E F
[e]
x
o
9 I
5 I I i
o
E
o
5
=
5 The designer shows Yyou a
s preview of the window that
wvI b
2 ou've wo\rkmg on. |t looks
a like a blank window with a
default white backgroumd-
67% |=
B800% i
400% — ———4
200%
150% -
100% ge.04% - [Ax]mmafmEd-] v 4 »
66.67% = Design axAML = cEe
s0% FI<Window x:Class="Save_the_Humans.MainWIndow= ==
xmlns="http://schemas.microsoft.com/wintx/2006/xa sraseptation” 1
3333% tep:// . fwintx/ , O EF .._‘l;_l -
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml 11] |
25% Title="MainWindow" Height="35@" Width="525">
. 5 <Gpidi &= Maimiindow Heig * Use these three buttons to turn on the
./ orid lines, turn on snapping (which
Fit all i You won't see these buttons in 8 . . pping (
. : </Grid> vevsions of Vi . automatically lines up your controls to
Fit selection </Window> oldCY versions VISual g{udlo;

. h other), and turn on snapping to grid
013 (and 2012). cac) ppmng to g
only in 2013 (and lines (which aligns them with the grid). |w

100% ~ 4 > /

Ready

12 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

You are here!

XAML Ma.in Window { WPF Ul Controls C# Code
and Containers

B

The bottom half of the Designer window shows you the XAML code. It turns out You tan see the XAML code for

your “blank” window isn’t blank at all—it contains a XAML grid. The grid works ~ the blank window that the [DE
a lot like a table in an HTML page or Word document. We’ll use it to lay out our

windows in a way that lets them grow or shrink to different screen sizes and shapes.

generated for you. Keep your eyes
on it—we'll add some tolumns and
rows in mmu‘(:c.

84.04% - [fx|sms|mE[o-]| P 4

= Design # = XAML

[FI<Window x:Class="Save_the_Humans.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation™
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Title="MainWindow" Height="350" Width="525">
B <Grid>

</Grid> S— These are the oPening and ¢losing tags for a grid that E
< /Window> ¢ontains tontrols. When You add vows, tolumns, and tontrols
to the grid, the tode for them will 9o between these opening
and ¢tlosing tags.
100% =~ 4

This part of the project has steps numbered (1) to @).

Flip the page to keep going! enmmm—y
‘THIS PROJECT CLOSELY FOLLOWS CHAPTER 1.

: We want to give you a solid learning foundation, so we've designed this project so that it can
: replace pages 12-48 of Head First C#. Other projects in this appendix will give you all the : h , 13
 information that you need to adapt the material in the book. So even when we don't give you one- : you are here

: to-one page replacements we Il make sure you get all the information you need to do the projects.:
www.itbook.store/baoks/97814493

https://itbook.store/books/9781449343507

not so after all

Your app will be a grid with two rows and three columns, with one big

@

cell in the middle that will contain the play area. Start defining rows by

hovering over the border of the window until a line and triangle appear:

F =2

Hover over the }
border of the

window until an

You migh{: need to
eliek inside the

WPF apps often

Over the next few pages
you’ll explore a lot of
different features in
the Visual Studio IDE,
because we’ll be using
the IDE as a powerful
tool for learning and
teaching. You’ll use the
IDE throughout the book
to explore C#. That’s a
really effective way to

get it into your brain!

orange triangle and window in order 4o

line appear.. see the triangles
for adding vows
and Columns.

..then elick to

eveate a bottom

vow in the grid. \}

Laying out the window using a
gric[’ s columns and rows allows
your program to automatically
anust to the window size.

Dum

Q: But it looks like | already have many rows and
columns in the grid. What are those gray lines?

AZ The gray lines are just Visual Studio giving you a
grid of guidelines to help you lay your controls out evenly
in the window. You can turn them on and off with the
button. None of the lines you see in the designer show up
when you run the app outside of Visual Studio. But when
you clicked and created a new row, you actually altered
the XAML, which will change the way the app behaves
when it's compiled and executed.

therejare no
b Questions

need to aJaPt to

different window
sizes Jisplayed
at different

screen resolutions.

=k 120"

After the vow is added,
the line will thange to
blue and you'll see the
hcigh‘(:s ot both vows

in the border. The
height of eath vow will——

be a number followed
b\/ a star. Don't worry
about the numbers for

now.

41™ S

Q: Wait a minute. | wanted to learn about C#. Why
am | spending all this time learning about XAML?

A: Because WPF apps built in C# almost always start
with a user interface that's designed in XAML. That's also
why Visual Studio has such a good XAML editor—to give
you the tools you need to build stunning user interfaces.
Throughout the book, you'll learn how to build other types
of programs with C#: Windows Store apps, which use
XAML, and desktop applications and console applications,
which don’t. Seeing all of these different technologies will
give you a deeper understanding of programming with C#.

14

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

Do the same thing along the top border of the window—except this time create two columns, a small
@ one on the left-hand side and another small one on the right-hand side. Don’t worry about the row
heights or column widths—they’ll vary depending on where you click. We’ll fix them in a minute.

Don't worry if Yyour
row hcigh{:s or Lolumn — >
widths ave diffecent;
\/ou)” £ix them on the

next page. \]

<

&
&

When you’re done, look in the XAML window and go back to the same grid from the previous page.
Now the column widths and row heights match the numbers on the top and side of your window.

84.04% - = 3
& Design * sXAML Z nEe
[FlkWindow x:Class="Save_the_Humans.MainWindow"

s
-
xmlns="http://schemas.microsoft.com/winfx/2@e6/xaml/presentation” “
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="MainWindow" Height="35@" Width="525">
@ <Grid>
B <Grid.ColumnDefinitions>
<ColumnDefinition w
<ColumnDefinition % ,
<ColumnDefinition Width="21*"/> Heve's the width O‘c the |C‘FJC tolumn
i </Grid.ColumnDefinitions> You treated in S{:e? 3_the width
= <Grid.RowDefinitions> matehes the width that You saw in
<Rowbefinition Height="120%"/> the designer. That's because the [DE
<RowDefinition Height="41*"/> {: d H’\' AML d 1(.
| </Grid.RowDefinitions> Jenerate is X tode Yor You
| </Grid>
</Window> g
100% ~ 4 »
Your grid rows and columns are now added!
XAML grids are container controls, which means they hold other o O

controls. Grids consist of rows and columns that define cells, and each o)
cell can hold other XAML controls that show buttons, text, and shapes.
A grid is a great way to lay out a window, because you can set its rows
and columns to resize themselves based on the size of the screen.

The humans are
preparing. We don’t like
the looks of ths.

you are here » 15

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

let’s the competition

Set up the grid for your window

Your program needs to be able to work on different sized windows, and
using a grid is a great way to do that. You can set the rows and columns
of a grid to a specific pixel height. But you can also use the Star setting,
which keeps them the same size proportionally—to one another and
also to the window—no matter how big the window or resolution of the
display.

SET THE WIDTH OF THE LEFT COLUMN.

Hover over the number above the lefimost column until a
drop-down menu appears. Choose Pixel to change the star

Q to a lock, and then click on the number to change it to 140.
Your column’s number should now look like this:

REPEAT FOR THE RIGHT COLUMN AND
THE BOTTOM ROW.

e Make the right column 160 pixels and the bottom
row 150 by choosing Pixel and typing 160 or 150
into the box.

Set your columns or rows to
Pixel to give them a fixed
width or]meig]nt. The Star
setting lets a row or column
grow or shrink Proportionauy
to the rest of the gric[. Use
this setting in the c[esigner

to alter the Width or Height
property in the XAML. I
you remove the Widith or
Height property, it’s the same
as setting the property to 1*,

16

www.itbook.store/books/9781449343507

£ you don’t see the numbers like
120% and 19% along the border
of Your window, ¢lick outside the

window in the designer.

e U 19* f 66*
v Star
Pixel

Uto

Select Column

o
= Add Column Before
Add Column After
Delete Column
—— Move Column After —

AL

When You switeh the tolumn to Yi%ds,
the number changes from a proportional
width to the actual pixel width.

|
%

It’s OK if you’re not
a pro at app :

R@l&X design...yet.

: We’ll talk a lot more

i about what goes into designing a good

app later on. For now, we’ll walk you ;
: through building this game. By the end of
: the book, you'll understand exactly what
¢ all of these things do!

https://itbook.store/books/9781449343507

windows presentation foundation

MAKE THE CENTER COLUMN THE DEFAULT SIZE-

XAML and C# are

Make sure that the center column width is set to . If it e
ot l'uk h ber ab . thw . | dent case sensitive! Make
1sn Cclick on € number apove ¢ center column and enter
9 1 D, t the d , d IV it st it 1u ks like th sure your uppercase
. on N € darop-aown (leave 1t star) so 1t 100KS l1ke (¢4
v p-down (leav) and lowercase letters

picture below. Then make sure to look back at the other
columns to make sure the IDE didn’t resize them. If it did, just
change them back to the widths you set in steps | and 2.

match example code.

When you enter 1% into the box,
the |DE sets the tolumn to its

fyon 7220 E i default width. [& might adjust
actidentally - 220.147 R - the other columns. [F it does, just
thanged the veset them back to 160 pixels.
tenter olumn’s

width o Pixels, 7

You £an Changc it [1

back to |¥.

(4) LOOK AT YOUR XAML CODE!
Click on the grid to make sure it’s selected, then look in the XAML window to see the code that you built.
<Window x:Class="Save_ the Humans.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="MainWindow" Height="350" Width="525">

<Grid> &L The <4rid> line at the top
<Grid.ColumnDefinitions> '"Eans everything that comes
<ColumnDefinition Width="140"/> atter it is part of the orid.

<ColumnDefinition/> = & Thisis how a column is defined for 5 XAML
<ColumnDefinition Width="160"/> 9rid You added three columns and two rows
</Grid.ColumnDefinitions> s there are three ColumnDefinition tags and
i L. two RowDefinition tags.
<Grid.RowDefinitions>

<RowDefinition/>
¢Rowbefinitio elght="130 />‘ \ You used the designer to set the height

</Grid.RowDefinitions ¢ the bottom vow to 150 pirels.

. </Grid> [n a minute, you'll be adding controls A You used the olumn and vow
</Window> ¢, Your grid, which will show up heve, drop—downs 4o set the Width
after the vow and tolumn definitions. and Hcigh{: FY'OPc\r'fics.

If you’re using Visual Studio 2010, the IDE looks different. When you hover
over a column size, you’ll see this box to select pixel or star: | 4 (%) (Auto

It’s possible to edit the column sizes in the designer using the older
versions of the IDE, but it’s not nearly as easy to do. We recommend that
if you’re using an older version of the IDE, you create the columns and

rows, and then edit the XAML row and column definitions by hand.
www.itbook.store/books/978T449343507

17

https://itbook.store/books/9781449343507

take control of your program

Add controls to your grid

Ever notice how programs are full of buttons, text, pictures, progress bars, sliders,
drop-downs, and menus? Those are called controls, and it’s time to add some of
them to your app—inside the cells defined by your grid’s rows and columns.

@ Expand the Common WPF Controls scction of the toolbox
and drag a m into the bottom-left cell of the grid.

4 Common WPF Controls I
* Pointer !

Border

Button

Checw Button

ComboBox =

DataGrid

Grid

E 8 H

o]

Then look at the bottom of the Designer window and have a
look at the XAML tag that the IDE generated for you. You’ll
see something like this—your margin numbers will be different
depending on where in the cell you dragged it, and the
properties might be in a different order.

£ You don't see the toolbox in
the [DE, You ¢an open it using
the View menu. Use the pushpin
to keep it from eollapsing, Z

Toolbox = e BX
Search Toolbox P~
4 Common WPF Controls o

k Pointer

H EBorder

CY Button

CheckBox

& ComboBox

@i DataGrid

Grd

F Image

A Label

E ListBox

® RadioButton When \/OVA ?ih

[0 Rectangle khe TOO“)O%;

StackPanel .

%m TabControl \lou tan use {-_)“S

TedBlock 30 o open it

TextBox hd
Database Expl... Toolbox Document O...

These are properties. Each
The XAML for the button starts [property has a name, followed by

here, with the opening tag.
|__s<Button Content="Button" HorizontalAlignment="Left"

Margin="40,52,0,0" Grid.Row="1" VerticalAlignment="Top" Width="75" />

an equals sign, Lollowed by its value.

@ Drag a into the lower-right cell of the grid. Your XAML will look something like this.

See if you can figure out how it determines which row and column the controls are placed in.

<09'LS

liek on Pointer in the
ool 1 by]
(POTOOK,TThen CIick on

he TextBlock and move

it avound and t
watth the e 745623 dTedlocs €2
S IDE update the Marh

voperty in the XAML.

150

B
A XAML ©
<[TextBlock Grid.Column="2" HorizontalAlignment="Left"
Margin="74.623,51.602,0,0" Grid.Row="1" TextWrapping="Wrap"
Text="TextBlock" VerticalAlignment="Top"/>

We added line breaks to make the XAML easier to
vead. You tan add line breaks, too. Give it a {:r\/,’

18 Appendix ii

www.itbook.store/books/9781449343507

If you don’t see
the toolbox, try

clicking on the i

word “Toolbox” L0~
that shows up
in the upper-left
corner of the
IDE. If it's not
there, select
Toolbox from
the View menu -
to make it
appear.

¥0Q|O0] 3JAR(] IUIFNQ JUILNDO(

[{

MainPage.

https://itbook.store/books/9781449343507

windows presentation foundation

Next, expand the All WPF Controls scction of the toolbox. Drag a ProgressBar
into the bottom-center cell, a into the botto

m—rii ht cell (make sure

it’s below the TextBlock you already put in that cell), and a EIRNEEES into the top
center cell. Your window should now have controls on it (don’t worry if they’re placed
differently than the picture below; we’ll fix that in a minute):

140 "8 160
When You add {he Canvas IS
tontrol, it looks like an - 1 .
empty box. We'll fix ~
that shortly.
= (-] 69.77 = o =} c>
Here's the TextBloek
tontrol you added in
Here's the d o o step 2. You dragged
butto a ContentControl
i \/OV‘ I] into the same cell
3\7«1 in step | v
o] TextBlock
£ T | Heve’s the ContentControl.
What do You think it does?
You just added |
this Pr°5"CSSBa\r. 5 ContentControl

You've got the Canvas control currently selected, since you just added it. (If not, use
the pointer to select it again.) Look in the XAML window:

<Canvas Grid.Column="1" HorizontalAlignment="Left" Height="100"...
It’s showing you the XAML tag for the Canvas control. It starts with <Canvas and
ends with />, and between them it has properties like Grid.Column="1" (to put

the Canvas in the center column) and Height="100" (to set its height in pixels).
Try clicking i both the grid and the XAML window to select different controls.

Tr\/ clicking this button.
[£ brings up the Document

Outline window. Can You
— ‘Cigwrc out how 1o use it?
\/ouI“ learn move about it

in a few pages.

72.13% - q

Ca Design t4 B XAML

www.itbook.store/books/9781449343507

you are here »

When you drag a
control out of the
toolbox and onto
your winc[ow, the
IDE autOmatically
generates XAML
to put it where you
c[raggeJ it.

19

https://itbook.store/books/9781449343507

your app’s property value is going up

Use properties to change how the controls look e o cas,

text, use the Estape
The Visual Studio IDE gives you fine control over your controls. The Properties window kc)’ to finish. This

in the IDE lets you change the look and even the behavior of the controls on your window. works for other

‘(:hihss in the IDE, too.

€ Change the text of the button.
Right-click on the button control that you dragged onto the grid and choose Edit Text
from the menu. Change the text to: Start! and see what you did to the button’s XAML:

<Button Content="Start!" HorizontalAlignment="Left" VerticalAlignment="Top" ... @ : Lo

When you edit the text in the button, the IDE/
updates the Content property in the XAML.

Use the Name box to change the . . ;
name of the control to start%utton. @ Use the Properties window to modify the button.

Make sure the button is selected in the IDE, and then look at

Properties =" the Properties window in the lower-right corner of the IDE.
q Neme startButton " Use it to change the name of the control to startButton
Tpe Euinen and center the control in the cell. Once you’ve got the button
Search Properties p looking right, right-click on it and choose View Source to
Arrange by: Category ~ jump straight to the <Button> tag in the XAML window.
P Brush
P Appearance T"\CSC II{ZHC S“IAQV‘CS ‘{:C” \/OIA i‘p ‘H\C PY‘OFCV“{‘,\/ has bCCh
) @i set. A filled square means it's been set; an empty
/’ Content Start! e square means it's been left with a default value.
IsCancel D
You might IsDefault | \ When you used “Edit Text” on the vight—tlick menu to change
need to Cursor -o the button’s text, the IDE updated the Content property.
ex ahd 'H\C DataContext -New u]
Co‘;mh . -D Use the and buttons to «——— Older versions of +he
and Layout ool 5 set the HorizontalAlignment and IDE use the word
nd —ayou oo VerticalAlignment properties to “Center” « » .
secki - g prop Center” instead of
r B — and center the button in the cell. icons like Lhis.
M WD GUDEEITEEEabE) When you dragged the button onto the window, the IDE
HiSight AULOl(COI0A120:1 SE8) used the Margin property to place it in an exact position
Row 1 " RowS.. 1 in the cell. Click on the square ® and choose Reset from
Column 0 o the menu to reset the margins to 0.
Zindex 0 El 60 baCk ‘{',O ‘U‘\C
HorizontalAlignment |= " n XAML wind .
= <Button x:Name="startButton noow in
VerticalAlignment I " " thc ’DE and have a
Margin “o Content="Start! Z look at the XAML
- mn n I
L Grid.Row="1 that you updated
';TE"‘f Use the 4 buttons to set the HorizontalAlignment="Center"
Transform H :
Width and Height to Auto. . . " "
Y g VerticalAlignment="Center"/>

The properties may be in a different order. That’s OK!
20 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

You can use Edit~Undo (or Ctrl-Z) to undo
the last change. Do it several times to undo
the last few changes. If you selected the
wrong thing, you can choose Select None
from the Edit menu to deselect. You can also
hit Escape to deselect the control. If it’s
living inside a container like a StackPanel or
Grid, hitting Escape will select the container,
so you may need to hit it a few times.

XAML Main Window
and Containers

WPF UL
Controls

@ Change the size and title of the window.
Select any of the controls. Then hit Escape, and keep hitting Escape until the outer
<Window> tag is displayed in the XAML editor:

<Window x:Class="Save the Humans.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="MainWindow" Height="350" Width="525">

Y ou

Click €Window in the XAML editor. The <Window> tag has properties for Height
and Width. Look for their corresponding values in the Properties window in the IDE:

4 |ayout
i 3 ‘/ow TextBlock and
A
Width 022 “ ContentControl are
Height 350 . in the lower—vight cell

of the grid.
Set the width to 1000 and height to 700, and the window immediately resizes —>
itself to the new size. You can use the “Fit all” option in the Zoom drop-down to show
the whole window in the designer. Notice how the center column and top row resized
themselves to fit the new window, while the other rows and columns kept their pixel
sizes. Then expand the Common section in the Properties window and set the Title

windows presentation foundation

C# Code

are here!

Avoid These

ConteniContr

Group Into _»

StackPanel

property to Save the Humans. You'll see the window title get updated.

Update the TextBlock to change its text and its font size.

Use the Edit Text right-mouse menu option to change the TextBlock so it says
Avoid These (hit Escape to finish editing the text). Then expand the Text section
of the Properties window and change the font size to 18 px. This may cause the

©

text to wrap and expand to two lines. If it does, drag the TextBlock to make it wider.

Use a StackPanel to group the TextBlock and ContentControl.

V‘Avoid Thes?l‘

ContentControl

A box appears around
+he StackPanet i‘(:”\/ou

hover over it.

Make sure that the TextBlock is near the top of the cell, and the ContentControl is near
the bottom. Click and drag to select both the TextBlock and ContentControl,
and then right-click. Choose from the pop-up menu, then choose
. This adds a new control to your form: a StackPanel control. You can

Reset Layout *

All

select the StackPanel by clicking between the two controls.

The StackPanel is a lot like the Grid and Canvas: its job is to hold other controls

(it’s called a “container”), so it’s not visible on the form. But since you dragged the
TextBlock to the top of the cell and the ContentControl to the bottom, the IDE created
the StackPanel so it fills up most of the cell. Click in the middle of the StackPanel to
select it, then right-click and choose [Layout *|,ng[Resetall], quickly reset its
properties, which will set its vertical and horizontal alignment to Stretch. Right-click on

L=

g 8
Avoid These

ContentControl

Right—click and
veset the layout
of the StackPanel,
TcxﬁBlock, and
COV\'{:CY\{(}OW{'X‘OI-

the TextBox and ContentControl to reset their properties as well. While you have the

ContentControl selected, set its vertical and horizontal alignments to Center.

www.itbook.store/books/9781449343507

you are here »

21

https://itbook.store/books/9781449343507

The user interface for editing colors in earlier versions of Visual
Studio is not as advanced, but you should still be able to set the
you want your game to work, right? colors so they look correct. The Document Outline window is also
a little more primitive, but it still works. However, there is not an
co “1- rols ma ke -l-he g ame wo rk easy way to visually create a template in Visual Studio 2010.
The easiest way to do this in the old version of the IDE is to copy
the entire <Window.Resources> section (up through the closing

. . o
Controls aren’t just for decorative touches like titles and </Window.Resources> tag) from the downloadable source code

captions. They’re central to the way your game works. and paste it into your XAML just above the opening <Grid> tag.
Let’s add the controls that players will interact with when | Make sure you download the code from the WPF folder! Then
they play your game. Here’s what you’ll build next: you can select the ContentControl and use the Properties window to
set the Template property to EnemyTemplate. Your enemies will already
You'll eveate a pla ith i il ali i
€dte d play dved with a look like evil aliens, so make sure you still read pages 44 and 45.
gvadicnt backgrouhd--. -
and you'll work on the) B ~and you'l use a
b z'l;oy \/ou I make Jd\c P\”OSY‘CSS avr ‘ECMPI&‘EC £o make \/ouv_
ottom row \/ as wide as its column... enemy look like +his.

<
Game Over

0 Update the ProgressBar.
Right-click on the ProgressBar in the bottom-center cell of the grid, choose the Layout You ean also get
menu option, and then choose Reset All to reset all the properties to their default values. to the Dotument
Use the Height box in the Layout section of the Properties window to set the Height to 20. Outline by choosina

The IDE stripped all of the properties from the XAML, and then added the new Height: the View—>0ther
Windows men.

{

<ProgressBar Grid.Column="1" Grid.Row="2" Height="28"/>

. Document Outline vy Aax
Q Turn the Canvas control into the gameplay area. b MWindow]
. — indow
Remember that Canvas control that you dragged into the center square? It’s hard ©a
to see it right now because a Canvas control is invisible when you first drag it out of | , 5 window
the toolbox, but there’s an easy way to find it. Click the very small button above 41H|[Grid] @0
the XAML window to bring up the Document Outline. Click on EIELES] 1o o et @°

B [ProgressBar] @ o

select the Canvas control.

Make sure the Canvas control is selected, then use the Name box in the 4 M[StackPanel DE
Properties window to set the name to playArea. [[TextBlock] "Avoid @ ©

@l [ContentControl] @ ©
R Ov'u‘,c You thange the name,
it'll show up as playhrea

rstead of [Canvac) in the |1 »
5 = 2 o Dotument. Outlin vindow.

Editer ® Color rescurces

After you've named the Canvas control, you can close the

Document Outline window. Then use the IEI and @ buttons
in the Properties window to set its vertical and horizontal
alignments to Stretch, reset the margins, and click both
buttons to set the Width and Height to Auto. Then set its
Column to 0, and its GolumnSpan (next to Column) to 3.

3Q) 24} 30 2P's 243 vo qe3 43 buopay
Aq uwgng Juaumgo] ay3 uado osje uey ,.o/\—> auIINO uawn20qd

Finally, open the Brush section of the Properties window and
use the (@ button to give it a gradient. Choose the starting
and ending colors for the gradient by clicking each of the tabs at
the bottom of the color editor and then clicking a color.

22 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

© Create the enemy template. windows presentation foundation

Your game will have a lot of enemies bouncing around the screen, and you’re going to want them all to look the
same. Luckily, XAML gives us templates, which are an easy way to make a bunch of controls look alike.

Next, right-click on the ContentControl in the Document Outline window. Choose Edit Template, then choose

Create Empty... from the menu. Name it EnemyTemplate. The IDE will add the template to the XAML.

You've “‘Fl\/ihg blind” for this
next bit—the designer won't
dis‘?lay an\/{‘)\ing for the
‘l‘.c"\?la{:c until you add a tontrol
and set its hcigh{: and width so
it shows up- Don't worry; you
tan alwa\/s undo and *{:\r\/ again if
something goes wrong.

Name (Key)

® ‘ EnemyTemplate

Apply to all

E— ‘/ou ¢an also use {hc
O Application DOC‘A"\CH'{: OU'uihc
® This document Window: <no name> > window £0 SC'CC‘{:
Resource dictionary {hc 5V'|d |‘c |+, 3C£S

desclected.

www.itbook.store/books/9781449343507

Your newly created template is currently selected in the IDE. Collapse the Document Outline wir;Low so it doesn’t
overlap the Toolbox. Your template is still invisible, but you’ll change that in the next step. If you accidentally click out of
the control template, you can always get back to it by opening the Document Outline, right-clicking on the Content Control,
and choosing Edit Template— Edit Current.

Make sure You don't elick anywheve else in the designer until

Edit the enemy template. you see the ellipse. That will keep the template selected.

Add a red circle to the template:
% Double-click on in the Toolbox to add an ellipse.

% Set the ellipse’s Height and Width properties to 100,
which will cause the ellipse to be displayed in the cell.

Stroke Mo brush m}
% Reset the Margin, HorizontalAlignment, and = = = =
VerticalAlignment properties by clicking their squares -
itor B Color resources

and choosing Reset.

1
* Go to the Brush section of the Properties window and click B Lhic col GO
. i v
on M (g select a solid-color brush. 2 B O
selector and drag o

* Color your ellipse red by clicking in the color selector and to the upper—vight

dragging to the upper-right corner. torner.

B - - <50

<ContentControl Content="ContentControl” Template="{DynamicResource EnemyTemplate}"
VerticalAlignment="Center" HorizontalAlignment="Center"/>

The XAML for your ContentControl now looks like this:

Sevoll around Your window’s XAML window and see if you tan £ind wheve
EnemyTemplate is defined. [t should be vight below the AppName vesourte.
Use the Document Outline to modify the StackPanel, TextBlock, and Grid controls.
Go back to the Document Outline (if you see = EnemyTemplate (ContentControl Template) at the top of the Document
Outline window, just click (L]0 get back to the Window outline). Select the StackPanel control, make sure its

vertical and horizontal alignments are set to center, and clear the margins. Then do the same for the TextBlock,
and use the Properties window to set the Foreground property to white using the color selector.

[foegoind e
Foreground to make the TextBlock white.
Finally, select the Grid, then open the Brush section of properties and click (-] give it a black Background.

you are here » 23

You're almost done laying out the Sorm! Flip the page Sor the last steps... ——

https://itbook.store/books/9781449343507

check out the window you built

Q Add the human to the Canvas.

You’ve got two options for adding the human. The first option is to follow the next three paragraphs. The second, quicker option is
to just type the four lines of XAML into the IDE. It’s your choice!

Select the Canvas control, and then open the All XAML Controls section of the toolbox and double-click on
Ellipse to add an Ellipse control to the Canvas. Select the Canvas control again and double-click on Rectangle.
The Rectangle will be added right on top of the Ellipse, so drag the Rectangle below it.

Hold down the Shift key and click on the Ellipse so both controls are selected. Right-click on the Ellipse, choose
Group Into, and then StackPanel. Select the Ellipse, use the solid brush property to change its color to white,
and set its Width and Height properties to 10. Then select the Rectangle, make it white as well, and change
its Width to 10 and its Height to 25.

£ Yyou used Use the Document Outline window to select the Stack Panel (make sure you see Type StackPanel ot the top of the
the designer Properties window). Reset its margins, then click both |4/ buttons to set the Width and Height to Auto.
to ereate Then use the Name box at the top of the window to set its name to human. Here’s the XAML you generated:

Your human, / <stackPanel x:Name="human® Orientation="Vertical> I.C You ¢thoose to t pe this into the XAML

make sure <Ellipse Fill="White"” Height="10" Width="18"/> window of the [DE, make sure You do it divectly
its source mi‘:ta”?le e SN RELCEE WMo s e above the </Canvas> tag. That's how you indicate
matehes this ¢/Srackpansty that the human is tontained in the Canvas.
XAML. You might also see a Stroke property on the Ellipse and Rectangle set to "Black". (If you don't see one, try

adding it. What happens?)

Go back to the Document Outline window to see how your new controls appear:

4 [playArea <=——1 You gave the Canvas control the
4 E human @ o name playArea in step 2, so it shows
O [Ellipse] ® o up in the roument Outline winplqw.
O [Rectangle] ® o Try hovering over the controls in it.

If human isn't indented underneath playArea, click and drag human onto it. Wl‘en you c[rag

@ Add the Game Over text. a control arounJ

When your player’s game is over, the game will need to display a Game a Canvas its
Over message. You'll do it by adding a TextBlock, setting its font, and !

giving it a name: Le{t aﬂC[TOP

* Select the Canvas, and then drag a TextBlock out of the toolbox .
s properties are

and onto it.
#* Use the Name box in the Properties window to change its name to Cl’laﬂgeC[1o set
gameOverText. t t I{
1S position.
* Use the Text section of the Properties window to change the font to P n
Arial, change the size to 100 px, and make it Bold and Italic. you change tl’le
* Click on the TextBlock and drag it to the middle of the Canvas.
Left and Top
* LEdit the text so it says Game Over.

properties, you

24 Appendix ii move tlle contr Ol.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

Q Add the target portal that the player will drag the human onto.
There’s one last control to add to the Canvas: the target portal that your player will drag the human
into. (It doesn’t matter where in the Canvas you drag it.)

Select the Clanvas control, and then drag a Rectangle control onto it. Use the 3 button in the Brushes
section of the Properties window to give it a gradient. Set its Height and Width properties to 50.

Turn your rectangle into a diamond by rotating it 45 degrees. Open the Transform section of the
Properties window to rotate the Rectangle 45 degrees by clicking ¥ and setting the angle to 45.

L 3] i V 4 ® Y
Document Outline *rOx
@ Angle 45 |
L [Window]
@&
Finally, use the Name box in the Properties window to give it the name target. |4 Mindev]
4 5 (Grid] ®o
. . 0¥ startButton @ o
Q Take a minute and double-check a few things. @ [ProgressBar ——
Open the Document Outline window and make sure that the human StackPanel,
gameOverText TextBlock, and target Rectangle are indented underneath the P B human

playArea Canvas control, which is indented under the second [Grid]. Select the Egammne’“
target

playArea Canvas control and make sure its Height and Width are set to Auto. O Eee
These are all things that could cause bugs in your game that will be difficult to [[TextBlock] “Avoid Thase"
track down. Your Document Outline window should look like this: - &l [ContentControl]

CANC RN CINC RN CaC]
0O 0 00 0 0

Congratulations—you’ve finished building the window for your app! /‘\

| | E
e SESSESeNRStoSeSotsRSeRte _o | We collapsed human to

| make it obvious that

it’s indented underneath
?la\/Arca, 8|on3 with
gameOver Text and
-[;avgc{:. [+'s okay i

the tontrols are in a
diffevent order (you

tan even drag them up
an down!), as long as the
indenting is torrett—
that'’s how You know
whith controls ave inside
other tontainer tontrols.

Avoid These

you are here » 25

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you control

+ CF

*%

the Properties window in the IDE you find it.

Where to find it
XAML property in the Properties
window in the IDE

At the top

Content

[Brush

Height

‘b ﬁ.ppearance‘

|
Rotation
b Layout

Fill

P Transform

x :Name

*
WHQ DQES wWHHaAT™?

Now that you’ve built a user interface, you should have a sense of what some of the controls do, and you’ve used

alot of different properties to customize them. See if you can work out which property does what, and where in

What it does

Determines how tall the
control should be

Sets the angle that the
control is turned

You use this in your C#
code to manipulate a
specific control

The color of the control

Use this when you want
to change text displayed
inside your control

Here’s a hint: you can use the Search box in the
Properties window to find properties—but some of
these properties aren’t on every type of control.

26

www.itbook.store/books/9781449343507

Solution on page 35 ee—

https://itbook.store/books/9781449343507

windows presentation foundation

You've set the stage for the game

Your window is now all set for coding. You set up the grid that
will serve as the basis of your window, and you added controls
that will make up the elements of the game.

Y ou are here!

XAML Main Window

C# Code
and Containers [wreul

Controls

%
g

The ‘Firs{:
was {0 ereate {h
and set up the gvid. window. The next

step is to write cod
‘{:ha‘t uses 'H\Cm. e

step you did ~ Then You added
¢ project tontrols {o Your

Visual Studio gave you useful tools for laying out
your winc[ow, but all 1t really did was llfelg‘you
create XAML code. You're the one in charge!

you are here » 27

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

keep your stub for re-entry

What you'll do next

Now comes the fun part: adding the code that makes your game

work. You’ll do it in three stages: first you’ll animate your enemies,

then you’ll let your player interact with the game, and finally The fiest thin 9)'ou'” do
you’ll add polish to make the game look better. is add C# ¢ode that

Causes enemies to shoot

. 9 . . out atvoss the pla
First you'll animate the enemies... avea every {ich\,l

/ tlick the Start button.

A lot of programmers build their code in small
increments, making sure one piece works before
moving on to the next one. That’s how you’ll build

the rest of this program. You’ll start by creating
a method called AddEnemy () that adds an
animated enemy to the Canvas control. First you’ll
hook it up to the Start button so you can fill your
window up with bouncing enemies. That will lay
the groundwork to build out the rest of the game.

T~

wthen you'll add the gameplay...

To make the game
work, you'll need the
progress bar to tount
down, the human to
move, and the game
+o end when the
enemy 58‘{‘; him ov

time vuns out. J

\/ou used a 'Eemyla’cc

g theeene L .and finally, you'll

Now you'll updat .
the {chyla{:‘: -boemake make it lOOk gOOJ‘

them look like evil
alien heads.

28 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows foundation

Add a method that does something

It’s time to start writing some C# code, and the first thing you’ll do is
add a method—and the IDE can give you a great starting point by
generating code.

When you’re editing a window in the IDE, double-clicking on any of
the toolbox controls causes the IDE to automatically add code to your
project. Make sure you’ve got the window designer showing in the
IDE, and then double-click on the Start button. The IDE will add code
to your project that gets run anytime a user clicks on the button. You

should see some code pop up that looks like this: When You double—clicked the button control, the

IDE exeated this method. [t will vun when a user
tlicks the “Stavt!” butfon in the vunning application.

—
private void startButton_Click(object sender, RoutedEventArgs e)

1
} . [l
Click="startButton Click"
Use the IDE to create your own method '\m IDE 3l0 added
this to the XAML. See

Click between the { } brackets and type this, including the parentheses and semicolon: £ you tan find it You’ll

private woid startButton_Click(object sender, RoutedEventiArgs e) learn more about what

{ The ved squiggly line is the [DE telling you this is in Chapter 2.

addEnemy ;1 Lheve's a problem, and the blue box is the
} IDE 4elling you that it might have solution.

Notice the red squiggly line underneath the text you just typed? That’s the IDE telling you that something’s
wrong. If you click on the squiggly line, a blue box appears, which is the IDE’s way of telling you that it
might be able to help you fix the error.

Hover over the blue box and click the # ™ icon that pops up. You'll see a box asking you to generate a
method stub. What do you think will happen if you click it? Go ahead and click it to find out!

;:...] -
[E] Generate method stub for 'AddEnemy’ in "Save_the_Humans.MainPage'

therejare no
Dumb Questions

Q} What's a method? Q} And the IDE generated it for me?

AZ A method is just a named block of code. A: Yes...for now. A method is one of the basic
We'll talk a lot more about methods in Chapter 2. building blocks of programs—you'll write a lot of
them, and you'll get used to writing them by hand.

29

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

intelligent and sensible

Fill in the code for your method

It’s time to make your program do something, and
you’ve got a good starting point. The IDE generated a
method stub for you: the starting point for a method that
you can fill in with code.

@ Delete the contents of the method stub that the IDE
generated for you.

private void AddEnemy()

1
¥

row new NotImplementedException

C# code must be
added exactly as
you see it here.

Wﬂtdl it’ It’s really easy to throw

off your code. When
you’re adding C# code to your
program, the capitalization has to
be exactly right, and make sure you
get all of the parentheses, commas,
and semicolons. If you miss one,
your program won’t work!

Gelett this and delete it You'll learn
about exteptions in Chapter 12.

@ Start adding code. Type the word “Content” into the method body. The IDE will pop up a window
called an IntelliSense Window with suggestions. Choose ContentControl from the list.

private void AddEnemy()

1
Content
1 % _contentloaded
& Content

vl ContentControl

#= ContentPresenter

& ContentProperty

*z ContentThemeTransition

& HorizontalContentAlignment

HorizontalContentAlignmentProperty
*z ScrollContentPresenter

@ Finish adding the first line of code. You’ll get another IntelliSense window after you type new.

private void AddEnemy()
1

ContentControl enemy = new ContentControl();

}

NThis line eveates a new ContentControl ob\)cc{:- You'll

learn about objects and the new keyword in Chapter 3,
and veferente variables like enemy in Chapter 4-

30 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

@ Before you fill in the AddEnemy () method, you’ll need to add a line of code near the top of the file.
Find the line that says public partial class MainWindow : Window and add this line

after the bracket ({):
/// <summary>

/// Interaction logic for MainWindow.xaml
/// </summary>

public partial class MainWindow : Window

This is ealled 3 \C-cld You'll

{ -~ ltarh movre abou.{: how I‘l',
@ndom = nem / works in Chapter 4-

@ Finish adding the method. You’ll see some squiggly red underlines. The ones Do you see a squigaly underline
under AnimateEnemy () will go away when you generate its method stub. under playAvea? Go batk to the
XAML editor and make sure
you set the name of the Canvas
private void AddEnemy() tontrol to ?la\/Arca-
This line adds your {
new enemy tontrol ContentControl enemy = new ContentControl();
4o a tollection called enemy.Template = Resources["EnemyTemplate"] as ControlTemplate;
Childven. You'll leavn AnimateEnemy(enemy, 0, playArea.ActualWidth - 100, "(Canvas.Left)");
about eollections in AnimateEnemy(enemy, random.Next((int)playArea.ActualHeight - 100),

Chapter 8. T random.Next((int)playArea.ActualHeight - 100), "(Canvas.Top)");
playArea.Children.Add(enemy);
}

l(: ou need to switeh between the XAML and C #
Codc, use the tabs at the on of the window. ML e VoinWindov xam]

Use the blue box and the # ™ button to generate a method stub for AnimateEnemy (), just like
you did for AddEnemy () . This time it added four parameters called enemy, pl, p2, and p3. Edit
the top line of the method to change the last three parameters. Change the property p1 to £rom, the
property p2 to to, and the property p3 to propertyToAnimate. Then change any int types to
double.

private void AnimateEnemy(ContentControl Enemy, int pl, double p2, string p3)
2]
%M ” lcarn {

about methods throw new NotImplementedException();
and parameters }
in Chapter 2.

|private void AnimateEnemy(ContentControl enemy,@o@fr‘om,@ubl@to, string pr‘oper‘tyToAnimate)|

The IDE may generate the method stub

with “int” £ypes. Change them to “double”. Flip the page to see your program run] — ees—-
You'll learn about types in Chapter 4

you are here » 31

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

ok, that’s pretty cool

Finish the method and run your program

Your program is almost ready to run! All you need to do is finish your
AnimateEnemy () method. Don’t panic if things don’t quite work
yet. You may have missed a comma or some parentheses—when you’re
programming, you need to be really careful about those things!

Still seeing red? :
The IDE helps you
track down :
problems.

If you still have some of those red
: squiggly lines, don’t worry! You :
¢ probably just need to track down a typo :

© or two. If you’re still seeing squiggly red

Add a using statement to the top of the file.
Scroll all the way to the top of the file. The IDE generated several
lines that start with using. Add one more to the bottom of the list:

underlines, it just means you didn’t type
in some of the code correctly. We've :
 tested this chapter with a lot of different :
i people, and we didn’t leave anything 5
out. All the code you need to get your
{ program working is in these pages.

Flusing System;
S‘ta‘{',CMCV\‘{}S using System.Collections.Generic;
) using System.Ling;
like these let using System.Text;
10“ use COdC using System.Threading.Tasks;
using System.Windows; o
rom NET using System.Windows.Controls;
th‘aV‘iCS {ha{-‘ using System.Windows.Data;) o
‘{_)\ using System.Windows.Documents; %" I need this llhc ‘l‘,o make 'H\C hCX‘l’; bl‘l‘,
Come wi - using System.Windows.Input; o Codc WOY‘k. YOlA tan us 'H’\ ! .
C# \/Olt ” using System.Windows.Media; wind 'Eo |) ¢ [4 h'EC”ISChSC
| using System.Windows.Media.Imaging; ow 33{: "{: Y'Sh":—and doy,'-l: ‘FOV' C“:
earn movre using System.Windows.Navigation; {hc semitolon a{: {:he end 9
ow em In using System.Windows.Shapes;
about them i '
Cha?{CY Z \using System.Windows.Media.Animation;

This using statement lets
tode ‘(:V'om 'Ehc NET F\ra

program 40 move the ene

e Add code that creates an enemy bouncing animation.

You use animation
mework in Your
mies on Your streen.

\/ou)” learn about
objeet initializevs
like this in

You generated the method stub for the AnimateEnemy () method on the
previous page. Now you’ll add its code. It makes an enemy start bouncing across

Chapter 4-

the screen.

private void AnimateEnemy(ContentControl enemy, double from, double to,

{
Storyboard storyboard =

DoubleAnimation animation = new DoubleAnimation()

And you'll leavn ¢

about animation
in ChaP‘l:c!r 16.

From = from,

To = to,

Duration =
I

Storyboard.SetTarget(animation, enemy);

Storyboard.SetTargetProperty(animation, new PropertyPath(propertyToAnimate));

s

storyboard.Children.Add(animation);
storyboard.Begin();

Look over your code.

You shouldn’t see any errors, and your Error List window should be
empty. If not, double-click on the error in the Error List. The IDE will
jump your cursor to the right place to help you track down the problem.

32 Appendix ii

www.itbook.store/books/9781449343507

new Storyboard() { AutoReverse = true, RepeatBehavior =

new Duration(TimeSpan.FromSeconds(random.Next(4, 6))),

string propertyToAnimate)

RepeatBehavior.Forever };

This tode makes the

enemy You treated move
S——atvoss PlayArea. £ you
changc 4 and b, You £an
make the enemies move
slower or faster.

£ You ean't see the Evvor
List window, ¢hoose Evvor
List from the View menu
to show it. You'll leavn
mov;c about using the error
window and debuaain o
tode in ChanckSZS. e

https://itbook.store/books/9781449343507

windows presentation foundation

Here’s a hint: if you move too many windows
around your IDE, you can always reset by choosing
Reset Window Layout from the Window menu.

Start your program.
Find the P button at the top of the IDE. This starts your program running.

FILE EDIT VIEW PROJECT BUILD DEBUG TEAM DESIGN FORMAT TOOLS TEST WINDOW HELP

Q- ?[3 ﬂ [~ w < ~ | P Start - Debug ~ Any CPU - ﬂ ; -

MainWindow.xaml + X \

© Now your program is running!
When you start your program, the main window will be displayed. Click the “Start!”
button a few times. Each time you click it, a circle is launched across your canvas.

X0q||00 |

This button starts your program.

|l And it didn't take

You built something £09 d. But theve's move

lona, :)uS‘(: like we promise

{0 do to 55{; it Y‘\S\'\{-

e

H: the enemies aven't bouncing,
or if they leave the play ares, Avoid These
double—check the code. You may
be missing parentheses or keywords.

@® Stop your program.
Press Alt-Tab to switch back to the IDE. The * button in the toolbar has been replaced with ELR to
break, stop, and restart your program. Click the square to stop the program running:

you are here » 33

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

what you’ve done, where you’re going

Heres what youve done so far

Congratulations! You’ve built a program that actually does
something. It’s not quite a playable game, but it’s definitely a start.
Let’s look back and see what you built.

You are here!

|

XAML Main Window C# Code

and Containers

WPF Ul
Controls

StartGame() ‘

> e

| AddEnemy/() l
e
C}' AnimateEnemy/() |

l EndTheGame())
——e

w
We've gotten a 900d L"\f\J

::C::{;"iz‘f?i,diha " This step is where we
ace... ad:ua”\/ write C#
tode ‘::ha‘l: makes +he
aamc a un.
but we still need the play
"ok of the CHF code
{'p m&\(c H\c 5avnc
ac‘wa\\\, work.

Visual Studio can generate code for you, but you

need to know what you want to build BEFORE
you start Luilc[ing it. [t won't do that for you!

34 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

Here’s the solution for the “Who Does What” exercise on page 28.
We’ll give you the answers to the pencil-and-paper puzzles and

exercises, but they won’t always be on the next page.

*

the Properties window in the IDE you find it.

B Brush

Height

’b Appearance ‘

* *
wHa oc? WH AT

Now that you’ve built a user interface, you should have a sense of what some of the controls do, and you’ve used
a lot of different properties to customize them. See if you can work out which property does what, and where in

Where to find it
XAML property in the Properties
window in the IDE
Content \
— At the top

Rotation

P Common

x :Name

P Transform

solution

What it does

Determines how tall the
control should be

Sets the angle that the
control is turned

You use this in your C#
code to manipulate a
specific control

he color of the control

Use this when you want
text or graphics in your
control

(3 {', {:hc Namc 0‘('\ the
) That set its

L, which will

Remember how you \
Canvas tontrol 4o “playAvea’?
“x:Name” property in the XAM
tome in handy in 3 minute when

tode to work with the Canvas.

www.itbook.store/books/9781449343507

You write C#

you are here » 35

https://itbook.store/books/9781449343507

tick tick tick

Add timers to manage the gameplay

Let’s build on that great start by adding working gameplay elements. This game adds
more and more enemies, and the progress bar slowly fills up while the player drags the
human to the target. You’ll use timers to manage both of those things.

@ ADD ANOTHER LINE TO THE TOP OF YOUR C# CODE.

The MainWindow. Xaml.ts file
\/ou,Vc been cdi{ing tontains
the tode for a elass called
MainWindow. You'll learn
about tlasses in Chapter 3.

You’ll need to add one more using line right below the one you added a few pages ago:

using System.Windows.Media.Animation; is usi . .
using System.Windows.Threading; e-’/_ Thi using S‘{:&{ZCmcn{; IC‘{;S You use D|SF3£C"\CY‘TIMCYS.

Then go up to the top of the file where you added that Random line. Add three more lines:

{

DispatcherTimer enemyTimer = new DispatcherTimer(); are

public partial class MainWindow : Window Add these three lines below the

Random random = new Random(); one zou added bcforc. These
ields, and you'll learn about

DispatcherTimer targetTimer = new DispatcherTimer(); them in Cha‘;{cr 4.

bool humanCaptured = false;

e abb A METHOD FOR ONE OF YOUR TIMERS.
Find this code that the IDE generated:

public MainWindow()
{

InitializeComponent();

}

Put your cursor right after the semicolon, hit Enter two times, and type
enemyTimer. (including the period). As soon as you type the dot, an
IntelliSense window will pop up. Choose Tick from the IntelliSense window
and type the following text. As soon as you enter += the IDE pops up a box:

enemyTimer.Tick +=

enemylimer_Tick; (Press TAB to insert)

Press the Tab key. The IDE will pop up another box:
enemyTimer.Tick +=enemyTimer Tick;

Press TAB to generate handler "'enemyTimer_Tick' in this class

Press Tab one more time. Here’s the code the IDE generated for you:

public MainWindow()

{
InitializeComponent(); The IDE SChCY'a‘{ZCd
a method for you
enemyTimer.Tick += enemyTimer Tick; callcd an CVChJC
’ handler. You'll learn

S
void enemyTimer_Tick(object sender, EventArgs e) about event handler
{ in ChaP'{ZCY' 15.

throw new NotImplementedException();

}
36 Appendix ii

www.itbook.store/books/9781449343507

Timers "tick”

every time

interval by
calling methods
over and over
again. You'll use
one timer to add
enemies every
few seconds, and
the other to end
the game when
time expires.

https://itbook.store/books/9781449343507

[+'s normal to add ?arcn{‘)\cscs

() when writing about a windows presentation foundation

method.

€ FINISH THE MaznWnpow() METHOD.

You’ll add another Tick event handler for the other timer, and you’ll
add two more lines of code. Here’s what your finished MainWindow ()
method and the two methods the IDE generated for you should look like:

public MainWindow()

{

InitializeComponent();

enemyTimer.Tick += enemyTimer_Tick;
enemyTimer.Interval = TimeSpan.FromSeconds(2);

- @wtnw
TOWEWR

Right now your Start button
adds bouncing enemies to the
play area. What do you think
you’ll need to do to make it
start the game instead?

targetTimer.Tick += targetTimer_Tick;
targetTimer.Interval = TimeSpan.FromSeconds(.1);

Ty thanging these

}
numbers onte your
void targetTimer_Tick(object sender, EventArgs e) 5amc s ‘Cinishcd. How
{ ¢thange the
throw new NotImplementedException(); does {:ha’; %
} gameplay?
void enemyTimer_Tick(object sender, EventArgs e)
{
th NotImplementedExcepti ; The
) row new NotImplementedException(); IDE 5ChCV‘8‘Ecd 'H’\CSC ,ihcs 2

Placeholders when

You pressed Tab

to add the Tick event handlers.

You'” rcplacc them
gets vun every time the tim

@) ADD THE EnpTHeGame() METHOD.
Go to the new targetTimer Tick () method, delete the line that the IDE generated, and add
the following code. Type EndTheGame () and generate a method stub for it, just like before:

void targetTimer_Tick(object sender, object e)

1
Did the |DE —> progressBar.value += 1;

keep trying
the P in

if (progressBar.Value »= progressBar.Maximum)

EndTheGame();

with eode that

evs Liek.

I£ You tlosed the Dcsignc\r tab
that had the XAML code,

double—click on MainWindow.xam|

in the Solution Explorer wi d
. bring i . plorer window

Fvog\rcssBar? Notice how progressBar has an error? That’s OK. We did this on purpose (and we’re not even
That's betause sorry about it!) to show you what it looks like when you try to use a control that doesn’t have a
there was no name, or has a typo in the name. Go back to the XAML code (it’s in the other tab in the IDE), find
lowertase—P the ProgressBar control that you added to the bottom row, and change its name to progressBar.

zv?\.{-f:Bah Next, go back to the code window and generate a method stub for EndTheGame (), just like you

" did a few pages ago for AddEnemy () . Here’s the code for the new method:

tlosest mateh ~ s e This method ends the

F ;ould R private void EndTheGame() £ 9ameOver Text comes up g?'me by stoEpingt;hthe

ind was the . . . as 3 . imers, making the
f (!playA .Child .Cont OverText n ev!

type of the g ((Pleyarea.children. Contains(gemsduerlex: NX Y it S:{‘:"’éh't means You Start button visible

tontrol. enemyTimer.Stop(); “éamc Over” € name oﬁ the again, and adding
targetTimer.Stop(); boeh s TextBlock Go | the GAME OVER text
humanCaptured = false; atk and do it now. to the play area.

1

startButton.Visibility = Visibility.Visible;
playArea.Children.Add(gameOverText);

www.itbook.store/books/9781449343507

you are here » 37

https://itbook.store/books/9781449343507

so close i can taste it

Make the Start button work

Remember how you made the Start button fire circles into the Canvas? Now

youw’ll fix it so it actually starts the game.

(1) Make the Start button start the game.
Find the code you added earlier to make the Start button add an your own.
enemy. Change it so it looks like this:

private void startButton_Click{object sender, RoutedEventirgs e) you enter each line accurakﬂy and to

1

startGame();

(2] Add the StartGame() method.
Generate a method stub for the StartGame () method. Here’s the and paste XAML or C# code for each
code to fill into the stub method that the IDE added:

private void StartGame()

{

human.IsHitTestVisible = true;

humanCaptured = false;
progressBar.Value = @;

startButton.visibility = visibility.Collapsed;

playArea.Children.Clear();

playﬁrea,Children,ﬁdd(aE;ESS;
enemyTimer.Start();
targetTimer.Start();

When You change this line, you

}
N_// make the Start button s{:a\{rf

the game instead of Just adding
an enemy to the playAvea Canvas.

<« [sHitTestVisible in

E—————)

©0 B oo

Reapy Bake
| | Cove

We’re giving you a lot of code to
type in.

By the end of the book, you'll know
what all this code does—in fact, you'll
be able to write code just like it on

For now, your job is to make sure

follow the instructions exactly. This
will get you used to entering code and
will help give you a feel for the ins
and outs of the IDE.

If you get stuck, you can download
working versions of MainWindow.xam/
and MainWindow.Xaml.cs or copy

individual method:

Vou'll leavn about http://www.headfirstlabs.com/hfcsharp.

One more thing... if you download
Chapter 15. code for this project (or anything
else in this appendix), make sure you
get it from the WPF folder! If you
try to use Windows Store code with
your WPF project, it won't work.

Did you forget to set the names of
the {:argc{: Rc(:(:anglc or the human
StackPanel? You tan look a few pages
back to make sure you set the vight
names for all the controls.

e Make the enemy timer add the enemy.

Find the enemyTimer Tick () method that the IDE added for
you and replace its contents with this:

vold enemyTimer_Tick(object sender, object e)

AddEnemy () ;

Onte you've used to working with
tode, you'll be good at spotting those
L/ missing parentheses, semictolons, ete.

¥ Are you seeing errors in the Error List window that don’t make sense?
One misplaced comma or semicolon can cause two, three, four, or
more errors to show up. Don’t waste your time trying to track down
every typo! Just go to the Head First Labs web page—we made it
really easy for you to copy and paste all the code in this program.

There’s also a link to the Head First C# forum, which you can check
for tips to get this game working!

38 Appendix ii

www.itbook.store/books/9781449343507

$ http://www.headfirstlabs.com/hfcsharp/

https://itbook.store/books/9781449343507

windows presentation foundation

Run the program to see your progress 50 C 7 AewlOu
S spies have reported
Your game is coming along. Run it again to see how it’s shaping up. that the humans are
building up their

When You press the “Start!” button,
it disappears, tlears the enemies, and
starts the progress bar filling up- The play avea slowly starts to £ill up

with bounting enemies.

defenses!

N

Avoid These

When the progress bar at the

bottom fills up, the agme ends

and the &achOVcr {?cx{; is RA‘ h:~

displayed. vQ Ew
What do you think you'll need to do to get the rest

The target timer should fill up of your game working?

slowl\/, and the enemies should appear

every two setonds. [£ the timing is

off, make sure You added all the i i V
lines to the MainWindow() method. e e

you are here » 39

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

in event...

Add OOde 1'0 Wlake VOUI’ con‘l'l’0|s Make sure you switch back
interact with the player to the IDE and stop the

app before you make more

You’ve got a human that the player needs to drag to the target, and a changes to the code.

target that has to sense when the human’s been dragged to it. It’s time

to add code to make those things work. You'll learn more
abou{: U\c cvenJc

handlers in the
@ Go to the XAML designer and use the Document Outline window to select human Properties window
(remember, it’s the StackPanel that contains a Circle and a Rectangle). Then go to the in Chapter 4.
Properties window and press the LZ | button to switch it to show event handlers. Find
the MouseDown row and double-click in the empty box.

Name human » IZ‘
Type StackPanel
ManipulationStarted = DOUbIC—CIiCk in 'H\IS bOX‘
ManipulationStarting
MouseDown
MouseEnter

Now go back and check out what the IDE added to your XAML for the StackPanel:

<StackPanel x:Name="human" Orientation="Vertical" MouseDown="human_MouseDown">

It also generated a method stub for you. Right-click on human MouseDown in the
XAML and choose “Navigate to Event Handler” to jump straight to the C# code:

private void human_MouseDown(object sender, MouseButtonEventArgs e)

{
You can use these
’ buttons to switch
@ Fill in the C# code: between showing
private void human_MouseDown(object sender, MouseButtonEventArgs e) properties and
L , event handlers
if (enemyTimer.IsEnabled) . i
[in the Properties
humanCaptured = true; window.
human.IsHitTestVisible = false;
}
}
Properties
- M h
If you go back to the designer and aine [
Type StackPanel
H H ’
click on the StackPanel again, you’ll Maripulatiorttarting "
see that the IDE filled in the name MouseDown human_MouseDown

of the new event handler method. MouseEnter
You’ll be adding more event handler
methods the same way.

40

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

Make sure you add the right event handler! Vou added 2 windows presentation foundation
MouseDown event handler to the human,

: but now \/ou'rc
adding a MouseEnter event handler 4o the target.
Use the Document Outline window to select the Rectangle named target,
and then use the event handlers view of the Properties window to add a
MouseEnter event handler. Here’s the code for the method:

When the Properties
window is in the mode
where it displays event

handlers, double-

. .) clicking on an empty
irlvate void target_MouseEnter(object sender, MouseEventArgs e) event handler box
. . causes the IDE to add
;'F (targetTimer.IsEnabled && humanCaptured) a method stub for it.

progressBar.Value = 0;

Canvas.SetlLeft(target, random.Next(100, (int)playArea.ActualWidth - 1@@));
Canvas.SetTop(target, random.Next(100, (int)playArea.ActualHeight - 1€@));
Canvas.SetLeft(human, random.Next(100, (int)playArea.ActualWidth - 100));

Canvas.SetTop(human, random.Next(100, (int)playArea.ActualHeight - 100));
humanCaptured = false;

) human.IsHitTestVisible = true; o Name] target »

} Type Rectangle
ManipulationStarting -
MouseDown

\/ou)“ hCCd ‘EO Swi'{:Lh \/OW‘ PY‘OFCY“{jCS window baCk MouseEnter target MouseEnter

1o show properties instead of event handlevs. ’3/ Mouseleave

@ Now you’ll add two more event handlers, this time to the playArea Canvas control. You’ll need to

find the [Grid] in the Document Outline, select it, and set its name to grid. Then you can add

these methods to handle the MouseMove and Mousel.eave event handlers for the Canvas:

private void playArea_MouseMove(object sender, MouseEventArgs e) 'rha£k alg{ o£ ?arcnfhcscﬂ

{ if (humanCaptured) Bc rca“y carcﬁuland SC{

£ \/ them vight.
Point pointerPosition = e.GetPosition(null);

Point relativePosition = grid.TransformToVisual(playArea).Transform(pointerPosition);

These two vertical
b. . if ((Math.Abs(relativePosition.X - Canvas.GetLeft(human)) > human.ActualWidth * 3)
ars ave a logical ——

J || (Math.Abs(relativePosition.Y - Canvas.GetTop(human)) > human.ActualHeight * 3))
opevator. You'll {
learn about them humanCaptured = false;
in Chaytcr 2.) human.IsHitTestVisible = true;
T
else You can make the
{ game more or
Canvas.SetlLeft(human, relativePosition.X - human.ActualWidth / 2); less sensitive by
Canvas.SetTop(human, relativePosition.Y - human.ActualHeight / 2); changingthese
} } 3s to alower or
} higher number.
private void playArea_MouselLeave(object sender, MouseEventArgs e)
{
if (humanCaptured) Lopertics
EndTheGame(); Name playArea y
} Type Canvas
Makc sure \/ou Pu‘{; {‘\C Hah{; tode Mouseleave playArea_Mouseleave -
in {')\C CO‘(V‘CC‘{: CVCn{‘, hahdler_’ MouseLeftButtonD...
) .
DOY\ ‘[', aCCIdCh‘{;a”y Swa‘? {')\cm. MouseLeftButtonUp
MouseMove playArea_MouseMove

www.itbook.store/books/9781449343507

you are here » 41

https://itbook.store/books/9781449343507

you can’t save them all

Pragaging humans onto enemies ends the game

When the player drags the human into an enemy, the game should end. Let’s add the code to do that.
Go to your AddEnemny () method and add one more line of code to the end. Use the IntelliSense
window to fill in enemy.PointerEntered from the list:

private void AddEnemy()

{
ContentControl enemy = new ContentControl();
enemy.Template = Resources["EnemyTemplate"] as ControlTemplate;
AnimateEnemy(enemy, ©, playArea.Actualwidth - 1@@, "(Canvas.Left)");
AnimateEnemy(enemy, random.Next((int)playArea.ActualHeight - 1@8),
random.Next ((int)playArea.ActualHeight - 10@), "(Canvas.Top)");
playArea.Children.Add(enemy);
enemy ;Mouse| D — Heve's the last line of your
X % MouseDoubleClick - AddEV\C"\\/O mc‘u\od. Pu{: \/OMV'
% MouseDown Lursor a{ {hc end oAc ‘H’\C lihC
S'{:&V‘l‘, {3\/‘7"\5 '{')\iS Iihc 0‘(: MouseEnter ahd \’\I'{‘, EV\‘{LCV {.p add 'H’\C
tode. As soon a t * Mouseleave new line of code.
{;h) {: oon ds \(ou enter % MouseleftButtonDown
. e do) an ’th”ISChSC % MouseleftButtonUp
Wlht.jOW“WI“ Fog up- ch? # MouseMove MouseEventHandler UlElement.MouseEnter
‘E\/Plha Eh‘{‘,ﬂ‘ fo Jum? # MouseRightButtonDown Occurs when the mouse pointer enters the bounds of this element.
down 1o the Y'ish‘[: cn{;v\/ # MouseRightButtonUp -
in the list.

Choose MouseEnter from the list. (If you choose the wrong one, don’t worry—just backspace over it
to delete everything past the dot. Then enter the dot again to bring up the IntelliSense window:)

Next, add an event handler, just like you did before. Type += and then press Tab:
enemy .MouseEnter +5
enemy_MouseEnter; (Press TAB to insert) R YOIA)“ Ica\“h a" abou{:
how event handlevs like
this work in Chapter I5.
Then press Tab again to generate the stub for your event handler:
enemy .MouseEnter +=enem MouseEnter‘|_',

Press TAB to generate handler 'enemy_MouseEnter" in this class

Now you can go to the new method that the IDE generated for you and fill in the code:

void enemy MouseEnter(object sender, MouseEventArgs e)

{
if (humanCaptured)

EndTheGame();
¥

42 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

Your gawme is now playable

Run your game—it’s almost done! When you click the Start button, your play
area 1s cleared of any enemies, and only the human and target remain. You
have to get the human to the target before the progress bar fills up. Simple at
first, but it gets harder as the screen fills with dangerous alien enemies!

Dra 0

* —-

the human to safet

The aliens spend their

time patrolling for moving
humans, so the 9ame ends
onl\/ if You drag a human
onto an enemy. Onte You
velease the human, he’s
temporarily safe from aliens.

Look through the code and find
wheve You set the [sHit TestVisible
Property on the human. When

it’s on, the human in'l:crLcP'l:S the
PointerEntered event betause the
human’s StackPanel tontrol is si-{:{ing
between the enemy and the pointer-.

Get him to the target hefore time's up...

wbut Jrag too fast, and you'll lose your human!

you are here » 43

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

bells whistles aliens

Make your enewies look like aliens

Red circles aren’t exactly menacing. Luckily, you used a template.
All you need to do is update it.

Seeing events
instead of
properties?

watch it’ You can toggle the

Properties window
between displaying properties or
events for the selected
control by clicking the el
wrench or lightning bolt icons.

o Go to the Document Outline, right-click on the ContentControl,
choose Edit Template, and then Edit Current to edit the template.
You’ll see the template in the XAML window. Edit the XAML
code for the ellipse to set the width to 75 and the fill to Gray.
Then add 5troke="Black™ to add a black outline. Here’s what
it should look like (you can delete any additional properties that
may have inadvertently been added while you worked on it):

<Ellipse Fill="Gray" Stroke="Black" Height="100" Width="75"/>

9 Drag another Ellipse control out of the toolbox on top of the existing ellipse. Change its Fill to
black, set its width to 25, and its height to 35. Set the alignment and margins like this:

HorizontalAlignm... |= = = - K .
VerticalAlignment @ Mo 1 = \/ou ¢an also “cycball" it (exeuse the ?un) b\/ using
— Lhe mouse or arvow keys to drag the ellipse into

erar e 70 = place. Tey using Copy and Paste in the Edit menu to

20 #L0 copy the ellipse and paste another one on top of it
e Use the # button in the Transforms section of the Properties window to add a Skew transform:
b3 & V 4 ® 15
X 10 = VO o

o Drag one more Ellipse control out of the toolbox on top of the existing ellipse. Change its fill to
Black, set its width to 25, and set its height to 35. Set the alignment and margins like this:

HorizontalAlignm... | |= = | =] [
VerticalAlignment lfl B L1 L]
Margin « 70 =+ 40
20 n D Avoid These
and add a skew like this: Now your enemies

look a lot move like
. C) 4 @ 4 human-—ca{:ing aliens.

X -10] Y 0 ul Lj

44 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

Here’s the final XAML for the updated enemy Control Template
you created:

<ControlTemplate x:Key="EnemyTemplate" TargetType="{x:Type ContentControl}">
<Grid>
<Ellipse Fill="Gray" Stroke="Black" Height="100" Width="75"/>
<Ellipse Fill="Black" Stroke="Black" Height="35" Width="25"
VerticalAlignment="Top" HorizontalAlignment="Center"
Margin="40,20,70,8" RenderTransformOrigin="0.5,0.5">
<Ellipse.RenderTransform>

<TransformGroup>
<ScaleTransform/>
<SkewTransform AngleX="10"/>
<RotateTransform/>
<TranslateTransform/>
</TransformGroup>
</Ellipse.RenderTransform>
</Ellipse>

<Ellipse Fill="Black" Stroke="Black" Height="35" Width="25"
VerticalAlignment="Top" HorizontalAlignment="Center"
Margin="70,20,40,8" RenderTransformOrigin="0.5,0.5">
<Ellipse.RenderTransform>

<TransformGroup>
<ScaleTransform/>
<SkewTransform AngleX="-10"/>
<RotateTransform/>
<TranslateTransform/>
</TransformGroup>
</Ellipse.RenderTransform>
</Ellipse>
</Grid>
</ControlTemplate>

See if you tan get eveative and thange the way
the human, {:argc{:, play area, and enemies look.

And don’{‘, ‘(:o‘rgc{: {:o s{:c? back and vca”\/
a??vccia{c what Yyou built. Qood \')ob!

THERE'S JUST ONE MORE THING YOU NEED TO DO...
PLAY YOUR GAME!

you are here » 45

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

*
. Chaptir 2 ~

THE FIRST FEW PROJECTS
IN CHAPTER 2 USE XAML AND
WINDOWS STORE APPS. WE'VE GOT
REPLACEMENTS FOR THEM.

Start diving into code with WPF projects.

The second chapter gets you started writing C# code, and most
of the chapter is focused around building Windows Store apps.

We recommend that you do the following:

* Read Chapter 2 in the main part of the book through
page 68.

* We provide a replacement for page 69 in this appendix.
After that, you can read pages 70, 71, and 72 in the book.

% Then there are replacements for pages 73 and 74, where
you build a program from scratch. You can follow the
rest of the project in the book.

% The book will work just fine for you through page 82.

* There’s an exercise on page 83, and its solution is on page
85. We provide replacements for those pages in this PDF

Once you finish that exercise, the chapter no longer requires any
Windows Store apps or Windows 8. You’ll be able to continue
on in the book through Chapter 9, and you can do the first and
second labs.

A }é \
= "_J

46

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

Use the debugger to see your variables change

The debugger is a great tool for understanding how your programs
work. You can use it to see the code on the previous page in action.

©

Q

windows presentation foundation

CREATE A NEW WPF APPLICATION PROJECT-
Drag a TextBlock onto your page and give it the name output. Then add a button and double-click it
to add a method called Button Click (). The IDE will automatically open that method in the code
editor. Enter all the code on the previous page into the method.

INSERT A BREAKPOINT ON THE FIRST LINE OF CODE-

Right-click on the first line of code (int number =

*
Debug this!
r— %

x

v

15;) and choose Insert Breakpoint from the

Breakpoint menu. (You can also click on it and choose Debug—Toggle Breakpoint or press F9.)

Dd UseTheDebugger

MainWindow.xaml.cs ® X

* UseTheDebugger.MainWindow

= /*

{
@

)

125% ~ 4

* Double-clicking on the Button in the designer caused it to
* create the empty Button Click() method.
*/

[l private void Button_Click(object sender, RoutedEtventArgs e)

int number = 15;

number = number + 10;
number = 36 ¥ 15;
number = 12 - (42 / 7);
number += 10;

number *= 3;

number = 71 / 3;

int count = @;
count++;
count--;

string result = "hello";
result += " again " + result;
output.Text = result;
result "the value is:
result "

" + count;

bool yesNo = false;
bool anotherBool = true;
yesNo = !anotherBool;

+ @ MainWindow()

// There's a breakpoint on this line

R thh yau Sc{ a brcak

Point on a line
ns red and 3
he margin of

tode, the line tur
ved dot appears in &
the code editor.

th‘n You dcbua Your tode by
running it inside the !DE, as
$00n as Your Program hits g
breakpoint it|] Pause and let you

inspect and ¢hane the val
all the va\riables.g e et

Flip hack to page 70 in the book and keep going!

www.itbook.store/books/9781449343507

X

: Comments (which

- either start with two
& or move slashes or ave

%\\ surrounded b‘[/% and

/

¥/ warks) show wp

in the [DE as green
text. You don't have

to worvy about what
you {:\/\76 in between
those marks, betause
Loman{:s are alwa\/s
ignored by the tompiler.

Creating a new
WPF Application
project will tell the
IDE to create a
new project with a
blank window. You
might want to name
it something like
UseTheDebugger
(to match the header
of this page). You’ll
be building a whole
lot of programs
throughout the book,
and you may want
to go back to them
later.

you are here » 69

https://itbook.store/books/9781449343507

this page intentionally left blank

We left this page blank so that you tan
vead this appendix in two—page mode, so the
exertise and its solution appear on different
two—page spreads. £ you've viewing this as

a PDF in two—page mode, you may want to
furn on the tover page so the even pages are
on the vight and the odd pages ave on the
left.

72 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

Make sure Yyou thoose a sensible name for this pr ojett, | | |
betause you'll vefer back 4o it later in the book. windows presentation foundation
' When You see Lhese sneakers, it

. means it's Lime for you to
BUIId an app from fhe ground up tome u{-‘;h::ﬁ:h tode on Your own:

The real work of any program is in its statements. You've already seen how statements fit into a
window. Now let’s really dig into a program so you can understand every line of code. Start by
creating a new Visual C# WPF Application project. Open the main window and use the
IDE to modify it by adding three rows and two columns to the grid, and then adding four button

controls and a TextBlock to the cells. BUﬂd ﬂﬁS \Vind©\V

The window has a grid with three rows The window has four button *
and two columns. Each row definition controls, one in each row. Use the

has its height set to 1 *, which gives Content property to set their text
ita<RowDefinition/> withoutany to Show a message, If/else, Another

properties. The column heights work the conditional test, and A loop.
same way.
1 E 1 1
o |Show a messagel If/Else

Each button is tenteved in the cell. Use the
Grid-Row and Grid.Column properties to set
the vow and tolumn ({:he\/ default to0 0).

e

Another conditional test Ll

,ﬂ(
4]

You don't see anything here, but theve's actually a
TextBlotk control. [t doesn't| have any text, so it’s
invisible. [£s tentered and in fthe bottom vow, with
ColumnSpan set to 2 so it sppns both columns.

!

-H l E l i

The bottom cell has a TextBlock control Use the x : Name property to name the buttons
named myLabel. Use its Style property buttonl, button2,button3, and button4.
to set the style to BodyTextStyle. Once they’re named, double-click on each of

them to add an event handler method.
& |£ You need to use the Edit S{:y|c \righ{:——mousc menu to

set this but \/ou,rc having trouble seled:ing the tontrol,
Em tan righ{:——dhtk on the TextBlotk tontrol in the

otument Outline and thoose Edit S‘E\/lc Leom theve. you are here » 73

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

) ion 1o the exertise. Does A lot of programmers don’t use the
Here's our solution IDE to create their XAML—they build

: imilave the line
Se [your solution look similar? Are it by hand. If we asked you to type in
t

RC‘ breaks diffevent, or the \’"’?‘“JC"“ na

J :) | the XAML by hand instead of using
QOLUEION i flerent order? IF so, that's 0¥ the IDE, would you be able to do it?
Dd BuildAnApp = B =X
.
=<Window x:Class="BuildAnApp.MainWindow" Here’ +h +
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation” E eres the -
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" <Window> and
Title="MainWindow" Height="350" Width="525"> <Qrid> tags that
= <Grid> the IDE generated
=l <Grid.RowDefinitions> or You when you
<Rowbefinition/> Y~ erested the WPF
<RowDefinition/> Here are the vow and lieati
<RowDefinition/> . applhication.
¢olumn definitions: three
| </Grid.RowDefinitions> s and £wo columns
=l <Grid.ColumnDefinitions> rows dn When You double—¢licked on eath
<C01umnDeF::Ln::Lt::Lon/> button, the [DE 3“"3{1‘1 a
o otumpefinition/> mebhod with the name of the
rid.ColumnDefinitions .
I bu{:ﬁon ‘Co”owcd b\/ __C||Lk.
Bl <Button x:Name="buttonl" Content="Show a message" HorizontalAlignment="Center"
| VerticalAlignment="Center" Click="button1_Click"/>
=l <Button x:Name="button2" Content="If/Else" HorizontalAlignment="Center"
VerticalAlignment="Center" Grid.Column="1" Click="button2_Click"/>
Bl <Button x:Name="button3" Content="Another conditional test" HorizontalAlignment="Center"
| VerticalAlignment="Center" Grid.Row="1" Click="button3_Click"/>
=l <Button x:Name="button4" Content="A loop" HorizontalAlignment="Center"
| VerticalAlignment="Center" Grid.Column="1" Grid.Row="1" Click="button4 Click"/>
= <TextBlock x:Name="myLabel" HorizontalAlignment="Center"”
VerticalAlignment="Center" Grid.Row="2" Grid.Columnspan="2"/>
. This button is in the setond tolumn and
</Grid> . 't +p '
| </Window> setond vow, so these ?VOPCY‘{ZICS are se :
120% - 4 3
8 XAML & Design | mE®m
Try removing the HorizontalAlignment v EP
or VerticalAlignment property from ‘ Q .
one of the buttons. It expands to Why do you think the left column and top row are given the
fill the entire cell horizontally or number 0, not 1? Why is it OK to leave out the Grid.Row
vertically if the alignment isn’t set. and Grid.Column properties for the top-left cell?

74 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

e You)“ be Crca‘f:ing a lot of aPFIidaﬁons

w‘,“ f).i"e you a lot of exertises like this throughout the book. throughout this book, and you'll need to give
d‘ "ESLVC ‘/E" .“‘C answer in a touple of pages. [§ You get stuck, eath one a diffevent name. We recommend namin
ont be atraid to Fcck at the answer—it’s not Chca{ingf this one “Prad‘l:idcusingwElsc". It hclps +o Pu-{;

programs from a chapter in the same folder.

Time to get some practice using if/else statements. Can you build this program?

set one vow’s height to |# i, You can find the checkbox control in the toolbox,
the IDE, it seems to disappear Jjust below the button control. Set the Button’s name
because it's eollapsed 4o a {i,\\/ to changeText and the checkbox’s name to

size. Just set the other vow enableCheckbox. Use the Edit Text right-click
to 1% and it'll show up again. menu option to set the text for both controls (hit
Escape to finish editing the text). Right-click on each
control and choose Reset Layout—>All, then make
sure both of them have their VerticalAlignment and
HorizontalAlignment set to Center.

|Change the label if checked| Enable label changing /Add a TextBlock

It’s almost identical to the one you

added to the bottom of the window
Press the button to set my text
in the last project. This time, name

it labelToChange and set its
Grid.Row property to "1".

/ £ You treate two vows and ~ Add a button and a checkbox.

Build this window.

It’s got a grid with two rows
and two columns, it’s 150
pixels tall and 450 pixels wide,
and it’s got the window title
Fun with if/ else statements.

Set the TextBlock to this message if the user clicks the button but the box IS

NOT checked. \
Here’s the conditional test to see if the checkbox is checked:

enableCheckbox.IsChecked == true

Text changing is disabled

. U .
If that test is NOT true, then your program should execute two statements: Ve Hint: you'll put this
tode in the else blotk.
labelToChange.Text = "Text changing is disabled";

labelToChange.HorizontalAlignment = HorizontalAlignment.Center;

If the user clicks the button and the box IS qhecked, change the TextBlock so it
either shows Left on the left-hand side or Right on the right-hand side.

If the label’s Text property is currently equal to "Right" then the program should change the text to
"Left" and setits HorizontalAlignment property to HorizontalAlignment.Left. Otherwise, set
its text to "Right"and its HorizontalAlignment property to HorizontalAlignment.Right. This
should cause the program to flip the label back and forth when the user presses the button—but only if the
checkbox is checked.

you are here » 83

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

Time to get some practice using if/else statements. Can you build this program?

RC‘SQ We added line breaks 35

soLPt‘OH usual to make it easier
h h r’ 4o read on {;hc windlow,

Here’s the XAML code for the grid:
<Grid>
<Grid.RowDefinitions>
<RowDefinition/>
<RowDefinition/>
</Grid.RowDefinitions> H:Jou double-clicked the button in the designer
<Grid.ColumnDefinitions> betore you set its name, it may have treated a
<ColumnDefinition/> Click event handler method ealled Button Click 10
<ColumnDefinition/> instead O‘F Chahgc-rcx{:__CIic,k(). B B

</Grid.ColumnDefinitions>

<Button x:Name="changeText" Content="Change the label if checke
HorizontalAlignment="Center" VerticalAlignment="Center"
Click="changeText Click"/>

<CheckBox x:Name="enableCheckbox" Content="Enable label changing"
HorizontalAlignment="Center" VerticalAlignment="Center"
IsChecked="true" Grid.Column="1"/>

<TextBlock x:Name="labelToChange" Grid.Row="1" TextWrapping="Wrap"
Text="Press the button to set my text"
HorizontalAlignment="Center" VerticalAlignment="Center"
Grid.ColumnSpan="2"/>

</Grid>

And here’s the C# code for the button’s event handler method:

private void changeText Click (object sender, RoutedEventArgs e)

{

if (enableCheckbox.IsChecked == true)
if (labelToChange.Text == "Right")
{
labelToChange.Text = "Left";
labelToChange.HorizontalAlignment = HorizontalAlignment.Left;
}
else
{
labelToChange.Text = "Right";
labelToChange.HorizontalAlignment = HorizontalAlignment.Right;
}
}
else
{
labelToChange.Text = "Text changing is disabled";

labelToChange.HorizontalAlignment = HorizontalAlignment.Center;

85 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

You won't use XAML for the next part of the book.
The rest of Chapter 2 doesn't require Windows 8 and can be done
with Visual Studio 2010, or using a Windows operating system as
carly as Windows 2003. You won’t need to replace any pages in the
book until you get to Chapter 10. That’s because the next part of
the book uses Windows Forms Application (or WinForms) projects.
These C# projects use an older technology for building desktop
apps. You'll use Winkorms as a teaching and learning tool, just like f\
you’ve been using the IDE to learn and explore C# and XAML.
This applies 4o WPF, tool BVildi“B
these WinForms yroJcC‘{:S will
help get cove CH# ctontepts into
your brain faster, and that’s the
o\ui(,kcs{: voute to lcarning WPF.

€ Have a look at page @7,
which explains wh\/ swi{thing
o WinForms is a good +ool

‘("ov' Sc{‘,{jng C# Concc\?JCS
into Your brain.

DID YOU SAY THAT I WON'T NEED EITHER

WINDOWS 8 OR WPF UNTIL CHAPTER 107
WHY AREN'T YOU USING MORE CURRENT
TECHNOLOGY?

Sometimes older technologies make great learning tools.

If you want to build a desktop app, WP is a superior tool for doing it. But

if you want to learn C#, a simpler technology can make it easier to make
concepts stick. And there’s another important reason for using WinForms.
When you see the same thing done in more than one way, you learn a lot from
seeing what they have in common, and also what’s different between them—
like on page 88, when you rebuild the WPF you just built using WinForms.
We’ll get back to XAML in Chapter 10, and by that time you’ll have laid down
a solid foundation that will make it much easier for those WPF concepts to stick.

Some chapters use C# features introduced in .NET 4.0 that
are not supported by Visual Studio 2008.

Watch lt’ If you’re using Visual Studio 2008, you may run into a few problems once

* you reach the end of Chapter 3. That’s because the latest version of the
.NET Framework available in 2008 was 3.5. And that’s a problem, because the book
uses features of C# that were only introduced in .NET 4.0. In Chapter 3 we’ll teach you
about object initializers, and in Chapter 8 you’ll learn about collection initializers
and covariance—and if you’re using Visual Studio 2008, the code for those examples
won'’t compile because in 2008 those things hadn’t been added to C# yet! If you
absolutely can't install a newer version of Visual Studio, you'll still be able to do almost
all the exercises, but you won'’t be able to use these features of C#.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

this page intentionally left blank

We left this page blank so that you tan
vead this appendix in two—page mode, so the
exertise and its solution appear on different
two—page spreads. £ you've viewing this as

a PDF in two—page mode, you may want to
furn on the tover page so the even pages are
on the vight and the odd pages ave on the
left.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows foundation

*
* Chapter 10 -

IN THIS CHAPTER, YoU'LL
DIVE INTO WPF DEVELOPMENT
BY REDESIEGNING SOME FAMILIAR
PROGRAMS AS WPF APPS.

You can port your WinForms apps to WPF.

If you’ve completed chapters 3-9 and finished all the exercises
and labs so far, then you've written a lot of code. In

this chapter, you’ll revisit some of that code and use it as a
springboard for learning WPE.

Here’s how we recommend that you work through Chapter 10:

* We recommend that you follow the chapter in the main
part of the book through page 497. This includes doing
everything on page 489, the “Sharpen your Pencil”
exercises, and the “Do this!” exploration project on
page 497.

* This appendix has replacement pages for pages
498-505, so use those instead.

* Page 506 applies only to Windows Store projects,
so you can read it but it won’t help you with WPE.

* After that, use pages 509-511 from this appendix.

* Finally, read pages 514 and 515 in the book. Once
you've read them, you can replace the rest of the
chapter (pages 516-533) with pages in this appendix.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

let’s explore xaml

*
WPF applications use XAML to create Ul objects 7~ 2° dj;-’

When you use XAML to build the user interface for a WPI application, you’re building out an
object graph. And just like with WinForms, you can explore it with IDE’s Watch window. Open
the “fun with if-else statements® program from Chapter 2. Then open MamnWindow.
xaml.cs, place a breakpoint in the constructor on the call to InitializeComponent (), and
use the IDE to explore the app’s Ul objects.

0 Start debugging, then press F10 to step over the method. Open a Watch window using the Debug
menu. Start by choosing Debug—Windows—>Watch—Watch 1, and add a watch for this:

Marme Type -
E@is &, ~ PracticeUsinglfElse.MainWindow
@ base O, -~ System.Windows Window {PracticelsinglfElse.MainWindow]

; _contentlLoaded bool

- Systern.Windows.Controls.Button
Systern.Windows. Controls.CheckBox \abeﬂooha“
System.Windows.Controls. TextBlock -

The XAML

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}"> tllat Je{lnes

e Now have another look at the XAML that defines the page:

<Grid.RowDefinitions>
<RowDefinition/> tlle Contr()ls
<RowDefinition/>

</Grid.RowDefinitions> on a Page

<Grid.ColumnDefinitions> .
<ColumnDefinition/> 18 turnec[
<ColumnDefinition/>

</Grid.ColumnDefinitions> lnto a page

<Button x:Name="changeText" Content="Change the label if checked" Ol)ject Wltll

HorizontalAlignment="Center" Click="changeText Click"/>

<CheckBox x:Name="enableCheckbox" Content="Enable label changing" {lel({s an(:[
HorizontalAlignment="Center" IsChecked="true"

Grid.Column="1"/> propertles

<TextBlock x:Name="labelToChange" Grid.Row="1" TextWrapping="Wrap" tllat Contaln

Text="Press the button to set my text"
HorizontalAlignment="Center" VerticalAlignment="Center" re{erences to
Grid.ColumnSpan="2"/>

</Grid> UI controls.

498 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

e Add some of the 1abelToChange properties to the Watch window:

Watch 1 * A X

MName Value Type -
& labelToChange Text "Press the button to set my text” O, - string
& labelToChange HorizontalAlignment Center System.Windows.Horizontal Ali
& |abelToChange VerticalAlignment Center Systern . Windows.VerticalAligni
labelToChange TextWrapping Wrap Systern . Windows. TextWrappini +

The app automatically sets the properties based on your XAML:

<TextBlock x:Name="labelToChange" Grid.Row="1" TextWrapping="Wrap"
Text="Press the button to set my text" &— -
HorizontalAlignment="Center" VerticalAlignment="Center"
Grid.ColumnSpan="2"/>

But try putting labelToChange.Grid or labelToChange.ColumnSpan into the Watch window.
The control is a Windows .UI.Controls.TextBlock object, and that object doesn’t have those
/ properties. Can you guess what’s going on with those XAML properties?

Hover over Window

e to see its elass.
Stop your program, open MainWindow.xaml.cs, and find the class declaration for MainWindow. Take a look

at the declaration—it’s a subclass of Window. Hover over Window so the IDE shows you its full class name:
public partial class MainWindow : Window

{ class System . Windows. Window
public Ma inwindow() Provides the ability to create, configure, show, and manage the lifetime of windows and dialog boxes,

{
InitializeComponent();
¥

Now start your program again and press I'10 to step over the call to InitializeComponent (). Go back to
the Watch window and expand this >> base >> base to traverse back up the inheritance hierarchy.

Watch 1 * O X

Marme Type =
= @ this O, - PracticellsinglfElse.MainWindow
liil base Q, - System.Windows. Window {PracticellsinglfElse.MainWindow}
/ base 0, - System.Windows.Controls.ContentControl {PracticelsinglfElse.MainWindow]
@ base 0, - System.Windows.Controls.Control {PracticelsinglfElse.MainWindow}
foxPa"d these & Content Q, = object {System. Windows.Controls.Grid} -
see the

N Expand Content and explove its [System.Windows.Controls.4rid] node.

SuPcvc'asscs.

Take a little time and explore the objects that your XAML generated. We’ll dig into some of these objects later
on in the book. For now, just poke around and get a sense of how many objects are behind your app.

you are here » 499

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

old becomes new

Redesign the Go Fish! form as a WPF application

The Go Fish! game that you built in Chapter 8 would make a great WPF application. Open Visual Studio
and create a new WPF Application project (just like you did for Save the Humans). Over the next few
pages, you’ll redesign it in XAML, with a main window that adjusts its content as it’s resized. Instead of using
Windows Forms controls on a form, you’ll use WPF XAML controls.

* Thish We'll use a horizontal StackPanel
. 1s becomes a {10 9roup ‘Ehc TCX‘{:BOX and

DQ 'd'US-, This becomes a <Button/> Button tontrols so ‘Ehe\/ ¢an g0
* * <TextBox/> into the same cell in the grid.

Your name Your hand

Ed Start thd game! Two of Spades

e Two of Diamonds
; °°f Hearts - This becomes a

Ed asks if anyone has a Ten Seven of Spades)

Joe has [Tens Seven of Diamonds <L|StBOX/>

Bob has 0 Tens Seven of Hearts —

Ed must draw from the stock. Ten of Spades

Joe askes if anyone has a King Ten of Clubs

Ed has 0 Kings Ten of Diamonds

Bob has 0 Kings

Joe must draw from the stock.

Bob asks if anyone has a Four

Ed has 0 Fours

Joe has 0 Fours

Bob myst draw from the stock:.
%9 cards.
e has 7 cards.

Bob has 9 cands.
The stock has 7 cards left.

This becomes a

<ScrollViewer/>

Books

Bob has a book of Aces
Ed has a book of Stes

Ed has a book of Nines
Bob has a book of Eights
Joe has a book of Queens

/

This is another tontrol in the toolbox. This becomes a
<&— [t displays a string of text, adding <Button/>

vertical and/or hovizontal strollbars

if the text grows lavaer than the

window tontrol.

This becomes a
<ScrollViewer/>

500 Appendix ii

*

www.itbook.store/books/9781449343507 *

https://itbook.store/books/9781449343507

windows presentation foundation

Here’s how those controls will look on the app’s main window:

(1

CRE— Seven of Hears

Eight of Spades

oe must draw from the stock Nine of Spades MOS‘(‘, O‘F ‘Ehc

Baob has 0 Fours Ten of Spad
Ed has 0 Fours : = Lodc {'p managc

h .
Ten of Diamonds {: ¢ aaTP,ay will
Jack of Clubs remain the same,
Jack of Diamonds bu{: 'H'IC M’ tode

Bab asks if anyone has a Three Queen of Spades w,“ ChaV\aC.
Ed must draw from the stock.

oe has 0 Tens . Queen of Clubs
Bob has 0 Tens <ScrollViewer/> /

Ed has a book of Aces
Bob has a book of Kings
Bob has a book of Fives

oe asks if anyone has a Four
Bab must draw from the stock.

<ListBox/>
<ScrollViewer/>

The controls will be contained in a grid, with rows and columns that expand or contract based on
the size of the window. This will allow the game to shrink or grow if the user resizes the window:

n |

E— The game il
be playable no

H

matter what
the window
dimensions ave.

-

you are here » 501
www.itbook.store/booé&§81449343507

https://itbook.store/books/9781449343507

now that’s a page

Page layout starts with controls

WPF apps and WinForms have one thing in common: they both rely on controls to lay out your page. The Go Fish!
page has two buttons, a ListBox to show the hand, a TextBox for the user to enter the name, and four TextBlock labels.
It also has two ScrollViewer controls with a white background to display the game progress and books.

(n |

I

[£ the window is made very tall, this SevollViewer

(5]

This Li
should grow 4o fill up the extra vertical space. [t sh’:ilé";t?;ow b
should display serollbavs if the text gets too big:

£l up the extra
vertical space if

the window is made
This SevollViewer needs to be tall taller-

Cnough 4o show vavious books that have
been distovered, and it should also
display stvollbavs if needed.

Ask for a card e

The XAML for the main window starts with an opening <Window> tag The title property sets the title of the
window to “Go Fish!” Setting the Height and Width property changes the window size—and you’ll see the size change
in the designer as soon as you change those properties. Use the Background property to give it a gray background.

Here’s the updated <Window> opening tag. We named our project GoFish—if you use a different name, the first
line will have that name in its x : C1lass property.

<Window x:Class="GoFish.MainWindow"
The window title xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
d stavting width xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
‘;"d height 2\rc et —> Title="Go Fish!" Height="500" Width="525" Background="Gray">
n \
using Vroycr{:ics n

<Grid Margin="10" >
the <Window> tag. J

We’ll use a StackPanel to put the TextBox for the player’s name and the Start button in one cell:

o <TextBlock Text="Your Name" />

<StackPanel Orientation="Horizontal" Grid.Row="1">
<TextBox x:Name="playerName" FontSize="12" Width="150" />

This Mavgin property sets the
9 <Button x:Name="startButton" Margin="5,0" left and righ{: mavgins for the

Content="Start the game!"/> W button to 5, and the top and
</StackPanel> *

bottom margins {0 O. We ¢ould
- also have set it t0 5,0,0,0 1o
502 Appendix ii T ot i 1cE vy and

www.itbook.store/books/9781449343507 left the vight margin zevo.

https://itbook.store/books/9781449343507

windows presentation foundation

Each label on the page (“Your name,” “Game progress,” etc.) is a TextBlock. Use the Margin
property to add a 10-pixel margin above the label:

<TextBlock Text="Game progress" Grid.Row="2"
Margin="0,10,0,0"/>

A ScrollViewer control displays the game progress, with scrollbars
that appear if the text is too big for the window:

(3]

<ScrollViewer Grid.Row="3" FontSize="12"
Background="White" Foreground="Black" />

Here’s another TextBlock and ScrollViewer to display the books. The default vertical and
horizontal alignment for the ScrollViewer is St retch, and that’s going to be really useful.
We’ll set up the rows and columns so the ScrollViewer controls expand to fit any screen size.

<TextBlock Text="Books"
(’ Margin="0,10,0,0" Grid.Row="4"/>

<ScrollViewer FontSize="12" Background="White" Foreground="Black"
Grid.Row="5" Grid.RowSpan="2" />

Remember, vows and

We used a small 40-pixel column to add space, so the ListBox and Button controls need to ¢olumns start at zevo, so a
go in the third column. The ListBox spans rows 2-6, so we gave it Grid.Row="1" and tontrol in the third column
Grid.RowSpan="5"—this will also let the ListBox grow to fill the page. has Grid.Column="2""

G’ <TextBlock Text="Your hand" Grid.Row="0" Grid.Column="2" />
<ListBox x:Name="cards" Background="White" FontSize="12"
Height="Auto" Margin="0,0,0,10"
Grid.Row="1" Grid.RowSpan="5" Grid.Column="2"/>

The “Ask for a card” button has its horizontal and vertical alignment set to Stretch so
that it fills up the cell. The 20-pixel margin at the bottom of the ListBox adds a small gap.

c, <Button x:Name="askForACard" Content="Ask for a card"
HorizontalAlignment="Stretch" VerticalAlignment="Stretch"
Grid.Row="6" Grid.Column="2"/>

We']] finish this grid on the next page »you are here » 503

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

it grows, it shrinks—it’s all good

Rows and columns can resize to match the page size

*

Grids are very effective tools for laying out windows because they help you design pages that can be displayed on
many different devices. Heights or widths that end in * adjust automatically to different screen geometries. The
Go Fish! window has three columns. The first and third have widths of 5* and 2%, so they will grow or shrink
proportionally and always keep a 5:2 ratio. The second column has a fixed width of 40 pixels to keep them

separated. Here’s how the rows and columns for the window are laid out (including the controls that live inside them):

<RowDefinition
Height="Auto"/>

<RowDefinition
Height="Auto"/>

""" <RowDefinition
Height="Auto"/>

<RowDefinition/>

<RowDefinition
Height="Auto"
MinHeight="150"/>

""" <RowDefinition]|
Height="Auto"/>

<ColumnDefinition Width="40"/>

<ColumnDefinition Width="5*"/>

<ColumnDefinition Width="2*"/>

<TextBlock/>

Row="1" means the second vow,
betause vow numbers start at O.
4

<TextBlock
Grid.Column= "2"/>

<StackPanel Grid.Row="1">
<TextBlock/>
<Button/>
</StackPanel>

<TextBlock Grid.Row="2"/>

<ScrollVi
i Rourarans This vow is set o the default height of 1%,

and the SevollViewer in it is set to the default
vertical and hovizontal alignment of “Streteh”
so it grows or shrinks to £ill up the page.

<TextBlock Grid.Row="4"/>

<ScrollViewer Grid.Row="5" Grid.RowSpan="2">

This SevollViewer has a row span of “2” 4o span

© T vow number 5 in XAML because numbeving stavts
at 0) a minimum hcigh‘{: O‘F 150 to make suve the
SevollViewer doesn't get any smaller than that.

<ListBox
Grid.Column="2"
Grid.RowSpan="5"/>

This ListBox spans
five rows, including the
fourth vow—which will
grow o fill any free
space. This makes the
ListBox expand to £ill
up the entire vight—
hand side of the page.

<Button
Grid.Row="6"
Grid.Column="2" />

|
)(AML vow and tolumn humbtkinﬁ start at O, so this button’s vow is b and its tolumn is 2 (to ski\? the
middle tolumn). [£s vertical and hovizontal alignment ave set to Streteh so the button takes up the entive
cell. The vow has a height of Auto, so its height is based on the contents (the button plus its margin).

504

Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

Here’s how the row and column definitions make the window layout work:

The first column will always
be 2.5 times as wide as
the third (a 5:2 ratio), with
a 40-pixel column to add

<Grid.ColumnDefinitions> space between them. The
< lumnDefinition Wi h="5%"/> ScrollViewer and ListBox
colu < tio at 5xn/ \ controls that display data
<ColumnDefinition Width="40"/> / have HorizontalAlignment
C . set to “Stretch” tofillu
<ColumnDefinition Width="2*"/> the columns. P
</Grid.ColumnDefinitions> ‘%ﬁ

<Grid.RowDefinitions>

<RowDefinition Height="Auto"/>
C , " " The fourth row has the default height of 1*
<RowDefinition Height="Auto"/> to make it grow or shrink to fill up any space

G as : _n " that isn’t taken up by the other rows. The
<RowDefinition Heil ght Auto"/> ListBox and first ScrollViewer span this row,

<RowDefinition/> <€ so they will grow and shrink, too.

<RowDefinition Height="Auto"/>

<RowDefinition Height="Auto" MinHeight="150" />

<RowDefinition Height="Auto"/>
</Grid.RowDefinitions>

You ¢an add the vow and column

definitions above or below the tontrols in Almost all the row heights are set to

the grid. We added them below this time. Auto. There’s only one row that will

</Grid> grow or shrink, and any control that
spans this row will also grow or shrink.

Heve's the elosing tag for the orid,
Lollowed b\/ the ¢tlosing +ab for the
</Window> window. \/ou)” b_vilng this all {'pgc{:hcr at
4he end of the chapter when you tinish
porting the Go Fish! game to a WPF app.

*

v

you are here » 505

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

those programs look familiar

Use XAML to redesign each of these Windows desktop forms as WPF
applications. Create a new WPF Application project for each of them, and modify
each page by updating or replacing the grid and adding controls. You don’t need
to get them working. Just create the XAML so they match the screenshots.

mbuskrome |

Add lumberjack |
Feed a Lumberjack

Worker Bee Assignments
Job Shifts
| Baby bee tutoring v | |T-" E”

Brealdfast line 2 EI
1. Ed
2. Billy () Crispy

3. Jones
4. Fred () Soggy

| Assign this job to a bee |

Report for shift #20

Waorlcer #1 will be done with "Nectar collector’ after this shift
Worker #2 finished the job

Workcer #2 is not working

Worker #3 is doing "Sting patrol’ for 3 more shifts

Worker #4 is doing 'Baby bee tutoring” for & more shifts

5. Johansen
6. Eabby, Jr. © Browned

Add flapjacks
Ed has 7 flapjacks

MNead lumberack

Use a Border control to draw a border around ScrollViewers.

If you look in the Properties window or look at the IntelliSense window, you'll see that the ScrollViewer control has
BorderBrush and BorderThickness properties. This is a little misleading, because these properties don’t actually

do anything. ScrollViewer is a subclass of ContentControl, and it inherits those properties from ContentControl but
doesn’t actually do anything with them.

Luckily, there’s an easy way to draw a border around a ScrollViewer, or any other control, by using a Border control.
Here’s XAML code that you can use in the Breakfast for Lumberjacks window:

Use the BorderThickness and
BorderBrush properties to set the
hickness and ¢olor of the border. You
¢an also add a background, vound the
w tovners, and make other visual thanges.

<Border Grid.Row="6" BorderThickness="1"
Margin="€,5,0,0" BorderBrush="Gray">
<ScrollViewer Content="Ed has 7 flapjacks
BorderThickness="2" BorderBrush="White™ MinHeight="5@"/>

</Border> R The Border control tan tontain one other control.
I ;

You want to put more than one control inside it,

use a StackPanel, Grid, Canvas, or other container.

508 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

Use StackPanels to design this window. Its height is set to 300, its width is 525, and its ResizeMode property is set
to NoResize. It uses two <Border> controls, one to draw a border around the top StackPanel and one to draw a

border around the ScrollViewer.

‘Worker Bee Assignments

This button is viaht—
aligned with FontSize

Shifts

Job
%ab}r bee tutoring l:l Assign this job to a bee| SC‘{: ‘bo le ahd 2—0 Pixcl

This is a <ComboBox>, and its items
are <ComboBox/|tem/> 'l:azs with the

1"9\7 and right margin.
|W0rk the next shif't|

COV\ en g
Shift report t P OFCV‘{;\/ sc£ {:o
Repart for shift #20

Worker #1 will be done with "Nectar collector after this shift
Worker #2 finished the job

Worker #2 is not working

Worker #3 is doing 'Sting patrol’ for 3 mare shifts

Worker #4 is doing 'Baby bee tutoring’ for & more shifts

he item name.

Use the Content property to add text to this
SevollViewer. &3#13; will add line breaks. Give it
a 2-pixel white border using Border Thickness
and BorderBrush, and a height of 250.

Use a Grid to design this form. It has seven rows with height
set to Auto so they expand to fit their contents, and one with the
default height (which is the same as 1 *) so that row expands with
the grid. Use StackPanels to put multiple controls in the same
row. Each TextBlock has a 5-pixel margin below it, and the bottom
two TextBlocks each have a 10-pixel margin above them. Use the
<Window> properties

Lumberjack name

Breakfast line

1.Ed

2. Billy
3. Jones
4. Fred

5. Johansen
£ Bakbu Ir

This is a ListBox. [t uses <ListBox|tem/>

tags {:he same wa\/ ‘{‘)IC Comchox

uses <ComboBox|tem/> tags. Set its
VerticalAlignment to Streth so when its

row grows and shrinks, the ListBox does too. *

Feed a lumberjack

Ed has 7 flapjacks

Set the window's
ResizeMode to
“CachsiuW&héri\?" to

display this sizing grip- \

[Add Lumberjack] [Next Lumberjack|

Get your pages to look just like these screenshots by adding
dummy data to the controls that would normally be filled in using
the methods and properties in your classes.

<StackPanel Margin="5">
<TextBlock/>

<StackPanel Orientation="Horizontal”>

<StackPanel> <StackPanel> | <Button/>
<TextBlock/> <TextBlock/>
<ComboBox> <TextBox/>
<ComboBoxltem/> | </StackPanel>
<ComboBoxltem/>
... 4 more ...
</ComboBox>

</StackPanel>

<Button/>
<TextBlock/>
<ScrollViewer/>
</StackPanel>

Set the ComboBox tontrol’s
Selected|ndex property to O
so it dis\>|a\/s the fivst item.

Use these <Window> properties to set the initial

and minimum size for the window, then vesize the

window to make sure {hc\/ work: Hcigh‘{:—'—‘-“q‘ 00" /1
o"

Mintteight="350" Width="525" MinWidth="30

<Grid Grid.Row="1" Margin="5">

<TextBlock/>

<TextBox/>

<TextBlock/>

<ListBox VerticalAlignment="Stretch”>
<ListBoxitem/> Set this vow to the dﬁ%nl{:
<ListBoxitemn/> height 1% and make all the
4 other vow heights “Auto” so
oo & MOTE ... this vow grows and shrinks
<IListBox> when the window is vesized.

<TextBlock>

<StackPanel Orientation="Horizontal">
<TextBox/>
<ComboBox> ... 4 items ... </ComboBox>
<Button/>

</StackPanel>

<ScrollViewer/>

<StackPanel Orientation="Horizontal”>
<Button/>
<Button/>

</StackPanel>

www.itbook.store/books/9781449343507

you are here »

509

https://itbook.store/books/9781449343507

Use XAML to redesign each of these Windows desktop forms as WPF
applications. Create a new WPF Application project for each of them, and modify

- L 7
RC|§Q each page by updating or replacing the grid and adding controls. You don’t need
sP_L!JtIQH to get them working. Just create the XAML so they match the screenshots.

<Window x:Class="BeehiveManagementSystem.MainWindow"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Beehive Management System"

Height="300" Width="525"
ResizeMode="NoResize">

Here's the margin we 9ave Yyou. SFCCi«c\/ing
Jusf one number (%) sets the top, left,

<StackPanel Margin="5"> bottom, and vight margins to the same value.

<TextBlock Text="Worker Bee Assignments" Margin="0,0,0,5" />
<Border BorderThickness="1" BorderBrush="Black">

<StackPanel Orientation="Horizontal" Margin="5">

<StackPanel Margin="0,0,10,0"> Does your XAML code look
<TextBlock Text="Job"/> different from ours? There
<ComboBox SelectedIndex="0" > are many ways to display

<ComboBoxItem Content="Baby bee tutoring"/>
<ComboBoxItem Content="Egg care"/>
<ComboBoxItem Content="Hive maintenance"/>
<ComboBoxItem Content="Honey manufacturing"/>
<ComboBoxItem Content="Nectar collector"/>
<ComboBoxItem Content="Sting patrol"/>

very similar (or even
identical) pages in XAML.

And don’t forget that XAML
is very flexible about tag

</ComboBox> order. You can put many
</StackPanel> of these tags in a different
<StackPanel> order and still create the

<TextBlock Text="Shifts" /> same object graph for

<TextBox/> your window.
</StackPanel>

<Button Content="Assign this job to a bee"
VerticalAlignment="Bottom" Margin="10,0,0,0" />
</StackPanel>

</Border>

<Button Content="Work the next shift" Margin="0,20,20,0"

FontSize="18" This Border tontrol
HorizontalAlignment="Right" /> dvaws a border avround

. ‘.
<TextBlock Text="Shift report" Margin="0,10,0,5"/> ‘2’//’—ﬂ—__ {thcvdhhcwc
<Border BorderBrush="Black" BorderThickness="1" Height="100">

<ScrollViewer
Content="
Report for shift #20
Worker #1 will be done with 'Nectar collector' after this shift
Worker #2 finished the job
Worker #2 is not working N
Worker #3 is doing 'Sting patrol' for 3 more shifts HCYJS{ﬁc dummy data we used
Worker #4 1is doing 'Baby bee tutoring' for 6 more shifts £°F°Pdafcfhcsmffv1?or£
"/>
</Border> / The Content Pro?cv{:y ignores
</StackPanel> line breaks—we added them 4o
</Window> make the solution easier +o vead.

510 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation
<Window x:Class="BreakfastForLumberjacks.MainWindow"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Breakfast for Lumberjacks"

Width="525" Height="400" Here are the Window properties that set
MinWidth="300" Minllieigl"lt="3§0" the initial window size to 525%4'00, and
ResizeMode="CanResizeWithGrip" > set 3 minimum size mc 300x350.

<Grid Grid.Row="1" Margin="5">
<Grid.RowDefinitions>

<RowDefinition Height="Auto"/> You can set the ResizeMode
<RowDefinition Height="Auto"/> property to NoResize to prevent all
<RowDefinition Height="Auto"/> resizing, CanMinimize to allow only
<RowDefinition /> minimizing, CanResize to allow all
<RowDefinition Height="Auto"/> resizing, or CanResizeWithGrip to
<RowDefinition He?ght::AUtO:b display a sizing grip in the lower
<Rowbefinition Height="Auto"/> |_right-hand corner of the window.

<RowDefinition Height="Auto"/>
</Grid.RowDefinitions>

<TextBlock Text="Lumberjack name" Margin="0,0,0,5" />
<TextBox Grid.Row="1"/>

<TextBlock Grid.Row="2" Text="Breakfast line" Margin="0,10,0,5" />
<ListBox Grid.Row="3" VerticalAlignment="Stretch">
<ListBoxItem Content="1. Ed4"/>

<ListBoxItem Content="2. Billy"/> ‘)“5{: to be 100% Clcah we asked Yyou to add
<ListBoxItem Content="3. Jones"/> these dumm\/ items as Pav-{; 04(-‘ the exertise
<ListBoxItem Content="4. Fred"/> to make {hc‘brmlooklmcifg bdhﬁlﬁcd)
<ListBoxItem Content="5. Johansen"/> You'rc about to learn how 4o bind Con‘brol.s
.<ListBoxItem Content="6. Bobby, Jr."/> hkcfhkl,kaox{D . fies
</ListBox> properties in your classes.

<TextBlock Grid.Row="4" Text="Feed a lumberjack" Margin="0,10,0,5" />
<StackPanel Grid.Row="5" Orientation="Horizontal">
<TextBox Text="2" Margin="0,0,10,0" Width="30"/>
<ComboBox SelectedIndex="0" Margin="0,0,10,0">
<ComboBoxItem Content="Crispy"/>
<ComboBoxItem Content="Soggy"/>
<ComboBoxItem Content="Browned"/>
<ComboBoxItem Content="Banana"/>
</ComboBox>
<Button Content="Add flapjacks" />
</StackPanel>

<Border BorderThickness="1" BorderBrush="Gray" Grid.Row="6" Margin="0,5,0,0">
<ScrollViewer Content="Ed has 7 flapjacks" &—
BorderThickness="2" BorderBrush="White"
MinHeight="50"/>

Move dumm\/ Cwa;cn'{',..

</Border>

<StackPanel Grid.Row="7" Orientation="Horizontal" Margin="0,10,0,0">
<Button Content="Add Lumberjack" Margin="0,0,10,0" />
<Button Content="Next Lumberjack" />

</StackPanel>

</Grid>
</Window>

you are here » 511

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

sloppy joe meets windows store

Use data binding to build Sloppy Joe a better menu

Remember Sloppy Joe from Chapter 4? Well, he’s heard that you're becoming an XAML pro,
and he wants a WPF app for his sandwich menu. Let’s build him one.

Here’s the window we’re going to build.

It uses one-way data binding to populate a ListView and a Run inside a TextBlock, and it uses
two-way data binding for a TextBox, using one of its <Run> tags to do the actual binding;

Mumber of items

|1L'i | [Make a new menu|

Turkey with honey mustard en italian bread

Salami with french dressing on rye

Salami with honey mustard on pumpemnicke!

Turkey with french dressing on italian bread Number of ftems
Turkey with yellow rmustard on italian bread
Turkey with honey mustard on a roll

Ham with brown mustard on a roll

Pastrami with honey mustard on rye

Roast beef with yellow mustard on a roll

Salami with french dressing on white

This menu was generated on 8/12/2013 12:53:58 PM

We’ll need an object with

properties to bind to MenuMaker
The Window object will have an A “\“NumberOﬂtems»» sl
instance of the MenuMaker class, /Sf[/. O Menu

lew ©

which has three public properties:
an int called NumberOfItems,
an ObservableCollection
of menu items called Menu,

and a DateTime called
GeneratedDate. N

4w GeneratedDate

UpdateMenu()

516 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

The Wwindow object creates
an instance of MenuMaker and
uses it for the data context.

The constructor for the Page object
will set the StackPanel’s DataContext
property to an instance of MenuMaker.
The binding will all be done in XAML.

The ListView
and TextBloek
objects ave —

a|so bow\d ‘Eo (

properties in i
the MenuMaker ’ [/,eW///@‘O
ochC‘t~ U

+—
v
N
%)
e’\'7L3Ioc\’~o

\ .
O-‘é’,\ 5
fQC \0 \QS
kPane &,Ockp S
a .
2 0
r1Bjock 0/

J
.
"W GeneratedDate
2

windows presentation foundation

¢ Menultems are simple data
ob\)cc{:s, overriding the

M It
Meat S ToString() method to se
Condiment the text in the ListView. .
Bread K O

override ToString()

T
K O
7] < -
(7] () 9
: / Mﬂ\g 419 60{ ,tlenul"taﬂ\éo
'» The TextBox uses two-way “Ite®

%Jed

binding to set the number of
menu items.

That means the TextBox doesn’t need
an x :Name property. Since it’s bound
to the NumberOfItems property in
the MenuMaker object, we don’t need
to write any C# code that refers to it.

The {:wo—way binding
for the TextBox
means that it gets
initially populated
with the value in
the NumberOf|tems
property, and

then updates that
property whenever
the user edits the
value in the TextBox.

Ject

AN

“grrmreANUmberOfitems]
[
% ¢
&, V& HBox &°
¥, on o‘()\0

The button tells the MenuMaker to update.

The button calls the MenuMaker’s UpdateMenu ()

method, which updates its menu by clearing the
ObservableCollection and then adding new MenuItems
to it. The ListView will automatically update anytime the
ObservableCollection changes.

Here’s a coding challenge. Based on what you’ve read so far, how much of the new and
improved Sloppy Joe app can you build before you flip the page and see the code for it?

www.itbook.store/books/9781449343507

you are here » 517

https://itbook.store/books/9781449343507

sloppy joe 2: the legend of curly fries

L

2]

Just vight—click
on the yro\')cc{;
name in the
Solution E%Florcr
and add a new
tlass, \)us{: like g
you did with
other projects.

\/ou’” use da{:a
bindina to disyla\/
data from these
properties on
Your page. ‘/ou'”
also use '{:wo——wa
bindin5 to u‘?da‘{:c
NumberOf [tems.

518

www.itbook.store/books/9781449343507

o
Do this!
¥y x

Create the project.
Create a new WPF Application project. You’ll keep the default window
size. Set the window title to Welcome to Sloppy Joe’s.

Add the new and improved MenuMaker class.

You've come a long way since Chapter 4. Let’s build a well-encapsulated class that lets you set the number of
items with a property. You’ll create an ObservableCollection of Menultemin its constructor, which is
updated every time the UpdateMenu () is called. That method will also update a DateTime property called
GeneratedDate with a timestamp for the current menu. Add this MenuMaker class to your project:

using System.Collections.ObjectModel; é?——————~Y6J”vmcd {Msuﬂnahncbccaﬁc
ObservableCollection<T> is in +his
class MenuMaker { namespace.
private Random random = new Random() ;
private List<String> meats = new List<String>()
{ "Roast beef", "Salami", "Turkey", "Ham", "Pastrami" };
private List<String> condiments = new List<String>() { "yellow mustard",
"brown mustard", "honey mustard", "mayo", "relish", "french dressing" };
private List<String> breads = new List<String>() { "rye", "white", "wheat",
"pumpernickel", "italian bread", "a roll" };

public ObservableCollection<Menultem> Menu { get; private set; }
public DateTime GeneratedDate { get; set; }
public int NumberOfItems { get; set; }

public MenuMaker () {
Menu = new ObservableCollection<Menultem>();The pew Crca{:cMcnuH‘,ano method

NumberOf Item? = 10; veturns Menultem objeets, not just
} UpdateMenu () ; strings. That will make it easier to change
k&~ the way items are displayed if we want.

private Menultem CreateMenultem() {
string randomMeat = meats[random.Next (meats.Count)];
string randomCondiment = condiments[random.Next (condiments.Count)];
string randomBread = breads|[random.Next (breads.Count)];
return new Menultem(randomMeat, randomCondiment, randomBread);

}

public void UpdateMenu () {
Menu.Clear () ;

Take a ¢tloser look at how this
works. [£ never ac’cually treates

for (int i = 0; 1 < NumberOfItems; i++) { a new Menultem eolleetion. |£
Ment. 5dd (CreateMenutten ()) ; updates the turrent one b\/
: tlearing it and adding new items.

GeneratedDate = DateTime.Now;

} T .
st e Use DateTime to work with dates
ﬁ,:b::‘; {_’l‘f:n: :L,Z:{?: You'?/c already seen the DateTime type that lets You store a date. You tan also
- ;\a{sc it to ereate and modify dates and times. [t has statie property called
ow that veturns the eurvent Lime. [also has methods like AddSeconds() for

adding and tonverting setonds, milliseconds d
)) a S, C'E‘q a d i i
and Da\/O-Fchk to break down the date. How\/timcl\/,’ e propertis ke fou

https://itbook.store/books/9781449343507

windows presentation foundation

e Add the MenuItem class.

You've already seen how you can build more flexible programs if you use classes instead of
strings to store data. Here’s a simple class to hold a menu item—add it to your project, too:

The three s{:vings that

class Menultem {

: . make up the item are
publ%c str%ng Meat. b get; set;) [— passed into the tonstruetor
public string Condiment { get; set; } and held i d—onl
public string Bread { get; set; } n read—only

automatic properties.
public Menultem(string meat, string condiment, string bread) {
Meat = meat;
Condiment = condiment;
Bread = bread;

Overvide the

} T°S'l'-"'i'\50 method so
the Menultem knows
public override string ToString() { how to disPlay itself.

return Meat + " with " + Condiment + " on " + Bread; &J
}

}

(4) Build the XAML page. d
' ata
Here’s the screenshot. Can you build it using StackPanels? The TextBox Eho " iaddw‘t’mz{ data
has a width of 100. The bottom TextBlock has the style BodyTextStyle, bi ';. 'm: that for us.
and it has two <Run> tags (the second one just holds the date). inding do

Mumber of itemns

|1[] | |Makea new menu

Turkey with honey mustard on italian bread

Salami with french dressing on rye

Salami with honey mustard on pumpernickel This is a ListView tontrol. It sa ~|«->{: ||.kc
the ListBox tontrol—in faet, it inhevits
Lrom the same base ¢lass as ListBox, so it
has the same item selection ‘cunC‘l:ionali‘[:\[
Turkey with honey mustard on a roll But the ListView gives you muth mov'c.
Ham with krown mustard on a roll Flcx’ubili{;\/ to tustomize the way your tems
ave displayed by letting you ,SVCC|£\/ a data
template for each item. You'll learn more
Roast beef with yellow mustard on a roll about that later in the cha?{:cr.

Salami with french dressing on white

This menu was generated on 8/12/2013 12:53:58 PM

Turkey with french dressing on italian bread

Turkey with yellow mustard on italian bread

Pastrarni with honey mustard on rye

Can you build this page on your own just from the screenshot before you see the XAML?

you are here » 519

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

bound and determined

@ Add object names and data binding to the XAML.
Here’s the XAML that gets added to MainWindow.xaml. We used a StackPanel to lay it out, so you
can replace the opening <Grid> and closing </Grid> tags with the XAML below. We named the
button newMenu. Since we used data binding of the ListView, TextBlock, and TextBox, we didn’t need
to give them names. (Here’s a shortcut. We didi’t even really need to name the button; we did it just to get the IDE to
automatically add an event handler named newMenu_ Click when we double-clicked it in the IDE. Try it out!)

<StackPanel Margin="5" x:Name="pageLayoutStackPanel">
<StackPanel Orientation="Horizontal" Margin="0,0,0,10">
<StackPanel Margin="0,0,10,0">
<TextBlock Text="Number of items" Margin="0,0,0,5" />

We need two—
way data bindih5
to both get and

Htng{hak <TextBox Width="100" HorizontalAlignment="Left" g’—sftthhumbcv
ListView tontrol. Text="{Binding NumberOfItems, Mode=TwoWay}" /> of i Lems with
TY'\/ swapping it </StackPanel> . . the TextBox.
owkﬁorl;ﬂfBo% <Button x:Name="newMenu" VerticalAlignment="Bottom"
4o see how it Click="newMenu Click" Content="Make a new menu"/>
¢thanges Yyour </StackPanel>
window. > <ListView ItemsSource="{Binding Menu}" Margin="0,0,20,0" />

<TextBlock>

<Run Text="This menu was generated on " />
<Run Text="{Binding GeneratedDate}"/> =
</TextBlock>
</StackPanel>

This is where <Run> tags
come in handy. You can have
a singlc TextBloek but bind
onl\/ ?a\r'f: of its text.

Q Add the code-behind for the page to MainWindow.xaml.cs.
The page constructor creates the menu collection and the MenuMaker instance and sets the
data contexts for the controls that use data binding. It also needs a MenuMaker field called
menuMaker.

Your main window's elass in
K MainWindow.xaml.cs 3c{:s a

' Relilk MenuMaker Field, which is used as
public MainWindow () {

this.InitializeComponent () ; the data context for the StaekPanel

+hat tontains all the bound tontrols.
pagelayoutStackPanel .DataContext = menuMaker;

MenuMaker menuMaker = new MenuMaker () ;

}

You just need to set the data context for the outer StackPanel. It will pass that data context
on to all the controls contained inside it.

Finally, double-click on the button to generate a method stub for its C1ick event handler.
Here’s the code for it—it just updates the menu:
private void newMenu Click (object sender, RoutedEventArgs e) {

menuMaker .UpdateMenu () ;
}

There’s an easy way to rename an event handler so that it updates XAML
and C# code at the same time. Flip to leftover #8 in Appendix | to learn
more about the refactoring tools in the IDE.

520 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

Now run your program! Try changing the TextBox to different values. Set it to 3, and

it generates a menu with three items:

Mumber of items

|3 | [Make a new menu|

Roast beef with mayo on rye
Salami with french dressing on white

Ham with honey mustard on rye

This menu was generated on 8/12/2013 1:19:58 PM

Now you can play with binding to see just how flexible it is. Try entering “xyz” or
no data at all into the TextBox. Nothing happens! When you enter data into the
TextBox, you're giving it a string. The TextBox is pretty smart about what it does
with that string. It knows that its binding path is NumberOfItems, so it looks in its
data context to see if there are any properties with that name, and then does its best

to convert the string to whatever that property’s type is.

MY TEXT
PROPERTY’'S BOUND TO
NumserOFITems- AND, LOOK,
MY DATA CONTEXT HAS A
NumserOrITems PROPERTY! CAN I
STICK THIS STRING "3/ INTO THAT
PROPERTY?Z LOOKS LIKE T CAN!

Mumber of items

XYz

www.itbook.store/books/9781449343507

Keep your eye on the
generated date. [t's not
uyda{:ing, even ‘H\ough the menu
u?da‘(:cs- Hmm, ma\/bc ‘[’)\crc)s
still something we need to do.

Mumber of items

3

HMM, MY
DATA CONTEXT SAYS
NumseerOrITtems 1S AN INT,
AND I DON’'T KNOW HOW TO
CONVERT THE STRING “XYZ" TO
AN INT. GUESS T WON'T DO
ANYTHING AT ALL -

you are here » 521

https://itbook.store/books/9781449343507

put your data in context

Use static resources to declare your objects in XAML

When you build a page with XAML, you’re creating an object graph with objects like StackPanel, Grid, TextBlock,
and Button. And you've seen that there’s no magic or mystery to any of that—when you add a <TextBox> tag to
your XAML, then your page object will have a TextBox field with a reference to an instance of TextBox. And if you
give it a name using the x : Name property, your code-behind C# code can use that name to access the TextBox.

You can do exactly the same thing to create instances of almost any class and store them as fields in your page by
adding a static resource to your XAML. And data binding works particularly well with static resources, especially
when you combine it with the visual designer in the IDE. Let’s go back to your program for Sloppy Joe and move the
MenuMaker to a static resource.

0 DELETE THE MenuMaker FIELD FROM THE CODE-BEHIND.-

You're going to be setting up the MenuMaker class and the data context in the
XAML, so delete these lines from your C# code:

= ker

When you use
public MainWindow () { XAML to add a
this.InitializeComponent () ; static resource to
a Window, you can
—pagelayoutStackPanel .DataContext = menuMaker: access it using its
} FindResource()
method.

e ADD YOUR PROJECT'S NAMESPACE TO THE XAML.

Look at the top of the XAML code for your window, and you’ll see that the opening tag has a
set of xmlns properties. Each of these properties defines a namespace:

<Window x:Class="SloppyJloeChapterle.Mainkindow"
xmlns="http://schemas.microsoft.com/winfx/2806/xaml/presentation™
wmlns ix="http://schemas.microsoft. com/wintwx/ 28086/ xaml"
Title="Welcome to Sloppy Joe's" Height="358" Width="525">

Start adding a new xmlns property:

<Window x:Class="SloppyloeChapterl®.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2806/%aml/presentation”
xmlnsix="http://schemas.microsoft.com/winfx/2886/xaml"
xmlns:locgl=""

Title="Welcom Microsoft. Win32.5afeHandles (Systemn.Core) -

SloppyloeChapter1.Properties (SloppyloeChapter10)

System (mscorlib)

5.!'r When the namespate value starts with

wstermn (Systemn)) .

“using:” it vefers to one of the namespates in

Here's what you'll end up with: £he Pro)gt{. [t ean also start with “http:/. /"’

This is an XML namespace - to vefer 4o a standard XAML namespace.

Jrovecty. [t consists of —> xmlns:local="using:SloppyJoeChapterl0"

xmins:” Lollowed by an \

idCh‘Ei‘piCh in ‘thls tase “'oca'".

=q
=
=q
=
=q

Since we named our app SloppyJoeChapter10,
You'll use this identifier to eveate the IDE created this namespace for us. Find
522 objeets in your project’s namespace. the namespace that corresponds to your app,
www.itbook.store/books/9781449343507 because that’s where your MenuMaker lives.

https://itbook.store/books/9781449343507

windows presentation foundation

e ADD THE STATIC RESOURCE TO YOUR XAML AND SET THE DATA CONTEXT-
Add a <Window.Resources> tag to the top of the XAML (just under the opening tag), and add a closing
</Window.Resources> tag for it. Then type <local: between them to pop up an IntelliSense window:

<Window.Resourcess
<local:

You can add static resources only if their classes
have parameterless constructors. This makes sense!
If the constructor has a parameter, how would the

Menultem XAML page know what arguments to pass to it?
3 Menubaker |

</Mindow.Resources:

2 App

The window shows all the classes in the namespace that you can use. Choose MenuMaker. Then give it the
resource key menuMaker using the x : Key XAML property:

<local:MenuMaker x:Key="menuMaker"/>

Now your page has a static MenuMaker resource with the key menuMaker.

e SET THE DATA CONTEXT FOR YOUR STACKPANEL AND ALL OF ITS CHILDREN-

Then go to the outermost StackPanel and set its DataContext property:

<StackPanel Margin="5"
DataContext="{StaticResource ResourceKey=menuMaker}">

Finally, modify the button’s Click event handler to find the static resource and method to update the menu:
private void newMenu Click(object sender, RoutedEventArgs e) {
MenuMaker menuMaker = FindResource ("menuMaker") as MenuMaker;

menuMaker.UpdateMenu () ;
}

Your program will still work, just like before. But did you notice what happened in the IDE when you added the
data context to the XAML? As soon as you added it, the IDE created an instance of MenuMaker and used its
properties to populate all the controls that were bound to it. You got a menu generated immediately, right there
in the designer—before you even ran your program. Neat!

wn

A The menu shows up in the
rNumber of items dcsighcr immcdia{:d\/, even

10 K before You run Your progyram.

Salami with honey mustard on white

Pastrami with relish on italian bread Turkey with french dressing on a roll

Pastrami with french dressing on rye

Salami with french dressing on wheat

Turkey with relish an italian bread

Turkey with french dressing on white

Hrmm something’s not quite viaht. [+ upd
’ ‘ at . . :
the menu items when ’;\c buH?on s cl::Pkc d’cs Ham with french dressing on pumpernickel

but the date doesn't thange. What's 90ing on? This menu was generat /1272013 11:54:04 PM S

you are here » 523

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

change your list’s look and feel

Use a data tewmplate to display objects

When you show items in a list, you’re showing contents of ListViewltem (which you use for ListViews),
ListBoxItem, or ComboBoxItem controls, which get bound to objects in an ObservableCollection.
Each ListViewltem in the Sloppy Joe menu generator is bound to a MenuItem object in its Menu collection.
The ListViewltem objects call the MenuMaker objects’ ToString () methods by default, but you can use
a data template that uses data binding to display data from the bound object’s properties.

. . Leave the ListView tag
Modify the <ListView> tag to add a basic data template. It ;... | veplace /> with >

uses the basic {Binding} to call the item’s ToString(V_ and add a closing </ListViews
tag at the bottom. Then add
This is a veally <ListView ItemsSource="{Binding Menu}" Margin="0,0,20,0"> Jchg Lis{:Vicw-f‘{:Cm""rcn\Flzy‘l\:c ta
basie data <ListView.ItemTemplate> to tontain the data {:cmFlafc.s
template, and it <DataTemplate>
\ ike th <TextBlock Text="{Binding}"/> . o .

l;:«lc(;u ftnl; isJ:dc </DataTemplate> ~ Addmg a {Bmdlv\ggg .W|+2¥)\och {-j\ ?:{h(:
to disyla\/ the </ListView.ItemTemplate> \)“S{ E(;a”s '(:\n;To{: ringt/ method o
ListView[tems. </ListView> the bound object.

Change your data template to add some color to your menu.

—> <DataTemplate> / \/O'Aht‘—i:; E)ind Iindi\/(’;duzl Run {:zgs. You tan f:hAngc
Replace Lhe TextBlocks eath tag’s color, tont, and other properties, too.
<Da'{:aTCVnP|a{:c>, <Run Text="{Binding Meat}" Foreground="Blue"/><Run Text=" on "/>
but leave the <Run Text="{Binding Bread}" FontWeight="Light"/><Run Text=" with "/>
vest of the <Run Text="{Binding Condiment}" Foreground="Red" FontWeight="ExtraBold"/>
ListView intact. </TextBlock> Salami on pumpernickel with mayo
</DataTemplate>

Pastrami on rys with relish

Salami on white with brown mustard

Go crazy! The data template can contain any controls you want.

<DataTemplate>
)) . The Da{‘,aTCMPIS‘EC objeet’s italian bread
<StackPanel Orientation="Horizontal"> &—— Con‘[‘,ChJc PY‘OFCY"{',\/ ca;.) hold italian bread mayo
<StackPanel> italian bread

<TextBlock Text="{Binding Bread}"/> OMyonCOPCthSOPFY?u c
<TextBlock Text="{Binding Bread}"/> want muH‘,lFlc COnb}rols in Your ge . [frésel dyessing
<TextBlock Text="{Binding Bread}"/> data j&m‘?!afc, \/ou“ need a ye
tontainer like StackPanel.
</StackPanel>
<Ellipse Fill="DarkSlateBlue" Height="Auto" Width="10" Margin="10,0"/>
<Button Content="{Binding Condiment}" FontFamily="Segoe Script"/>
</StackPanel>
</DataTemplate>

524 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

diel‘e qre no °
Dumb Questions

Q,: So | can use a StackPanel or a Grid to lay out my page.
| can use XAML static resources, or | can use fields in code-
behind. | can set properties on controls, or | can use data
binding. Why are there so many ways to do the same things?

AI Because C# and XAML are extremely flexible tools for building
apps. That flexibility makes it possible to design very detailed pages
that work on many different devices and displays. This gives you

a very large toolbox that you can use to get your pages just right.
So don’t look at it as a confusing set of choices; look at it as many
different options that you can choose from.

Q: I'm still not clear on how static resources work. What
happens when | add a tag inside <Window.Resources>?

AI When you add that tag, it updates the Window object and adds
static resources. In this case, it created an instance of MenuMaker
and added it to the Window object’s resources. The Window object
contains a dictionary called Resources, and if you use the debugger
to explore the Window object after you add the tag you can find that it
contains an instance of MenuMaker. When you declared the resource,
you used x : Key to assign the resource a key. That allowed you to
use that key to look up your MenuMaker object in the window's
static resources with the FindResource() method.

Q: | used x : Key to set my MenuMaker resource’s key.
But earlier in the chapter, | used x : Name to give names to
my controls. What's the difference? Why did | have to use
FindResources() to look up the MenuMaker object—couldn't |
give it a name instead?

A: When you add a control to a WPF window, it actually adds a
field to the Window object that’s created by the XAML. When you

use the x : Name property, you give it a name that you can use

in your code. If you don’t give it a name, the control object is still
created as part of the Window object’s graph. However, if you give it
a name, then the XAML object is given a field with that name with

a reference to that control. You can see this in your code by putting a
breakpoint in the button’s event handler and adding newMenu to
the Watch window. You'll see that it refers to a System.Windows.Controls.
Button object whose Content property is set to “Make a new menu.”

Resources are treated differently: they're added to a dictionary

in the Window object. The FindResource() method uses the key
specified in the x : Key markup. Set the same breakpoint and try
adding this.Resources ["menuMaker"] to the Watch
window. This time, you'll see a reference to your MenuMaker object,
because you're looking it up in the Resources dictionary.

windows foundation

- Does my binding path have to be a string property?

AZ No, you can bind a property of any type. If it can be converted
between the source and property types, then the binding will work.

If not, the data will be ignored. And remember, not all properties

on your controls are text, either. Let's say you've got a bool in your
data context called EnableMyObject. You can bind it to any
Boolean property, like IsEnabled. This will enable or disable the
control based on the value of the Enalbb1eMyObject property:

IsEnabled="{Binding EnableMyObject}"

Of course, if you bind it to a text property it'll just print True or
False (which, if you think about it, makes perfect sense).

Q} Why did the IDE display the data in my form when | added
the static resource and set the data context in XAML, but not
when | did it in C#?

AZ Because the IDE understands your XAML, which has all the
information that it needs to create the objects to render your page. As
soon as you added the MenuMake r resource to your XAML code,
the IDE created an instance of MenuMaker. But it couldn’t do that
from the new statement in its constructor, because there could be
many other statements in the constructor, and they would need to be
run. The IDE runs the code-behind C# code only when the program
is executed. But if you add a static resource to the page, the IDE will
create it, just like it creates instances of TextBlock, StackPanel, and
the other controls on your page. It sets the controls’ properties to
show them in the designer, so when you set up the data context and
binding paths, those got set as well, and your menu items showed up
in the IDE’s designer.

The static resources in your

y
page are instantiated when the
page is first loaded and can be
used at any time Ly the objects
in the application.

The name “static vesouree” is a little misleading.

Statie vesourtes ave dcf‘m&cl\/ eveated for eath

instance; they've not static fields!

www.itbook.store/books/9781449343507

525

https://itbook.store/books/9781449343507

ch-ch-ch

INotifyPropertyChanged lets bound objects send updates

When the MenuMaker class updates its menu, the ListView that’s bound to it gets updated. But the
MenuMaker updates the GeneratedDate property at the same time. Why doesn’t the TextBlock that’s
bound to it get updated, too? The reason is that every time an ObservableCollection changes, it fires
off an event to tell any bound control that its data has changed. This is just like how a Button control
raises a Click event when it’s clicked, or a Timer raises a Tick event when its interval elapses. Whenever
you add, remove, or delete items from an ObservableCollection, it raises an event.

You can make your data objects notify their target properties and bound controls that data has changed, too.
All you need to do is implement the INotifyPropertyChanged interface, which contains a single
event called PropertyChanged. Just fire off that event whenever a property changes, and watch your
bound controls update themselves automatically.

The data ob ect fives off
a Proyc\chyChangcd event
no‘{:l‘("\/ any tontrol
that it's bound 1o that a
property has thanged. \\ Lo . o0 0 00000, ,

PropertyChanged event

°
DATA CONTEXT
’7 Q’a
fo objeS" BINDING Fro| 00%
°
o
'Q...oooooo

vpCe pf°Q "9et vOQ

The Lon{:\rol veceives the event and
vefreshes its target property by veading
the data from the sourte property that
|+,S bound to

Collections work almost the same way as data objects.

. The ObservableCollection<T> object doesn’t actually implement

Wﬂfc}l lt’ INotifyPropertyChanged. Instead, it implements a closely related

: interface called INotifyCollectionChanged that fires off a
CollectionChanged event instead of a PropertyChanged event. The control
knows to look for this event because ObservableCollection implements the
INotifyCollectionChanged interface. Setting a ListView’s DataContext to an
INotifyCollectionChanged object will cause it to respond to these events.

526

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows foundation

Modify MenuMaker to notify you when
the GeneratedPate property changes o

This is the first
time you’re
i Q@la,x raising events.
: You’ve been
i writing event handler methods since

Chapter 1, but this is the first time
¢ you're firing an event. You’ll learn

INotifyPropertyChangedisin the System.ComponentModel
namespace, so start by adding this using statement to the top of the
MenuMaker class file:

using System.ComponentModel;

Update the MenuMaker class to implement INotifyPropertyChanged,
and then use the IDE to automatically implement the interface:

class MenuMaker : INotifyPropertyChanged all about how this works and what’s
{ a- going on in Chapter 15. For now, all
Implement interface 'IMNotifyPropertyChanged' you need to know is that an interface
Explicitly implement interface 'IMotifyPropertyChanged' can include an event, and that your
: OnPropertyChanged () method
This will be a little different from what you saw in chapters 7 and 8. It won’t add ~ : is following a standard C# pattern for
any methods or properties. Instead, it will add an event: : raising events to other objects. .

public event PropertyChangedEventHandler PropertyChanged;

Next, add this OnPropertyChanged () method, which you’ll use to raise the PropertyChanged event.

private void OnPropertyChanged (string propertyName) { &—This is a standard

PropertyChangedEventHandler propertyChangedEvent = PropertyChanged; NET PaJC‘tC""‘ 1c°‘r
raisi Vi .

if (propertyChangedEvent != null) { hgccwh

propertyChangedEvent (this, new PropertyChangedEventArgs (propertyName)) ;

}

Now all you need to do to notify a bound control that a property is changed is to call OnPropertyChanged ()
with the name of the property that’s changing. We want the TextBlock that’s bound to GeneratedDate to refresh
its data every time the menu is updated, so all we need to do is add one line to the end of UpdateMenu ():

public void UpdateMenu () {

Menu.Clear () ;
for (int i = 0; i < NumberOfItems; i++) { Don’t forget to implement

INotifyPropertyChanged.

Menu.Add (CreateMenultem()) ;

} Watcll it.’ Data binding works only when the
: controls implement that interface.

If you leave : INotifyPropertyChanged

out of the class declaration, your bound

: controls won't get updated—even if the data

} . object fires PropertyChanged events.

Now the date should change when you generate a menu.

GeneratedDate = DateTime.Now;

OnPropertyChanged ("GeneratedDate") ;

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

go fish goes xaml

Finish porting the Go Fish! game to a WPF application. You'll need to modify the XAML from earlier in
this chapter to add data binding, copy all the classes and enums from the Go Fish! game in Chapter 8
RC‘SQ (or download them from our website), and update the P1ayer and Game classes.

o Add the existing class files and change their namespace to match your app.
Add these files to your project from the Chapter 8 Go Fish! code: Values.cs, Suits.cs, Card.cs, Deck.cs,
CardComparer_bySuit.cs, CardComparer_byValue.cs, Game.cs, and Player.cs. You can use the Add Existing
Item option in the Solution Explorer, but you’ll need to change the namespace in cach of them to
match your new projects (just like you did with multipart projects earlier in the book).

Try building your project. You should get errors in Game.cs and Player.cs that look like this:

(%) 1 The type or namespace name 'Forms' does not exist in the namespace 'Systern.Windows' (are you missing an assembly reference?)

€3 2 Thetype or namespace name 'TextBox' could not be found (are you missing a using directive or an assembly reference?)

€3 3 Thetype or namespace name ‘TextBox' could not be found (are you missing a using directive or an assembly reference?)

Q Remove all references to WinForms classes and objects; add using lines to Game.
You're not in the WinForms world anymore, so delete using System.Windows.Forms; from
the top of Game.cs and Player.cs. You’ll also need to remove all mentions of TextBox. You’ll need to
modify the Game class to use INotifyPropertyChanged and ObservableCollection<T>,
so add these using lines to the top of Game.cs:

using System.ComponentModel;
using System.Collections.ObjectModel;

e Add an instance of Game as a static resource and set up the data context.
Modify your XAML to add an instance of Game as a static resource and use it as the data context for
the grid that contains the Go Fish! page you built earlier in the chapter. Here’s the XAML for the static
resource: <local :Game x:Key="game"/>— and you’re going to need a new constructor because
you can include only resources that have parameterless constructors:

Make sure you add the
<Window.Resources>
section to the top of your
XAML, and you’ll also need
to add the xmlns:local
tag, exactly like you did on
pages 522 and 523.

public Game () {
PlayerName = "Ed";
Hand = new ObservableCollection<string>();
ResetGame () ;

}

e Add public properties to the Game class for data binding.
Here are the properties you'll be binding to properties of the controls in the page:
public bool GameInProgress { get; private set; }
public bool GameNotStarted { get { return !GameInProgress; } }
public string PlayerName { get; set; }
public ObservableCollection<string> Hand { get; private set; }
public string Books { get { return DescribeBooks(); } }

public string GameProgress { get; private set; }

628 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

\(ou) “ V\CCd
kwo of eath

public void StartGame () ({ public void AddProgress (string progress)

e Use binding to enable or disable the TextBox, ListBox, and Buttons.

You want the “Your Name” TextBox and the “Start the game!” Button to be enabled only when
the game 1s not started, and you want the “Your hand” ListBox and “Ask for a card” Button

to be enabled only when the game 1s in progress. You’ll add code to the Game class to set the
GameInProgress property. Have a look at the GameNotStarted property. Figure out how
it works, and then add the following property bindings to the TextBox, ListBox, and two Buttons:

IsEnabled="{Binding GameInProgress}" IsEnabled="{Binding GameNotStarted}"
IsEnabled="{Binding GameInProgress}" IsEnabled="{Binding GameNotStarted}"

G Modify the Player class so it tells the Game to display the game’s progress.
The WinForms version of the Player class takes a TextBox as a parameter for its constructor.
Change that to take a reference to the Game class and store it in a private field. (Look at the
StartGame () method below to see how this new constructor is used when adding players.)
Find the lines that use the TextBox reference and replace them with calls to the Game object’s
AddProgress () method.

0 Modify the Game class.

Change the PlayOneRound () method so that it’s void instead of returning a Boolean, and have it use
the AddProgress () method instead of the TextBox to display progress. If a player won, display that
progress, reset the game, and return. Otherwise, refresh the Hand collection and describe the hands.

You’ll also need to add/update these four methods and figure out what they do and how they work.

ClearProgress () ; {

GameProgress = progress +
Environment.NewLine +
GameProgress;

OnPropertyChanged ("GameProgress") ;

GameInProgress = true;
OnPropertyChanged ("GameInProgress") ;
OnPropertyChanged ("GameNotStarted") ;

Random random = new Random() ; }
players = new List<Player>();

players.Add (new Player (PlayerName, random, this));
players.Add (new Player ("Bob", random, this));
players.Add (new Player ("Joe", random, this));

Deal () ;
players[0].SortHand() ;

You’ll also need to implement the
INotifyPropertyChanged
interface and add the same
OnPropertyChanged () method

Hand.Clear () ; that you used in the MenuMaker class.
foreach (String cardName in GetPlayerCardNames ()) The updated methods use it, and your
Hand.Add (cardName) ; modified PullOutBooks () method
if (!GameInProgress) will also use it.
AddProgress (DescribePlayerHands ()) ;
OnPropertyChanged ("Books") ; public void ResetGame () {
GameInProgress = false;
OnPropertyChanged ("GameInProgress") ;
public void ClearProgress() { OnPropertyChanged ("GameNotStarted") ;
GameProgress = String.Empty; books = new Dictionary<Values, Player>();
OnPropertyChanged ("GameProgress") ; stock = new Deck();

Hand.Clear () ;

you are here » 529

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

exercise solution

Exercise
§PLyt\pN

class Player {

}

{

}

}

Game game;
Here’s all the code-behind that you had to write.
public MainWindow () {
InitializeComponent () ;
game = this.FindResource ("game'") as Game;
}
private void startButton Click(object sender, RoutedEventArgs e) {
game.StartGame () ;
}
private void askForACard Click(object sender, RoutedEventArgs e) {
if (cards.SelectedIndex >= 0)
game . PlayOneRound (cards.SelectedIndex) ;
}
private void cards MouseDoubleClick (object sender, MouseButtonEventArgs e)
if (cards.SelectedIndex >= 0)
game . PlayOneRound (cards . SelectedIndex) ;
}

{

These are the changes needed for the P1ayer class:

private string name;

public string Name { get { return name; } }
private Random random;

private Deck cards;

private Game game;

public Player (String name, Random random, Game game) {
this.name = name;
this.random = random;
this.game = game;
this.cards = new Deck(new Card[] { });
game .AddProgress (name + " has just joined the game") ;

public Deck DoYouHaveAny (Values value)

Deck cardsIHave = cards.PullOutValues (value);

game .AddProgress (Name + " has " + cardsIHave.Count + " " + Card.Plural (value))
return cardsIHave;

public void AskForACard(List<Player> players, int myIndex, Deck stock, Values value)
game .AddProgress (Name + " asks if anyone has a " + value);
int totalCardsGiven = 0;
for (int 1 = 0; i < players.Count; i++) {

if (1 !'= myIndex) {
Player player = players[i];
Deck CardsGiven = player.DoYouHaveAny (value);
totalCardsGiven += CardsGiven.Count;
while (CardsGiven.Count > 0)
cards.Add (CardsGiven.Deal ()) ;
}
}
if (totalCardsGiven == 0) {

game .AddProgress (Name + " must draw from the stock.");
cards.Add (stock.Deal());

// ... the rest of the Player class is the same

{

5630 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

These are the changes needed for the XAML:

<Grid Margin="10" DataContext="{StaticResource ResourceKey=game}">

\Thc data context for the grid is the
Game tlass, since all of the binding is
<StackPanel Orientation="Horizontal" Grid.Row="1"> {OPYQRY{RSOh{h&ELbs.

<TextBox x:Name="playerName" FontSize="12" Width="150"
The TextBox Text="{Binding PlayerName, Mode=TwoWay}"
has a two— —> IsEnabled="{Binding GameNotStarted}" />
way binding to

PDYCVNamC~ <Button x:Name="startButton" Margin="5,0" IsEnabled="{Binding GameNotStarted}"

<TextBlock Text="Your Name" />

Content="Start the game!" Click="startButton Click"/> g
</StackPanel> Heve's the Click event hapdler
for the Start button.

<TextBlock Text="Game progress" Grid.Row="2" Margin="0,10,0,0"/>

<ScrollViewer Grid.Row="3" FontSize="12" Background="White" Foreground="Black"
Content="{Binding GameProgress}" />
{ g g y/ <—— The Game P\rog\rcss and

<TextBlock Text="Books" Margin="0,10,0,0" Grid.Row="4"/> Books SevollViewers
<ScrollViewer FontSize="12" Background="White" Foreground="Black" bind h’ﬁth¥oyzs
Grid.Row="5" Grid.RowSpan="2" and BOOkSFYqRka&
Content="{Binding Books}" /> &—

<TextBlock Text="Your hand" Grid.Row="0" Grid.Column="2" />

<ListBox x:Name="cards" Background="White" FontSize="12"
Height="Auto" Margin="0,0,0,10"
Grid.Row="1" Grid.RowSpan="5" Grid.Column="2"
ItemsSource="{Binding Hand}" IsEnabled="{Binding GameInProgress}"
MouseDoubleClick="cards MouseDoubleClick" />

<Button x:Name="askForACard" Content="Ask for a card"
HorizontalAlignment="Stretch" VerticalAlignment="Stretch"
Grid.Row="6" Grid.Column="2"
Click="askForACard Click" IsEnabled="{Binding GameInProgress}" />

<Grid.ColumnDefinitions>
<ColumnDefinition Width="5*"/>
<ColumnDefinition Width="40"/>

<ColumnDefinition Width="2%*"/> The [sEnabled property enables
</Grid.ColumnDefinitions> or disables the tontrol. [t's a
<Grid.RowDefinitions> Boolean property, so you tan
<RowDefinition Height="Auto"/> bind it to a Bodean?vqwrfy
<RowDefinition Height="Auto"/> 4o turn the tontrol on or 0‘(:‘("
<RowDefinition Height="Auto"/> based on that FYO?CV‘{Z\[
<RowDefinition/>

<RowDefinition Height="Auto"/>

<RowDefinition Height="Auto" MinHeight="150" />

<RowDefinition Height="Auto"/>
</Grid.RowDefinitions>

</Grid>

you are here » 531

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

exercise solution

These yroycr{ics are
used by the XAML
data binding.

These methods
make the game
progress data
bindin5 wovk.
New lines ave
added to the
top so the
ddacbﬁfy
sevolls off the
bottom of the

SevollViewer.

Heve's the -~

the players, deals

and books.

class Game : INotifyPropertyChanged ({

S{:ar‘céamc() method
we gave You. It ¢elears
the progress, treates

the ¢ards, and then
updates the progress

Here's everything that changed in the Game class, including the code we gave you with the instructions.

g " RC‘SQ using System.ComponentModel; \/ou need these lines ‘('\or
soLU:&ioﬂ using System.Collections.ObjectModel; — fNo‘{:i‘F\/Proycv‘fyChahQCd

and ObsevvableCollection.

private List<Player> players;
private Dictionary<Values, Player> books;
private Deck stock;

public bool GameInProgress { get; private set; }
public bool GameNotStarted { get { return !GameInProgress; } }
public string PlayerName { get; set; }
public ObservableCollection<string> Hand { get; private set; }
public string Books { get { return DescribeBooks(); } }
public string GameProgress { get; private set; }
)
«— Here’s the new Game constructor.
public Game() { We ereate only one tolleetion and
PlayerName = "Ed"; _) Just elear it when the game is
Hand = new ObservableCollection<string>() ; £ .
veset. [+ we ereated a new obiect,
ResetGame () ; . J
} the form would lose its vefevente
to it, and the updates would stop.

public void AddProgress (string progress) {
GameProgress = progress + Environment.NewLine + GameProgress;
OnPropertyChanged ("GameProgress") ;

}
public void ClearProgress() { Every program you’ve written in
GameProgress = String.Empty; the book so far can be adapted
OnPropertyChanged ("GameProgress") ; or rewritten as a WPF application
} using XAML. But there are so many
ways to write them, and that’s
public void StartGame() { especially true when you’re using
ClearProgress () ; XAML! That’s why we gave you so
GameInProgress = true; much of the code for this exercise.
OnPropertyChanged ("GameInProgress") ;
OnPropertyChanged ("GameNotStarted") ;
Random random = new Random() ;
players = new List<Player>();
players.Add (new Player (PlayerName, random, this));
players.Add (new Player ("Bob", random, this));
players.Add (new Player ("Joe", random, this));
Deal () ;
players[0] .SortHand() ;
Hand.Clear() ;
foreach (String cardName in GetPlayerCardNames ())
Hand.Add (cardName) ;
if (!'GameInProgress)
AddProgress (DescribePlayerHands ()) ;
OnPropertyChanged ("Books") ;
}

632 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

public woid PlayOneRound (int selectedPlayerCard) {

}

public void ResetGame() {

}

public event PropertyChangedEventHandler PropertyChanged;
private void OnPropertyChanged(string propertyName) {

//

This used 1o veturn a Boolean value so the form tould update its progress. Now it
/ just needs to eall AddProgress, and data binding will take tave of the updating for us.

Values cardToAskFor = players|[0].Peek(selectedPlayerCard) .Value;

for (int 1 = 0; i < players.Count; i++) {
if (i == 0)
players[0] .AskForACard(players, 0, stock, cardToAskFor);
else
players[i] .AskForACard (players, i, stock);

if (PullOutBooks (players[i])) {
AddProgress (players[i] .Name + " drew a new hand");
int card = 1;

while (card <= 5 && stock.Count > 0) {
players[i] .TakeCard(stock.Deal());
card++;
}
: //— The books chanscd, and the form

needs o know about the Changc so

OnPropertyChanged ("Books") ; it ean vefresh its SevollViewer-.

players[0].SortHand () ;

if (stock.Count == 0) {
AddProgress ("The stock is out of cards. Game over!");
AddProgress ("The winner is... " + GetWinnerName()) ;
ResetGame () ;

return;

}
Hand.Clear() ;

foreach (String cardName in GetPlayerCardNames ())

Hand.Add (cardName) ;

\ Heve are the modifications to

the PlayOthoundo method that
= update the progress when the
game is over, or update the hand
and the books if it's not.

if (!'GameInProgress)
AddProgress (DescribePlayerHands ()) ;

This is the ResetGame() method
£rom the instructions. [t ¢leavs
AZK/’ the books, stock, and hand.

GameInProgress = false;
OnPropertyChanged ("GameInProgress") ;
OnPropertyChanged ("GameNotStarted") ;
books = new Dictionary<Values, Player>();
stock = new Deck() ;
Hand.Clear() ;
This is the standavrd
PropertyChanged event
/ pattern from earlier in
the chapter-
PropertyChangedEventHandler propertyChangedEvent = PropertyChanged;
if (propertyChangedEvent != null) {
propertyChangedEvent (this, new PropertyChangedEventArgs (propertyName)) ;
}

the rest of the Game class is the same

you are here » 533

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

Are you getting a strange XAML error about a class not existing in
the namespace? Make sure that ALL your C# code compiles and that
Watch 1t’ every control's event handler method is declared in the code-behind.

Sometimes you’ll get an error like this when you declare a static resource, even
though you definitely have a class called MyDataClass in the namespace MyWpfApplication:

€31 The name "MyDataClass" does not exist in the namespace
"clr-namespace:MyWpfapplication”.

This is often caused by either an error in the code-behind or a missing event handler for a XAML
control. This can be a little misleading, because the IDE is telling you that there’s an error on the
tag that declares the static resource, when the error is actually somewhere else in the code.

You can reproduce this yourself: create a new WPF project called MyWpfApplication, add a data
class called MyDataClass, add it as a static resource to your page’s <Window.Resources>, and
add a button to your page. Then add Cl1ick="Button Click"to the XAML to add an event
handler for the button, but don’t add the Button_Click() method. When you try to rebuild your
code, you should see the error above. You can make it go away by adding the Button_Click()
method to the code-behind.

Sometimes the evror message
becomes a little cleaver if You right—
eliek on the Pro'cd‘(: in the Solution
Explorer, ¢lick “Unload Project” to
unload it, and then righ{:—click it
39ain and choose “Reload ProJcL‘(:" to
load it a9ain. This may tause the
IDE 4o show you a di«g«ccrcni evvor
message that might be more helpful.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows foundation

*
* Chapter 11 -

www.itbook.store/books/9781449343507

EVEN THOUGH A LOT OF
THIS CHAPTER WORKS ONLY
WITH WINDOWS STORE APPS, YOU
CAN STILL GET THE CORE
LEAENING WITH WPF.

Windows Store was built for asynchronous programming,
but WPF can still use it... but not all the tools are there.

Read through pages 536 and 537 in the main part of the book—see how Brian
1s shocked (shocked!) to find that his familiar file classes from Chapter 9 aren’t
there? Well, WPF apps don’t have that problem. That’s a good thing, because it
means you can keep using the file classes and serialization that you're used to. But
it also means that your WPF apps can’t take advantage of the new asynchronous
file and dialog classes that come with the NET Framework for Windows Store.

In this appendix, we’ll give you two replacement projects to show you how to
use the async and await keywords and data contract serialization with WPF
apps. Here’s how we recommend that you work through Chapter 11:

* Pages 538 and 539 have replacements in this appendix. Use the
replacements in place of the book pages.

Pages 540545 are specific to Windows Store apps. Skip them.
Read pages 546 and 547 to learn about data contract serialization.

Skip pages 548, 549, and 550; they apply only to Windows Store apps.

* % % »

Read page 551 in the book. Then follow the “Do this!” project on the
replacement pages 552-556 in this appendix.

»

The rest of the chapter has you build a Windows Store replacement for
Brian’s excuse manager. The goal of this project is to learn about the
file tools in the Windows.Storage namespace for Windows Store apps.
We don’t have a WPT alternative for this project, because those classes
are specific to Windows Store apps.

https://itbook.store/books/9781449343507

don’t keep me waiting

C# programs can use await to be more responsive

What happens when you call MessageBox . Show () from a WinForms program? Everything
stops, and your program freezes until the dialog disappears. That’s literally the most unresponsive
that a program can be! Windows Store apps should always be responsive, even when they’re waiting
for feedback from a user. But some things—Ilike waiting for a dialog, or reading or writing all the
bytes in a file—take a long time. When a method sits there and makes the rest of the program wait
for it to complete, programmers call that blocking, and it’s one of the biggest causes of program
unresponsiveness.

Windows Store apps use the await operator and the async modifier to keep from becoming
unresponsive during operations that block. You can see how it works by looking at an example of how
a WPT could call a define task that blocks, but can be called asynchronously:

Detlare the method using the

asynt modifier to indicate that The Task class is in the

it ¢an be called asynthronously. System.Threading.Tasks
namespace. Its Delay()

method blocks for a specified

number of milliseconds. That

éprivate async Task LongTaskAsync ()

{ method is really similar to the
. Thread.Sleep() method that
await Task.Delay(5000); you used in Chapter 2, but
} it’s defined with the async

modifier so it can be called
asynchronously with await.

The await operator causes the method that’s running this code to stop and wait until the ShowAsync () method
completes—and that method will block until the user chooses one of the commands. In the meantime, the rest of the
program will keep responding to other events. As soon as the LongTaskAsync () method returns, the method
that called it will pick up where it left off (although it may wait until after any other events that started up in the meantime
have finished).

If your method uses the await operator, then it must be declared with the async modifier:

private async void countButton Click(object sender, RoutedEventArgs e) ({

// ... some code ... Notice how this is a Click event
await LongTaskAsync(); handler. Since it uses await, it
// ... some more code: 3lso needs to be detlaved with

| the asyne modifier.

When a method is declared with async, you have some options with how you call it. If you call the method as usual, then
as soon as it hits the await statement it returns, which keeps the blocking call from freezing your app.

538 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

You can see exactly how this works by creating a new WPF application with the following main window XAML: *

<Window x:Class="WpfAndAsync.MainWindow" h. ’
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" “tf—- [)Q t 15!
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" ;*%
Title="WPF and async" Height="150" Width="200" ResizeMode="CanResizeWithGrip"> 3€
<Grid>
<StackPanel>

<CheckBox x:Name="useAwaitAsync" IsChecked="True" Content="Use await/async" Margin="5"/>
<Button x:Name="countButton" Content="Start counting"

HorizontalAlignment="Left" Click="countButton Click" Margin="5"/>
<TextBlock x:Name="progress" HorizontalAlignment="Left" Margin="5" />

</StackPanel>
</Grid>
</Window> We named our project WpfAndAsync. If you
named your project something else, you’ll need
Here’s the code-behind: to change this line to match its namespace:
using System.Threading; x:Class="WpfAndAsync.MainWindow"

using System.Windows.Threading;

public partial class MainWindow : Window {
DispatcherTimer timer = new DispatcherTimer () ;

public MainWindow () {

InitializeComponent () ; Use await/async
timer.Tick += timer Tick; Start Eﬂu"jng
timer.Interval = TimeSpan.FromSeconds (.1);

/ 36

int 1 = 0;

void timer Tick(object sender, EventArgs e) {
progress.Text = (i++).ToString();

}

private async void countButton Click(object sender, RoutedEventArgs e) {
countButton.IsEnabled = false;
timer.Start () ;

if (useAwaitAsync.IsChecked == true)
await LongTaskAsync () ; The button’s event handler uses the CheckBox’s
else \ IsChecked property. If the box is checked, the event
LongTask() ; handler calls await LongTaskAsync (), whichis

countButton.IsEnabled = true; asynchronous. The method is called with await, so the

event handler method pauses and lets the rest of the
) . program continue to run. Try adding other buttons to
private void LongTask() { the window that change properties or print output to the
Thread.Sleep (5000) ; , A . .
timer.Stop () ; console. You’ll be able to use them while the timer ticks.

}

}
If the CheckBox is not checked, IsChecked is false and

private async Task LongTaskAsync() { the button’s event handler calls LongTask (), which
await Task.Delay(5000); blocks. This causes the event handler method to block,
timer.Stop(); which makes the entire program become unresponsive,

} and if you add other buttons they won’t respond either.

}

Make sure the box is checked, and then click the button. You’ll see the numbers increase, and the form is responsive: the button
disables itself, and you can move and resize the form. Then uncheck the box and click the button—now the form freezes.

you are here » 539

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

those guys get around *

Do this!
Stream some Guy objects to a file /; i

Here’s a project to help you experiment with data contract serialization. Create a new WPF application.
Then add both classes with the data contracts from page 551 in the book (you’ll need using System.

Runtime.Serialization in each of them). And add the familiar Suits and Values enums, too (for
the Card class). Here’s the window you’ll build next:

My name is Joe, I'm 37,1 My name is Bob, I'm 45, | have My name is Ed, I'm 43, | have
have 176.22 bucks, and my 468 bucks, and my trump card 37.31 bucks, and my trump
trump card is Three of Hearts is Six of Diamonds card is Ten of Spades

Last filename written

chusersiPublic\Documents\Visual Studio 2012\Projects New guy:
\GuySerializer\GuySerializer\bin\DebughJoe.xml My name is Joe, I'm 37, |
have 176.22 bucks, and my
trump card is Three of Hearts

o Before you start coding, you’ll need to right-click on References in the Solution
Explorer and choose Add Reference from the menu. Click on Framework, scroll
down to System.Runtime.Serialization, check it, and click OK:

4 Assemblies Targeting: .NET Framework 4.5 Search Assemblies (Ctri+E] P -
Framework Name S Name
Extensions System.Runtime.Remoting System.Runtime.Serialization
Recent System.Runtime.Serialization Created by:
Systern.Runtime.Serialization.Formatters.5oag Microsoft Corporation
P Solution System.Security Version:
System.ServiceModel 4.0.0.0
b COM System.ServiceModel Activation File Version:
5 System.ServiceModel Activities 4.0.30319.17929 built by:
Rt System ServiceModel.Channels FX45RTMREL

System.ServiceModel.Discovery
System.ServiceModel.Routing
System.ServiceModel Web
System.ServiceProcess
Suctem.Sneech

< 3

-

‘ Browse... || OK H Cancel |

This will allow your WPF application to use the System.Runtime.Serialization namespace.

You can also add an empty GuyManager class to get rid of the IDE error on the
<local:GuyManager> tag when you add the XAML in step 2. You’ll fill in the
GuyManager in step 3 when you flip the page.

652 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

e Here’s the XAML for the page. /_ V\{c named £hIS YV‘O\)CC‘[‘, éu\/Scrializcr. “(’\ \/OW‘ PY‘O\)CC‘{: has a
diffecent namespace, make sure You thange these lines to mateh it.
<Window x:Class="GuySerializer.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="clr-namespace:GuySerializer"
Title="Guy Serializer" Height="275" Width="525" ResizeMode="NoResize">

<Window.Resources> Y .
pE— tontext is the
<local:GuyManager x:Key="guyManager"/> 'Thegwds da£8{7n£
</Window.Resources> 6‘*‘//‘43"‘35cr statie vesourte.

<Grid DataContext="{StaticResource guyManager}" Margin="5">

<Grid.ColumnDefinitions>

<ColumnDefinition/> h

s as
<ColumnDefinition/> T\e?agj

<ColumnDefinition/> three tolumns

</Grid.ColumnDefinitions> and two vows.

<Grid.RowDefinitions>

th tolumn in
<RowDefinition Height="4*"/> Ea

<RowDefinition Height="3*"/> the top vow has
</Grid.RowDefinitions> a StaekPanel
with a TextBlock
<StackPanel> and 3 Bu{’oon-

<Button x:Name="WriteJoe" Content="Write Joe"
HorizontalAlignment="Left" Click="WriteJoe Click"/>
<TextBlock Text="{Binding Joe}" Margin="0,0,10,20" TextWrapping="Wrap"/>
</StackPanel>

<StackPanel Grid.Column="1">
<Button x:Name="WriteBob" Content="Write Bob"
HorizontalAlignment="Left" Click="WriteBob Click"/>
<TextBlock Text="{Binding Bob}" Margin="0,0,0,20" TextWrapping="Wrap"/>

</StackPanel>
ThisTextBlotk is bound 1o the
<StackPanel Grid.Column="2" Margin="10,0,0,0"> Ed pvoycv{',y in 6u\/Managcr-
<Button x:Name="WriteEd" Content="Write EJd" z//)
HorizontalAlignment="Left" Click="WriteEd_Click"/>
<TextBlock Text="{Binding Ed}" Margin="0,0,0,20" TextWrapping="Wrap"/>
</StackPanel>

<StackPanel Grid.Row="1" Grid.ColumnSpan="2" Margin="0,0,20,0">
<TextBlock>Last filename written</TextBlock>

<TextBox Text="{Binding GuyFile, Mode=TwoWay}" The fivst cell in the bottom
TextWrapping="Wrap" Height="60" Margin="0,0,0,20"/> vow qwns{woddumﬂ$ b
</StackPanel> has several tontrols bow\d.
: - - Vro‘?cr{jcs. Why do you Ehink \;c
<StackPanel Grid.Row="1" Grid.Column="2" Margin="10,0,0,0"> 1'$£Bo%-&W theyahh.
<Button x:Name="ReadNewGuy" Content="Read a new Guy" used a3 le

HorizontalAlignment="Left" Click="ReadNewGuy Click" />
<StackPanel>
<TextBlock Text="New guy:"/>
<TextBlock TextWrapping="Wrap" Text="{Binding NewGuy}"/>
</StackPanel>
</StackPanel>
</Grid>

</Window> you are here » 553

www.itbook.store/books/9781449343507 > We're not done yet—flip the page!

https://itbook.store/books/9781449343507

think about separation of concerns

This program uses TextBoxes that
are bound to read-only properties
e Add the GuyManager class. that have only get accessors. If
you try to bind to a property that
has a public get accessor with a
private set accessor, you’ll get an
error. Luckily, a backing field will
work just fine.

using System.ComponentModel;
using System.IO;
using System.Runtime.Serialization;

class GuyManager : INotifyPropertyChanged
{

private Guy joe = new Guy ("Joe", 37, 176.22M);
public Guy Joe
{

get { return joe; }

There ar -
private Guy bob = new Guy ("Bob", 45, 4.68M); ¢ three vead OMY

public Guy Bob 6"\/ P"‘OFCV'E‘CS o FViVa'{'«C
: backing fields. The XAML has a
get { return bob:) TextBlotk bound to each of them.

private Guy ed = new Guy("Ed", 43, 37.51M);
public Guy Ed
{

get { return ed; } A fourth TextBlotk is bound to

o— this Guy property, which is set

i by the ReadGuy() method.
public Guy NewGuy { get; set; }

public string GuyFile { get; set; }

public void ReadGuy ()
{
if (String.IsNullOrEmpty (GuyFile))
return;

using (Stream inputStream = File.OpenRead (GuyFile))

{
DataContractSerializer serializer = new DataContractSerializer (typeof (Guy));
NewGuy = serializer.ReadObject (inputStream) as Guy;

}

OnPropertyChanged ("NewGuy") ;

The Read§uy() method uses familiar
System.10 methods to open a stream
and vead from it. But instead 0‘("
using a BinaryFormatter, it uses a
DataContractSerializer to sevialize
data from an XML £ile.

554 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

This uses the GetFullPath() method in the Path
public void WriteGuy(Guy guyToWrite) [tlass (in S\IS{ZC"",O) to 5‘*" the £l path of the

(filename to write.
GuyFile = Path.GetFullPath (guyToWrite.Name + ".xml");

if (File.Exists(GuyFile))

|£ the file File.Delete (GuyFile) ;

cxkﬁgi€s using (Stream outputStream = File.OpenWrite (GuyFile))

deleted, then {

rcu1a£cduﬂh5 DataContractSerializer serializer = new DataContractSerializer (typeof (Guy)):;
a_ﬁk stream. serializer.WriteObject (outputStream, guyToWrite);

[+'s sevialized }

using the data " -

conbract OnPropertyChanged ("GuyFile") ;

sevializer.

public event PropertyChangedEventHandler PropertyChanged;

private void OnPropertyChanged (string propertyName)
{
PropertyChangedEventHandler propertyChangedEvent = PropertyChanged;
if (propertyChangedEvent != null)
{
propertyChangedEvent (this, new PropertyChangedEventArgs (propertyName)) ;

Here’s the same tode you
used earlier to implement

e Here’s the code-behind for MaimWindow.xaml.cs: ’No‘l:if Pro\?cv{:yChangcd and
five off PropertyChanged events.

public partial class MainWindow : Window
{

GuyManager guyManager;

public MainWindow () {
InitializeComponent () ;

guyManager = FindResource ("guyManager") as GuyManager;

private void WriteJoe Click(object sender, RoutedEventArgs e) {
guyManager.WriteGuy (guyManager.Joe) ;

}

private void WriteBob Click(object sender, RoutedEventArgs e) {
guyManager.WriteGuy (guyManager.Bob) ;

}

private void WriteEd Click(object sender, RoutedEventArgs e) {
guyManager.WriteGuy (guyManager.Ed) ;

}

private void ReadNewGuy Click (object sender, RoutedEventArgs e) {
guyManager.ReadGuy () ;

}

} you are here » 555

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

serializing

Take your Guy Serializer for a test drive

Use the Guy Serializer to experiment with data contract serialization:

#* Write each Guy object to the files—they’ll be written to the bin\Debug folder in your projects folder. Click the
ReadGuy button to read the guy that was just written. It uses the path in the TextBox to read the file, so try
updating that path to read a different guy. Try reading a file that doesn’t exist. What happens?

* Open up the Simple Text Editor you built earlier in the chapter. You added XML files as options for the open
and save file pickers, so you can use it to edit Guy files. Open one of the Guy files, change it, save it, and read
it back into your Guy Serializer. What happens if you add invalid XML? What if you change the card suit or
value so it doesn’t match a valid enum value?

* Iry adding or removing the DataMember names ([DataMember (Name="...")]). What does that do
to the XML? What happens when you update the contract and then try to load a previously saved XML file?

Can you fix the XML file to make it work?

* Try changing the namespace of the Card data contract. What happens to the XML?

therejare no
Dumb Questions

Q: Sometimes | make a change in my XAML or my code, and
the IDE’s designer gives me a message that | need to rebuild.
What'’s going on?

A: The XAML designer in the IDE is really clever. It's able to show
you an updated page in real time as you make changes to your XAML
code. You already know that when the XAML uses static resources,
that adds object references to the Page class. Well, those objects
need to get instantiated in order for them to be displayed in the
designer. If you make a change to the class that’s being used for a
static resource, the designer doesn’t get updated until you rebuild
that class. That makes sense—the IDE rebuilds your project only
when you ask it to, and until you do that it doesn’t actually have

the compiled code in memory that it needs to instantiate the static
resources.

You can use the IDE to see exactly how this works. Open your Guy
Serializer and edit the Guy . ToString () method to add some

extra words to the return value. Then go back to the main page designer.

It's still showing the old output. Now choose Rebuild from the Build
menu. The designer will update itself as soon as the code finishes
rebuilding. Try making another change, but don't rebuild yet. Instead,
add another TextBlock that's bound to a Guy object. The IDE will use
the old version of the object until you rebuild.

556

www.itbook.store/books/9781449343507

Q; I’'m confused about namespaces. How is the namespace in
the program different from the one in an XML file?

AZ Let's take a step back and understand why namespaces are
necessary. C#, XML files, the Windows filesystem, and web pages all
use different (but often related) naming systems to give each class,
XML document, file, or web page its own unique name. So why is
this important? Well, let's say back in Chapter 9, you created a class
called KnownFolders to help Brian keep track of excuse folders.
Uh-oh! Now you find out that the .NET Framework for Windows Store
already has a KnownFolders class. No worries. The NET
KnownFolders class is in the Windows.Storage namespace,
so it can exist happily alongside your class with the same name, and
that's called disambiguation.

Data contracts also need to disambiguate. You've seen several
different versions of a Guy class throughout this book. What if you
wanted to have two different contracts to serialize different versions
of Guy? You can put them in different namespaces to disambiguate
them. And it makes sense that these namespaces would be separate
from the ones for your classes, because you can't really confuse
classes and contracts.

One more thing. Your WPF applications can use the
same OpenFileDialog and SaveFileDialog classes that
you used in your WinForms projects. Here’s an MSDN

page that has more information and code samples:

http://msdn.microsoft.com/en-us/library/aa969773.aspx

https://itbook.store/books/9781449343507

windows foundation

N *
ghapter 12-

REMEMBER BRIAN'S EXCUSE
MANAGER FROM CHAPTER 97 WELL, IT'S
GOT A FEW BUGS, AND YOU'LL FIX THEM IN
THIS CHAPTER-

Exception handling works the same in WPF
as it does in WinForms and Windows Store.

If you flip through the replacement pages for Chapter 12,
you’ll notice that there’s no XAML. That’s because the
material on exception handling that we cover in Head First
(# 1s basically the same whether you’re working on a WPF
application, a WinkForms program, a Windows Store app, or
even a console application.

Here’s how you should use this appendix for Chapter 12:

* Read through page 575 in the book, including the
“Sharpen your Pencil” exercise.

* Use the appendix replacement pages for 576 and 577.
#* Read pages 578 and 579 in the book.

* Jollow pages 580-590 in this appendix, and skip 591
in the main part of the book.

* Finish the rest of the chapter in the book.

* Then do all of Chapter 13 in the book, too!

Once you’re done with this chapter, you can go straight
through Chapter 13 in the book. It doesn’t depend on
Windows 8 or Windows Store apps at all.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

nobody expecis the ...

This appendix depends on the Excuse

. R . . Manager WinForms app that you built in

Brla"s code dld some‘l‘hl “g U"expec‘l‘ed Chapter 9. If your code doesn’t match the
code in the appendix, you can download

it from http://headfirstlabs.com/hfcsharp.

When Brian wrote his Excuse Manager, he never expected the
user to try to pull a random excuse out of an empty directory.

o The problem happened when Brian pointed his Excuse Manager program at an
empty folder on his laptop and clicked the Random Excuse button. Let’s take a
look at it and see if we can figure out what went wrong. Here’s the unhandled
exception window that popped up when he ran the program in the IDE:

ExcuseManager_Serialized.exe

Additional information: Index was outside the bounds of the array. *

[]Break when this exception type is thrown
Open Exception Settings

An unhandled exception of type 'System.IndexQutOfRangeException’ occurred in r DO tbis!

| Break || LContinue | Ignore

e OK, that’s a good starting point. It’s telling us that there’s some value that
doesn’t fall inside some range. Clicking the Break button drops the IDE back
into the debugger, with the execution halted on a specific line of code:
public Excuse (Random random, string folder)
{
string[] fileNames = Directory.GetFiles (folder, "*.excuse");
OpenFile (fileNames [random.Next (fileNames.Length)]) ;

e Let’s use the Watch window to track down the problem. Add a watch for fileNames.Length. Looks
like that returns 0. Try adding a watch for random.Next (fileNames.Length). That returns 0, too. So
add a watch for fileNames [random.Next (fileNames.Length)]. This time the Value column in the
Watch window has the same error message that you saw in step 1: “Out of bounds array index.”

Watch 1 * A X

Mame Walue -
@ fileMames.Length 0
random.Mexd(fileNames.Length) 0 0
€3 fileNames[random.Mext(fileMames.Length)] Out of bounds array index 0~

You tan call methods and use indexers in the Wateh window. When one of those
things throws an exteption, you'll see that exteption in the Wateh window, too.

6§76 Appendix ii

www.itbook.store/books/9781449343507

http://headfirstlabs.com/hfcsharp
https://itbook.store/books/9781449343507

windows presentation foundation

e So what happened? It turns out that Directory.GetFiles () returns an empty array when you point
it at an empty folder. So £ileNames.Length is zero, and passing 0 to Random.Next () will always
return 0 as well. Try to get the Oth element of an empty array and your program will throw a System.
IndexOutOfRangeException, with the message “Index was outside the bounds of the array.”

Now that we know what the problem is, we can fix it. All we need to do is check to see if the selected folder
has excuses in it before we try to load a random excuse from it:

private void randomExcuse Click(object sender, EventArgs e)
{
if (Directory.GetFiles (selectedFolder) .Length == 0)
MessageBox.Show ("There are no excuse files in the selected folder.");
else if (CheckChanged())
{
currentExcuse = new Excuse (random, selectedFolder);
UpdateForm (false) ; B\/ Lhccking for extuse
} Liles in the folder before
: we treate the Excuse
objc(:ﬁ, we tan prevent
the exteption Evom being
thrown—and display a
hcl?-(:d dia|05, too.

What do you think about that solution?
Does it make the most sense to putitin the
form, or would it be better to find a way to

encapsulate it inside the Excuse class?

OH, T GET IT- EXCEPTIONS AREN/'T ALWAYS
BAD. SOMETIMES THEY IDENTIFY BUGS, BUT A
LOT OF THE TIME THEY/RE JUST TELLING ME THAT
SOMETHING HAPPENED THAT WAS DIFFERENT
FROM WHAT I EXPECTED-

That’s right. Exceptions are a really useful tool
that you can use to find places where your code
acts in ways you don’t expect.

A lot of programmers get frustrated the first time they see an
exception. But exceptions are really useful, and you can use them to
your advantage. When you see an exception, it’s giving you a lot of
clues to help you figure out when your code 1s reacting to a situation
that you didn’t anticipate. And that’s good for you: it lets you know
about a new scenario that your program has to handle, and it gives
you an opportunity to do something about it.

i ‘ you are here » 577

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you don’t know where that has been

Use the IPE’s debugger to ferret out exactly
what went wrong in the Excuse Manager

Let’s use the debugger to take a closer look at the problem that we ran
into in the Excuse Manager. You’ve probably been using the debugger a
lot over the last few chapters, but we’ll go through it step by step anyway

to make sure we don’t leave out any details. *
/‘ Deb ug this

*

© 4DD A BREAKPOINT TO THE RANDOM BUTTON'S EVENT HANDLER- *

You've got a starting point—the exception happens when the Random Excuse button is clicked
after an empty folder is selected. So open up the button’s event handler and use Debug—Toggle
Breakpoint (I'9) to add a breakpoint to the first line of the method. Start debugging, choose an

empty folder, and then click the Random button to make your program break at the breakpoint:

-I private void randomExcuse_Click(object sender, EventhArgs e)
{
[+ fif (Directory.GetFiles(selectedFolder).Length == @)
MessageBox.Show("There are no excuse files in the selected folder.");
else if (CheckChanged())
{
currentExcuse = new Excuse(random, selectedFolder);
UpdateForm(false);
¥
}

© STEP INTO THE Excuse CONSTRUCTOR.
We want to reproduce the problem, but we already added code to get past it. No
problem. Right-click on the line currentExcuse = new Excuse (random,
selectedFolder) ; and choose Set Next Statement (Ctrl+Shift+F10). Then

use Step Into (F11) to step into the constructor: /
—-lpublic Excuse(Random random, string folder) [
{
= Istring[] fileNames = Directory.GetFiles(folder, "*.excuse");
OpenFile(fileNames[random.Next(fileNames.Length)]);
¥

580

www.itbook.store/books/9781449343507

You used the
debugger 1o
skip past the
workaround
that you added
to avoid the
chCPfion, so
now the Excuse
onstruetor is
about to throw
the exteption
again.

https://itbook.store/books/9781449343507

windows presentation foundation

e STEP THROUGH THE PROGRAM UNTIL IT THROWS THE EXCEPTION-

You've already seen how handy the Watch window is. Now we’ll use it to reproduce the exception.
Choose Step Over (F10) twice to get your program to throw the exception. Then use the IDE to select
fileNames.Length, right-click on it, and choose && Add Watch to add a watch. Then do it again
for random.Next (fileNames.Length) and fileNames [random.Next (fileNames.Length)]:

Watch 1 il

Mame Walue -
@ fileMames.Length 0
a2 random.Next(fileNames.Length) 0 (]
gfileNames[random.Nact(fileNames.Length)] Out of bounds array index 0~

The Watch window has another very useful feature. It lets you change the value of variables and fields
that it’s displaying, and it even lets you execute methods and create new objects. When you do, it
displays its reevaluate icon @ that you can click to tell it to execute that method again.

© ADD A WATCH FOR THE Excerprzon OBJECT.
Debugging is a little like performing a_forensic crime scene investigation on_your program. You don’t necessarily
know what you’re looking for until you find it, so you need to use your debugger “CSI kit” to follow
clues and track down the culprit. One important tool 1s adding $exception to the Watch window,
because it shows you the contents of the Exception object that’s been thrown:

Watch 1 * 0 X
Marme Walue Type an

= {"Index was outside the bounds of the array."} | System.Exception {System.l

@ [System.ndexOutOfRangeException] {"Index was outside the bounds of the array."} System.IndexOutOfRangebxe

Data {System.Collections. ListDictionarylnternal} System.Collections.|Dictiona
& HelplLink null string
& HResult -2146233080 int
InnerException null System.Exception
& Message "Index was outside the bounds of the array Q, ~ string
& Source "ExcuseManager_Serialized" Q, ~ string
H# StackTrace " at ExcuseManager_Serialized.Excuse..cto Q, ~ string -

When you get an exception, you can go back and reproduce it in the
debugger and use the Exception object to help you fix your code.

you are here » 581

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

make a for it

therejare no
b Questions

Dum

Q: How do | know where to put a breakpoint?

A: That's a really good question, and there’s no one right
answer. When your code throws an exception, it's always a
good idea to start with the statement that threw it. But usually,
the problem actually happened earlier in the program, and the
exception is just fallout from it. For example, the statement
that throws a divide-by-zero error could be dividing values that
were generated 10 statements earlier but just haven't been
used yet. So there’s no one good answer to where you should
put a breakpoint, because every situation is different. But as
long as you've got a good idea of how your code works, you
should be able to figure out a good starting point.

Q: Can | run any method in the Watch window?

. Yes. Any statement that’s valid in your program will work
inside the Watch window, even things that make absolutely
no sense to run inside a Watch window. Here's an example.
Bring up a program, start it running, break it, and then add
this to the Watch window: System.Threading.
Thread.Sleep (2000). That method causes your
program to delay for two seconds.There’s no reason you'd

ever do that in real life, but it's interesting to see what happens:

the IDE will block and you'll get a wait cursor for two seconds
while the method evaluates. Then, since S1leep () has

no return value, the Watch window will display the value
Expression has been evaluated and has
no value to let you know that it didn’t return anything. But
it did evaluate it. Not only that, but it displays IntelliSense
pop-ups to help you type code into the window. That's useful
because it shows the available properties and methods for
objects currently in memory.

582

www.itbook.store/books/9781449343507

Q: Wait, so isn’t it possible for me to run something
in the Watch window that’ll change the way my program
runs?

A: Yes! Not permanently, but it can definitely affect your
program’s output. But even better, just hovering over fields
inside the debugger can cause your program to change its
behavior, because hovering over a property executes its get
accessor. If you have a property that has a get accessor
that executes a method, then hovering over that property will
cause that method to execute. And if that method sets a value
in your program, then that value will stay set if you run the
program again. And that can cause some pretty unpredictable
results inside the debugger. Programmers have a name for
results that seem to be unpredictable and random: they're
called heisenbugs (which is a joke that makes sense to
physicists and cats trapped in boxes).

When you run your
program inside the IDE,
an unhandled exception
will cause it to break

as if it had run into a
Lreakpoint.

https://itbook.store/books/9781449343507

windows presentation foundation

Uh-oh—the code$ still got problews...

NO, NOT AGAIN!
Brian was happily using his Excuse Manager when he accidentally

chose a folder full of files that weren’t created by the Excuse Manager. [0}
Let’s see what happens when he tries to load one of them.... 0

o You can re-create Brian’s problem. Take a random file that isn’t a serialized
excuse and give it the .excuse file extension.

e Pop open the Excuse Manager in the IDE and open up the file you created. It throws
an exception! Look at the message, then click the Break button to start investigating,

a valid binary format. The starting

format ut strcom is not vali
DY1ES) are: T4-08-G3~73~20:09-T3- 20-GE-6F Td-20-61-0E-20-65-T8..

An unhandled exception of type 'System.Runtime.Senalization. SenalizationException’
Opnbratinteng occurred in mscorlib.dll

6 Open up the Locals window and expand $exception (you can also enter it into
the Watch window). Take a close look at its members to see if you can figure out
what went wrong.

Watch 1 * A X

Name Value Type o

(=] {"The input stream is not a valid binary format. The starting q System.Exception {System.R

@ [System.Runtime.Serialization.5erializationException] {"The input stream is not a valid binary format. The starting ¢ System.Runtime.5erializatior

m = . = = = . "ections.ListDictionarylnternal} Systern.Collections.|Dictiona
The input stream is not a valid binary format. string
& HResult -2146233076 int
& InnerException null Systern.Exception
K& Message "The input stream is not a valid binary format. The starti @, - string
K Source "mscorlib” Q - string
K StackTrace " at System.Runtime.Serialization.Formatters.Binary.5er @, - string -

DO You SEE WHY THE PROGRAM THREW THE EXCEPTION?

DOES IT MAKE SENSE FOR THE PROGRAM TO CRASH IF
IT ENCOUNTERS AN INVALID EXCUSE XML FILE?

CAN YoUu THINK OF ANYTHING You CAN DO ABOUT THIS?

you are here » 583

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

users are unpredictable

WAIT A SECOND. OF COURSE THE

PROGRAM’S GONNA CRASH- I GAVE IT A BAD
FILE. USERS SCREW UP ALL THE TIME. YOU CAN'T
EXPECT ME TO DO ANYTHING ABOUT THAT---
RIGHT?

Actually, there is something you can do about it.

Yes, it’s true that users screw up all the time. That’s a fact of life.
But that doesn’t mean you can’t do anything about it. There’s

a name for programs that deal with bad data, malformed input,
and other unexpected situations gracefully: they’re called robust
programs. And C# gives you some really powerful exception
handling tools to help you make your programs more robust.
Because while you can’t control what your users do, you can make
sure that your program doesn’t crash when they do it.

ro-bust, adj.

sturdy in construction; able
to withstand or overcome
adverse conditions. After the
Tacoma Narrows Bridge disaster,
the civil engineering team looked
Jor a more robust design_for the
bridge that would replace it.

e ————
—

Serializers will throw an exception
if there’s anything at all wrong with
a serialized file.

it!
Watch lt' It’s easy to get the Excuse Manager to
: throw a SerializationException—
just feed it any file that’s not a serialized Excuse

The BinavyFormatter class will © object. When you try to deserialize an object from a file,
also throw a Seraliz&fwhE"“Pfﬁw“ : DataContractSerializer expects the file to contain a
if you give it a file that deesnt 5 serialized object that matches the contract of the class that
contain exactly the vight sevialized ©it's trying to read. If the file contains anything else, almost
object. [t's even move Finicky than : anything at all, then the ReadObject () method will throw
DaJcaCon{:raL{:Scrializcr,’ : aSerializationException.

584 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

Handle exceptions with try and catch

In C#, you can basically say, “Try this code, and if an exception occurs,
catch it with this otker bit of code.” The part of the code you're trying is the
try block, and the part where you deal with exceptions is called the catch

block. In the catch block, you can do things like print a friendly error Put the tode that might £h
message instead of letting your program come to a screeching halt: 3\; exteption inside the 4r ;,O\Zk
) otk.
You'll also need to add these lines to the top of Excuse.cs: runh:x;):ﬁ;goy\ ha‘;""‘% it 9et
S usual,
using System.Runtime.Serialization; S‘E&'ECMCW[;S in ﬂ': caZ:: ljtzk il
b . . wi
using System.Windows.Forms; _l:éa:ﬁ::-b?:i lfha Sﬁafcmcn‘{:
rows an
tepdi
private void OpenFile (string excusePath) { v E,:ci?t:::i ,Clc;cgcsjc °‘i““ try
€T exetuted.
try
{
this.ExcusePath = excusePath;
This is the BinaryFormatter formatter = new BinaryFormatter () ; You'll vetognize the tode
4y block: You Excuse tempExcuse; heve because we surrounded
stavt exteption . . . the entive method with
handling with using (Stream input = File.OpenRead (excusePath)) this £ry blotk.
Lry. In this . {
tase, we “ P tempExcuse = (Excuse)formatter.Deserialize (input);
the cms{mg
tode in it }

Description = tempExcuse.Description;
Results = tempExcuse.Results;

LastUsed = tempExcuse.LastUsed;
The eateh keyword means that the

} block immedia{:cl\/ fo”owins it tontains

catch @tioﬂx@ & an exteption handler.
{

MessageBox.Show ("Unable to read " + excusePath) ;

LastUsed = DateTime.Now; When an exception is thrown, the Program
mmcdla{:cly Jumps to the eateh statement

} What happens if you leave out this last and starts exetuting the eateh block.

line of ¢ode? Can you figwc out why
} wccincludcd it in the eateh bloek? - @RA‘~
PQWEWR

This is the simplest kind of exception If throwing an exception makes your code
automatically jump to the catch block, what

handling: stop the program, write out the _
exception message, and keep running. happ_ens tp the objects and da’Fa you were
working with before the exception happened?

you are here » 585

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

risky business

What happens when a method you want to call is risky?

Users are unpredictable. They feed all sorts of weird data into your
program and click on things in ways you never expected. And
that’s just fine, because you can handle unexpected input with good

exception handling.

@ Let’s say your user is
using your code and
gives it some input
that it didn’t expect.

(@ That method does
something risky,
something that might
not work at runtime.

« . » .
Run{:nmc" Just means “while your Program is
running.” Some people vefer to exceptions as
)

« .
vuntime evrors.”

@ You need to know that
the method you’re
calling is risky.

£ You €an tome up with a way to do a

less visky thing that avoids throwing the
exteption, that's the best possible outtome!
But some visks Just tan't be avoided, and
that's when You want 1o do this. \/

@ You then write code
that can handle the
failure if it does
happen. You need to be
prepared, just in case.

686 Appendix ii

www.itbook.store/books/9781449343507

,ause'" giveg i

our
oV I "etho
’\ 2 (I[

4

some input aclass
user you wrote

public void
Process (Input i) {
if (1.IsBad()) {
Explode () ;

aclass }
you wrote }

I WONDER
WHAT HAPPENS
IF I CLICK

HERE.--

MY Peocess()
METHOD WILL BLOW
UP IF IT GETS BAD
INPUT DATA!

o
o .

aclass
user you wrote

WOW, THIS PROGRAM’S REALLY STABLE!
OQ
our program’s m,.
O ot 2 Dbysy

your class, now with
user exception handling

https://itbook.store/books/9781449343507

Q: Sowhen doluse try and catch?

AI Anytime you're writing risky code, or
code that could throw an exception. The trick
is figuring out which code is risky, and which
code is safer.

You've already seen that code that uses
input provided by a user can be risky. Users
give you incorrect files, words instead of
numbers, and names instead of dates, and
they pretty much click everywhere you could
possibly imagine. A good program will take
all that input and work in a calm, predictable
way. It might not give the users a result they
can use, but it will let them know that it found

the problem and hopefully suggest a solution.

Q: How can a program suggest a
solution to a problem it doesn’t even
know about in advance?

A: That's what the cat ch block is for. A
catch block is executed only when code
in the try block throws an exception. It's
your chance to make sure the user knows
that something went wrong, and to let the
user know that it's a situation that might be
corrected.

If the Excuse Manager simply crashes when
there’s bad input, that's not particularly
useful. But if it tries to read the input and
displays garbage in the form, that's also not

www.itbook.store/books/9781449343507

therejare no
Dumb Questions

useful—in fact, some people might say

that it's worse. But if you have the program
display an error message telling the user that
it couldn’t read the file, then the user has an
idea of what went wrong, and information
that he can use to fix the problem.

Q: So the debugger should really only
be used to troubleshoot exceptions then?

A: No. As you've already seen many
times throughout the book, the debugger’s
a really useful tool that you can use

to examine any code you've written.
Sometimes it's useful to step through your
code and check the values of certain fields
and variables—like when you've got a really
complex method and you want to make sure
it's working properly.

But as you may have guessed from the
name “debugger,” its most common use is
to track down and remove bugs. Sometimes
those bugs are exceptions that get thrown.
But a lot of the time, you'll be using the
debugger to try to find other kinds of
problems, like code that gives a result that
you don’t expect.

Q; I’'m not sure | totally got what you
did with the Watch window.

A: When you’re debugging a program,
you usually want to pay attention to how

a few variables and fields change. That's
where the Watch window comes in. If you

windows foundation

add watches for a few variables, the Watch
window updates their values every time you
step into, out of, or over code. That lets you
monitor exactly what happens to them after
every statement, which can be really useful
when you're trying to track down a problem.

The Watch window also lets you type in any
statement you want, and even call methods,
and the IDE will evaluate it and display the
results. If the statement updates any of the
fields and variables in your program, then it
does that, too. That lets you change values
while your program is running, which can
be another really useful tool for reproducing
exceptions and other bugs.

An\/ changes You make in the Wateh
window Jus{: affect the data in memory,
and last only as long as the Program

is vunning. Restart your program, and
values that You changed will be undone.

The catch block

is executed only
when code in the
try block throws
an exception. i
gives you a chance
to make sure

your user has the
information to fix

the prolalem.

587

https://itbook.store/books/9781449343507

go with the flow

Use the debugger to follow the try/catch flow

An important part of exception handling is that when a statement in
your try block throws an exception, the rest of the code in the block
gets short-circuited. The program’s execution immediately jumps to
the first line in the catch block. But don’t take our word for it...

*
Debug this
2 *

o Add the try/catch from a few pages ago to your Excuse Manager app’s
ReadExcuseAsync () method. Then place a breakpoint on the opening
bracket { in the try block.

e Start debugging your app and open up a file that’s not a valid excuse file (but still
has the .excuse extension). When the debugger breaks on your breakpoint, click the Step
Over button (or F10) five times to get to the statement that calls ReadObject () to
deserialize the Excuse object. Here’s what your debugger screen should look like:

brivate void OpenFile(string excusePath)
{
try
Put the breakpoint on 7
the opening bracket of this.ExcusePath = excusePath;
the ‘br\/ bloek. BinaryFormatter formatter = new BinaryFormatter();
Excuse tempExcuse;
using (Stream input = File.OpenRead(excusePath))
{
S{:c? over the tempExcuse = (Excuse)formatter.Deserialize(input);
statements until %
Your \/c"ow “next Description = tempExcuse.Description;
statement” bar Results = tempExcuse.Results;
shows that the next LastUsed = tempExcuse.lastUsed;
statement to gch s
exetuted will vead catch (SerializationException)
the Excuse object {
Lrom the stream. MessageBox.Show("Unable to read " + excusePath);
LastUsed = DateTime.Now;
¥
h

688 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

e Step over the next statement. As soon as the debugger executes the Deserialize ()
statement, the exception is thrown and the program short-circuits right past the rest
of the method and jumps straight to the catch block.

private void OpenFile(string excusePath)
{
try
this.ExcusePath = excusePath;
. BinaryFormatter formatter = new BinaryFormatter();
The debugger will ’) ! 0
hiahliaht The ¢ Leh Excuse tempExcuse;
3hig ¢ ta using (Stream input = File.OpenRead(excusePath))
statement with [
its ‘/C”°W “next tempExcuse = (Excuse)formatter.Deserialize(input);
)
statement” block, }
but it shows the Description = tempExcuse.Description;
vest of the blodk\ Results = tempExcuse.Results;
in gray to show you , LastUsed = tempExcuse.lastlUsed;
that it's “
tit about to |ca‘tch (SerializationException)
exetute the whole {
JC’“"S- MessageBox.Show("Unable to read " + excusePath);
LastUsed = DateTime.Mow;
}
H

e Start the program again by pressing the Continue button (or F5). It'll begin
running the program again, starting with whatever’s highlighted by the yellow
“next statement” block—in this case, the catch block. It will just display the
dialog and then act as if nothing happened. The ugly crash has now been handled.

Hcrc's a taveer
{:i\?: alot of C#’
programming ")ob
inkerviews intlude
a O\ucs{:ion about
how Yyou deal with

exteptions in 8 "~ You've noticed by now that a constructor doesn’t have a return
tonstruttor. Wat 011 it' value, not even void. That’s because a constructor doesn’t

Keep risky code out of the constructor!

actually return anything. Its only purpose is to initialize an object—

which is a problem for exception handling inside the constructor.
When an exception is thrown inside the constructor, then the statement that
tried to instantiate the class won’t end up with an instance of the object.

you are here » 589

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

clean up after yourself

If you have code that should
ALWAYS run, use a finally block

When your program throws an exception, a couple of things can happen. If the exception #sn’t handled, your
program will stop processing and crash. If the exception s handled, your code jumps to the catch block. But
what about the rest of the code in your try block? What if you were closing a stream, or cleaning up important
resources? That code needs to run, even if an exception occurs, or you're going to make a mess of your
program’s state. That’s where the £inally block comes in really handy. It comes after the try and catch
blocks. The £inally block always runs, whether or not an exception was thrown.

private void OpenFile (string excusePath) ({

try {
this.ExcusePath = excusePath;
BinaryFormatter formatter = new BinaryFormatter ()

Excuse tempkxcuse;
using (Stream input = File.OpenRead (excusePath))

{
tempExcuse = (Excuse)formatter.Deserialize (input);
I£ there is no }
;:ﬂ:ﬁ:txw‘ Description = tempExcuse.Description;
block, the code Results = tempExcuse.Results;
in the finally LastUsed = tempExcuse.LastUsed;

block will execute

after the try }
block completes. catch (SerializationException)

I£ there's an MessageBox.Show ("Unable to read " + excusePath);

cxce‘?'f:ion handled _ : .
by a catch block, LastUsed = DateTime.Now;

then it will }

short—tireuit as flnally
usual, and ‘U\en {

vun the finall
ka#&rﬂ;\é // Any code here will get executed no matter what
eateh bloek. }

}

Always catch specific exceptions like SerializationException. You typically follow a catch statement
with a specific kind of exception telling it what to catch. It’s valid C# code to just have catch (Exception) and you
can even leave the exception type out and just use catch. When you do that, it catches all exceptions, no matter
what type of exception is thrown. But it’s a really bad practice to have a catch-all exception handler like that.
Your code should always catch as specific an exception as possible.

590 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

Reminder: Once you finish Chapter 12, you can go straight windows
through Chapter 13 in the book. It doesn’t depend on
Windows 8 or Windows Store apps at all.

) Chaptir ’

IN CHAPTER 14, YOU'LL SEE A
BUNCH OF LIN® QUERIES- IN THE BOOK
YoU'LL COMBINE THEM INTO A SINGLE
WINDOWS STORE APP- WE'LL SHOW YOou HOW
TO BUILD A WPF APPLICATION INSTEAD.-

LINQ works with any kind of C# program.

Chapter 14:
* Read through page 657 in the book.

foundation

When you read Chapter 14 in the main part of the book, you’ll see
that it’s structured differently from other chapters. It has a series

of increasingly complex LINQ) queries, and small console apps to
demonstrate each of them. Throughout the chapter, you’ll also see
exercises to build a Windows Store app that combines all the queries
into a single user interface. Over the next few pages of this appendix,
we’ll show you how to build a WPF application that executes those
same queries. Here’s how we recommend you use this appendix with

* Even though pages in the chapter through 665 are about

www.itbook.store/books/9781449343507

building a Windows Store app, read them—especially the parts
about anonymous types. It will help to get a sense of how the
Comic, ComicQuery, and ComicQueryManager classes work.

Pages 666 and 667 describe more LINQ) queries. You can skim
pages 668 and 669, because those are more Windows Store-
related pages.

Read pages 670-680, but don’t do the exercise on page 679.

You can skip the rest of the chapter, because it’s related to
Windows Store apps. Instead, follow the replacement pages
680-683.

https://itbook.store/books/9781449343507

Build a

WPF comic query application

When you read through Chapter 14 in the book, you saw that we built a Windows Store app to
execute the LINQ queries throughout the chapter. Since we followed the principle of separation

of concerns, the classes for managing data and issuing queries were separated from the code that
created the user interface. That let us reuse the same data and query management classes
to build another app using the Visual Studio Split App template. Now we’ll be able to take advantage

of the same separation of concerns and build a WPF application using the same data and query

classes.

*L *
Do this!
e

o CREATE A NEW WPF APPLICATION AND ADD EXISTING CLASSES AND
IMAGES FROM THE COMIC APP.
Before you start this project, you’ll need to download source code to the JimmysComics app from
Chapter 14. See the Head First Labs website (http://headfirstlabs.com/hfcsharp) for a link to the source code.

Once you've got the source code, you’ll build a new WPF application called JimmysComics. Then right-click
on the project name in the Solution Explorer and choose “Add Existing Item” to add the following items
from the Windows Store app we built in the book (you can download the source from the book’s website):

Purchase.cs N

Comic.

ormie.es |£ You give Your yro\)ccﬁ a diffevent name, make
sure You thange the namespace for the C# files you
added to mateh your project’s namespate.

ComicQuery.cs
ComicQueryManager.cs
PriceRange.cs.

The following files are in the Assets folder: bluegray_250x250.jpg, bluegray_250x250.jpg, captain_

amazing_250x250.jpg, captain_amazing_zoom_250x250.jpg — add them to the root level of your
WPF application so they’re alongside your XAML and C# files.

Your Solution Explorer should look like this:

Solution Explorer *AOXx

@ o-2udp @
Search Solution Explorer (Ctrl+;)
& Solution JimmysComics' (1 project)
4 [JimmysComics
b A Properties
I =B References

2~

You’ll also need to select each image file in the Solution
Explorer and use the Properties window to set “Build
Action” to Content and “Copy to Output Directory” to
Copy always. Here’s what it looks like—make sure you
do this for each of the .jpg files that you added:

¥ App.config .

b D) Appxaml Properties *OXx
B bluegray_250250,pg bl 250x250.jpg File Properti -
B captain_amazing_250x250.jpg uegray._ JPg i Froperties
B captain_amazing_zoom_250x250.jpg as: H F

B c* Comic.cs =

b c# ComicQuery.cs Build Action Content =

e

b D) MainWindow.saml Copy to Output Directory [LETUEITETS v

P c* PriceRange.cs Customn Tool

b & RS Custom Tool Namespace
E purple_250x250.jpg . .

File Mame bluegray_250250.jpg -
Copy to Output Directory

680 Appendix ii

www.itbook.store/books/9781449343507

Specifies the source file will be copied to the cutput directory.

https://itbook.store/books/9781449343507

windows presentation foundation

9 MAKE TWO MODIFICATIONS TO CoMrc&ueryMANAGER-CS -

There are two small changes you’ll need to make to ComicQueryManager.cs. WPF applications cannot
use the Windows.UI namespace because it’s only part of the .NET Framework for Windows Store.
You’ll need to change the using statements at the top to replace “Windows. UI” with “System.Windows”:

using System.Collections.ObjectModel;
using System.Windows.Media.Imaging;

And WPF applications load images slightly differently from Windows Store apps, so you’ll need to
change the CreateImagelromAssets() method in ComicQueryManager. Here’s the new method:

private static BitmaplImage CreatelmageFromAssets (string imageFilename)
{
try
{
Uri uri = new Uri(imageFilename, UriKind.RelativeOrAbsolute);
return new BitmapImage (uri);
} :
catch (System.IO.IOException) \/0“ COFlCd the ;)Pf) ‘Cilcs into Your
.)
{ . project’s top—level folder. This
return new BitmapImage () ; new Crca‘l:cfmachVomAssc{s()
}

} method will load those files.

e ADD CODE-BEHIND FOR THE MAIN WINDOW .-

Here’s all the code-behind you’ll need for MainWindow.xaml.cs.

public partial class MainWindow : Window
{

ComicQueryManager comicQueryManager;

public MainWindow ()
{

InitializeComponent () ;

comicQueryManager = FindResource ("comicQueryManager") as ComicQueryManager;
comicQueryManager.UpdateQueryResults (comicQueryManager.AvailableQueries[0]);

}

private void ListView SelectionChanged(object sender, SelectionChangedEventArgs e)
{
if (e.AddedItems.Count >= 1 && e.AddedItems[0] is ComicQuery)
{
comicQueryManager.CurrentQueryResults.Clear () ;
comicQueryManager.UpdateQueryResults (e.AddedItems[0] as ComicQuery) ;

} !
}
} The ListView tontrol fives its Sclcz’.{:ionChAngcd
event whenever the user selects or deselects

items. The items that were selected can be
found in the e.Added|tems collection. you are here » 681

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

e ADD THE XAML FOR THE MAIN WINDOW.-

Here’s the XAML for the main window. Remember, if you used a different project name, make sure
you change JimmysComics to match your project’s namespace.

<Window x:Class="JimmysComics.MainWindow"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="clr-namespace:JimmysComics"

Title="Jimmy's Comics" Height="350" Width="525">

<Window.Resources>

<local:ComicQueryManager x:Key="comicQueryManager"/>
</Window.Resources>

<Grid DataContext="{StaticResource ResourceKey=comicQueryManager}">

)) o, <Grid.ColumnDefinitions>
This ListView's <ColumnDefinition Width="2*"/>
SeleetionMode is <ColumnDefinition Width="3*"/>
“£.b>g. | </Grid.ColumnDefinitions>
Ingle so <ListView SelectionMode="Single" ItemsSource="{Binding AvailableQueries}"
OMYOMquﬂy SelectionChanged="ListView SelectionChanged">
tan be selected <LiszgiiwéIteTTim§late>
at a Lime. ataTemplate

<Grid Height="55" Margin="6">
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"/>

. . <ColumnDefinition Width="*"/>
The ListView on </Grid.ColumnDefinitions>
the r‘.ght has an <Border Width="55" Height="55">
i{an{tm?bfc </Boiégige Source="{Binding Image}" Stretch="UniformToFill"/>
fhatd“?hYS <StackPanel Grid.Column="1" VerticalAlignment="Top" Margin="10,0,0,0">
information about <TextBlock Text="{Binding Title}" TextWrapping="NoWrap"/>
cad\qyﬂﬂ. <TextBlock Text="{Binding Subtitle}" TextWrapping="NoWrap"/>
<TextBlock Text="{Binding Description}" TextWrapping="NoWrap"/>
</StackPanel>
</Grid>
</DataTemplate>
</ListView.ItemTemplate>
</ListView>

<ListView Grid.Column="1" SelectionMode="Single"

ItemsSource="{Binding CurrentQueryResults}">
<ListView.ItemTemplate>

<DataTemplate>
o <StackPanel Orientation="Horizontal">
The ListV/iew on the

<Image Source="{Binding Image}" Margin="0,0,20,0"
Yﬁhfhasanifcm Stretch="UniformToFill" Width="25" Height="25"

VerticalAlignment="Top" HorizontalAlignment="Right"/>
ﬁcffhfcfhatshows <StackPanel>
individual items in <TextBlock Text="{Binding Title}" />
the query vesults. </StackPanel>
</StackPanel>
</DataTemplate>
</ListView.ItemTemplate>
</ListView>
</Grid>
</Window>

682 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

When you run the app, the queries appear on the left, and the results of the selected query appear on the
right.

G Johnny America vs. the Pinko

LING is versatile 1
Modify every item returned from

Rock and Rell (limited editi
This code will add a string onto t ckand Roll (limi ition}
Woman's Work

LING is versatile 2
Perform calculations on collectior

LING provides extension method:

Hippie Madness (misprinted)
Revenge of the Mew Wave Freak (damaged)

LINQ is versatile 3 Black Monday
Store all or part of your results in

Sometimes you'll want to keep yc Tribal Tattos Madness

e
e
e
@
e
e
o)
e

The Death of an Object
Group comics by price range

| Combine Jimmy's values into gro
Jimmy buys a lot of cheap comic

~ Join purchases with prices
| Let's see if Jimmy drives a hard bz
This query creates a list of Purcha

Al comics in the collection
| Get all of the comics in the collect
This query returns all of the comic

W
]

QUERIES THAT RETURN COMIC BOOKS HAVE ADDITIONAL
INFORMATION: PRICE, SYNOPSIS, EVEN A COVER IMAGE.-
CAN YOU EIGURE OUT HOW TO GET THE COMIC QUERIES
TO DISPLAY ALL THE INFORMATION ABOUT EACH COMIC?
You'LL NEED TO ADD THE COMIC BOOK COVER IMAGES
TO THE PROJECT- YOU'LL FIND SOME HELPFUL XAML
CODE IN THE CHAPTER ON PAGES 689 AND ©70.

you are here » 683

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

this page intentionally left blank

We left this page blank so that you tan
vead this appendix in two—page mode, so the
exertise and its solution appear on diffevent
two—page spreads. £ you've viewing this as

a PDF in two—page mode, you may want to
furn on the tover page so the even pages are
on the vight and the odd pages ave on the
left.

684 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows foundation

*
*Chaptei 15 ~

www.itbook.store/books/9781449343507

THERE ARE ONLY A FEW PAGES IN
THIS CHAPTER THAT ARE SPECIFIC TO
WINDOWS STORE APPS.- YOU SHOULD
READ THEM ANYwAY!

Events are useful for any app, but especially
important for understanding XAML.

Events can be simple and straightforward, because you’ve been using
them throughout the book. But there’s a lot more depth to them than

you might expect. This chapter helps you understand events in more
detail.

Here’s what we recommend for this chapter:
* Read the chapter in the book through page 711.

#* Use the replacement pages in this appendix for the exercise on
pages 712-713 and its solution on pages 714-715.

* Read pages 716-719 in the book.

* Pages 720-723 are specific to Windows Store apps, but we
recommend that you read them anyway. They give you
some insight not just into Windows Store apps, but also into
some basic features of Windows 8.

#* We provide replacement pages for pages 724-729 in this
appendix.

#* Read the rest of the chapter in the book. The only pages you
should skip are the top of page 740, and pages 742-743.

685

https://itbook.store/books/9781449343507

put it all together

It's time to put what you've learned so far into practice. Your job is to complete the Ba11 and
Pitcher classes, add a Fan class, and make sure they all work together with a very basic
version of your baseball simulator.

© COMPLETE THE Prrener CLASS.
Below is what we’ve got for Pitcher. Add the CatchBall () and CoverFirstBase ()
methods. Both should create a string saying that the catcher has either caught the ball or run

to first base and add that string to a public ObservableCollection<string> called
PitcherSays.

class Pitcher {
public Pitcher (Ball ball) {

ball.BallInPlay += new EventHandler (ball BallInPlay);
}

void ball BallInPlay(object sender, EventArgs e) ({
if (e is BallEventArgs) {
BallEventArgs ballEventArgs = e as BallEventArgs;

if ((ballEventArgs.Distance < 95) && (ballEventArgs.Trajectory < 60))
CatchBall () ;

else \/ou)” need to 'Im?lc'ncr\{: these two
CoverFirstBase () ; methods o add a s{:\ring to the
) PiteherSays ObsevvableCollection.

-,
X

Pen ob3e<t

© WRITE A Fan cLASS.
Create another class called Fan. Fan should also subscribe to the BallInPlay event in its
constructor. The fan’s event handler should see if the distance is greater than 400 feet and the
trajectory is greater than 30 (a home run), and grab for a glove to try to catch the ball if it is. If
not, the fan should scream and yell. Everything that the fan screams and yells should be added
to an ObservableCollection<string> called FanSays.

Look at the output on the
\cacing page 1o see cxac{:l\/
what it should P!rih‘{:v 40\

7
%Bject

712 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

BUILD A VERY SIMPLE SIMULATOR.-
If you didn’t do it already, create a new WPF Application and add the following
BaseballSimulator class. Then add it as a static resource to the page.

using System.Collections.ObjectModel;

class BaseballSimulator ({
private Ball ball = new Ball();
private Pitcher pitcher;
private Fan fan;

public ObservableCollection<string> FanSays { get { return fan.FanSays; } }
public ObservableCollection<string> PitcherSays { get { return pitcher.PitcherSays;

public int Trajectory { get; set; }
public int Distance { get; set; }

public BaseballSimulator () {
pitcher = new Pitcher(ball);
fan = new Fan (ball);

}

public void PlayBall() {
BallEventArgs ballEventArgs = new BallEventArgs (Trajectory, Distance);
ball.OnBallInPlay (ballEventArgs) ;

Pitcher says

BUILD THE MAIN WINDOW. Pitch #1: | covered first base
Can you come up with the XAML Bitch #2: | caught the bl

just from looking at the screenshot to Pitch #3: | covered first bace
the right? The two TextBox controls

Play ball

are bound to the Trajectory

and Distance properties of the 0\

BaseballSimulator static Fan says

resource, and the pitcher and fan Den't forgc{: the Pitch #1: Woo-haa! Yeah!

chatter are ListView controls bound to Click event handler Pitch #2: Waa-hao! Yeah!

the two ObservableCollections. for the button. Pitch #3: Home runt I'm going for the ballt

See if you can make your simulator

generate the above fan and pitcher
chatter with three successive balls put
into play. Write down the values you

used to get the result below:

Ball 1: Ball 2: Ball 3:
Trajectory: . Trajectory: L Trajectory: .
Distance: Distance: Distance:

}

}

you are here »

www.itbook.store/books/9781449343507

713

https://itbook.store/books/9781449343507

Here are the Ball and BallEventArgs from earlier, and the new Fan class that needed to be added:

A
. O class Ball {
RC|§Q public event EventHandler BallInPlay;
sOLpt|OH public void OnBallInPlay(BallEventArgs e) {
' v EventHandler ballInPlay = BallInPlay;

if (ballInPlay != null)
ballInPlay (this, e); The OhBa“lnPlayO method just vaises

: the Bal”nPla\/ event—but it has
: to theek to make sure it's not null;
otherwise, it'll throw an exeeption.

Rcad——ovd\/
automatic class BallEventArgs : EventArgs {

public int Trajectory { get; private set; }

?roycrtws public int Distance { get; private set; }

work Y.ca“\/ public BallEventArgs (int trajectory, int distance)

well in event {

argumcn{:s this.Trajectory = trajectory;

betause this.Distance = distance;

the event }

handlevs vead !

onl\/ the data)) .

passcd {:o using System.Collections.ObjectModel;

class Fan {

{hCm. public ObservableCollection<string> FanSays = new ObservableCollection<string>();
private int pitchNumber = 0; The Fah obJCC{Z,S Lons‘{:\'ud{'pr
public Fan(Ball ball) { / ¢thains its event handler

ball.BallInPlay += new EventHandler (ball BallInPlay); onto the BalIInPIa\/ event.
}
void ball BallInPlay(object sender, EventArgs e) {
pitchNumber++;
) if (e is BallEventArgs) {

The ‘(:ahs Bal”nPIa\/ BallEventArgs ba?lEventArgs = e as BallEventArgs;

Cvc“£ handler looks if (ballEventArgs.Distance > 400 && ballEventArgs.Trajectory > 30)

for any ball that’s FanSays.Add ("Pitch #" + pitchNumber

hish and |on3. + ": Home run! I'm going for the ball!");

else

FanSays.Add ("Pitch #" + pitchNumber + ": Woo-hoo! Yeah!");

}
Here’s the code-behind for the page:

public partial class MainWindow : Window {
BaseballSimulator baseballSimulator;

public MainWindow () {
InitializeComponent () ;

baseballSimulator = FindResource ("baseballSimulator") as BaseballSimulator;
private void Button Click(object sender, RoutedEventArgs e) {

baseballSimulator.PlayBall();
}

714 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

Here’s the XAML for the page. It also needs: <local:BaseballSimulator x:Key="baseballSimulator"/>

<Window.Resources> Makc sure \/ou also add
<local:BaseballSimulator x:Key="baseballSimulator"/> < {he mem1 Cd {
. o g
</Window.Resources> o the <Wi d P ?(Z:r Y
e Indow> 9
<Grid Margin="5" DataContext="{StaticResource ResourceKey=baseballSimulator}">

<Grid.ColumnDefinitions>
<ColumnDefinition Width="200" />
<ColumnDefinition/>
</Grid.ColumnDefinitions>
<StackPanel Margin="0,0,10,0">
<TextBlock Text="Trajectory" Margin="0,0,0,5"/>
<TextBox Text="{Binding Trajectory, Mode=TwoWay}" Margin="0,0,0,5"/>
<TextBlock Text="Distance" Margin="0,0,0,5"/>
<TextBox Text="{Binding Distance, Mode=TwoWay}" Margin="0,0,0,5"/>
<Button Content="Play ball!" Click="Button Click"/>
</StackPanel>
<StackPanel Grid.Column="1">
<TextBlock Text="Pitcher says" Margin="0,0,0,5"/>
<ListView ItemsSource="{Binding PitcherSays}" Height="125"/>
<TextBlock Text="Fan says" Margin="0,0,0,5"/>
<ListView ItemsSource="{Binding FanSays}" Height="125"/>
</StackPanel>
</Grid>

And here’s the Pitcher class (it needs using System.Collections.ObjectModel; at the top):
class Pitcher {
public ObservableCollection<string> PitcherSays = new ObservableCollection<string>();

private int pitchNumber = 0;

public Pitcher (Ball ball) { ”)
itther's

ball.BallInPlay += ball BallInPlay; Mk ave You {hc P
BalllnPlaz event handler.

} £ looks or any low balls.

void ball BallInPlay(object sender, EventArgs e) {
pitchNumber++;
if (e is BallEventArgs) {
BallEventArgs ballEventArgs = e as BallEventArgs;
if ((ballEventArgs.Distance < 95) && (ballEventArgs.Trajectory < 60)
CatchBall() ;
else
CoverFirstBase();

}
private void CatchBall() {

PitcherSays.Add ("Pitch #" + pitchNumber + ": I caught the ball");

}

private void CoverFirstBase () { HCV‘C are {:h
PitcherSays.Add("Pitch #" + pitchNumber + ": I covered first base"); {, SC{: ﬂ\c cza,u{fs;c used

. OUTPut. Yours
} Ball 1: Ball 2: Ball 3: "9t be a little il o

Trajectory: 15 Trajectory: 48 Trajecory: | 40
Distance: 105 Distance: @0 Distance: ... 4'36 ,,,,,,,,

you are here » 715

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

bubble toil and trouble

XAML controls use routed events

Flip to page 722 in the main part of the book and have a closer look at the IntelliSense window that pops
up when you type override into the IDE. Yes, it’s for a Windows Store app, but the same exact principle
applies to WPE. Two of the names of the event argument types are a little different from the others. The
DoubleTapped event’s second argument has the type DoubleTappedRoutedEventArgs, and the
GotFocus event’s is a RoutedEventArgs. The reason is that the DoubleTapped and GotFocus
events are routed events. These are like normal events, except for one difference: when a control object
responds to a routed event, first it fires off the event handler method as usual. Then it does something else:
if the event hasn’t been handled, it sends the routed event up to its container. The container fires the
event, and then if it isn’t handled, it sends the routed event up to its container. The event keeps bubbling
up until it’s either handled or it hits the root, or the container at the very top. Here’s a typical routed event

handler method signature.

private void EventHandler (object sender, RoutedEventArgs e)

The RoutedEventArgs object has a property called Handled that the event handler can use to indicate
that 1t’s handled the event. Setting this property to t rue stops the event from bubbling up.

In both routed and standard events, the sender parameter always contains a reference to the object that
called the event handler. So if an event i1s bubbled up from a control to a container like a Grid, then when
the Grid calls its event handler, sender will be a reference to the Grid control. But what if you want

to find out which control fired the original event? No problem. The RoutedEventArgs object has a
property called OriginalSource that contains a reference to the control that initially fired the event. If
OriginalSource and sender point to the same object, then the control that called the event handler is

the same control that originated the event and started it bubbling up.

IsHitTestVisible determines if an element is “visible”
to the pointer or mouse

Typically, any element on the page can be “hit” by the pointer or mouse—as
long as it meets certain criteria. It needs to be visible (which you can change
with the Visibility property), it has to have a Background or Fill
property that’s not null (but can be Transparent), it must be enabled (with
the IsEnabled property), and it has to have a height and width greater
than zero. If all of these things are true, then the IsHitTestVisible
property will return True, and that will cause it to respond to pointer or
mouse events.

This property is especially useful if you want to make your events “invisible”

to the mouse. If you set IsHitTestVisible to False, then any pointer
taps or mouse clicks will pass right through the control. If there’s another
control below it, that control will get the event instead.

You can see a list of input events that are routed events here:
http://msdn.microsoft.com/en-usl/library/windows/apps/Hh758286.aspx

724

www.itbook.store/books/9781449343507

The structure of
controls that contain
other controls that in
turn contain yet more
controls is called

an @ject iree, and
routed events hubble
up the tree from
child to parent until
they hit the root
element at the top.

http://msdn.microsoft.com/en-us/library/windows/apps/Hh758286.aspx
https://itbook.store/books/9781449343507

windows presentation foundation

Create an app to explore routed events

Here’s a WPF application that you can use to experiment with routed events. It’s got a
StackPanel that contains a Border, which contains a Grid, and inside that grid are an Ellipse
and a Rectangle. Have a look at the screenshot. See how the Rectangle is on top of the Ellipse?
If you put two controls into the same cell, they’ll stack on top of each other. But both of those
controls have the same parent: the Grid, whose parent
is the Border, and the Border’s parent is the StackPanel.

Routed events from the Rectangle or Ellipse bubble up E gfl.f:;;;:a:;re‘ge‘i
through the parents to the root of the object tree. [] Ellipse sets handled

[Rectangle sets handled

Ym% ve already seen the CheckBox control, [Update Rectangle IsHitTestVisible

which you can use to toggle a value on and New IsHitTestVisible value

off. The Content property sets the label for

the control. The IsChecked property is a

Nullable<bool> because in addition to on and The rectangle was pressed
. . . . The grid was pressed

off, it can also have a third indeterminate state

The border was pressed

<Grid Margin="5"> The panel was pressed

<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"/>
<ColumnDefinition/>

</Grid.ColumnDefinitions>

<StackPanel x:Name="panel" MouseDown="StackPanel MouseDown">

<Border BorderThickness="10" BorderBrush="Blue" Width="155" x:Name="border"
Margin="20" MouseDown="Border MouseDown">

<Grid x:Name="grid" MouseDown="Grid MouseDown">

Rou{cd events <Ellipse Fill="Red" Width="100" Height="100"
bubbk up fhc MouseDown="Ellipse MouseDown"/>
°QFC£'bTC~ <Rectangle Fill="Gray" Width="50" Height="50"
MouseDown="Rectangle MouseDown" x:Name="grayRectangle"/>
</Grid>
</Border>

<ListBox BorderThickness="1" Width="250" Height="140" x:Name="output" Margin="0,0,20,0"/>
</StackPanel>
<StackPanel Grid.Column="1">

<CheckBox Content="Border sets handled" x:Name="borderSetsHandled"/>

<CheckBox Content="Grid sets handled" x:Name="gridSetsHandled" />

<CheckBox Content="Ellipse sets handled" x:Name="ellipseSetsHandled"/>

<CheckBox Content="Rectangle sets handled" x:Name="rectangleSetsHandled"/>

<Button Content="Update Rectangle IsHitTestVisible"

Click="UpdateHitTestButton" Margin="0,20,20,0"/>
<CheckBox IsChecked="True" Content="New IsHitTestVisible value"

x:Name="newHitTestVisiblevalue" /> sChetked defaults o False. This CheekBox
</StackPanel> has it set 4o True betause tontrols alwa\/S
</Grid> have IsH‘rt_rcs{VlSIblc SC{', ‘{'D £V'IAC b\/ dC‘caUl'k-

Flip the page to finish the app » you are here » 725

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

climbing the object tree

YOU'LL NEED THIS OsservasLeCoLLEcTToN TO DISPLAY OUTPUT IN THE LISTBOX.

Make a field called outputItems and set the ListBox.ItemsSource property in the page constructor. And don’t
forget to add the using System.Collections.ObjectModel; statement for ObservableCollection<T>.

public partial class MainWindow : Window { < :
ObservableCollection<string> outputItems = new ObservableCollection<string>() ;

public MainWindow () {
this.InitializeComponent () ;

output.ItemsSource = outputltems;

Here’s the code-behind. Each control’s MouseDown event handler clears the output if it’s the original source, and
then it adds a string to the output. If its “handled” toggle switch is on, it uses e . Handled to handle the event.

private void Ellipse MouseDown (object sender, MouseButtonEventArgs e) {

if (sender == e.OriginalSource) outputlItems.Clear();
outputItems.Add ("The ellipse was pressed");
if (ellipseSetsHandled.IsChecked == true) e.Handled = true;

private void Rectangle MouseDown (object sender, MouseButtonEventArgs e) {

if (sender == e.OriginalSource) outputlItems.Clear();
outputItems.Add ("The rectangle was pressed");
if (rectangleSetsHandled.IsChecked == true) e.Handled = true;

private void Grid MouseDown (object sender, MouseButtonEventArgs e) {

if (sender == e.OriginalSource) outputlItems.Clear();
outputItems.Add ("The grid was pressed");
if (gridSetsHandled.IsChecked == true) e.Handled = true;

private void Border MouseDown (object sender, MouseButtonEventArgs e) {

if (sender == e.OriginalSource) outputlItems.Clear();
outputItems.Add ("The border was pressed");
if (borderSetsHandled.IsChecked == true) e.Handled = true;

private void StackPanel MouseDown (object sender, MouseButtonEventArgs e) {
if (sender == e.OriginalSource) outputlItems.Clear();
outputItems.Add ("The panel was pressed");

private void UpdateHitTestButton (object sender, RoutedEventArgs e) {
grayRectangle.IsHitTestVisible = (bool)newHitTestVisibleValue.IsChecked;

} The Click event handler for the button uses the [sOn /
property of the toggle switth to turn [sHitTestVisible
on or obf for the RCC£an3k tontrol.
726 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

HERE’S THE OBJELT GRAPH FOR YOUR MAIN WINDOW.
The Mainwindow class is at the root of the object tree. When you create

the new WPF application, the MainWindow.xaml and MainWindow.xaml.cs files
create an object that extends the Window class.

This is the Grid that you added to the
XAML, which holds the other controls.

Here’s the StackPanel that contains the
Border, Grid, Ellipse, and Rectangle.

N . \‘0

This Grid can receive routed
MouseDown events, but

it won’t raise them. Its
IsHitTestVisible property
defaults to False because it doesn’t
have a Backgroundor Fi11
property. If you update the XAML
to add a Background property,

its IsHitTestVisible property
will default to true—even if you
set that property to Transparent.
That will cause it to respond to
pointer presses.

Flip the Page to use your new app to explore routed events » you are here » 727

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

the bubbles go straight to your head

RUN THE APP AND CLICK OR TAP THE GRAY
RECTANGLE.

You should see the output in the screenshot to the right. ——

You can see exactly what’s going on by putting a breakpoint on the first line of
Rectangle MouseDown (), the Rectangle control’s MouseDown event handler:

private void Rectangle MouseDown(cbject sender, MouseButtonEventirgs e)

{ The rectangle was pressed
M CE - S TS ER LTI Y] outputItems.Clear(); The grid was pressed
outputItems.Add("The rectangle was pressed”); The barder was pressed
if (rectangleSetsHandled.IsChecked == true) e.Handled = true; The panel was pressed

b

Click the gray rectangle again—this time the breakpoint should fire. Use Step

Over (F10) to step through the code line by line. First you'll see the i £ block

execute to clear the outputItems ObservableCollection that’s bound to

the ListBox. This happens because sender and e.OriginalSource reference the same Rectangle control,
which is true only inside the event handler method for the control that originated the event (in this case, the control
that you clicked or tapped), so sender ==e.OriginalSource is true.

When you get to the end of the method, keep stepping through the program. The event will bubble up
through the object tree, first running the Rectangle’s event handler, then the Grid’s event handler, then the
Border’s, then the Panel’s, and finally it runs an event handler method that’s part of LayoutAwarePage—this
1s outside of your code and not part of the routed event, so it will always run. Since none of those controls are the
original source for the event, none of their senders will be the same as e .OriginalSource, so none of them
clear the output.

TURN IsHzrTestVzrsIsLe OFF, PRESS THE “UPDATE”
BUTTON, AND THEN CLICK OrR TAP THE RECTANGLE.

<—— You should see this output.

[Mew IsHitTestVisible value

The ellipse was pressed)))
Wait a minute! You pressed the Rectangle, but the Ellipse control’s

The grid was pressed .
MouseDown event handler fired. What’s going on?

The border was pressed
The panel was pressed When you pressed the button, its C1ick event handler updated
the Rectangle control’s IsHitTestVisible property to false,
which made it “invisible” to pointer presses, clicks, and other pointer
events. So when you tapped the Rectangle, your tap passed right
through it to the topmost control underneath it on the page that has
IsHitTestVisible set to true and has a Background property that’s set to a color or Transparent. In
this case, it finds the Ellipse control and fires its MouseDown event.

728 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

CHECK THE “GRID SETS
HANDLED” BOX AND
CLICK OR TAP THE GRAY
RECTANGLE.-

You should see this output. ———

[] Barder sets handled

«f| Grid zets handled

[Ellipse sets handled

[Rectangle sets handled

So why did only two lines get | Update Rectangle IsHitTestVisible
added to the output ListBox? New IsHitTestVisible value

Step through the code again

to see what’s going on. This time,
gridSetsHandled.IsOn

was true because you toggled the
gridSetsHandled to On, so

the last line in the Grid’s event
handler set e. IsHandled to
true. As soon as a routed event
handler method does that, the event
stops bubbling up. As soon as the

The rectangle was pressed

The grid was pressed

Grid’s event handler completes, the

app sees that the event has been handled, so it doesn’t call the Border or Panel’s event handler method,
and instead skips to the event handler method in LayoutAwarePage that’s outside of the code you
added.

A routed event
first fires the

USE THE APP TO EXPERIMENT wiTH RouTED events. event handler for
Here are a few things to try: tlle COﬂtI’Ol tllat

% Click on the gray Rectangle and the red Ellipse and watch the output or 1 g 1 nat eC[tll e eve nt,

to see how the events bubble up.

* Turn on each of the toggle switches, starting at the top, to cause the anC[tllel'l l)l[l)l)les UP
event handlers to set e . Handled to true. Watch the events stop
bubbling when they’re handled. tllI’Ol[gll the control
% Set breakpoints and debug through all of the event handler methods. hierarclly until 1t
* Iry setting a breakpoint in the Ellipse’s event handler method, and 111 is tlle 1o or an

then turn the gray Rectangle’s IsHitTestVisible property on
and off by toggling the bottom switch and pressing the button. Step
through the code for the Rectangle when IsHitTestVisible is event hanc[ler sets

set to false. e.Hancﬂec[to true.

% Stop the program and add a Background property to the Grid to
make it visible to pointer hits.

you are here » 729

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

this page intentionally left blank

We left this page blank so that you tan
vead this appendix in two—page mode, so the
exertise and its solution appear on different
two—page spreads. £ you've viewing this as

a PDF in two—page mode, you may want to
furn on the tover page so the even pages are
on the vight and the odd pages ave on the
left.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows foundation

* *
" Chapter 16

WHEN YOou BUILD YOUR APPS USING
THE MODEL -VIEW-VIEWMODEL PATTERN,
YOUR CODE IS EASIER TO BUILD TODAY-.. AND TO
MANAGE TOMORROW -

Great developers follow design patterns.

In this chapter, you’ll learn about Model-View-ViewModel (MVVM),
a design pattern for building effective WPF apps. Along the way,
you’ll learn what a design pattern is, and you’ll learn how to use
XAML controls to create great animations.

Here’s how we recommend that you work through Chapter 16:
#* Read through page 749.
* Follow our replacement pages for 750-757.
* Read pages 758-764.
*

Start the Stopwatch project on page 762 in the book, and
continue it using a combination of book pages and appendix
replacement pages 765, 768, 770773, and 781-787.

Read page 788 in the book.

The rest of Chapter 16 is replaced with pages 789-807 in this
appendix.

* There’s information on page 806 about how to do Lab #3.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

apply the pattern

Use the MVVM pattern to start building
the basketball roster app

Create a new WPF application and make sure it’s called BasketballRoster
(because we’ll be using the namespace BasketballRoster in the code, and this

will make sure your code matches what’s on the next few pages).

o

750

*

e‘éDotm
Y x

CREATE THE MobeL, Vrew, AND VewMobeL FOLDERS IN THE PROJECT-
Right-click on the project in the Solution Explorer and choose New Folder from the Add menu:

Solution Explorer

@ o-20dBm *R
Search Solution Explorer (Ctrl+;) P-
T Selution 'BasketballRoster' (1 project)
4 BaskethballRg + :
; s Propertiy i:::”d When you use the Solution
b g Assets . Explorer to add a pew
’ ﬁ ;;pm):: Run Code Ansiysi folder to your project,
B Backetba Scopeto This the IDE creates a new
b D MainPag El Mew Sclution Explorer View namespace based on the
Package: g N P— folder name. This causes
Add Reference.. O Existing ltemn... Shifts Alt+ A the Add—Class... menu
| Setution Explorer Ck - Add Service Reference... ‘W@ New Folder option to create classes
Store b s Shift Al C with that namespace. So if
e et you add a class to the Model
s folder, the IDE will add
b ’ BasketballRoster.Model
¥ Add Solution to Source Control... .
Y cu oo to the namespace line at
) o the top of the class file.
X Remove Del
I Rename F2
Unload Project
c Open Folder in File Explorer Solution Explorer v ax
Open in Blend... Gj Y@ -2 0 E——H @ ¥
& Properties Search Solution Explorer (Ctrl+;) P~

Add a Model folder. Then do it two more times to add
the View and ViewModel folders, so your project looks
like this: >
These folders will hold
the classes, tontrols, and
windows co\r Your app-

Appendix ii

X

www.itbook.store/books/9781449343507

¢

a1 Solution 'BasketballRoster' (1 project)
4 BasketballRoster

b S Properties

D are

CES

o
] Model

B View
W ViewlMode

1 App.config

b Y Appxaml
P Y MainWindow.xaml

*

https://itbook.store/books/9781449343507

windows presentation foundation

* *

© sTaRT BUILDING THE MODEL BY ADDING THE PLavER CLASS.

Right-click on the Model folder and add a class called Player. When you add ‘\\‘»‘Q‘
a class into a folder, the IDE updates the namespace to add the folder name to the _y“‘
end. Here’s the Player class: When you add a ¢lass file into Piayer
namespace BasketballRoster.Model { & 4@ ‘FOIdCY; the IDE adds the Name: string
class Player { folder name 4o the namespace. Number: int
public string Name { get; private set; } Starter: bool
public int Number { get; private set; }
public bool Starter { get; private set; }
public Player (string name, int number, bool starter) {
Name = name;
Number = number;
Starter = starter;
| |
) J Different tlasses tonterned
with diffevent things? 2, These classes are small because they’re only

concerned with keeping track of which players are
in each roster. None of the classes in the Model are
concerned with displaying the data, just managing it.
© FinisH THE MoDEL BY ADDING THE Boster cLASS
Next, add the Roster class to the Model folder. Here’s the code for it.

This sounds ‘(:amihar...

namespace BasketballRoster.Model { ROStler
class Roster { TeamName: string
public string TeamName { get; private set; } Players: IEnumerable<string>

private readonly List<Player> players = new List<Player>();
public IEnumerable<Player> Players {

get { return new List<Player>(players); }

}

The tells You public Roster (string teamName, IEnumerable<Player> players)

L. TeamName = teamName;
{-‘ha{ this ‘C'Cldﬁ\; players.AddRange (players) ;
is private. y

}
}

Your Model folder should now 100k like this: se—
4 @l Model
We added an underscore to the beginning [C# P|E}fEF. s
of the name of the _players field. Adding
an underscore to the beginning of private P C# Roster.cs

fields is a very common naming convention.
We’re going to use it throughout this
chapter so you can get used to seeing it.

We'l] add the view on the next page >

* you are here » 751

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

take of your controls *

© 4pb A NEW MAIN WINDOW TO THE View FOLDER.
Right-click on the View folder and add a new Window called LeagueWindow.xaml.

B ViewModel B YO Newltem., Ctrl+Shift+A
€1 App.config Scope to This ‘0 Edsting ltem... Shift+Alt+A
b D) Appaaml Mew Solution Explorer View ‘M New Folder
P B MainWindow
Exclude From Project & Window...

Your project’s View folder should now have a XAML window in it called
LeagueWindow.xaml. This is just like the MainWindow.xaml window that you’ve
been working with throughout the book. It’s still a Window object with a graph that’s
defined with XAML. The only difference is that it’s called LeagueWindow instead of
MainWindow.

© DbeLETE THE MAIN WINDOW AND REPLACE IT WITH YOUR NEW WINDOW-
Delete the MainWindow.xam! file from the project by right-clicking on it and choosing Delete. Now try
building and running your project—you’ll get an exception when the program starts:

An unhandled exception of type "Systern.|0.IOException’ occurred in
PresentationFramework.dil

Additional information: Cannot locate resource 'mainwindow.xaml',

Well, that makes sense, since you deleted MainWindow.xaml. When a WPF application starts up, it shows
the window specified in the StartupUri property in the <Application> tag App.xaml:

<Application x:Class="BasketballRoster.App"
xmlns="http://schemas.microsoft.com/winfx/2886/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/28086/xaml"
StartupUri="MainWindow.xaml">
<Application.Resources:

</Application.Resources:
</Application:

Open App.xaml and edit StartupUri so your program pops up the window you just added:
<Application x:Class="BasketballRoster.App"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
StartupUri="View/LeagueWindow.xaml">

Once you make that change, rebuild and rerun your program. Now it should start and show your newly
added window.

752 ék

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows

User controls let you create your own controls

Take a look at the basketball roster program that you’re building. Each team gets an
identical set of controls: a TextBlock, another TextBlock, a ListView, another TextBlock,
and another ListView, all wrapped up by a StackPanel inside a Border. Do we really need
to add two identical sets of controls to the page? What if we want to add a third and fourth
team—that’s going to mean a whole lot of duplication. And that’s where user controls
come in. A user control is a class that you can use to create your own controls. You use
XAML and code-behind to build a user control, just like you do when you build a page.
Let’s get started and add a user control to your BasketballRoster project.

Q Add a new user control to your View folder.

Right-click on the View folder and add a new item. Choose M| User Control WPR) {137
the dialog and call it RosterControl.xaml.

e Look at the code-behind for the new user control.

Open up RosterControl.xaml.cs. Your new control extends the UserControl base
class. Any code-behind that defines the user control’s behavior goes here.

namespace BasketballRoster.View
{
£ <summary >
Interaction logic for RosterControl.xaml
fff </summary>
public partial class RosterCentrol : UserControl

{

public RosterControl()

{
}

InitializeComponent();

}
¥

@ Look at the XAML for the new user control.
The IDE added a user control with an empty <Grid>. Your XAML will go here.

Before you flip the page, see if you can figure out what

foundation

UserControl
is a hase class
that gives
you a way to
encapsulate
controls that
are related
to each otller,
and lets you
build logic
that defines
the hehavior
of the control.

XAML should go into the new RosterControl by looking “TEACH A MAN TO FISH..."
at the Windows Store app screenshot on page 746. We’re nearing the end of the book,

so we want to challenge you with

e ' - problems that are similar to ones
inside a blue <Border>. Can you figure out which property gives you’ll face in the real world. A good

a Border control rounded corners? programmer takes a lot of educated
guesses, so we’re giving you barely
enough information about how

aUserControl works. You don’t
even have binding set up, so you

* It will have a <StackPanel> to stack up the controls that live

* It has two ListView controls that display data for players, so it also
needs a <UserControl.Resources> section that contains a
DataTemplate. We called it PlayerItemTemplate.

* Bind the ListView items to properties called Starters and won’t see data in the designer! How
Bench, and the top TextBlock to a property called TeamName. much of the XAML can you build
before you flip the page to see the
% The Border control lives inside a <Grid> with a single row that code for RosterControl?

has Height="Auto" to keep it from expanding past the bottom
of the ListView controls to fill up the entire page.

www.itbook.store/books/9781449343507

753

https://itbook.store/books/9781449343507

model view viewmodel

*

Q Finish the RosterControl XAML.

Here’s the code for the RosterControl user control that you added to the View folder. Did you
notice how we gave you properties for binding, but no data context? That should make sense. The two
controls on the page show different data, so the page will set different data contexts for each of them.

<UserControl x:Class="BasketballRoster.View.RosterControl"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
mc:Ignorable="4d"

You alveady know that tontrols thange
d:DesignHeight="450" d:DesignWidth="300"> — size based on {:hci\r Hcigh{: and Wld‘{;\'\ *-
properties. You ean change these
<UserControl.Resources> { |
numbevs to alter how the tontro
<DataTemplate x:Key="PlayerItemTemplate'"> : : : .
<TextBlock> is displayed in Jd\)c IDEs. D.csng?\cr
window when you're modl("\lmg it.

<Run Text="{Binding Name, Mode=OneWay}"/>
<Run Text=" #"/>

<Run Text="{Binding Number, Mode=OneWay}"/>

</TextBlock> T n T P
We put the data template for the ListView items in its
</DataTemplate>
own static resource. Then, instead of having a <ListView.
</UserControl.Resources> . h
ItemTemplate> section we used the static resource
<Grid> using the ItemTemplate property in the ListView tag:
<Grid.RowDefinitions> ItemTemplate="{StaticResource PlayerItemTemplate}"

<RowDefinition Height="Auto"/>
</Grid.RowDefinitions>

You ¢an use the CornerRadius Fro?cr‘f:\/
to give a Border vounded orners.

<Border BorderThickness="2" BorderBrush="Blue" CornerRadius="6" Background="Black">
<StackPanel Margin="20">
<TextBlock Foreground="White" FontFamily="Segoe" FontSize="20px"
FontWeight="Bold" Text="{Binding TeamName}" />
<TextBlock Foreground="White" FontFamily="Segoe" FontSize="16px"
Text="Starting Players" Margin="0,5,0,0"/>
Bo{h deﬂﬂcw — > <ListView Background="Black" Foreground="White" Margin="0,5,0,0"

Lon{roklﬁc £hc ItemTemplate:"{?ta?icResource PlayerItemTemplate}"
ItemsSource="{Binding Starters}" />
same template s iBinding Startersit
) <TextBlock Foreground="White FontFamily="Segoe" FontSize="16px
dc-('\mcd as a

Text="Bench Players" Margin="0,5,0,0"/>
<ListView Background="Black" Foreground="White" ItemsSource="{Binding Bench}"

ItemTemplate="{StaticResource PlayerItemTemplate}" Margin="0,5,0,0"/>
</StackPanel>

</Border>
</Grid>
</UserControl>

stati¢ vesourte. —»

754 Appendix ii f!. ; *

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

Build the ViewModel for the BasketballRoster app by looking at the data in the
Model and the bindings in the View, and figuring out what “plumbing” the app
needs to connect them together.

e s

RC‘SQ (J‘TL ‘\\
) B2
© 4DD THE BOSTER CONTROLS TO LeacueWnpbow-xamL. (‘“‘

First add these xm1lns properties to the page so it recognizes the new namespaces:

xmlns:view="clr-namespace:BasketballRoster.View"
xmlns:viewmodel="clr-namespace:BasketballRoster.ViewModel"

Then add an instance of LeagueViewModel as a static resource:

<Window.Resources>
<viewmodel:LeagueViewModel x:Key="LeagueViewModel"/>
</Window.Resources>

Now you can add a StackPanel with two RosterControls to the page:

<StackPanel Orientation="Horizontal" Margin="5"
VerticalAlignment="Center" HorizontalAlignment="Center"
DataContext="{StaticResource ResourceKey=LeagueViewModel}" >
<view:RosterControl Width="200" DataContext="{Binding JimmysTeam}" Margin="0,0,20,0" />
<view:RosterControl Width="200" DataContext="{Binding BriansTeam}" />
</StackPanel>

Make sure you ereated the classes and pages
/ in the vight folders; otherwise, the namespaces

e CREATE THE VzewMobeL CLASSES. won't mateh the tode in the solution.

Cireate these three classes in the ViewModel folder.

PlayerViewModel RosterViewModel LeagueViewModel
Name: string TeamName: string JimmysTeam: RosterViewModel
Number: int Starters: ObservableCollection BriansTeam: RosterViewModel
<PlayerViewModel>
Bench: ObservableCollection private GetBomberPlayers(): Model.Roster
<PlayerViewModel> private GetAmazinPlayers(): Model.Roster

constructor:
RosterViewModel(Model.Roster)

private UpdateRosters()

© Make THE VzewMobe. CLASSES WORK-

% The PlayerViewModel class is a simple data object with two properties.

The LeagueViewModel class has two private methods to create dummy data for the page. It

See page . .
Pad creates Model .Roster objects for each team that get passed to the RosterViewModel constructor.

74’ 3 ﬁor a
hint about % The RosterViewModel class has a constructor that takes a Model .Roster object. It sets the
the LIN@—> TeamName property, and then it calls its private UpdateRosters () method, which uses LINQ
query-.. queries to extract the starting and bench players and update the Starters and Bench properties.
Add using Model; to the top of the classes so you can use objects in the Model namespace.

| If the IDE gives you an error message in the XAML designer that LeagueViewModel
does not exist in the ViewModel namespace, but you’re 100% certain you added
it correctly, try right-clicking on the BasketballRoster project and choosing Unload
Project, and then right-click again and choose Reload Project to reload it. But make
el a0 e SUEE YOU don’t have any errors in any of the C# code files.

you are here » 755

www.itbook

https://itbook.store/books/9781449343507

exercise solution

LeRcise
59Lyt|pu

RosterV/iewModel objects
that a RosterControl tan
use as its data context.
[t eveates the Roster

RosterViewModel 1o use.

This private method

LeagueV/iewModel exposes [{

namespace BasketballRoster.ViewModel ({

using Model;

using System.Collections.ObjectModel;

class LeagueViewModel ({

public LeagueViewModel () {
Roster briansRoster

public RosterViewModel BriansTeam { get;
public RosterViewModel JimmysTeam { get;

The ViewModel for the BasketballRoster app has three classes: LeagueViewModel,
PlayerViewModel, and RosterViewModel. They all live in the ViewModel folder.

If you left out the using Model; line
then you’d have to use Model . Roster
instead of Roster everywhere.

set; }
set; }

BriansTeam

new Roster ("The Bombers",
new RosterViewModel (briansRoster) ;

model objeet for the \%

}

Roster jimmysRoster
JimmysTeam

new Roster ("The Amazins",
new RosterViewModel (jimmysRoster) ;

private IEnumerable<Player> GetBomberPlayers() {

List<Player> bomberPlayers

You use elasses from

the View to store

new List<Player>()

GetBomberPlayers());

GetAmazinPlayers()) ;

{

t d new Player ("Brian", 31, true),
9enerates ummy new Player ("Lloyd", 23, true),
da{a £or fhc new Player ("Kathleen",6, true),
Bombers b\/ cha{jhg new Player ("Mike", 0, true),

3 l,.f £ new Player ("Joe", 42, true),
new List o new Player ("Herb",32, false),
Pla\/ﬂ' ob\)cc{:s. new Player ("Fingers",8, false),

}i
return bomberPlayers;
}

Dummy data typically goes in
the ViewModel because the
state of an MVVM application
is managed using instances
of the Model classes that
are encapsulated inside the
ViewModel objects.

private IEnumerable<Player> GetAmazinPlayers (
List<Player> amazinPlayers

{

new List<Player>() {

Your data, whith
is why £his method
veturns Player
objects and not
PlayerViewModel
oh)céfs

}

new Player ("Jimmy", 42, true),
new Player ("Henry",11l, true),
new Player ("Bob",4, true),

new Player ("Lucinda", 18, true),
new Player ("Kim", 16, true),

new Player ("Bertha", 23, false),
new Player ("Ed",21, false),

bi

return amazinPlayers;

namespace BasketballRoster.ViewModel ({

class PlayerViewModel ({
public string Name { get;
public int Number { get;

set;
set;

public PlayerViewModel (string name,

Name name;
Number = number;

Heve's the PlayerViewModel. [+s Just a

ﬁka data

obJCC£ with properties for

the data template 4o bind 4o

}
}

int number) {

756 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

namespace BasketballRoster.ViewModel ({
using Model;
using System.Collections.ObjectModel;
using System.ComponentModel;

class RosterViewModel {

public ObservableCollection<PlayerViewModel> Starters { get; set; }
public ObservableCollection<PlayerViewModel> Bench { get; set; }

private Roster roster; €~_ This is where the app stores its state—in Roster objects
encapsulated inside the ViewModel- The vest of the elass translates

the Model data into properties that the View ¢an bind to.

private string _teamName;
public string TeamName {
get { return teamName; }
set {
_teamName = value;
}
}

public RosterViewModel (Roster roster)

_roster = roster;

Starters = new ObservableCollection<PlayerViewModel> () ;
Bench = new ObservableCollection<PlayerViewModel> () ;

TeamName = _roster.TeamName;

UpdateRosters () ;
}

private void UpdateRosters() {
var startingPlayers =

from player in roster.Players

where player.Starter
select player;

foreach (Player player in startingPlayers)
Starters.Add (new PlayerViewModel (player.Name, player.Number)) ;

var benchPlayers =

from player in roster.Players
where player.Starter == false

select player;

foreach (Player player in benchPlayers)
Bench.Add (new PlayerViewModel (player.Name, player.Number)) ;

In a typical MVVM app, only classes in the ViewModel
implement INotifyPropertyChanged because those
are the only objects that XAML controls are bound to.

Whenever the TeamName property
thanges, the Rosterl/iewModel fives off
a PropertyChanged event so any objeet
bound to it will get updated.

This LIN® query
‘cihds all the s£ar{:in3

players and adds
/ them to the Starters
ObservableColleetion

F\ropcr{:\/.

Here's a similar LIN®
é T‘Cr\l ‘{'p ‘Clhd ’{Z\'\C
benth players:

In a typical MVVM app, only classes in the ViewModel implement INotifyPropertyChanged.

That's because the ViewModel contains the only objects that XAML controls are bound to. In this
project, however, we didn’t need to implement INotifyPropertyChanged because the bound properties
are updated in the constructor. If you wanted to modify the project to let Brian and Jimmy change their

team names, you'd need to fire a PropertyChanged event in the TeamName set accessor.

www.itbook.store/books/9781449343507

you are here » 757

https://itbook.store/books/9781449343507

There is one change you’ll need to make to get the ViewModel
code on pages 766 and 767 in the book to work. On page 766
you’re given three using statements, including this one:

using Windows.UI.Xaml;
You’ll need to replace it with this using statement:
using System.Windows.Threading;

The Windows.Ul.Xaml namespace is part of the .NET
Framework for Windows Store, so you don’t use it for WPF
applications. But you need System.Windows.Threading
because your ViewModel has a DispatcherTimer.

Other than that change, the code is identical. This is a good
example of decoupled layers in the Model-View-ViewModel
pattern: since you used identical C# code (except for that
one using statement) for the ViewModel and Model, you
could reuse those classes to port the stopwatch app to WPF.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

;‘E windows presentation foundation

Build the view for a simple stopwatch

Here’s the XAML for a simple stopwatch control. Add a WPF user control to the View
folder called BasicStopwatch.xaml and add this code. The control has TextBlock controls
to display the elapsed and lap times, and buttons to start, stop, reset, and take the lap time.

<UserControl x:Class="Stopwatch.View.BasicStopwatch" Y Y@uqlnecd this xmlns
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
ropeyr
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" prope {Y to add the

xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" namespace. We called

xmlns:d="http://schemas.microsoft.com/expression/blend/2008" °W”PVQVC{vS{DPW3£Ch
mc:Ignorable="d" so the ViewModel
d:DesignHeight="300" d:DesignWidth="300" namespace is
xmlns:viewmodel="clr-namespace:Stopwatch.ViewModel"> <i——— S{o?w&{thlﬂcwﬂﬂoch

<UserControl.Resources>
<viewmodel:StopwatchViewModel x:Key="viewModel"/> D —
</UserControl.Resources>

This user control stores an
instance of the ViewModel as a
static resource and uses it as its
<« data context. It doesn’t need its

<Grid DataContext="{StaticResource ResourceKey=viewModel}">

<StackPanel> container to set a data context.
<TextBlock> It keeps track of its own state.
<Run>Elapsed time: </Run>
- <Run Text="{Binding Hours, Mode=OneWay}"/> This Tex i
The ViewModel) g y e {:B.locy is bound
<Run>:</Run> to vopert th
has read-only (R s - _ " properties in the
. <Run Text="{Binding Minutes, Mode=OneWay}"/> ViewModel that ved
properties for <Run>:</Run> iewModel that veturn
Hours, Minutes, <Run Text="{Binding Seconds, Mode=OneWay}"/> thCMF“d'hmc
Seconds, etc. | </TextBlock>
WPF requires | <TextBlock> \ .
indi ime: The ViewModel
one-way binding <Run>Lap time: </Run> i
for read-only <Run Text="{Binding LapHours, Mode=OneWay}"/> This Tc%{;BloCk }')"“5‘& be “"lvma oﬁc
properties. <Run>:</Run> . s bound 4o vopertyChanged
<Run Text="{Binding LapMinutes, Mode=OneWay}"/> ‘es +h + events + kccp “:hcsc
<Run>:</Run> Vro\?cr{:lcs 2 . values up to dat
<Run Text="{Binding LapSeconds, Mode=OneWay}"/> c%yosc{hc h? Lime. P ate.
</TextBlock>

<StackPanel Orientation="Horizontal">
<Button Click="StartButton Click" Margin="0,0,5,0">Start</Button>
<Button Click="StopButton Click" Margin="0,0,5,0">Stop</Button>
<Button Click="ResetButton Click" Margin="0,0,5,0">Reset</Button>
<Button Click="LapButton Click">Lap</Button>

</StackPanel>
</G fgitaCkPaneD You’ll need to add Click event
rt handlers to the control and a
</UserControl>

StopwatchViewModel class
to the ViewModel namespace
for this to compile.

Heve's a hint: use a Dispateher Timer to constantly
thetk the Model and update the properties.

The code for the ViewModel is on pages 766 and 767 in the book. How much of the
ViewModel code can you build just from the View and Model code before you flip the page?
Add a BasicStopwatch control to the main window and see how far you can get.

But be really careful and don’t assume the IDE is necessarily wrong. Sometimes an error in the

»
XAML for one page (like a broken xmlns property) can cause all the designers to break. you are here 765

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

tick tick tick

Finish the stopwatch app

There are just a few more loose ends to tie together. Your BasicStopwatch
user control doesn’t have event handlers, so you need to add them. And *
then you just need to add the control to your main window.

@ First, go back to BasicStopwatch.xaml.cs and add these event handlers to the code-behind:

ViewModel.StopwatchViewModel viewModel;
public BasicStopwatch() {

InitializeComponent () ;

viewModel = FindResource ("viewModel") as ViewModel.StopwatchViewModel;
}

private void StartButton Click(object sender, RoutedEventArgs e) {
viewModel.Start () ;

} The buttons in
private void StopButton Click(object sender, RoutedEventArgs e) ({ the view just eall
} viewModel.Stop () ; m.c{:hods n {:he

d lick (ob t d RoutedE tA) | V|CWM°de|. This
private void ResetButton Click(object sender, RoutedEventArgs e . X

viewModel.Reset () ; Is a PYC‘H-'Y {'«\/P'CQI

} patteen for the
private void LapButton Click(object sender, RoutedEventArgs e) { View.

viewModel.Lap () ;
}

@ Here’s all the XAML for Main Window.xam!:

<Window x:Class="Stopwatch.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="MainWindow" Height="150" Width="250"

xmlns:view="clr-namespace:Stopwatch.View"> N All the behavior is
<Grid> in the user control,
<view:BasicStopwatch Margin="5"/> so thevre's no
</Grid> tode—behind for
</Window> the main window.

Your app should now run. Click the Start, Stop, Reset, and
Lap buttons to see your stopwatch work.

Elapsed time: 0: 1 : 46.691
Lap time: 0: 1: 40,675
[start] [stop| |Reset] {Lap

*

768 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

We left this page blank so that you can
vead this appendix in two—page mode, so the
exevtise and its solution appear on diffevent
fwo—page spreads. [you've viewing this as

a PDF in two-page mode, you may want to
furn on the tover page so the even pages are
on the vight and the odd pages are on the
left.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

useful fools for viewmodels

Converters automatically convert values for binding

Anyone with a digital clock knows that it typically shows the minutes with a leading zero. Our
stopwatch should also show the minutes with two digits. And it should show the seconds with two
digits, and round to the nearest hundredth of a second. We could modify the ViewModel to expose
string values that are formatted properly, but that would mean that we’d need to keep adding \T;‘“J‘!«
more and more properties each time we wanted to reformat the same data. That’s where value < (f ““‘\;‘A
HNMOYSEy

converters come in very handy. A value converter is an object that the XAML binding uses to

modify data before it’s passed to the control. You can build a value converter by implementing the
IValueConverter interface (which is in the System.Windows . Data namespace). Add a value *"’" Q
; \

converter to your stopwatch now.

Q Add the TimeNumberFormatConverter class to the ViewModel folder.

Add using System.Windows.Data; to the top of the class, and then have it Converters
implement the IValueConverter interface. Use the IDE to automatically implement ave usekul
the interface. This will add two method stubs for the Convert () and ConvertBack () +ools Lor
methods. building your
e Implement the Convert() method in the value converter. ViewModel.

The Convert () method takes several parameters—we’ll use two of them. The value parameter is
the raw value that’s passed into the binding, and parameter lets you specify a parameter in XAML.

using System.Windows.Data;
class TimeNumberFormatConverter : IValueConverter {

public object Convert (object value, Type targetType,
object parameter, System.Globalization.CultureInfo culture) {

This converter if (value is decimal)

knows how to return ((decimal)value) .ToString("00.00");
tonvert decimal else if (value is int) {

and int values. For if (parameter == null)

int values, You tan
o?{:iona”\/ pass in
a parameter. else

return ((int)value) .ToString (parameter.ToString()):;

return ((int)wvalue) .ToString ("d1l");

}

The ConvertBack() method is used for {:wo—wa\/
return value;

binding. We've not using that in this projeet, so you
} ¢an leave the method stub as is. ¢

public object ConvertBack (object value, Type targetType,
object parameter, System.Globalization.CultureInfo culture) {
throw new NotImplementedException () ;

} Is it a good idea to leave this NotImplementedException in your code? For
this project, this is code that is never supposed to be run. If it does get run,
is it better to fail silently, so the user never sees it? Or is it better to throw an
770 exception so that you can track down the problem? Which of those gives you
amore robust app? There’s not necessarily one right answer.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

Add the converter to your stopwatch control as a static resource.
It should go right below the ViewModel object:

<UserControl.Resources>

<viewmodel:StopwatchViewModel x:Key="viewModel"/>

<viewmodel : TimeNumberFormatConverter x:Key="timeNumberFormatConverter"/>

</UserControl.Resources> R The designer may make Yyou vebuild the solution
after You add this line. In vave tases, You migh‘f:

even need to unload and veload the project.

Update the XAML code to use the value converter.
Modify the {Binding} markup by adding the Converter= to it in each of the <Run> tags.

£ there’ £)
<TextBlock> }: there's no Fa“a"“#“’ specified, don't
orget the extra tlosing bracket }}.
<Run>Elapsed time: </Run>
<Run Text="{Binding Hours, Mode=OneWay,

Converter={StaticResource timeNumberFormatConverter}}"/>

<Run>:</Run>

<Run Text="{Binding Minutes, Mode=OneWay,

Converter={StaticResource timeNumberFormatConverter}, ConverterParameter=d2}"/>

<Run>:</Run> T
<Run Text="{Binding Seconds, Mode=OneWay, Use the Convcr{CVPa\ramc{:cr
Converter={StaticResource timeNumberFormatConverter}}"/> s\/w{:ax to pass a Farachccr
</TextBlock> into the tonverter.
<TextBlock>

<Run>Lap time: </Run>
<Run Text="{Binding LapHours, Mode=OneWay,

Converter={StaticResource timeNumberFormatConverter}}"/>

<Run>:</Run>

<Run Text="{Binding LapMinutes, Mode=OneWay,

Converter={StaticResource timeNumberFormatConverter}, ConverterParameter=d2}"/>

<Run>:</Run>
<Run Text="{Binding LapSeconds, Mode=OneWay,

Converter={StaticResource timeNumberFormatConverter}}"/>
</TextBlock>

Now the stopwatch runs the values through —

the converter before passing them into the Elapsed time: 2: 06:03.22
TextBlock controls, and the numbers are Lap time: 2: 05 : 49.64
formatted correctly on the page.

771

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

converting types

Converters can work with many different types

TextBlock and TextBox controls work with text, so binding strings or numbers to the Text property makes
sense. But there are many other properties, and you can bind to those as well. If your ViewModel has a
Boolean property, it can be bound to any true/false property. You can even bind properties that use
enums—the IsVisible property uses the Visibility enum, which means you can also write value
converters for it. Let’s add Boolean and Visibility binding and conversion to the stopwatch.

Here are two converters that will come in handy.

Sometimes you want to bind Boolean properties like IsEnabled so that a control
is enabled if the bound property is false. We’ll add a new converter called
BooleanNotConverter, which uses the ! operator to invert a Boolean target property.

IsEnabled="{Binding Running, Converter={StaticResource notConverter}}"

You’ll often want to have controls show or hide themselves based on a Boolean property in
the data context. You can only bind the Visibility property of a control to a target property
that’s of the type Visibility (meaning it returns values like Visibility.Collapsed).
We’ll add a converter called BooleanVisibilityConverter that will let us bind a control’s
Visibility property to a Boolean target property to make it visible or invisible.

Visibility="{Binding Running, Converter={StaticResource visibilityConverter}}"

© MODIFY THE VIEWMODEL'S TICK EVENT HANDLER.
Modify the DispatcherTimer’s Tick event handler to raise a PropertyChanged event if
the value of the Running property has changed:

int lastHours;
int lastMinutes;

decimal _lastS§conds; We added {hc - T
bool _lastRunning; Runnina ¢heck to “‘
void TimerTick (object sender, object e) { unmngc et “1‘;
if (_lastRunning != Running) { the timer. Would \“‘
_lastRunning = Running; it make more
OnPropertyChanged ("Running") ; sense to have the
} Model five an
if (_lastHours != Hours) ({ event instead?

_lastHours = Hours;
OnPropertyChanged ("Hours") ;

}

if (lastMinutes != Minutes) {
_lastMinutes = Minutes;
OnPropertyChanged ("Minutes") ;

}

if (lastSeconds != Seconds) {
_lastSeconds = Seconds;
OnPropertyChanged ("Seconds") ;

772

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

© aDD A CONVERTER THAT INVERTS BOOLEAN VALUES.

Here’s a value converter that converts true to false and vice versa. You can use it with
Boolean properties on your controls like IsEnabled.

using System.Windows.Data;

@
r“‘ i
class BooleanNotConverter : IValueConverter { (\““‘ ‘i
public object Convert (object value, Type targetType, object parameter,
System.Globalization.CultureInfo culture) {
if ((value is bool) && ((bool)value) == false)
return true;
else
return false;
}
public object ConvertBack (object value, Type targetType, object parameter,
System.Globalization.CultureInfo culture) {
throw new NotImplementedException();

}
© aDD A CONVERTER THAT CONVERTS BOOLEANS TO VISIBILITY ENUMS.

You've already seen how you can make a control visible or invisible by setting its Visibility
property to Visible or Collapsed. These values come from an enum in the System. Windows
namespace called Visibility. Here’s a converter that converts Boolean values to Visibility values:

using System.Windows;
using System.Windows.Data;

class BooleanVisibilityConverter : IValueConverter ({
public object Convert (object value, Type targetType, object parameter,
System.Globalization.CultureInfo culture) {
if ((value is bool) && ((bool)value) == true)
return Visibility.Visible;
else
return Visibility.Collapsed;
}
public object ConvertBack (object value, Type targetType, object parameter,
System.Globalization.CultureInfo culture) {
throw new NotImplementedException () ;

O MODIFY YOUR BASIC STOPWATCH CONTROL TO USE THE CONVERTERS.
Modify BasicStopwatch.xaml to add instances of these converters as static resources:
<viewmodel:BooleanVisibilityConverter x:Key="visibilityConverter"/>
<viewmodel:BooleanNotConverter x:Key="notConverter"/>
Now you can bind the controls’ IsEnabled and Visibility properties to the ViewModel’s Running
property:

<StackPanel Orientation="Horizontal">
<Button IsEnabled="{Binding Running, Converter={StaticResource notConverter}V'éL'TmSChaucsﬁhc

Click="StartButton Click" Margin="0,0,5,0">Start</Button> Sfavt buf{on OM
<Button IsEnabled="{Binding Running}" Click="StopButton Click"

Margin="0,0,5,0">Stop</Button> B if thS{onafth
<Button Click="ResetButton Click" Margin="0,0,5,0">Reset</Button> is notrunﬂn&
<Button IsEnabled="{Binding Running}" Click="LapButton Click">Lap</Button>

</StackPanel>

<TextBlock Text="Stopwatch is running"
Visibility="{Binding Running, Converter={StaticResource visibilityConverter}}" />

K This causes a TextBlotk to become you are here » 773

isi th is vunnina.
www.itbook store/books/9781449343507 visible when the stopwatch is vunning

https://itbook.store/books/9781449343507

www.itbook.store/books/9781449343507

We left this page blank so that you tan
vead this appendix in two—page mode, so the
exevtise and its solution appear on diffevent
fwo—page spreads. [£ you've viewing this as

a PDF in two—page mode, you may want to
uen on the tover page so the even pages ave
on the vight and the odd pages are on the
left.

https://itbook.store/books/9781449343507

windows presentation foundation

. . . Remember how you used
Build an analog stopwatch using the same ViewModel +. et e
built for Jimm\/’s Comies

The MVVM pattern decouples the View from the ViewModel, and the ViewModel from the Model. in Chap'{:cr 14 and

This is really useful if you need to make changes to one of the layers. Because of that decoupling, veused them {o eveate

you can be very confident that the changes you make will not cause the “shotgun surgery” effect and €~ a Split A?F without

ripple into the other layers. So did we do a good job decoupling the stopwatch program’s View from its making any thanges?

ViewModel? There’s one way to be sure: let’s build an entirely new View without changing the existing This is the same idea.

classes in the ViewModel. The only change you’ll need in the C# code is a new converter in the

ViewModel that converts minutes and seconds into angles. * *
J— Do this!

Q ADD A CONVERTER TO CONVERT TIME TO ANGLES-
Add the AngleConverter class to the ViewModel folder. You'll use it for the hands on the face.

using System.Windows.Data;
class AngleConverter : IValueConverter ({
public object Convert (object value, Type targetType, object parameter,
System.Globalization.CultureInfo culture) {
double parsedValue;

if ((value != null)
&& double.TryParse (value.ToString (), out parsedvValue) . “‘
&& (parameter != null)) W@ | YRS
switch (parameter.ToString()) { An hour value ranges from O to ‘(l“‘““&ﬁ 4
case "Hours": — ”, so ‘{‘,o COnvcv‘{: -{;o an 87\5'6 i{;]s § m _f
return parsedvValue * 30; muH‘,iPlicd by 20.
case "Minutes":
case "Seconds": “—~_ Minu‘{',cs and setonds range ‘CY‘Om
) return parsedvalue * 6; 0 4o b0, so the an5|c Lonversion
return 0; means '“"l{"i?l\/inﬁ b\/ b.

}
public object ConvertBack (object value, Type targetType, object parameter,
System.Globalization.CultureInfo culture) {

throw new NotImplementedException () ;

© 4pp THE NEW UserconTroL.-
Add a new WPF user control called AnalogStopwatch to the View folder and add the

ViewModel namespace to the <UserControl> tag Also, change the design width and height:

d:DesignHeight="300"
d:DesignWidth="400"
xmlns:viewmodel="clr-namespace:Stopwatch.ViewModel">

And add the ViewModel, two converters, and a style to the user control’s static resources.
<UserControl.Resources>
<viewmodel:StopwatchViewModel x:Key="viewModel"/>
<viewmodel:BooleanNotConverter x:Key="notConverter"/>
<viewmodel:AngleConverter x:Key="angleConverter"/>
</UserControl.Resources>

you are here » 781

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

transform your controls

© 4DD THE FACE AND HANDS TO THE GRID-
Modify the <Grid> tag to add the stopwatch face, using four rectangles for hands.

<Grid x:Name="baseGrid" DataContext="{StaticResource ResourceKey=viewModel}">
<Grid.ColumnDefinitions>

<ColumnDefinition Width="400"/>
</Grid.ColumnDefinitions>

Scfﬁns———><Ellipse Width="300" Height="300" Stroke="Black" StrokeThickness="2">

This is the face of the stopwatth.

[t has a black outline and a

the column <Ellipse.Fill> L= 9rayish gradient background.

N <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
width kccys <GradientStop Color="#FFBO3F3F"/>
i£ £rom <GradientStop Color="#FFE4CECE" Offset="1"/>
c*yanding o <(LineaJ‘fGradientBrush>
ﬁwl hatever </Ellipse.Fill>

il whatever pqqip5e>
Con{BMCY <Rectangle RenderTransformOrigin="0.5,0.5" Width="2" Height="150" Fill="Black">
iEsin- <Rectangle.RenderTransform>

<TransformGroup>

<TranslateTransform Y="-60"/>
<RotateTransform Angle="{Binding Seconds,

Heve's the second
Converter={Statlchsource RssourceKey=angleConverter}, hand.lkﬁ alon@
ConverterParameter=Seconds}"/>) l
</TransformGroup> {hm rcbﬁangc
</Rectangle.RenderTransform> with a +ranslate
</Rectangle>
- . .) rotdte
<Rectangle RenderTransformOrigin="0.5,0.5" Width="4" Height="100" Fill="Black"> and ££3£
<Rectangle.RenderTransform> {xans orm.
<TransformGroup>

<TranslateTransform Y="-50"/>
<RotateTransform Angle="{Binding Minutes,

Converter={StaticResource ResourceKey=angleConverter},
)
Heve's the

ConverterParameter=Minutes}"/> E EVCVY tontrol tan have one
nut </TransformGroup> chdch}ahsfovn\sccﬁon
minute
</Rectangle.RenderTransform>
hand. /Rectangle>

<Rectangle RenderTransformOrigin="0.5,0.5" Width="1" Height="150" Fill="Yellow">
<Rectangle.RenderTransform>

<TransformGroup>
<TranslateTransform Y="-60"/>
<RotateTransform Angle="{Binding LapSeconds,

Converter={StaticResource ResourceKey=angleConverter},
ConverterParameter=Seconds}"/>

</TransformGroup>
</Rectangle.RenderTransform>
</Rectangle>
<Rectangle RenderTransformOrigin="0.5,0.5" Width="2" Height="100" Fill="Yellow">
Theve are <Rectangle.RenderTransform>
<TransformGroup>
{wo YCHOW <TranslateTransform Y="-50"/>
hands‘bY <RotateTransform Angle="{Binding LapMinutes,
Converter={StaticResource ResourceKey=angleConverter},
{:bc la? ConverterParameter=Minutes}"/> <— The Transacormérouy ‘{',3 IC‘{ZS
‘lllmc- </TransformGroup> Y"" ayyl\/ mul'{:i?lc '{:Yans orms
</Rectangle.RenderTransform> 4o the same tontrol.
/Rectangle>
<gllipse Width="10" Height="10" Fill="Black"/>

</Gyid>

\ This dvaws an extra tirele in the middle to cover w

wheve the hands overlap. Sinte it's at the bottom of
the Grid, it's drawn last and ends up on top.

782 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

4 Brush

Stroke I, -
= B o
Editor B Color resources
The stopwatch face is filled o N = o
with a gradient brush, just l G200
like the background you & 206
used in Save the Humans. I AL100%
> B 5 s errescece
L .
[
] «()» 100%

Each hand is transformed twice. It starts out
centered in the face, so the first transform
shifts it up so that it’s in position to rotate.

<TranslateTransform Y="-60"/>

<RotateTransform Angle="{Binding Seconds,

windows presentation foundation

Converter={StaticResource ResourceKey=angleConverter},

ConverterParameter=Seconds}"/>

The second transform rotates the hand to

the correct angle. The Angle property of the
rotation is bound to seconds or minutes in the
ViewModel, and uses the angle converter to
convert it to an angle.

4 Transform
RenderTransf.. ®

> s £y = F
Angle -151.806
Every control can have one @ e
RenderTransform element
that changes how it’s [] Use relative values | Apply

displayed. This can include

rotating, moving to an offset,

skewing, scaling its size up] . e
or down, and more.

Projection u]

You used transforms in Save B0 =
the Humans to change the
shape of the ellipses in the
enemy to make it look like
an alien.

[Use relative values | Apply

www.itbook.store/books/9781449343507

Your stopwateh will start
ticking as soon as Yyou add the
setond hand, betause it eveates
an instante of the ViewModel
as a static vesourte to vender
the tontrol in the designer.
The designer may stop it
updating, but you tan vestart
it b\/ swi{:ching away Lrom the
designer window and back again.

you are here » 783

https://itbook.store/books/9781449343507

adding resources

@ 4DD THE BUTTONS TO THE STOPWATCH-
Since the ViewModel is the same, the buttons should work the same. Add the
same buttons to AnalogStopwatch.xaml that you used for the basic stopwatch:

<StackPanel Orientation="Horizontal" VerticalAlignment="Bottom">
<Button IsEnabled="{Binding Running, Converter={StaticResource notConverter}}"
Click="StartButton Click" Margin="0,0,5,0">Start</Button>
<Button IsEnabled="{Binding Running}"
Click="StopButton Click" Margin="0,0,5,0">Stop</Button>
<Button Click="ResetButton Click" Margin="0,0,5,0">Reset</Button>

<Button IsEnabled="{Binding Running}" Click="LapButton Click">Lap</Button>
</StackPanel>

Here’s the code-behind for AnalogStopwatch.xaml.cs:

ViewModel.StopwatchViewModel viewModel;

public AnalogStopwatch () {

InitializeComponent () ;

viewModel = FindResource ("viewModel") as ViewModel.StopwatchViewModel;

private void StartButton Click(object sender, RoutedEventArgs e) {
viewModel.Start () ;

private void StopButton Click(object sender, RoutedEventArgs e) {
viewModel.Stop () ;

private void ResetButton Click(object sender, RoutedEventArgs e) {
viewModel.Reset () ;

private void LapButton Click(object sender, RoutedEventArgs e) {
viewModel.Lap () ;

784 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

e UPDATE THE MAIN WINDOW TO SHOW BOTH STOPWATCHES -

Now you just need to modify your MainWindow.xam! to add an AnalogStopwatch control:

<Window x:Class="Stopwatch.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Two Stopwatches" Height="450" Width="400" ResizeMode="NoResize"

xmlns:view="clr-namespace:Stopwatch.View">

<Grid>
<StackPanel>
<view:BasicStopwatch Margin="5"/>
<view:AnalogStopwatch Margin="5"/>
</StackPanel>
</Grid>
</Window>

Run your app. Now you have two
stopwatch controls on the page.

Elapsed time: 0 : 47 : 1781

Lap time: 0 : 08 : 37.00

Stopwatch is running

Each stopwateh keeps -7
its own time, betause

eath one has its own
separate instante of

the ViewModel as a

static vesourte.

Try changing the ViewModel to
make the _stopwatchModel field
static. What does this change
about how the stopwatch app
behaves? Can you figure out
why that happens?

you are here » 785

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

in the end,

Ul controls can be instantiated with C# code, too

You already know that your XAML code instantiates classes in the Windows . UI namespace,
and you even used the Watch window in the IDE back in Chapter 10 to explore them. But
what if you want to create controls from inside your code? Well, controls are just objects, so you
can create them and work with them just like you would with any other object. Go ahead and
modify the code-behind to add markings to the face of your analog stopwatch.

public sealed partial class AnalogStopwatch : UserControl ({
public AnalogStopwatch () {
InitializeComponent () ;

viewModel = FindResource ("viewModel") as ViewModel.StopwatchViewModel;

AddMarkings () ; < Modify the tonstruetor
} 1o eall a method that This statement uses the
dds £ . % modulo operator to
adds the markings.
. . . make the marks for the
private void AddMarkings() { hours thicker than the
for (int i = 0; i < 360; i += 3) { ones for the minutes. i %
This eveates Rectangle rectangle = new Rectangle() ; / 30 returns O only if 1 is
instances of the rectangle.Width = (i % 30 == 0) ? 3 : 1; divisible by 30.
same Rectangle rectangle.Height = 15;

object 'Eha.{: you rectangle.Fill = new SolidColorBrush (Colors.Black) ;
ereated with the

<Rcc{:an5|c> {:35_ rectangle.RenderTransformOrigin = new Point (0.5, 0.5);

TransformGroup transforms = new TransformGroup() ;
transforms.Children.Add (new TranslateTransform() { Y = -140 });
transforms.Children.Add (new RotateTransform() { Angle = i });
rectangle.RenderTransform = transforms;

baseGrid.Children.Add (rectangle) ; ,\ Fliy back to the XAML for the

} hour and minute hands. This code
} sets up exactly the same transform,
// ... the button event handlers stay the same extept instead of bindin5 the Anglc

property it sets it to a value.

Controls like Grid, StackPanel, and
Canvas have a Children collection

with references to all the other controls You used a Binding object to set up data
contained inside them. You can add binding in C# code back in Chapter 11.
contrgls to the glrlld W':h :ts I:‘dd (I)I' "‘e_th°d Can you figure out how to remove the
anda remove all controis py calling Its
Clear () method. You add transforms to a XAML to create the Rectangle controls for
TransformGroup the same way. the hour and minute hands and replace it

with C# code to do the same thing?

786

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

THANKS FOR &IVING

windows presentation foundation

US EVERYTHING WE NEED
FOR OUR GAME! NOW WE

CAN COMPETE FOR THE
PRESTIGIOUS OBJECTVILLE
TROPHY -

Now that you added the
markings to the stopwateh, the
vef will make all the vight calls.

!

] i i e

www.itbook.store/books/9781449343507

Which {:camfwi" dominate
the tonferente and win
the Ob‘")cclcvillc Teophy?
Nobod\/'s sure. All we know
is that Joe, Bob, and Ed
will be bc{:{:ing on lU

you are here » 787

https://itbook.store/books/9781449343507

For the next few projects, you’ll need to download the bee images from the Head
First Labs website (http://www.headfirstlabs.com/hfcsharp). Make sure that you
add the images to your project so they’re in the top-level folder, just like you did
with the Jimmy’s Comics app. You’ll also need to select each image file in the
Solution Explorer and use the Properties window to set the “Build Action” to
Content and “Copy to Output Directory” to Copy always. Here’s what it looks
like when you did it for the Jimmy’s Comics app:

bluegray_250x250.jpg File Properties -

= &

Build Action Content .

(TN RN IN AT a N Copy always v

Customn Tool
Custom Tool Mamespace

File Name bluegray_250x250.jpg -

Copy to Output Directory
Specifies the source file will be copied to the cutput directory.

Make sure you do this for Bee animation 1.png,Bee animation 2.png,
Bee animation 3.png,andBee animation 4.png.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

Create a user contfrol to animate a picture

Let’s encapsulate all the frame-by-frame animation code. Add a WPF user control called
AnimatedImage to your View folder. It has very little XAML—all the intelligence is in the
code-behind. Here’s everything inside the <UserControl> tag in the XAML:
<Grid>

<Image x:Name="image" Stretch="Fill"/>
</Grid>

The work is done in the code-behind. Notice its overloaded constructor that calls the StartAnimation () method,
which creates storyboard and key frame animation objects to animate the Source property of the Image

control.

using System.Windows.Media.Animation;
using System.Windows.Media.Imaging;

public partial class AnimatedImage
public AnimatedImage () {
InitializeComponent () ;

public AnimatedImage (IEnumerable<string> imageNames,

this () {

StartAnimation (imageNames, interval);

public void StartAnimation (IEnumerable<string> imageNames,
new Storyboard() ;
ObjectAnimationUsingKeyFrames animation

Storyboard storyboard

Storyboard.SetTarget (animation, image)

Storyboard.SetTargetProperty (animation,

TimeSpan currentInterval
foreach
ObjectKeyFrame keyFrame
keyFrame.Value
keyFrame.KeyTime
animation.KeyFrames.Add (keyFrame) ;
currentInterval

storyboard.RepeatBehavior
storyboard.AutoReverse true;
storyboard.Children.Add (animation) ;
storyboard.Begin () ;

}

UserControl {

currentInterval.Add (interval) ;

RepeatBehavior.Forever;

—

- Bitmaplmage is in the
Media.Imaging namespate.
Storyboard and the other
animation ¢lasses ave
in the Mcdia-Anima{jon
namespace.

TimeSpan interval)

Every control must have a parameterless constructor if
you want to create an instance of the control using XAML.
You can still add overloaded constructors, but that’s
useful only if you’re writing code to create the control.

TimeSpan interval) {

new ObjectAnimationUsingKeyFrames () ;

new PropertyPath (Image.SourceProperty));

TimeSpan.FromMilliseconds (0) ;
(string imageName in imageNames) {

new DiscreteObjectKeyFrame () ;
CreateImageFromAssets (imageName) ;
currentInterval;

The static SetTarget ()
and SetTargetProperty ()
methods from the
Storyboard class set the
target object being animated
("image"), and the property
that will change (Source)
using the PropertyPath() class.

Once the Storyboard object is set up and animations
have been added to its Children collection, call its
Begin () method to start the animation.

private static BitmapImage CreatelImageFromAssets (string imageFilename) ({

try {
Uri uri new Uri (imageFilename,
return new BitmapImage (uri);

} catch (System.IO.IOException) {
return new BitmapImage();

}

Www.itbook}.store/books/9781449343507

UriKind.RelativeOrAbsolute) ;

™ This is the same

method You used

in Chapter 14 you are here » 789

https://itbook.store/books/9781449343507

bees fly

*
Make your bees fly around a page Do this!
¥y X >

Let’s take your Animatedlmage control out for a test flight.

© REPLACE THE MAIN WINDOW WITH A WINDOW IN THE VIEW FOLDER-

Add a Window to your View folder called FlyingBees.xaml. Delete MainWindow.xaml from the project.
Then modify the StartupUri property in the <Application> tag App.xaml:

StartupUri="View\FlyingBees.xaml"

© THE BEES WILL FLY AROUND A CANVAS CONTROL.

Here’s the code for the window (you’ll need to change the AnimatedBee namespace if you used a different
project name). It uses a Canvas control in FlyingBees.xaml. A Canvas control is a container, so it can
contain other controls like a Grid or StackPanel. The difference is that a Canvas lets you set the coordinates of
the controls using the Canvas.Left and Canvas. Top properties. You used a Canvas back in Chapter 1 to
create the play area for Save the Humans. Here’s the XAML for the FlyingBees.xam! window:

<Window x:Class="AnimatedBee.View.FlyingBees"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:view="clr-namespace:AnimatedBee.View"
Title="Flying Bees" Height="600" Width="600">
<Grid>
<Canvas Background="SkyBlue">
<view:AnimatedImage Canvas.Left="55" Canvas.Top="40"
x:Name="firstBee" Width="50" Height="50"/>
<view:AnimatedImage Canvas.Left="80" Canvas.Top="260"
x:Name="secondBee" Width="200" Height="200"/>
<view:AnimatedImage Canvas.Left="230" Canvas.Top="100"
x:Name="thirdBee" Width="300" Height="125"/>

</Canvas>

</Grid>
</Window> ::J

The Animatedimage control is invisible until
its CreateFrameImages () method is called,
so the controls in the Canvas will show up
only as outlines. You can select them using >
the Document Outline. Try dragging the
controls around the canvas to see the Canvas. P
Left and Canvas . Top properties change.

790

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

€©® ADD THE CODE-BEHIND FOR THE PAGE.

You’ll need this using statement for the namespace that contains Storyboard and DoubleAnimation:

using System.Windows.Media.Animation;

Now you can modify the constructor in FlyingBees.xaml.cs to start up the bee animation. Let’s also
create a DoubleAnimation to animate the Canvas.Left property. Compare the code for creating a
storyboard and animation to the XAML code with <DoubleAnimation> earlier in the chapter.

public FlyingBees () {

this.InitializeComponent () ;

List<string> imageNames = new List<string>(); The C\rea‘th\'amc,magcs() method
imageNames.Add ("Bee animation 1.png"); 4\ takes a sequente of asset names

imageNames.Add ("Bee animation 2.png"

’

’

. and a TimeSpan to set the vate

()
imageNames.Add ("Bee animation 3.png"); that the frames ave "?da{cd'
()

imageNames.Add ("Bee animation 4.png"

’

/

firstBee.StartAnimation (imageNames, TimeSpan.FromMilliseconds (50))

[nstead oF us'mg secondBee.StartAnimation (imageNames, TimeSpan.FromMilliseconds (10));
a <S'bo\r\/board> thirdBee.StartAnimation (imageNames, TimeSpan.FromMilliseconds (100));
tag and a

<DoubleAnimation> Storyboard storyboard = new Storyboard();
tag like earlier in

the chapter, you {

DoubleAnimation animation = new DoubleAnimation();
Storyboard.SetTarget (animation, firstBee);

tan eveate the
Storyboard and

animation.From = 50;

D;ubtAn";aflo; animation.To = 450;

Z"\\):I: Yri;cr{::cs animation.Duration = TimeSpan.FromSeconds (3);

in tode. animation.RepeatBehavior = RepeatBehavior.Forever;
animation.AutoReverse = true;

storyboard.Children.Add (animation) ;
storyboard.Begin () ;

Run your program. Now you can see three bees flapping

their wings. You gave them different intervals, so they flap at
different rates because their timers are waiting for different
timespans before changing frames. The top bee has its Canvas.
Left property animated from 50 to 450 and back, which causes
it to move around the page. Take a close look at the properties
that are set on the DoubleAnimation object and compare them
with the XAML properties you used earlier in the chapter.

Something’s not right about this project. Can you spot it?

www.itbook.store/books/9781449343507

Storyboard.SetTargetProperty (animation, new PropertyPath (Canvas.LeftProperty)):;

The Storyboard is garbage-
collected after the animation
completes. You can see this for
yourself by using to
watch it and clicking T to refresh
it after the animation ends.

you are here » 791

https://itbook.store/books/9781449343507

remember, is a pattern

Something’s not right: there’s nothing in your
Model or ViewModel folder, and you’re creating
dummy data in the View. That’s not MVVM!

If we wanted to add more bees, we’d have to create more controls
in the View and then initialize them individually. What if we want
different sizes or kinds of bees? Or other things to be animated? If
we had a Model that was optimized for data, it would be a lot easier.
How can we make this project follow the MVVM pattern?

¢ee

THIS IS EASY- JUST ADD AN
OBSERVABLECOLLECTION OF CONTROLS, AND BIND
THE CHILDREN PROPERTY OF THE CANVAS TO IT- WHY
ARE YOU MAKING SUCH A BIG DEAL ABOUT IT?

That won't work. Data binding doesn’t work with
container controls’ Children property—and for
good reason.

Data binding is built to work with attached properties, which are
the properties that show up in the XAML code. The Canvas object
does have a public Children property, but if you try to set it using

XAML (Children="{Binding ...}")your code won’t compile.

However, you already know how to bind a collection of objects to a
XAML control, because you did that with ListView and GridView
controls using the ITtemsSource property. We can take advantage
of that data binding to add child controls to a Canvas.

792

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows foundation

Use ltemsPanelTemplate to bind controls to a Canvas

When you used the TtemsSource property to bind items to a ListView, GridView, or ListBox, it didn’t
matter which one you were binding to, because the ItemsSource property always worked the same way.
If you were going to build three classes that had exactly the same behavior, you would put that behavior

in a base class and have the three classes extend it, right? Well, the Microsoft team did exactly the same
thing when they built the selector controls. The ListView, GridView, and ListBox all extend a class called
Selector, which is a subclass of the ItemsControl class that displays a collection of items.

6 We’re going to use its ItemsPanel property to set up a template for
the panel that controls the layout of the items. Start by adding the

ViewModel namespace to FlyingBees.xaml: £ you used a
, , , diffecent FroJcLﬁ
xmlns:viewmodel="clr-namespace:AnimatedBee.ViewModel"
name, Ch%gc
Animafchce to the

@© Next, add an empty class called BeeViewModel to your ViewModel folder, torrett namespate.
and then add an instance of that class as a static resource to FlyingBees.xaml:

<viewmodel :BeeViewModel x:Key="viewModel"/>

Edit FlyingBees.xaml.cs and delete all the additional code that you added to the
FlyingBees () constructor in the F1yingBees control. Make sure that you
don’t delete the InitializeComponent () method! Use the static

ViewModel vesourte as
the data tontext, and
bind the [temsSourte
%o a property called
S?ri{cs.
<ItemsControl /,

e Here’s the XAML for the ItemsControl. Open FlyingBees.xaml, delete the
<Canvas> tag you added, and replace it with this ItemsControl:

DataContext="{StaticResource viewModel}"

ItemsSource="{Binding Path=Sprites}" >

Use the ItemsPanel
<ItemsControl.ItemsPanel> property to set up an
ItemsPanelTemplate. This
You can set up the <ItemsPanelTemplate> <€ contains a single Panel
panel however you control, and both Grid and
want. We’lluse a ———3 <Canvas Background="SkyBlue" /> Canvas extend the Panel
Canvas with a sky- class. Any items bound to
blue background. ItemsSource will be added
. </Items PanelTemplate> to the Panel’s Children.

</ItemsControl.ItemsPanel>

When the ItemsControl is created, it creates
</ItemsControl> a Panel to hold all of its items and uses the
ItemsPanelTemplate as the control template.

793

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

bee factory

Create a new class in the View folder

called BeeHelper. Make sure it’s a static class,
because it’ll have only static methods to help your
ViewModel manage its bees.

4]

using System.Windows;
using System.Windows.Controls;
using System.Windows.Media.Animation;

static class BeeHelper {

The factory method pattern

is just one of man design ?aH:crns. One
T‘cv)c/h/‘:] mo\g‘l: common-—andymos{: usc(:ul-—ya‘{:{:c\rns is
the fattory method pattern, where you have 3
“factory” method that eveates objetts The faetory
method is usua“\/ static, and the name often ends
with “Fac{',o\r\l" so it's obvious what's going on.

public static AnimatedImage BeeFactory (

/7

double width, double height,

'TMsﬁadwry List<string> imageNames = new
method creates imageNames.Add ("Bee animation
bee tontrols. [+ imageNames.Add ("Bee animation
makes sense to imageNames.Add ("Bee animation
kgq>{hgin{hc imageNames.Add ("Bee animation

View, because it's

TimeSpan flapInterval) {

List<string> () ;
l.png");
2.png") ;
3.png");
4.png");

flapInterval);

When you take a small block of code that’s reused a lot and put
itin its own (often static) method, it’s sometimes called a helper
method. Putting helper methods in a static class with a name that
ends with “Helper” makes your code easier to read.

double x, double y) {

double vy) {

new PropertyPath(Canvas.LeftProperty));

™~ This is the same tode
that was in the page’s
¢onstruetor. Now it’s in
a stati¢ helper method.

all Ul-velated AnimatedImage bee = new AnimatedImage (imageNames,
tode. bee.Width = width;

bee.Height = height;
return bee;

}

public static void SetBeelocation (AnimatedImage bee,
Canvas.SetLeft (bee, x);
Canvas.SetTop (bee, vy);

}

public static void MakeBeeMove (AnimatedImage bee,

double fromX, double toX,

Canvas.SetTop (bee, v);
Storyboard storyboard = new Storyboard();
DoubleAnimation animation = new DoubleAnimation();
Storyboard.SetTarget (animation, bee);
Storyboard.SetTargetProperty (animation,
animation.From = fromX;
animation.To = toX;
animation.Duration = TimeSpan.FromSeconds (3) ;
animation.RepeatBehavior = RepeatBehavior.Forever;
animation.AutoReverse = true;
storyboard.Children.Add (animation) ;
storyboard.Begin () ;

}

}
794 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

This will come
in ha'\d\/ in All XAML controls inherit from the UIElement base class in the System.Windows hamespace. We
the last lab. explicitly used the namespace (System.Windows .UIElement) in the body of the class instead of
\) adding a using statement to limit the amount of Ul-related code we added to the ViewModel.
We used UIElement because it’s the most abstract class that all the sprites extend. For some
projects, a subclass like FrameworkElement may be more appropriate, because that’s where many
properties are defined, including Width, Height, Opacity, HorizontalAlignment, etc.

6 Here’s the code for the empty BeeViewModel class that you
added to the ViewModel folder. By moving the Ul-specific code
to the View, we can keep the code in the ViewModel simple

and specific to managing bee-related logic.

When the Anima‘fzcd'magc tontrol is added to
the _sprites ObservableColleetion that’s bound
‘bo {')\c ,‘temsCon{rol's H:cvnsgowrt‘,c P\ro\?e\r‘[:\/,
using System.Collections.Specialized; j{:hc Con*{:\rol is added ‘{:o {:hc i{:em Fahc" which

is eveated based on the [temsPanel Template.

class BeeViewModel { V /

private readonly ObservableCollection<System.Windows.UIElement>
_sprites = new ObservableCollection<System.Windows.UIElement>();

using View;
using System.Collections.ObjectModel;

public INotifyCollectionChanged Sprites { get { return sprites; } }

We've taking two steps to encapsulate
the Sprites property. The backing
Field is marked rcadonly soit tan't

public BeeViewModel () {
AnimatedImage firstBee =
BeeHelper.BeeFactory (50, 50,

A sprite is .
the term for TimeSpan.FromMilliseconds (50)) ; .bc OV"WY'H-’C_E later, af‘d &Nc C*YZSC
any 2D image sprites.Add (firstBee) ; it as an [Noti \/COIICC{ZIOY\ hahgc
or animation a property so other classes tan only
bserve it but not modify it.
. that gets AnimatedImage secondBee = ° !
incorporated) o
into a larger BeeHelper.BeeFactory (200, 200, TimeSpan.FromMilliseconds (10));
game or _sprites.Add (secondBee) ;
animation.

AnimatedImage thirdBee =
BeeHelper.BeeFactory (300, 125, TimeSpan.FromMilliseconds (100));

sprites.Add (thirdBee) ; . .
- You’re changing properties

and adding animations on the
controls after they were added
to the ObservableCollection.
Why does that work?

BeeHelper.MakeBeeMove (firstBee, 50, 450, 40);
BeeHelper.SetBeelocation (secondBee, 80, 260);
BeeHelper.SetBeelocation (thirdBee, 230, 100);

}
e Run your app. It should look exactly the Thc V'cadOh 'Y kcyWov-d
same as before, but now the behavior is)
split across the layers, with Ul-specific An important veason that we use entapsulation is 4o prev +
code in the View and code that deals elass from adtidcnfa"y ovcrwri{:ing another ¢lass’s d a‘l: cBh e)
with bees and moving in the ViewModel. Pv-cvcy.{;ihg a ¢tlass from overwri ‘(:ihg s own da-(;: : = ;.eavj: wlha'l: s
. on

keyword can help with that. Any £i Yéddonl
(. - Any tield that You mark read I
be modified °“IY in its detlavation or in the Zons{rud:::. e

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

Lon® Exercise
This is the last exercise in the book. Your job is to build a program that animates bees and stars.
There’s a lot of code to write, but you're up to the task...and once you have this working, you'll
have all the tools you need to build a complete video game. (Can you guess what’s in Lab #37?)

a HERE’S THE APP YOU/LL CREATE.

Bees with flapping wings fly around a dark blue canvas, while behind them, stars fade in and out. You’ll
build a View that contains the bees, stars, and page to display them; a Model that keeps track of where they
are and fires off events when bees move or stars change; and a ViewModel to connect the two together.

Bees on a Starry Night = B

The bees £ly around the sky to vandom
loeations. [£ the canvas size thanges, the

bees ‘Fl\/ to new positions on the ¢anvas. A
v -

g +<4

A
v
»~
Stars %’dc in and out.
2
i _a
= i
£ the canvas play avea size changes, the stars instantly move and bees slowly fly to their new locations.
You tan test this by vunning this program and dragging the window to vesize it. The stars move quiekly/

© CREATE A NEW WPF APPLICATION PROJECT-
Create a new project called StarryNight. Next, add the Model, View, and ViewModel folders. Once
that’s done, you’ll need to add an empty class called BeeStarViewModel to the ViewModel folder.

e CREATE A NEW WINDOW IN THE VIEW FOLDER.-
Delete MainWindow.xaml. Then add a window in the View folder called BeesOnAStarryNight.
xaml. Add the namespace to the top-level tag in the BeesOnAStarryNight.xam! (it should match your
project’s name, StarryNight):

xmlns:viewmodel="clr-namespace:StarryNight.ViewModel"

Add the ViewModel as a static resource and change the page name: The
SizeChanged

eventis fired
when a control
changes

<Window.Resources>
<viewmodel:BeeStarViewModel x:Key="viewModel"/>
</Window.Resources>

The XAML for the page is exactly the same as FlyingBees.xaml in the last project, except size, with

the Canvas control’s background is Blue and it has a SizeChanged event handler: EventArgs
properties for

<Canvas Background="Blue" SizeChanged="SizeChangedHandler" /> <«— the new size.

Then modify the <Application> tag in App.xaml so the application starts with the new window:
StartupUri="View\BeesOnAStarryNight.xaml"

Visual Studio comes with a fantastic tool to help you experiment with shapes!

Fire up Blend for Visual Studio 2013 and use the pen, pencil, and toolbox to

create XAML shapes that you can copy and paste into your C# projects.
www.itbook.store/books/9781449343507

796

https://itbook.store/books/9781449343507

The tode in step 4 won't compile until you add the PlayAreaSize ty to
- . ize proper the
ViewModel in step 9. You tan use the [DE 4o 5c?cra{:c a property stub fl it for now.

windows presentation foundation

v

@ ADD CODE-BEHIND FOR THE PAGE AND THE APP-
Add the SizeChanged event handler to BeesOnAStarryNight.xaml.cs in the View folder:
ViewModel .BeeStarViewModel viewModel;

public BeesOnAStarryNight () {
InitializeComponent () ;

viewModel = FindResource ("viewModel") as ViewModel.BeeStarViewModel;

}

private void SizeChangedHandler (object sender, SizeChangedEventArgs e) {
viewModel.PlayAreaSize = new Size (e.NewSize.Width, e.NewSize.Height);

}

6 ADD THE ANzMaTepIMmace CONTROL TO THE VIEW FOLDER.-
Go back to the View folder and add the AnimatedImage control. This is exactly the same control from
earlier in the chapter. Make sure you add the image files for the animation frames to the project
and update each file’s Build Action to Content and its Copy to Output Directory to Copy always.

e ADD A USER CONTROL CALLED StarCoNTeRoL TO THE VIEW FOLDER.

This control draws a star. It also has two storyboards, one to fade in and one to fade out. Add
methods called FadeIn () and FadeOut () to the code-behind to trigger the storyboards.

A Polygon control uses a set of i
points to draw a polygon. This \

UserControl uses it to draw a star.]
<UserControl e . =

// The usual XAML code that the IDE generates is fine,
// no extra namespaces are needed for this User Control.
>

<UserControl.Resources>
<Storyboard x:Key="fadeInStoryboard">
<DoubleAnimation From="0" To="1" Storyboard.TargetName="starPolygon"
Storyboard.TargetProperty="Opacity" Duration="0:0:1.5" />
</Storyboard>
<Storyboard x:Key="fadeOutStoryboard">
<DoubleAnimation From="1" To="0" Storyboard.TargetName="starPolygon"
Storyboard.TargetProperty="Opacity" Duration="0:0:1.5" />
</Storyboard>
</UserControl.Resources> K \/ou)“ need ‘{‘,o add ?ublic Fadclno and Fachuf()
methods to the code—behind that starts these
storyboards. That's how the stavs will fade in and out.

<Grid>
<Polygon Points="0,75 75,0 100,100 0,25 150,25"™ Fill="Snow"
Stroke="Black" x:Name="starPolygon"/>
</Grid> K This polygon draws the star- You
</UserControl> ean veplace it with other shapes o
expeviment with how they work.

There are even more shapes beyond ellipses, rectangles, and polygons:
http://msdn.microsoft.com/en-usl/library/windows/apps/xaml/hh465055.aspx

you are here » 797

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

oh my stars

Lon® ExerciSe (continvep)

%)

using System.Windows;

using System.Windows.Controls;

using System.Windows.Media.Animation;
using System.Windows.Shapes;

static class BeeStarHelper {

List<string>();
l.png");
2.png");
3.png");
4.png")

List<string> imageNames = new

imageNames.Add ("Bee animation

imageNames.Add ("Bee animation

imageNames.Add ("Bee animation
(

e
imageNames.Add ("Bee animation ;

AnimatedImage bee = new AnimatedImage (imageNames,

bee.Width = width;

public static AnimatedImage BeeFactory(double width, double height,

flapInterval);

abD THE BeeSrtacHeLper CLASS TO THE VIEW.

Here’s a useful helper class. It’s got some familiar tools and a
couple of new ones. Put it in the View folder.

TimeSpan flapInterval) {

bee.Height = height;
return bee;

Canvas has setLeft () and GetLeft () methods to set and get the X
position of a control. The SetTop () and GetTop () methods set and get
} the Y position. They work even after a control is added to the Canvas.

public static void SetCanvasLocation (UIElement control,
Canvas.SetLeft (control, x);
Canvas.SetTop (control, vy);

public static void MoveElementOnCanvas (UIElement uiElement,
double fromX = Canvas.GetLeft (uiElement) ;
double fromY = Canvas.GetTop (uiElement) ;
Storyboard storyboard = new Storyboard() ;
DoubleAnimation animationX =

storyboard.Children.Add (animationX) ;
storyboard.Children.Add (animationY) ;
storyboard.Begin () ;

double from, double to,
new DoubleAnimation() ;
uiElement) ;

DoubleAnimation animation =
Storyboard.SetTarget (animation,
Storyboard.SetTargetProperty (animation,
animation.From = from;

animation.To = to;
animation.Duration =
return animation;

TimeSpan.FromSeconds (3) ;

public static void SendToBack (StarControl newStar)

{

Canvas.SetZIndex (newStar, -1000);

double x,

CreateDoubleAnimation (uiElement,

fromX, toX, new PropertyPath (Canvas.LeftProperty)):;
DoubleAnimation animationY = CreateDoubleAnimation (uiElement,
fromY, toY, new PropertyPath (Canvas.TopProperty));

double y) {

double toX, double toY) {

We added a helper called
Crca{:cDoubchnima{:ion()
that eveates a three—setond
DoubleAnimation. This
method uses it to move a
UlElement from its curvent
lotation to a new ?oin{', b\/
animating its Canvas.Left
and Canvas.Top propevties.

public static DoubleAnimation CreateDoubleAnimation (UIElement uiElement,
PropertyPath propertyToAnimate) {

propertyToAnimate) ;

“Z Index” means the order
the controls are layered on a
panel. A control with a higher

Z index is drawn on top of

one with a lower Z index.

798 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

&)

ADD THE Bee, Star, AND EventArss CLASSES TO THE MODEL.-
Your model needs to keep track of the bees’ positions and sizes, and the stars’ positions, and
it will fire off events so the ViewModel knows whenever there’s a change to a bee or a star.

using System.Windows;

class Bee {
public Point Location { get; set; }
public Size Size { get; set; }
public Rect Position { get { return new Rect (Location,
public double Width { get { return Position.Width; } }
public double Height { get { return Position.Height; } }

public Bee(Point location, Size size) {

Location = location;

Size = size;

Size);

)}
using System.Windows;
class Star {

public Point Location {
get; set;

public Star (Point location) {

Location = location;

}

using System.Windows;

class BeeMovedEventArgs : EventArgs {
public Bee BeeThatMoved { get; private set; }
public double X { get; private set; }
public double Y { get; private set; }

public BeeMovedEventArgs (Bee beeThatMoved, double x,
BeeThatMoved = beeThatMoved;
X = x;
Y = vy,

Onte You 3:{: our Program working,
try adding a goolcan Rotating

property to the Star class and use it
{0 make some of your stars slowly spin

around.
double vy) {

7
The model will five events that use these EventAvgs
to tell the ViewModel when changes happen.
¥

The Reet struet has several
overloaded tonstruetors, and

using System.Windows;
class StarChangedEventArgs : EventArgs {
public Star StarThatChanged { get; private set; }

public bool Removed { get; private set; }

StarThatChanged = starThatChanged;

Removed = removed;

the Pol\/gon tontrol is a

dy d ble pro vties
CO“CC‘EIon Q‘F Poih‘[; S'EV'IAC‘ES. xah \/ oul ? ?e

www.itbook.store/books/9781449343507

public StarChangedEventArgs (Star starThatChanged, bool removed) {

C The Point, Size, and Reet structs

oints pro on - amespate has several very useful struets. Point uses
e oy ot 3 ol el peee ‘s"b stove a set of toordinates. Size has two
j i ial Empty value.
double properties too, Width and Height, and also a special En
R::,’c s{forc‘:ctwo toordinates for the top—left and boH'.om-\.ngh{: corner
of a rcd:anglc- [£ has a lot of useful methods to £ind its width, hclgh‘(:,
inkersection with other Retts, and move.

methods that let you extraet its
width, height, size, and location
(either as a Point o individual X
and Y double toordinates).

799

https://itbook.store/books/9781449343507

buzz buzz buzz

Lon® ExerciSe (continvep)

© ADD THE BeeSreeMobeL CLASS TO THE MODEL.

We’ve filled in the private fields and a couple of useful methods. Your job is
to finish building the BeeStarModel class.

using System.Windows;

Y You tan use veadonly to treate a tonstant struet value.
class BeeStarModel ({
public static readonly Size StarSize = new Size (150, 100);

private readonly Dictionary<Bee, Point> _bees = new Dictionary<Bee, Point>();
private readonly Dictionary<Star, Point> _stars = new Dictionary<Star, Point>();
private Random _random = new Random() ;

Size Empty is 3 value of Size that's veserved

public BeeStarModel () { £ ty size. You'll use it only to treate
fodel O ; or an empty size. Youll use Y
_playAreaSize Size.Empty; zjy b {hc la avea is reﬁzzd-
} bees and stars when play
public void Update() { . . .
MoveoneBes () ; <—— The ViewModel will use a timer +o eall
| AddorRemoveAStar(); this Update() method peviodieally.
i ; 1 R lap (R 1, R 2 .
private static ool Rectaoverlsp(Rect L, ReCE 12 (Thi method chetks dwo Rech
if (rlt.:widt]; >0 || rl.Height > 0) T struets and veturns true if they
ropyrstarn true; PlavAres overlap each other using the
} y MayAreaSize Rett Interseet() method.

is 3 property.
public Size PlayAreaSize { F P {v
// Add a backing field, and have the set accessor call CreateBees() and CreateStars()
}

private void CreateBees () {
// If the play area is empty, return. If there are already bees, move each of them.
// Otherwise, create between 5 and 15 randomly sized bees (40 to 150 pixels), add

// it to the bees collection, and fire the BeeMoved event. .
} - ¢ [£ the method’s tried
private void CreateStars () { ’,OOO random |oca‘{:ions
// If the play area is empty, return. If there are already stars,) £
// set each star's location to a new point and fire the StarChanged and hasn't tound one
// event, otherwise call CreateAStar () between 5 and 10 times. {hat dOCan:oVCYhF,fhc
}
private void CreateAStar() { play avea has probably
// Find a new non-overlapping point, add a new Star object to the u s .
// _stars collection, and fire the StarChanged event. n ou{ OF PaCC,SOJuSt

} (return any Poin‘{:.

private Point FindNonOverlappingPoint (Size size) {
// Find the upper-left corner of a rectangle that doesn't overlap any bees or stars.
// You'll need to try random Rects, then use LINQ queries to find any bees or stars
// that overlap (the RectsOverlap () method will be useful).
}
private void MoveOneBee (Bee bee = null) ({
// If there are no bees, return. If the bee parameter is null, choose a random bee,
// otherwise use the bee argument. Then find a new non-overlapping point, update the bee's
// location, update the bees collection, and then fire the OnBeeMoved event.
}
private void AddOrRemoveAStar () {
// Flip a coin (_random.Next(2) == 0) and either create a star using CreateAStar() or
// remove a star and fire OnStarChanged. Always create a star if there are <= 5, remove
// one if >= 20. _stars.Keys.ToList() [_random.Next(_stars.Count)] will find a random star.
}
// You'll need to add the BeeMoved and StarChanged events and methods to call them.
// They use the BeeMovedEventArgs and StarChangedEventArgs classes.

You can debug your app with the simulator to make sure
it works with different screen sizes and orientations.

800 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

10

using
using
using
using
using
using
using

class

private readonly ObservableCollection<UIElement>
public INotifyCollectionChanged Sprites { get { return _sprites; } }

private readonly Dictionary<Star, StarControl> stars = new Dictionary<Star, StarControl>();
private readonly List<StarControl> _fadedStars = new List<StarControl>();

private BeeStarModel _model = new BeeStarModel () ;

private readonly Dictionary<Bee, AnimatedImage> _bees = new Dictionary<Bee, AnimatedImage>();
private DispatcherTimer _timer = new DispatcherTimer();

public Size PlayAreaSize { /* get and set accessors return and set model.PlayAreaSize */ }

public BeeStarViewModel () {

}

void timer Tick (object sender, object e) {

}

void BeeMovedHandler (object sender, BeeMovedEventArgs e) {

}

void StarChangedHandler (object sender, StarChangedEventArgs e) {
/

abD THE BeeSrarVzewMobeL CLASS TO THE VIEWMODEL -

Fill in the commented methods. You’ll need We wanted to make sure that @n L ‘1‘\1
to look closely at how the Model works and DispatcherTimer and UTElement ﬂ&‘ “ﬁ“
what the View expects. The helper methods | are the only classes from the Windows. }ﬁy““ %‘?
will also come in very handy. UI.Xaml namespace that we used in
;;321 the ViewModel. The using keyword
System.Collections.ObjectModel; lets you use =to declare a single
System.Collections.Specialized; member in another namespace.

System.Windows;
DispatcherTimer = Windows.UI.Xaml.DispatcherTimer;
UIElement = Windows.UI.Xaml.UIElement;

BeeStarViewModel {

sprites = new ObservableCollection<UIElement>();

// Hook up the event handlers to the BeeStarModel's BeeMoved and StarChanged events,
// and start the timer ticking every two seconds.

// Every time the timer ticks, find all StarControl references in the fadedStars
// collection and remove each of them from _sprites, then call the BeeViewModel's
// Update () method to tell it to update itself.

/ The bees dictionary maps Bee objects in the Model to AnimatedImage controls
// in the view. When a bee is moved, the BeeViewModel fires its BeeMoved event to
// tell anyone listening which bee moved and its new location. If the bees
// dictionary doesn't already contain an AnimatedImage control for the bee, it needs
// to create a new one, set its canvas location, and update both _bees and _sprites.
// If the bees dictionary already has it, then we just need to look up the corresponding
// AnimatedImage control and move it on the canvas to its new location with an animation.

/ The stars dictionary works just like the bees one, except that it maps Star objects
// to their corresponding StarControl controls. The EventArgs contains references to

// the Star object (which has a Location property) and a Boolean to tell you if the star
// was removed. If it is then we want it to fade out, so remove it from stars, add it

// to fadedStars, and call its FadeOut () method (it'll be removed from sprites the next
// time the Update () method is called, which is why we set the timer’s tick interval to
// be greater than the StarControl's fade out animation).

// If the star is not being removed, then check to see if stars contains it - if so, get
// the StarControl reference; if not, you'll need to create a new StarControl, fade it in,
// add it to sprites, and send it to back so the bees can fly in front of it. Then set
// the canvas location for the StarControl.

[i dated—even i its al\rcad\/ on
Wh set the new Canvas lotation, the tontrol is up eady
Jchccnc;l::as. This is how the stars move Ehemselves around when the play area is vesized.

you are here » 801

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

exercise solution

L.ong Exercise SOLUTION

Here are the filled-in methods in the BeeStarModel class.

using System.Windows;

class BeeStarModel {
public static readonly Size StarSize = new Size (150, 100);

private readonly Dictionary<Bee, Point> Dbees = new Dictionary<Bee, Point>();
private readonly Dictionary<Star, Point> stars = new Dictionary<Star, Point>();
private Random random = new Random() ;

public BeeStarModel () { R
_playAreaSize = Size.Empty;

\

}

public void Update() { &— We gave these to you.

MoveOneBee () ; J
AddOrRemoveAStar () ;
}

private static bool RectsOverlap (Rect rl, Rect r2) {
rl.Intersect (r2);
if (rl.wWwidth > 0 || rl.Height > 0)
return true;
return false;
}
&—— Whenever the PlayAveaSize property

private Size _playAreaSize;

ublic Size PlayAreaSize thanges, the Model updates the
22:_ { return playAreaSize; } _ylayArcaSizc backing ‘("ield and then calls
{ CreateBees() and CreateStars(). This
playAreaSize = value; lets the ViewModel Lell the Model 4o
giiiiiiii SQ(; ' adjust itself whenever the size thanges—
} ; whieh will happen if You ¥un the program
) on a tablet and thange the ovientation.
private void CreateBees () {
if (PlayAreaSize == Size.Empty) return;
if (_bees.Count() > 0) { I) .
List<Bee> allBees = Dbees.Keys.ToList(); ’ ‘H\CV‘C aranc an bces n ‘U‘\C
[£ theve ave 3 ! ' /
b —2 foreach (Bee bee in allBees) model \/c{:, this eveates new
alr::dé {c:s, move e {MoveOneBee (bee) ; Bee ob\)c,;-[;s and sets their
;/? 5 B c?) int beeCount = random.Next (5, 10); loations. A"Y time a bee is added
.OVC. nebee for (int i = 0; i < beeCount; i++) { L/ or changcs, we need to five a
will -('\md a new int s = random.Next (50, 100); BCCM ved ev .t
nonoverla Pi“3 Size beeSize = new Size(s, s); ovea event.

locaﬁon or eath Point newlLocation = FindNonOverlappingPoint (beeSize) ;
Bee newBee = new Bee (newLocation, beeSize);

bcc and ‘Fiv'c] _bees[newBee] = new Point (newLocation.X, newLocation.Y);

Bchchd CVCh{L OnBeeMoved (newBee, newLocation.X, newLocation.Y);

802 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

private void CreateStars() {
if (PlayAreaSize Size.Empty)

return;
if (_stars.Count > 0) {
foreach (Star star in stars.Keys) {
star.Location FindNonOverlappingPoint (StarSize);
OnStarChanged(star, false);

}
} else {
int starCount _random.Next (5,
for (int i = 0; 1 < starCount;
CreateAStar () ;

10);
i++)

}

private void CreateAStar () {
Point newLocation = FindNonOverlappingPoint (StarSize);
Star newStar new Star (newLocation);
_stars[newStar] new Point (newLocation.X,
OnStarChanged (newStar, false);

newLocation.Y) ;

}

private Point FindNonOverlappingPoint (Size size) {
Rect newRect new Rect();
bool noOverlap = false;
int count = 0;
while (!noOverlap) {
newRect
_random.Next ((int)PlayAreaSize.Height - 150),
size.Width, size.Height);

var overlappingBees
from bee in bees.Keys
where RectsOverlap (bee.Position,

select bee;

newRect)

var overlappingStars
from star in _stars.Keys
where RectsOverlap (
new Rect (star.Location.X,
newRect)
select star;
if ((overlappingBees.Count () + overlappingStars.Count ()
noOverlap = true;
}

return new Point (newRect.X, newRect.Y);

}

private void MoveOneBee (Bee bee = null) {
if (_bees.Keys.Count() == 0) return;
if (bee == null) {
int beeCount = stars.Count;
List<Bee> bees = bees.Keys.ToList();
bee = bees|[random.Next (bees.Count)];

}

bee.Location FindNonOverlappingPoint (bee.Size);
_bees[bee] = bee.Location;
OnBeeMoved (bee, bee.Location.X, bee.Location.Y);

new Rect (_random.Next ((int)PlayAreaSize.Width - 150),

These LIN® queries call ReetsOverlap()
to find any bees or stars that overlap
the new Reet. £ either vetuen value has
a tount, the new Rect overlaps something,

star.Location.Y, StarSize.Width,

I£ there ave alveady stars,
we JuS‘E set eath cxis{ing
star’s lotation to a new
point on the PlayAvea and
five the StarChanged event.
[t's up to the ViewModel to
handle that event and move
the torresponding tontrol.

This eveates a vandom Rett and
then cheeks if it overlaps. We
9ave it @ 250—pixel 4ap on the
vight and a 150—pixel 9ap on
the bottom so the stars and
bees don't leave the play avea.

StarSize.Height),

== 0) || (count++ > 1000))

[£ this iterated 1,000 fimes,
it means we've probably out
of nonovcrla‘??ing sPo‘Es n
the play area and need to
break out of an infinite loop.

www.itbook.store/books/9781449343507

you are here » 803

https://itbook.store/books/9781449343507

exercise solution

}

{

}

{

using
using
using
using
using
using
using

class

L.ong Exercise SOLUTION

public event EventHandler<StarChangedEventArgs> StarChanged;

private void OnStarChanged (Star starThatChanged, bool removed)

Flip a ¢oin by ehoosing either O or | at
The last few members of the BeeStarModel cIassZ random, but always eveate a star if theve

are under S and vemove if 20 or move.

private void AddOrRemoveAStar () {

if (((_random.Next(2) == 0) || (_stars.Count <= 5)) && (_stars.Count < 20))
CreateAStar () ;
else {
Star starToRemove = stars.Keys.ToList () [random.Next (stars.Count)];
stars.Remove (starToRemove) ; . .
OnStarChanged (starToRemove, true); \ EVCY\/ time the Mydafc() method is called,
} we want to either add or vemove a star. The

CreateAStar() method already eveates stars.

) . . .
public event EventHandler<BeeMovedEventArgs> BeeMoved; 'F were removing a ﬂﬁr,WCJu$£YCmovc|£

£rom _stavs and five a StarChanged event.

private void OnBeeMoved (Bee beeThatMoved, double x, double vy)

EventHandler<BeeMovedEventArgs> beeMoved = BeeMoved;
if (beeMoved != null)
{

beeMoved (this, new BeeMovedEventArgs (beeThatMoved, x, V));
} These are typical
event handlers and

methods to fire them.

EventHandler<StarChangedEventArgs> starChanged = StarChanged;
if (starChanged != null)
{

starChanged (this, new StarChangedEventArgs (starThatChanged, removed)) ;
}

Here are the filled-in methods of the BeeStarViewModel class.

View;

Model;

System.Collections.ObjectModel;
System.Collections.Specialized;

System.Windows;

DispatcherTimer = System.Windows.Threading.DispatcherTimer;
UIElement = System.Windows.UIElement;

We gave these to you.

BeeStarViewModel {

private readonly ObservableCollection<UIElement>

sprites = new ObservableCollection<UIElement>();

public INotifyCollectionChanged Sprites { get { return sprites; } }

private readonly Dictionary<Star, StarControl> _stars = new Dictionary<Star, StarControl>();
private readonly List<StarControl> _fadedStars = new List<StarControl>();

private BeeStarModel _model = new BeeStarModel ();

private readonly Dictionary<Bee, AnimatedImage> _bees

= new Dictionary<Bee, AnimatedImage>();

private DispatcherTimer _timer = new DispatcherTimer () ;

804 Appendix ii

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

public Size PlayAreaSize {
get { return model.PlayAreaSize; }

set { model.PlayAreaSize = value; }

}

public BeeStarViewModel () {
_model.BeeMoved += BeeMovedHandler;
_model.StarChanged += StarChangedHandler;

_timer.Interval = TimeSpan.FromSeconds (2);
_timer.Tick += timer Tick;
_timer.Start();

}

void timer_ Tick (object sender, object e) ({
foreach (StarControl starControl in _fadedStars)
_sprites.Remove (starControl);

_model.Update () ;
}

void BeeMovedHandler (object sender, BeeMovedEventArgs e) {
if (! bees.ContainsKey (e.BeeThatMoved)) {
AnimatedImage beeControl = BeeStarHelper.BeeFactory (
e.BeeThatMoved.Width, e.BeeThatMoved.Height, TimeSpan.FromMilliseconds (20));
BeeStarHelper.SetCanvasLocation (beeControl, e.X, e.Y);

_bees[e.BeeThatMoved] = beeControl;
_sprites.Add(beeControl) ;

} else {
AnimatedImage beeControl = bees[e.BeeThatMoved];

BeeStarHelper.MoveElementOnCanvas (beeControl, e.X, e.Y);
}

void StarChangedHandler (object sender, StarChangedEventArgs e) {
if (e.Removed) {

StarControl starControl = _stars[e.StarThatChanged];
_stars.Remove (e.StarThatChanged) ;
~fadedStars.Add (starControl) ; <%_______-Thc fadcdS{AVSCO“ctﬁon tontains
starControl.FadeOut () ; — K
} else f the eontrols that are eurvently fading
StarControl newStar; . .
if (_stars.ContainsKey (e.StarThatChanged)) and will bc, removed the next #‘mc the
newStar = _stars[e.StarThatChanged]; \/icwModcl s l/(yda-l:c() mc{‘)\od 1S callcd-
else {
newStar = new StarControl();
stars[e.StarThatChanged] = newStar;

newStar.FadeIn () ;
BeeStarHelper.SendToBack (newStar) ;
_sprites.Add(newStar);

}

BeeStarHelper.SetCanvasLocation (
newStar, e.StarThatChanged.Location.X, e.StarThatChanged.Location.Y);

} I£ a star is being added, it needs to have its Fadeln()
} method talled. ,2 it’s alveady there, it's Jjust being

moved because the play area size ¢hanged. Either way,

we want to move it to its new lotation on the Canvas.

you are here » 805

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

2,048 Exercise
SeguTioN

public partial class StarControl :
public StarControl ()
{

InitializeComponent () ;

}
public void FadeIn() {
Storyboard fadeInStoryboard
fadeInStoryboard.Begin() ;

}

public void FadeOut () {
Storyboard fadeOutStoryboard
fadeOutStoryboard.Begin () ;

}

£ you'vc done a good 3ob with separation
of tonterns, Your designs often tend to —
naturally end up being loosely eoupled.

Here are the methods for the StarControl code-behind:

using System.Windows.Media.Animation;

UserControl

{

FindResource ("fadeInStoryboard") as Storyboard;

FindResource ("fadeOutStoryboard") as Storyboard;

The ViewModel’s PlayAreaSize property just passes through to
the property on the Model—but the Model’s PlayAreaSize set
accessor calls methods that fire BeeMoved and StarChanged
events. So when the screen resolution changes: 1) the Canvas
fires its SizeChanged event, which 2) updates the ViewModel’s
PlayAreaSize property, which 3) updates the Model’s property,
which 4) calls methods to update bees and stars, which 5)

fire BeeMoved and StarChanged events, which 6) trigger the
ViewModel’s event handlers, which 7) update the Sprites

collection, which 8) update the controls on the Canvas. This is an
example of loose coupling, where there’s no single, central object

to coordinate things. This is a very stable way to build software
because each object doesn’t need to have explicit knowledge of

how the other objects work. It just needs to know one small job:

handle an event, fire an event, call a method, set a property, etc.

You've got all the tools to do Lab #3 and build Invaders!

We saved the best for last. In the last lab in the book, you’ll build your
own version of Space Invaders, the grandfather of video games.
And while the lab is aimed at Windows Store apps, if you
finished the Bees on a Starry Night project—and you understood
it all—then you have the knowledge and know-how to build a
WPF version of the Invaders game. Almost everything in the
lab applies to WPE. The only thing that’s different is how the
user controls the ship. Windows Store apps have advanced
gesture events that process touch and mouse input, but WPF
windows don’t support those events. You’ll need to use the

WPF Window object’s KeyUp and KeyDown events. Luckily,
you’ve already got a good example. Flip back to the Key Game
in Chapter 4—your Invaders game can handle keystrokes in
exactly the same way.

806

Invaders

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

Congratulations! (But you're not done yet...)

Did you finish that last exercise? Did you understand everything that was going on? If
so, then congratulations—you’ve learned a whole lot of C#, and probably in less time
than you’d expected! The world of programming awaits you.

Still, there are a few things that you should do before you move on to the last lab, if you
really want to make sure all the information you put in your brain stays there.

Take one last look through Save the Humans.

Avoid These If you did everything we asked you to do, you’ve built Save the
Humans twice, once at the beginning of the book and again before
you started Chapter 10. Even the second time around, there were
parts of it that seemed like magic. But when it comes to programming,
there is no magic. So take one last pass through the code you built.
You'll be surprised at how much you understand! There’s almost
nothing that seals a lesson into your brain like positive reinforcement.

Talk about it with your friends.

Wll . Humans are social animals, and when you
en 1t

talk through things you’ve learned with your
social circle you do a better job of retaining

comes to them. And these days, “talking” means
. social networking, too! Plus, you've really
Pl‘ogrammlng, accomplished something here. Go ahead

. . . . |
tllet’e is no and claim your bragging rights!

maglc‘ Ever y Take a break. Even better, take a nap.

Program Worl(s Your brain has absorbed a lot of information, and
. sometimes the best thing you can do to “lock in” all
l)ecause 1t that new knowledge is to sleep on it. There’s a lot of
. neuroscience research that shows that information
was LUIlt to absorption is significantly improved after a good
night’s sleep. So give your brain a well-deserved
Worl‘, an(I all rest!

code can be N
~but it’s a lot easier

unJerstooJ. to understand code if
the programmer used humans forgot about us!
3ood dCSiSh P&‘H:crns o O Time to attack While tbey"/e

and objeet—oriented 0 lowered their guard!
Programming principles. ~

www.itbook.store/books/9781449343507

you are here » 807

https://itbook.store/books/9781449343507

