
this is an appendix 1

Good news! I just
approved your request

to upgrade your desktop
to Windows 2003.

WPF Learner’s Guide
to Head First C#

Not running Windows 8? Not a problem.
We wrote many chapters in the third edition of Head First C# using the latest technology

available from Microsoft, which requires Windows 8 and Visual Studio 2013. But what

if you’re using this book at work, and you can’t install the latest version? That’s where

Windows Presentation Foundation (or WPF) comes in. It’s an older technology, so it

works with Visual Studio 2010 and 2008 running on Windows editions as mature as 2003.

But it’s also a core C# technology, so even if you’re running Windows 8 it’s a good idea

to get some experience with WPF. In this appendix, we’ll guide you through building

most of the Windows Store projects in the book using WPF.

Suzie got her office desktop upgraded in JUST
sixteen months. A new company record!

There are many projects in Head First C# where you build Windows Store apps that require Windows 8. In this appendix, you'll use WPF to build them as desktop apps instead.
appendix ii: Windows Presentation Foundation

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

2 Appendix ii

Why you should learn WPF
Windows Presentation Foundation, or WPF, is a technology
that’s used to build user interfaces for programs written in .NET.
WPF programs typically run on the Windows desktop and display
their user interfaces in windows. WPF is one of the most popular
technologies for developing Windows software, and familiarity
with WPF is considered by many employers to be a required skill
for professional C# and .NET developers.

WPF programs use XAML (Extensible Application Markup
Language) to lay out their UIs. This is great news for Head First
C# readers who have been reading about Windows Store apps.
Most of the Windows Store projects in the book can be built for
WPF with few or no modifications to the XAML code.

same programs new technology

Every C# developer should work with WPF.

Almost every programming language can be used in lots of different
environments and operating systems, and C# is no exception. If
your goal is to improve as a C# developer, you should go out of
your way to work with as many different technologies as possible.
And WPF in particular is especially important for C# developers,
because there are many programs that use WPF in companies,
and this will continue for a long time. If your goal is to use C# in a
professional environment, WPF is technology you’ll want to list on
your resumé.

Learning WPF is also great for a hobby programmer who’s using
Windows 8 and can build all of the code in Head First C#. One of
the most effective learning tools you have as a developer is seeing
the same problem solved in different ways. This appendix
will guide you through building many of the projects in Head First
C# using WPF. Seeing those projects built in WPF and Windows 8
will give you valuable perspective, and that’s one of the things that
helps turn good programmers into great developers.

I’m running Windows 8

and Visual Studio 2013, so I

don’t care about WPF... right?

Some things, like
app bars and
page navigation,
are specific to
Windows Store
apps. In this
appendix, we
show you WPF
alternatives
wherever possible.

You can download the code for all of the projects in this appendix. Go to the Head First
Labs website for more information: http://www.headfirstlabs.com/hfcsharp

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 3

windows presentation foundation

Creating a new WPF application in Visual Studio works just like creating other kinds of
desktop applications. If you’re using Visual Studio Express 2013, make sure you’re using
Visual Studio 2013 Express for Desktop (the edition for Windows 8 will not create WPF
projects). You can also create programs using Visual Studio 2013 Professional, Premium,
or Ultimate. When you create a new project, Visual Studio displays a “New Project” dialog.
Make sure you select Visual C#, and then choose :

Build WPF projects in Visual Studio

WPF can also be used to build XAML browser applications that run inside Internet
Explorer and other browsers. We won’t be covering it in this appendix, but you can
learn more about it here: http://msdn.microsoft.com/en-us/library/aa970060.aspx

Microsoft has yet another technology that also uses XAML. It’s called Silverlight,
and you can read about it here: http://www.microsoft.com/silverlight/

You can also create C# WPF applications using all editions of Visual Studio 2010, Visual C#
2010 Express, and Visual Studio 2008. Note that if you use the Express editions of Visual Studio
2010 or 2008, the project files are initially created in a temporary folder and are not saved to the
location specified in the New Project dialog until you use Save or Save All to save your files.

Did you find an error in this appendix? Please submit it using the Errata page for Head
First C# (3rd edition) so we can fix it as quickly as possible!

http://www.oreilly.com/catalog/errata.csp?isbn=0636920027812

www.itbook.store/books/9781449343507

http://www.oreilly.com/catalog/errata.csp?isbn=0636920027812
https://itbook.store/books/9781449343507

4 Appendix ii

let’s get started

How to use this appendix
This appendix contains complete replacements for pages in Head First C# (3rd edition). We’ve divided
this appendix up into individual guides for each chapter, starting with an overview page that has
specific instructions for how to work through that chapter: what pages to replace in the chapter, what
to read in it, and any specific instructions to help you get the best learning experience.

If you’re using an old version of Visual Studio, you’ll be able to do these
projects... but things will be a little harder for you.

The team at Microsoft did a really good job of improving the user interface of Visual Studio 2013,
especially when it comes to editing XAML. One important feature of Head First C# is its use of the
Visual Studio IDE as a tool for teaching, learning, and exploration. This is why we strongly recommend
that you use the latest version of Visual Studio if possible.

However, we do understand that some readers cannot install Visual Studio 2013. (For example, a lot of
our readers are using a computer provided by an employer, and do not have administrative privileges
to install new software.) We still want you to be able to use our book, even if you’re stuck using an old
version of Visual Studio! We’ll do our best to give you as much guidance as we can. But we also need to
strike a balance here, because we’re being careful not to compromise the learning for the majority of our
readers who are using the latest version of Visual Studio.

If you’re using Visual Studio 2010 or earlier, and you find yourself stuck because the IDE’s user interface
doesn’t look right or menu options aren’t where you expect them to be, we recommend that you
enter the XAML and C# code by hand—or even better, copy it and paste it into Visual Studio.
Once the XAML is correct, it’s often easier to track down the feature in the IDE that generated it.

We’ve made all of the source code in the book available for download, and
we encourage you to copy and paste it into your programs anytime you get
stuck. Go to the book’s website(http://www.headfirstlabs.com/hfcsharp) for

more details and links to the source code.

You can download the source code directly from http://hfcsharp.codeplex.
com/ — but for the replacement chapters in this appendix, make sure that you
sure you download the code from the WPF folder. If you try to use the Windows

Store code in a WPF project, you'll get frustrating errors.

One more thing. This appendix has replacements for pages that you’ll find
in the printed or PDF version this book, and you can find those pages using

their page numbers. However, if you’re using a Kindle or another eBook
reader, you might not be able to use the page numbers. Instead, just use the
section heading to look up the section to replace. For example, this appendix
has replacements for pages 72 and 73 section called Build an app from the

ground up, which you can find in your eBook reader’s Table of Contents
underneath Chapter 2. (Exercises like the one on page 83 and the solution on
page 85 might not show up in your reader’s Table of Contents, but you’ll get
to the exercises as you go through each chapter.) This will be much easier
for you if you download the PDF of this appendix from the book’s website.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 5

windows presentation foundation

Chapter 1
You can build the entire

Save the humanS game in WPF

using these replacements for

pages 12-47.

Build a game, and get a feel for the IDE.

The first project in the book walks you through building a
complete—and fun!—video game. The goal of the project
is to help you get used to creating user interfaces and
writing C# code using the Visual Studio IDE.

We recommend that you read through page 11 in the main
part of the book, and then flip to the next page in this
appendix. We designed pages 12–47 in this appendix so
that they can be 100% replacements for the corresponding
pages in the book. Once you’ve finished building the WPF
version of Save the Humans, you can go on to Chapter 2 in
the book.

The screenshots in this chapter are from Visual Studio 2013 for
Windows Desktop, the latest version of Visual Studio available at this
time. If you’re using Visual Studio 2010, some of the menu options
and windows in the IDE will be different. We’ll give you guidance to
help you find the right menu options.

We worked really hard to keep the page flipping to a minimum, because by reducing
distractions we make it easier for you to learn important C# concepts. After you read
the first 11 pages of Chapter 1, you won't have to flip back to the main part of the
book at all for the rest of the chapter. Then there are just five pages that you need
in this appendix for Chapter 2. After that, the book concentrates on building desktop
applications, which you can build with any version of Windows. You won't need this
appendix again until you get to Chapter 10.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

12 Appendix ii

fill in the blanks

Start with a blank applicat ion
Every great app starts with a new project. Choose New Project from the
File menu. Make sure you have Visual C#→Windows selected and choose
WPF Application as the project type. Type “Save the Humans” as the
project name.

If your code filenames don’t end in “.cs”
you may have accidentally created a
JavaScript, Visual Basic, or Visual C++
program. You can fix this by closing the
solution and starting over. If you want
to keep the project name “Save the
Humans,” then you’ll need to delete the
previous project folder.

 Your starting point is the Designer window. Double-click on MainWindow.xaml in the Solution
Explorer to bring it up (if it's not already displayed). Find the zoom drop-down in the lower-left
corner of the designer and choose “Fit all” to zoom it out.

1

Use these three buttons to turn on the
grid lines, turn on snapping (which
automatically lines up your controls to
each other), and turn on snapping to grid
lines (which aligns them with the grid).

The designer shows you a
preview of the window that
you’re working on. It looks
like a blank window with a
default white background.

You won’t see these buttons in
older versions of Visual Studio,
only in 2013 (and 2012).

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 13

windows presentation foundation

 The bottom half of the Designer window shows you the XAML code. It turns out
your “blank” window isn’t blank at all—it contains a XAML grid. The grid works
a lot like a table in an HTML page or Word document. We’ll use it to lay out our
windows in a way that lets them grow or shrink to different screen sizes and shapes.

You can see the XAML code for
the blank window that the IDE
generated for you. Keep your eyes
on it—we’ll add some columns and
rows in a minute.

This part of the project has steps numbered 1 to 3 .

Flip the page to keep going!

These are the opening and closing tags for a grid that
contains controls. When you add rows, columns, and controls
to the grid, the code for them will go between these opening
and closing tags.

StartGame()

AddEnemy()

Ellip
se

XAML Main Window
and Containers WPF UI Controls C# Code

Main w

in
do

w

Grid

Canvas

Rectangl
e

Sta
ck

P
an

e
l

Rectangl
e

ProgressB
ar

Target ti
m

er

Enemy tim
er

Tick event handler

Tick event handler

Click event handler

Start b
utto

n

methods

You are here!

This project closely follows chapter 1.
We want to give you a solid learning foundation, so we’ve designed this project so that it can
replace pages 12-48 of Head First C#. Other projects in this appendix will give you all the
information that you need to adapt the material in the book. So even when we don’t give you one-
to-one page replacements, we’ll make sure you get all the information you need to do the projects.

AnimateEnemy()

EndTheGame()

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

14 Appendix ii

Q:But it looks like I already have many rows and
columns in the grid. What are those gray lines?

A: The gray lines are just Visual Studio giving you a
grid of guidelines to help you lay your controls out evenly
in the window. You can turn them on and off with the
button. None of the lines you see in the designer show up
when you run the app outside of Visual Studio. But when
you clicked and created a new row, you actually altered
the XAML, which will change the way the app behaves
when it’s compiled and executed.

Q: Wait a minute. I wanted to learn about C#. Why
am I spending all this time learning about XAML?

A: Because WPF apps built in C# almost always start
with a user interface that’s designed in XAML. That’s also
why Visual Studio has such a good XAML editor—to give
you the tools you need to build stunning user interfaces.
Throughout the book, you’ll learn how to build other types
of programs with C#: Windows Store apps, which use
XAML, and desktop applications and console applications,
which don’t. Seeing all of these different technologies will
give you a deeper understanding of programming with C#.

not so blank after all

 Your app will be a grid with two rows and three columns, with one big
cell in the middle that will contain the play area. Start defining rows by
hovering over the border of the window until a line and triangle appear:

2

...then click to
create a bottom
row in the grid.

Hover over the
border of the
window until an
orange triangle and
line appear...

After the row is added,
the line will change to
blue and you’ll see the
heights of both rows
in the border. The
height of each row will
be a number followed
by a star. Don’t worry
about the numbers for
now.

WPF apps often
need to adapt to
different window
sizes displayed
at different
screen resolutions.

Laying out the window using a
grid’s columns and rows allows
your program to automatically
adjust to the window size.

Over the next few pages
you’ll explore a lot of
different features in

the Visual Studio IDE,
because we’ll be using
the IDE as a powerful
tool for learning and

teaching. You’ll use the
IDE throughout the book

to explore C#. That’s a
really effective way to
get it into your brain!

You might need to
click inside the
window in order to
see the triangles
for adding rows
and columns.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 15

windows presentation foundation

 Do the same thing along the top border of the window—except this time create two columns, a small
one on the left-hand side and another small one on the right-hand side. Don’t worry about the row
heights or column widths—they’ll vary depending on where you click. We’ll fix them in a minute.

3

When you’re done, look in the XAML window and go back to the same grid from the previous page.
Now the column widths and row heights match the numbers on the top and side of your window.

Here’s the width of the left column
you created in step 3—the width
matches the width that you saw in
the designer. That’s because the IDE
generated this XAML code for you.

Don’t worry if your
row heights or column
widths are different;
you’ll fix them on the
next page.

Your grid rows and columns are now added!
XAML grids are container controls, which means they hold other
controls. Grids consist of rows and columns that define cells, and each
cell can hold other XAML controls that show buttons, text, and shapes.
A grid is a great way to lay out a window, because you can set its rows
and columns to resize themselves based on the size of the screen.

The humans are
preparing. We don’t like

the looks of this.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

16 Appendix ii

let’s size up the competition

 Set the width of the LEFT column.
Hover over the number above the leftmost column until a
drop-down menu appears. Choose Pixel to change the star
to a lock, and then click on the number to change it to 140.
Your column’s number should now look like this:

1

Set up the grid for your window
Your program needs to be able to work on different sized windows, and
using a grid is a great way to do that. You can set the rows and columns
of a grid to a specific pixel height. But you can also use the Star setting,
which keeps them the same size proportionally—to one another and
also to the window—no matter how big the window or resolution of the
display.

 Repeat for the right column and
the bottom row.
Make the right column 160 pixels and the bottom
row 150 by choosing Pixel and typing 160 or 150
into the box.

2

 It’s OK if you’re not
a pro at app
design...yet.

We’ll talk a lot more
about what goes into designing a good
app later on. For now, we’ll walk you
through building this game. By the end of
the book, you’ll understand exactly what
all of these things do!

Set your columns or rows to
Pixel to give them a fixed
width or height. The Star
setting lets a row or column
grow or shrink proportionally
to the rest of the grid. Use
this setting in the designer
to alter the Width or Height
property in the XAML. If
you remove the Width or
Height property, it’s the same
as setting the property to 1*.

If you don’t see the numbers like
120* and 19* along the border
of your window, click outside the
window in the designer.

When you switch the column to pixels,
the number changes from a proportional
width to the actual pixel width.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 17

windows presentation foundation

 Make the center column the default size.
Make sure that the center column width is set to . If it
isn’t, click on the number above the center column and enter
1. Don’t use the drop-down (leave it star) so it looks like the
picture below. Then make sure to look back at the other
columns to make sure the IDE didn’t resize them. If it did, just
change them back to the widths you set in steps 1 and 2.

3

 Look at your XAML code!
Click on the grid to make sure it’s selected, then look in the XAML window to see the code that you built.

4

You used the column and row
drop-downs to set the Width
and Height properties.

This is how a column is defined for a XAML grid. You added three columns and two rows, so there are three ColumnDefinition tags and two RowDefinition tags.

In a minute, you’ll be adding controls
to your grid, which will show up here,
after the row and column definitions.

The <Grid> line at the top
means everything that comes
after it is part of the grid.

When you enter 1* into the box,
the IDE sets the column to its
default width. It might adjust
the other columns. If it does, just
reset them back to 160 pixels.

You used the designer to set th
e height

of the bottom row to 150 pixels.

XAML and C# are
case sensitive! Make
sure your uppercase
and lowercase letters
match example code.

If you
accidentally
changed the
center column’s
width to Pixels,
you can change it
back to 1*.

If you’re using Visual Studio 2010, the IDE looks different. When you hover
over a column size, you’ll see this box to select pixel or star:

It’s possible to edit the column sizes in the designer using the older
versions of the IDE, but it’s not nearly as easy to do. We recommend that
if you’re using an older version of the IDE, you create the columns and
rows, and then edit the XAML row and column definitions by hand.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

18 Appendix ii

take control of your program

Add controls to your grid
Ever notice how programs are full of buttons, text, pictures, progress bars, sliders,
drop-downs, and menus? Those are called controls, and it’s time to add some of
them to your app—inside the cells defined by your grid’s rows and columns.

Drag a into the lower-right cell of the grid. Your XAML will look something like this.
See if you can figure out how it determines which row and column the controls are placed in.

2

Expand the Common WPF Controls section of the toolbox
and drag a into the bottom-left cell of the grid.

Then look at the bottom of the Designer window and have a
look at the XAML tag that the IDE generated for you. You’ll
see something like this—your margin numbers will be different
depending on where in the cell you dragged it, and the
properties might be in a different order.

1

The XAML for the button starts
here, with the opening tag.

These are properties. Each
property has a name, followed by
an equals sign, followed by its value.

If you don’t see
the toolbox, try
clicking on the
word “Toolbox”
that shows up
in the upper-left
corner of the
IDE. If it’s not
there, select
Toolbox from
the View menu
to make it
appear.We added line breaks to make the XAML easier to

read. You can add line breaks, too. Give it a try!

Click on Pointer in the toolbox, then click on the TextBlock and move it around and watch the IDE update the Margin property in the XAML.

If you don’t see the toolbox in the IDE, you can open it using the View menu. Use the pushpin to keep it from collapsing.

When you pin
the Toolbox,
you can use this
tab to open it

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 19

windows presentation foundation

When you drag a
control out of the
toolbox and onto
your window, the
IDE automatically
generates XAML
to put it where you
dragged it.

Next, expand the All WPF Controls section of the toolbox. Drag a
into the bottom-center cell, a into the bottom-right cell (make sure
it’s below the TextBlock you already put in that cell), and a into the top
center cell. Your window should now have controls on it (don’t worry if they’re placed
differently than the picture below; we’ll fix that in a minute):

3

You’ve got the Canvas control currently selected, since you just added it. (If not, use
the pointer to select it again.) Look in the XAML window:

...

It’s showing you the XAML tag for the Canvas control. It starts with <Canvas and
ends with />, and between them it has properties like Grid.Column="1" (to put
the Canvas in the center column) and Height="100" (to set its height in pixels).
Try clicking in both the grid and the XAML window to select different controls.

4

Here’s the TextBlock
control you added in
step 2. You dragged
a ContentControl
into the same cell.

You just added
this ProgressBar.

When you add the Canvas
control, it looks like an
empty box. We’ll fix
that shortly.

Here’s the ContentControl.
What do you think it does?

Try clicking this button.
It brings up the Document
Outline window. Can you
figure out how to use it?
You’ll learn more about it
in a few pages.

Here’s the
button you
added in step 1.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

20 Appendix ii

your app’s property value is going up

Use propert ies to change how the controls look
The Visual Studio IDE gives you fine control over your controls. The Properties window
in the IDE lets you change the look and even the behavior of the controls on your window.

 Use the Properties window to modify the button.
Make sure the button is selected in the IDE, and then look at
the Properties window in the lower-right corner of the IDE.
Use it to change the name of the control to startButton
and center the control in the cell. Once you’ve got the button
looking right, right-click on it and choose View Source to
jump straight to the <Button> tag in the XAML window.

2

 Change the text of the button.
Right-click on the button control that you dragged onto the grid and choose Edit Text
from the menu. Change the text to: Start! and see what you did to the button’s XAML:

...

1

When you edit the text in the button, the IDE
updates the Content property in the XAML.

Use the Name box to change the
name of the control to startButton.

When you used “Edit Text” on the right-click menu to change
the button’s text, the IDE updated the Content property.

Use the and buttons to
set the HorizontalAlignment and

VerticalAlignment properties to “Center”
and center the button in the cell.

These little squares tell you if the property has been set. A filled square means it’s been set; an empty square means it’s been left with a default value.

When you dragged the button onto the window, the IDE
used the Margin property to place it in an exact position
in the cell. Click on the square and choose Reset from

the menu to reset the margins to 0.

Go back to the
XAML window in
the IDE and have a
look at the XAML
that you updated!

You might
need to
expand the
Common
and Layout
sections.

When you’re editing text, use the Escape key to finish. This works for other things in the IDE, too.

The properties may be in a different order. That’s OK!

Older versions of the
IDE use the word
“Center” instead of
icons like this.

Use the buttons to set the
Width and Height to Auto.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 21

windows presentation foundation

 Change the size and title of the window.
Select any of the controls. Then hit Escape, and keep hitting Escape until the outer
<Window> tag is displayed in the XAML editor:

Click in the XAML editor. The <Window> tag has properties for Height
and Width. Look for their corresponding values in the Properties window in the IDE:

Set the width to 1000 and height to 700, and the window immediately resizes
itself to the new size. You can use the “Fit all” option in the Zoom drop-down to show
the whole window in the designer. Notice how the center column and top row resized
themselves to fit the new window, while the other rows and columns kept their pixel
sizes. Then expand the Common section in the Properties window and set the Title
property to Save the Humans. You’ll see the window title get updated.

3

 Use a StackPanel to group the TextBlock and ContentControl.
Make sure that the TextBlock is near the top of the cell, and the ContentControl is near
the bottom. Click and drag to select both the TextBlock and ContentControl,
and then right-click. Choose from the pop-up menu, then choose

. This adds a new control to your form: a StackPanel control. You can
select the StackPanel by clicking between the two controls.

The StackPanel is a lot like the Grid and Canvas: its job is to hold other controls
(it’s called a “container”), so it’s not visible on the form. But since you dragged the
TextBlock to the top of the cell and the ContentControl to the bottom, the IDE created
the StackPanel so it fills up most of the cell. Click in the middle of the StackPanel to
select it, then right-click and choose and to quickly reset its
properties, which will set its vertical and horizontal alignment to Stretch. Right-click on
the TextBox and ContentControl to reset their properties as well. While you have the
ContentControl selected, set its vertical and horizontal alignments to Center.

5

You are here!

StartGame()

AddEnemy()

Ellip
se

XAML Main Window
and Containers WPF UI

Controls
C# Code

Main w
in

do
w

Grid

Canvas

Rectangl
e

Sta
ck

P
an

e
l

Rectangl
e

ProgressB
ar

Target ti
m

er

Enemy tim
er

Tick event handler

Tick event handler

Click event handler

Start b
utto

n

methods

 Update the TextBlock to change its text and its font size.
Use the Edit Text right-mouse menu option to change the TextBlock so it says
Avoid These (hit Escape to finish editing the text). Then expand the Text section
of the Properties window and change the font size to 18 px. This may cause the
text to wrap and expand to two lines. If it does, drag the TextBlock to make it wider.

4

Your TextBlock and
ContentControl are
in the lower-right cell
of the grid.

Right-click and
reset the layout
of the StackPanel,
TextBlock, and
ContentControl.

A box appears around
the StackPanel if you
hover over it.

You can use Edit→Undo (or Ctrl-Z) to undo
the last change. Do it several times to undo

the last few changes. If you selected the
wrong thing, you can choose Select None

from the Edit menu to deselect. You can also
hit Escape to deselect the control. If it’s

living inside a container like a StackPanel or
Grid, hitting Escape will select the container,

so you may need to hit it a few times.

AnimateEnemy()

EndTheGame()

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

22 Appendix ii

you want your game to work, right?

Controls make the game work
Controls aren’t just for decorative touches like titles and
captions. They’re central to the way your game works.
Let’s add the controls that players will interact with when
they play your game. Here’s what you’ll build next:

 Update the ProgressBar.
Right-click on the ProgressBar in the bottom-center cell of the grid, choose the Layout
menu option, and then choose Reset All to reset all the properties to their default values.
Use the Height box in the Layout section of the Properties window to set the Height to 20.
The IDE stripped all of the properties from the XAML, and then added the new Height:

1

 Turn the Canvas control into the gameplay area.
Remember that Canvas control that you dragged into the center square? It’s hard
to see it right now because a Canvas control is invisible when you first drag it out of

the toolbox, but there’s an easy way to find it. Click the very small button above
the XAML window to bring up the Document Outline. Click on to
select the Canvas control.

Make sure the Canvas control is selected, then use the Name box in the
Properties window to set the name to playArea.

2

After you’ve named the Canvas control, you can close the
Document Outline window. Then use the and buttons
in the Properties window to set its vertical and horizontal
alignments to Stretch, reset the margins, and click both
buttons to set the Width and Height to Auto. Then set its
Column to 0, and its ColumnSpan (next to Column) to 3.

Finally, open the Brush section of the Properties window and
use the button to give it a gradient. Choose the starting
and ending colors for the gradient by clicking each of the tabs at
the bottom of the color editor and then clicking a color.

Click on the left-hand
tab, then on the
starting color for the
gradient. Then click on
the right-hand tab and
choose the ending color.

Once you change the name, it’ll show up as playArea instead of [Canvas] in the Document Outline window.

You can also open the Document Outline by
clicking the tab on the side of the IDE.

You can also get to the Document Outline by choosing the View→Other Windows menu.

...and you’ll work on the
bottom row. You’ll make the ProgressBar

as wide as its column...
...and you’ll use a
template to make your
enemy look like this.

You’ll create a play area with a
gradient background...

The user interface for editing colors in earlier versions of Visual
Studio is not as advanced, but you should still be able to set the
colors so they look correct. The Document Outline window is also
a little more primitive, but it still works. However, there is not an
easy way to visually create a template in Visual Studio 2010.
The easiest way to do this in the old version of the IDE is to copy
the entire <Window.Resources> section (up through the closing
</Window.Resources> tag) from the downloadable source code
and paste it into your XAML just above the opening <Grid> tag.
Make sure you download the code from the WPF folder! Then
you can select the ContentControl and use the Properties window to
set the Template property to EnemyTemplate. Your enemies will already
look like evil aliens, so make sure you still read pages 44 and 45.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 23

windows presentation foundation

You’re almost done laying out the form! Flip the page for the last steps...

 Use the Document Outline to modify the StackPanel, TextBlock, and Grid controls.
Go back to the Document Outline (if you see at the top of the Document
Outline window, just click to get back to the Window outline). Select the StackPanel control, make sure its
vertical and horizontal alignments are set to center, and clear the margins. Then do the same for the TextBlock,
and use the Properties window to set the Foreground property to white using the color selector.

Finally, select the Grid, then open the Brush section of properties and click to give it a black Background.

5

 Create the enemy template.
Your game will have a lot of enemies bouncing around the screen, and you’re going to want them all to look the
same. Luckily, XAML gives us templates, which are an easy way to make a bunch of controls look alike.

Next, right-click on the ContentControl in the Document Outline window. Choose Edit Template, then choose
Create Empty... from the menu. Name it EnemyTemplate. The IDE will add the template to the XAML.

Your newly created template is currently selected in the IDE. Collapse the Document Outline window so it doesn’t
overlap the Toolbox. Your template is still invisible, but you’ll change that in the next step. If you accidentally click out of
the control template, you can always get back to it by opening the Document Outline, right-clicking on the Content Control,
and choosing Edit Template→Edit Current.

3

You’re “flying blind” for this
next bit—the designer won’t
display anything for the
template until you add a control
and set its height and width so
it shows up. Don’t worry; you
can always undo and try again if
something goes wrong.

You can also use the
Document Outline
window to select
the grid if it gets
deselected.

 Edit the enemy template.
Add a red circle to the template:

 ≥ Double-click on in the Toolbox to add an ellipse.

 ≥ Set the ellipse’s Height and Width properties to 100,
which will cause the ellipse to be displayed in the cell.

 ≥ Reset the Margin, HorizontalAlignment, and
VerticalAlignment properties by clicking their squares
and choosing Reset.

 ≥ Go to the Brush section of the Properties window and click
on to select a solid-color brush.

 ≥ Color your ellipse red by clicking in the color selector and
dragging to the upper-right corner.

The XAML for your ContentControl now looks like this:

4

Click in this color
selector and drag
to the upper-right
corner.

Scroll around your window’s XAML window and see if you can find where
EnemyTemplate is defined. It should be right below the AppName resource.

Make sure you don’t click anywhere else in the designer until
you see the ellipse. That will keep the template selected.

Click here and use the color selector
to make the TextBlock white.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

24 Appendix ii

check out the window you built

 Add the human to the Canvas.

You’ve got two options for adding the human. The first option is to follow the next three paragraphs. The second, quicker option is
to just type the four lines of XAML into the IDE. It’s your choice!

Select the Canvas control, and then open the All XAML Controls section of the toolbox and double-click on
Ellipse to add an Ellipse control to the Canvas. Select the Canvas control again and double-click on Rectangle.
The Rectangle will be added right on top of the Ellipse, so drag the Rectangle below it.

Hold down the Shift key and click on the Ellipse so both controls are selected. Right-click on the Ellipse, choose
Group Into, and then StackPanel. Select the Ellipse, use the solid brush property to change its color to white,
and set its Width and Height properties to 10. Then select the Rectangle, make it white as well, and change
its Width to 10 and its Height to 25.

Use the Document Outline window to select the Stack Panel (make sure you see at the top of the
Properties window). Reset its margins, then click both buttons to set the Width and Height to Auto.
Then use the Name box at the top of the window to set its name to human. Here’s the XAML you generated:

You might also see a Stroke property on the Ellipse and Rectangle set to "Black". (If you don't see one, try
adding it. What happens?)

Go back to the Document Outline window to see how your new controls appear:

If human isn't indented underneath playArea, click and drag human onto it.

6

 Add the Game Over text.
When your player’s game is over, the game will need to display a Game
Over message. You’ll do it by adding a TextBlock, setting its font, and
giving it a name:

 ≥ Select the Canvas, and then drag a TextBlock out of the toolbox
and onto it.

 ≥ Use the Name box in the Properties window to change its name to
gameOverText.

 ≥ Use the Text section of the Properties window to change the font to
Arial, change the size to 100 px, and make it Bold and Italic.

 ≥ Click on the TextBlock and drag it to the middle of the Canvas.

 ≥ Edit the text so it says Game Over.

7

If you choose to type this into the XAML
window of the IDE, make sure you do it directly
above the </Canvas> tag. That’s how you indicate
that the human is contained in the Canvas.

When you drag
a control around
a Canvas, its
Left and Top
properties are
changed to set
its position. If
you change the
Left and Top
properties, you
move the control.

You gave the Canvas control the
name playArea in step 2, so it shows
up in the Document Outline window.
Try hovering over the controls in it.

If you used
the designer
to create
your human,
make sure
its source
matches this
XAML.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 25

windows presentation foundation

 Add the target portal that the player will drag the human onto.
There’s one last control to add to the Canvas: the target portal that your player will drag the human
into. (It doesn’t matter where in the Canvas you drag it.)

Select the Canvas control, and then drag a Rectangle control onto it. Use the button in the Brushes
section of the Properties window to give it a gradient. Set its Height and Width properties to 50.

Turn your rectangle into a diamond by rotating it 45 degrees. Open the Transform section of the
Properties window to rotate the Rectangle 45 degrees by clicking and setting the angle to 45.

Finally, use the Name box in the Properties window to give it the name target.

 Take a minute and double-check a few things.
Open the Document Outline window and make sure that the human StackPanel,
gameOverText TextBlock, and target Rectangle are indented underneath the
playArea Canvas control, which is indented under the second [Grid]. Select the
playArea Canvas control and make sure its Height and Width are set to Auto.
These are all things that could cause bugs in your game that will be difficult to
track down. Your Document Outline window should look like this:

Congratulations—you’ve finished building the window for your app!

8

9

We collapsed human to
make it obvious that
it’s indented underneath
playArea, along with
gameOverText and
target. It’s okay if
the controls are in a
different order (you
can even drag them up
an down!), as long as the
indenting is correct—
that’s how you know
which controls are inside
other container controls.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

26 Appendix ii

you took control

Now that you’ve built a user interface, you should have a sense of what some of the controls do, and you’ve used
a lot of different properties to customize them. See if you can work out which property does what, and where in
the Properties window in the IDE you find it.

XAML property

Determines how tall the
control should be

Sets the angle that the
control is turned

You use this in your C#
code to manipulate a
specific control

The color of the control

Use this when you want
to change text displayed
inside your control

What it does
Where to find it
in the Properties

window in the IDE

At the top

Here’s a hint: you can use the Search box in the
Properties window to find properties—but some of

these properties aren’t on every type of control.

Solution on page 35

Content

Height

Rotation

Fill

x:Name

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 27

windows presentation foundation

You’ve set the stage for the game
Your window is now all set for coding. You set up the grid that
will serve as the basis of your window, and you added controls
that will make up the elements of the game.

Visual Studio gave you useful tools for laying out
your window, but all it really did was help you
create XAML code. You’re the one in charge!

The first step you did was to create the project and set up the grid.

Then you added controls to your window. The next step is to write code that uses them.

StartGame()

AddEnemy()

AnimateEnemy()

EndTheGame()Ellip
se

XAML Main Window
and Containers WPF UI

Controls

C# Code

Main w

in
do

w

Grid

Canvas

Rectangl
e

Sta
ck

P
an

e
l

Rectangl
e

ProgressB
ar

Target ti
m

er

Enemy tim
er

Tick event handler

Tick event handler

Click event handler

Start b
utto

n

methods

You are here!

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

28 Appendix ii

keep your stub for re-entry

What you’l l do next
Now comes the fun part: adding the code that makes your game
work. You’ll do it in three stages: first you’ll animate your enemies,
then you’ll let your player interact with the game, and finally
you’ll add polish to make the game look better.

...then you’ll add the gameplay...

...and finally, you’ll
make it look good.

First you’ll animate the enemies...

The first thing you’ll do
is add C# code that
causes enemies to shoot
out across the play
area every time you
click the Start button.

To make the game
work, you’ll need the
progress bar to count
down, the human to
move, and the game
to end when the
enemy gets him or
time runs out.

You used a template
to make the enemies
look like red circles.
Now you’ll update
the template to make
them look like evil
alien heads.

A lot of programmers build their code in small
increments, making sure one piece works before
moving on to the next one. That’s how you’ll build
the rest of this program. You’ll start by creating

a method called AddEnemy() that adds an
animated enemy to the Canvas control. First you’ll

hook it up to the Start button so you can fill your
window up with bouncing enemies. That will lay
the groundwork to build out the rest of the game.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 29

windows presentation foundation

Add a method that does something
It’s time to start writing some C# code, and the first thing you’ll do is
add a method—and the IDE can give you a great starting point by
generating code.

When you’re editing a window in the IDE, double-clicking on any of
the toolbox controls causes the IDE to automatically add code to your
project. Make sure you’ve got the window designer showing in the
IDE, and then double-click on the Start button. The IDE will add code
to your project that gets run anytime a user clicks on the button. You
should see some code pop up that looks like this:

Q: What’s a method?

A: A method is just a named block of code.
We’ll talk a lot more about methods in Chapter 2.

Q: And the IDE generated it for me?

A: Yes...for now. A method is one of the basic
building blocks of programs—you’ll write a lot of
them, and you’ll get used to writing them by hand.

When you double-clicked the button control, the
IDE created this method. It will run when a user
clicks the “Start!” button in the running application.

Use the IDE to create your own method
Click between the { } brackets and type this, including the parentheses and semicolon:

Notice the red squiggly line underneath the text you just typed? That’s the IDE telling you that something’s
wrong. If you click on the squiggly line, a blue box appears, which is the IDE’s way of telling you that it
might be able to help you fix the error.

Hover over the blue box and click the icon that pops up. You’ll see a box asking you to generate a
method stub. What do you think will happen if you click it? Go ahead and click it to find out!

The red squiggly line is the IDE telling you
there’s a problem, and the blue box is the
IDE telling you that it might have a solution.

The IDE also added
this to the XAML. See
if you can find it. You’ll
learn more about what
this is in Chapter 2.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

30 Appendix ii

intelligent and sensible

Fil l in the code for your method
It’s time to make your program do something, and
you’ve got a good starting point. The IDE generated a
method stub for you: the starting point for a method that
you can fill in with code.

Select this and delete it. You’ll learn
about exceptions in Chapter 12.

Delete the contents of the method stub that the IDE
generated for you.

1

Start adding code. Type the word “Content” into the method body. The IDE will pop up a window
called an IntelliSense Window with suggestions. Choose ContentControl from the list.

2

Finish adding the first line of code. You’ll get another IntelliSense window after you type new.3

 C# code must be
added exactly as
you see it here.

It’s really easy to throw
off your code. When

you’re adding C# code to your
program, the capitalization has to
be exactly right, and make sure you
get all of the parentheses, commas,
and semicolons. If you miss one,
your program won’t work!

This line creates a new ContentControl object. You’ll learn about objects and the new keyword in Chapter 3, and reference variables like enemy in Chapter 4.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 31

windows presentation foundation

Before you fill in the AddEnemy() method, you’ll need to add a line of code near the top of the file.
Find the line that says public partial class MainWindow : Window and add this line
after the bracket ({):

4

This is called a field. You’ll learn more about how it works in Chapter 4.

Flip the page to see your program run!

Finish adding the method. You’ll see some squiggly red underlines. The ones
under AnimateEnemy() will go away when you generate its method stub.

5 Do you see a squiggly underline
under playArea? Go back to the
XAML editor and make sure
you set the name of the Canvas
control to playArea.

This line adds your
new enemy control
to a collection called
Children. You’ll learn
about collections in
Chapter 8.

If you need to switch between the XAML and C#
code, use the tabs at the top of the window.

Use the blue box and the button to generate a method stub for AnimateEnemy(), just like
you did for AddEnemy(). This time it added four parameters called enemy, p1, p2, and p3. Edit
the top line of the method to change the last three parameters. Change the property p1 to from, the
property p2 to to, and the property p3 to propertyToAnimate. Then change any int types to
double.

6

You’ll learn
about methods and parameters in Chapter 2.

Flip the page to see your program run!
The IDE may generate the method stub
with “int” types. Change them to “double”.
You’ll learn about types in Chapter 4.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

32 Appendix ii

ok, that’s pretty cool

Finish the method and run your program
Your program is almost ready to run! All you need to do is finish your
AnimateEnemy() method. Don’t panic if things don’t quite work
yet. You may have missed a comma or some parentheses—when you’re
programming, you need to be really careful about those things!

 Add a using statement to the top of the file.
Scroll all the way to the top of the file. The IDE generated several
lines that start with using. Add one more to the bottom of the list:

1

You’ll need this line to make the next bit of code work. You can use the IntelliSense window to get it right—and don’t forget the semicolon at the end.

You’ll learn about
object initializers
like this in
Chapter 4.

And you’ll learn
about animation
in Chapter 16.

 Add code that creates an enemy bouncing animation.
You generated the method stub for the AnimateEnemy() method on the
previous page. Now you’ll add its code. It makes an enemy start bouncing across
the screen.

2

 Still seeing red?
The IDE helps you
track down
problems.

If you still have some of those red
squiggly lines, don’t worry! You
probably just need to track down a typo
or two. If you’re still seeing squiggly red
underlines, it just means you didn’t type
in some of the code correctly. We’ve
tested this chapter with a lot of different
people, and we didn’t leave anything
out. All the code you need to get your
program working is in these pages.

 Look over your code.
You shouldn’t see any errors, and your Error List window should be
empty. If not, double-click on the error in the Error List. The IDE will
jump your cursor to the right place to help you track down the problem.

3

If you can’t see the Error List window, choose Error List from the View menu to show it. You’ll learn more about using the error window and debugging your code in Chapter 2.

Statements
like these let
you use code
from .NET
libraries that
come with
C#. You’ll
learn more
about them in
Chapter 2.

This using statement lets you use animation code from the .NET Framework in your program to move the enemies on your screen.

This code makes the enemy you created move across playArea. If you change 4 and 6, you can make the enemies move slower or faster.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 33

windows presentation foundation

 Start your program.
Find the button at the top of the IDE. This starts your program running.

4

 Now your program is running!
When you start your program, the main window will be displayed. Click the “Start!”
button a few times. Each time you click it, a circle is launched across your canvas.

5

This button starts your program.

 Stop your program.
Press Alt-Tab to switch back to the IDE. The button in the toolbar has been replaced with to
break, stop, and restart your program. Click the square to stop the program running.

6

You built something cool! And it didn’t take

long, just like we promised. But there’s more

to do to get it right.

Here’s a hint: if you move too many windows
around your IDE, you can always reset by choosing

Reset Window Layout from the Window menu.

If the enemies aren’t bouncing,
or if they leave the play area,
double-check the code. You may
be missing parentheses or keywords.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

34 Appendix ii

what you’ve done, where you’re going

Here’s what you’ve done so far
Congratulations! You’ve built a program that actually does
something. It’s not quite a playable game, but it’s definitely a start.
Let’s look back and see what you built.

Visual Studio can generate code for you, but you
need to know what you want to build BEFORE
you start building it. It won’t do that for you!

We’ve gotten a good start by building the user interface...

…but we still need the
rest of the C# code
to make the game
actually work.

This step is where we actually write C# code that makes the gameplay run.

StartGame()

AddEnemy()

AnimateEnemy()

EndTheGame()Ellip
se

XAML Main Window
and Containers WPF UI

Controls

C# Code

Main w

in
do

w

Grid

Canvas

Rectangl
e

Sta
ck

P
an

e
l

Rectangl
e

ProgressB
ar

Target ti
m

er

Enemy tim
er

Tick event handler

Tick event handler

Click event handler

Start b
utto

n

methods

You are here!

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 35

windows presentation foundation

Now that you’ve built a user interface, you should have a sense of what some of the controls do, and you’ve used
a lot of different properties to customize them. See if you can work out which property does what, and where in
the Properties window in the IDE you find it.

Content

Height

Rotation

Fill

x:Name

XAML property

Determines how tall the
control should be

Sets the angle that the
control is turned

You use this in your C#
code to manipulate a
specific control

The color of the control

Use this when you want
text or graphics in your
control

What it does
Where to find it
in the Properties

window in the IDE

At the top

solution

Remember how you set the Name of the
Canvas control to “playArea”? That set its
“x:Name” property in the XAML, which will
come in handy in a minute when you write C#
code to work with the Canvas.

Here’s the solution for the “Who Does What” exercise on page 28.
We’ll give you the answers to the pencil-and-paper puzzles and

exercises, but they won’t always be on the next page.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

36 Appendix ii

tick tick tick

Add t imers to manage the gameplay
Let’s build on that great start by adding working gameplay elements. This game adds
more and more enemies, and the progress bar slowly fills up while the player drags the
human to the target. You’ll use timers to manage both of those things.

 Add another line to the top of your C# code.
You’ll need to add one more using line right below the one you added a few pages ago:

Then go up to the top of the file where you added that Random line. Add three more lines:

1

The MainWindow.Xaml.cs file
you’ve been editing contains
the code for a class called
MainWindow. You’ll learn
about classes in Chapter 3.

Add these three lines below the
one you added before. These
are fields, and you’ll learn about
them in Chapter 4.

 Add a method for one of your timers.
Find this code that the IDE generated:

Put your cursor right after the semicolon, hit Enter two times, and type
enemyTimer. (including the period). As soon as you type the dot, an
IntelliSense window will pop up. Choose Tick from the IntelliSense window
and type the following text. As soon as you enter += the IDE pops up a box:

Press the Tab key. The IDE will pop up another box:

Press Tab one more time. Here’s the code the IDE generated for you:

2

The IDE generated
a method for you
called an event
handler. You’ll learn
about event handlers
in Chapter 15.

TickTick
Tick

Timers “tick”
every time
interval by
calling methods
over and over
again. You’ll use
one timer to add
enemies every
few seconds, and
the other to end
the game when
time expires.

This using statement lets you use DispatcherTimers.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 37

windows presentation foundation

 Add the endtheGame() method.
Go to the new targetTimer_Tick() method, delete the line that the IDE generated, and add
the following code. Type EndTheGame() and generate a method stub for it, just like before:

Notice how progressBar has an error? That’s OK. We did this on purpose (and we’re not even
sorry about it!) to show you what it looks like when you try to use a control that doesn’t have a
name, or has a typo in the name. Go back to the XAML code (it’s in the other tab in the IDE), find
the ProgressBar control that you added to the bottom row, and change its name to progressBar.

Next, go back to the code window and generate a method stub for EndTheGame(), just like you
did a few pages ago for AddEnemy(). Here’s the code for the new method:

4

 Finish the mainWindoW() method.
You’ll add another Tick event handler for the other timer, and you’ll
add two more lines of code. Here’s what your finished MainWindow()
method and the two methods the IDE generated for you should look like:

3

It’s normal to add parentheses
() when writing about a
method.

If you closed the Designer tab that had the XAML code, double-click on MainWindow.xaml in the Solution Explorer window to bring it up.

If gameOverText comes up as an error, it means you didn’t set the name of the “Game Over” TextBlock. Go back and do it now.

Right now your Start button
adds bouncing enemies to the
play area. What do you think
you’ll need to do to make it
start the game instead?

This method ends the
game by stopping the

timers, making the
Start button visible
again, and adding

the GAME OVER text
to the play area.

The IDE generated these lines as placeholders when you pressed Tab to add the Tick event handlers. You’ll replace them with code that gets run every time the timers tick.

Try changing these
numbers once your
game is finished. How
does that change the
gameplay?

Did the IDE
keep trying
to capitalize
the P in
progressBar?
That’s because
there was no
lowercase-P
progressBar,
and the
closest match
it could
find was the
type of the
control.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

38 Appendix ii

so close i can taste it

Make the Start button work
Remember how you made the Start button fire circles into the Canvas? Now
you’ll fix it so it actually starts the game.

 Make the Start button start the game.
Find the code you added earlier to make the Start button add an
enemy. Change it so it looks like this:

1

 Add the StartGame() method.
Generate a method stub for the StartGame() method. Here’s the
code to fill into the stub method that the IDE added:

2

 Make the enemy timer add the enemy.
Find the enemyTimer_Tick() method that the IDE added for
you and replace its contents with this:

3

Did you forget to set the names of
the target Rectangle or the human
StackPanel? You can look a few pages
back to make sure you set the right
names for all the controls.

When you change this line, you make the Start button start the game instead of just adding an enemy to the playArea Canvas.

Ready Bake
Code

We’re giving you a lot of code to
type in.

By the end of the book, you’ll know
what all this code does—in fact, you’ll
be able to write code just like it on
your own.

For now, your job is to make sure
you enter each line accurately and to
follow the instructions exactly. This
will get you used to entering code and
will help give you a feel for the ins
and outs of the IDE.

If you get stuck, you can download
working versions of MainWindow.xaml
and MainWindow.Xaml.cs or copy
and paste XAML or C# code for each
individual method:
http://www.headfirstlabs.com/hfcsharp.

One more thing... if you download
code for this project (or anything
else in this appendix), make sure you
get it from the WPF folder! If you
try to use Windows Store code with
your WPF project, it won't work.

Once you’re used to working with code, you’ll be good at spotting those missing parentheses, semicolons, etc.

Are you seeing errors in the Error List window that don’t make sense?
One misplaced comma or semicolon can cause two, three, four, or
more errors to show up. Don’t waste your time trying to track down
every typo! Just go to the Head First Labs web page—we made it
really easy for you to copy and paste all the code in this program.

There’s also a link to the Head First C# forum, which you can check
for tips to get this game working!

http://www.headfirstlabs.com/hfcsharp/

You’ll learn about
IsHitTestVisible in
Chapter 15.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 39

windows presentation foundation

What do you think you’ll need to do to get the rest
of your game working?

Alert! Our
spies have reported
that the humans are
building up their

defenses!When you press the “Start!” button,
it disappears, clears the enemies, and
starts the progress bar filling up.

When the progress bar at the bottom fills up, the game ends and the Game Over text is displayed.

The play area slowly starts to fill up
with bouncing enemies.

Flip the page to find out!

Run the program to see your progress
Your game is coming along. Run it again to see how it’s shaping up.

The target timer should fill up slowly, and the enemies should appear every two seconds. If the timing is off, make sure you added all the lines to the MainWindow() method.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

40 Appendix ii

in any event...

Go to the XAML designer and use the Document Outline window to select human
(remember, it’s the StackPanel that contains a Circle and a Rectangle). Then go to the
Properties window and press the button to switch it to show event handlers. Find
the MouseDown row and double-click in the empty box.

Now go back and check out what the IDE added to your XAML for the StackPanel:

It also generated a method stub for you. Right-click on human_MouseDown in the
XAML and choose “Navigate to Event Handler” to jump straight to the C# code:

1

Fill in the C# code:2

Add code to make your controls
interact with the player
You’ve got a human that the player needs to drag to the target, and a
target that has to sense when the human’s been dragged to it. It’s time
to add code to make those things work. You’ll learn more

about the event
handlers in the
Properties window
in Chapter 4.

Double-click in this box.

If you go back to the designer and
click on the StackPanel again, you’ll
see that the IDE filled in the name
of the new event handler method.
You’ll be adding more event handler
methods the same way.

You can use these
buttons to switch
between showing
properties and
event handlers
in the Properties
window.

Make sure you switch back
to the IDE and stop the
app before you make more
changes to the code.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 41

windows presentation foundation

Use the Document Outline window to select the Rectangle named target,
and then use the event handlers view of the Properties window to add a
MouseEnter event handler. Here’s the code for the method:

3

Make sure you add the right event handler! You added a MouseDown event handler to the human, but now you’re adding a MouseEnter event handler to the target.

Now you’ll add two more event handlers, this time to the playArea Canvas control. You’ll need to
find the [Grid] in the Document Outline, select it, and set its name to grid. Then you can add
these methods to handle the MouseMove and MouseLeave event handlers for the Canvas:

4

You’ll need to switch your Properties window back
to show properties instead of event handlers.

That’s a lot of parentheses!
Be really careful and get
them right.

These two vertical
bars are a logical
operator. You’ll
learn about them
in Chapter 2.

Make sure you put the right code
in the correct event handler!
Don’t accidentally swap them.

You can make the
game more or

less sensitive by
changing these
3s to a lower or
higher number.

When the Properties
window is in the mode
where it displays event

handlers, double-
clicking on an empty

event handler box
causes the IDE to add

a method stub for it.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

42 Appendix ii

you can’t save them all

Dragging humans onto enemies ends the game
When the player drags the human into an enemy, the game should end. Let’s add the code to do that.
Go to your AddEnemy() method and add one more line of code to the end. Use the IntelliSense
window to fill in enemy.PointerEntered from the list:

Choose MouseEnter from the list. (If you choose the wrong one, don’t worry—just backspace over it
to delete everything past the dot. Then enter the dot again to bring up the IntelliSense window.)

Next, add an event handler, just like you did before. Type += and then press Tab:

Then press Tab again to generate the stub for your event handler:

Now you can go to the new method that the IDE generated for you and fill in the code:

Here’s the last line of your
AddEnemy() method. Put your
cursor at the end of the line
and hit Enter to add the
new line of code.

Start typing this line of
code. As soon as you enter
the dot, an IntelliSense
window will pop up. Keep
typing “Enter” to jump
down to the right entry
in the list.

You’ll learn all about
how event handlers like
this work in Chapter 15.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 43

windows presentation foundation

Your game is now playable
Run your game—it’s almost done! When you click the Start button, your play
area is cleared of any enemies, and only the human and target remain. You
have to get the human to the target before the progress bar fills up. Simple at
first, but it gets harder as the screen fills with dangerous alien enemies!

Drag the human to safety!

...but drag too fast, and you’ll lose your human!

Get him to the target before time’s up...

The aliens spend their
time patrolling for moving humans, so the game ends only if you drag a human onto an enemy. Once you
release the human, he’s
temporarily safe from aliens.

Look through the code and find where you set the IsHitTestVisible property on the human. When it’s on, the human intercepts the PointerEntered event because the human’s StackPanel control is sitting between the enemy and the pointer.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

44 Appendix ii

 Drag one more Ellipse control out of the toolbox on top of the existing ellipse. Change its fill to
Black, set its width to 25, and set its height to 35. Set the alignment and margins like this:

and add a skew like this:

4

bells whistles aliens

Make your enemies look like aliens
Red circles aren’t exactly menacing. Luckily, you used a template.
All you need to do is update it.

Now your enemies
look a lot more like
human-eating aliens.

 Go to the Document Outline, right-click on the ContentControl,
choose Edit Template, and then Edit Current to edit the template.
You’ll see the template in the XAML window. Edit the XAML
code for the ellipse to set the width to 75 and the fill to Gray.
Then add to add a black outline. Here’s what
it should look like (you can delete any additional properties that
may have inadvertently been added while you worked on it):

1

 Drag another Ellipse control out of the toolbox on top of the existing ellipse. Change its Fill to
black, set its width to 25, and its height to 35. Set the alignment and margins like this:

2

 Use the button in the Transforms section of the Properties window to add a Skew transform:3

 Seeing events
instead of
properties?

You can toggle the
Properties window

between displaying properties or
events for the selected
control by clicking the
wrench or lightning bolt icons.

You can also “eyeball” it (excuse the pun) by using
the mouse or arrow keys to drag the ellipse into
place. Try using Copy and Paste in the Edit menu to
copy the ellipse and paste another one on top of it.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 45

windows presentation foundation

Here’s the final XAML for the updated enemy ControlTemplate
you created:

There’s just One more thing you need to do...

Play your game!

And don’t forget to step back and really
appreciate what you built. Good job!

See if you can get creative and change the way the human, target, play area, and enemies look.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

46 Appendix ii

Chapter 2

Start diving into code with WPF projects.

The second chapter gets you started writing C# code, and most
of the chapter is focused around building Windows Store apps.

We recommend that you do the following:

 ≥ Read Chapter 2 in the main part of the book through
page 68.

 ≥ We provide a replacement for page 69 in this appendix.
After that, you can read pages 70, 71, and 72 in the book.

 ≥ Then there are replacements for pages 73 and 74, where
you build a program from scratch. You can follow the
rest of the project in the book.

 ≥ The book will work just fine for you through page 82.

 ≥ There’s an exercise on page 83, and its solution is on page
85. We provide replacements for those pages in this PDF.

Once you finish that exercise, the chapter no longer requires any
Windows Store apps or Windows 8. You’ll be able to continue
on in the book through Chapter 9, and you can do the first and
second labs.

The first few projects
in Chapter 2 use XAML and

Windows Store apps. We’ve got
replacements for them.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 69

windows presentation foundation

Debug this!

Flip back to page 70 in the book and keep going!

When you set a breakpoint on a line of code, the line turns red and a red dot appears in the margin of the code editor.

When you debug your code by running it inside the IDE, as soon as your program hits a breakpoint it’ll pause and let you inspect and change the values of all the variables.

The debugger is a great tool for understanding how your programs
work. You can use it to see the code on the previous page in action.

Use the debugger to see your variables change

Create a new WPF APPLICATION project.
Drag a TextBlock onto your page and give it the name output. Then add a button and double-click it
to add a method called Button_Click(). The IDE will automatically open that method in the code
editor. Enter all the code on the previous page into the method.

1

Insert a breakpoint on the first line of code.
Right-click on the first line of code (int number = 15;) and choose Insert Breakpoint from the
Breakpoint menu. (You can also click on it and choose Debug→Toggle Breakpoint or press F9.)

2

Creating a new
WPF Application

project will tell the
IDE to create a

new project with a
blank window. You

might want to name
it something like

UseTheDebugger
(to match the header
of this page). You’ll
be building a whole

lot of programs
throughout the book,

and you may want
to go back to them

later.

Comments (which
either start with two
or more slashes or are
surrounded by /* and
*/ marks) show up
in the IDE as green
text. You don’t have
to worry about what
you type in between
those marks, because
comments are always
ignored by the compiler.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

72 Appendix ii

this page intentionally left blank

We left this page blank so that you can
read this appendix in two-page mode, so the
exercise and its solution appear on different
two-page spreads. If you’re viewing this as
a PDF in two-page mode, you may want to
turn on the cover page so the even pages are
on the right and the odd pages are on the
left.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 73

windows presentation foundation

Build an app from the ground up
The real work of any program is in its statements. You’ve already seen how statements fit into a
window. Now let’s really dig into a program so you can understand every line of code. Start by
creating a new Visual C# WPF Application project. Open the main window and use the
IDE to modify it by adding three rows and two columns to the grid, and then adding four button
controls and a TextBlock to the cells. Build this window

You don’t see anything here, but there’s actually a
TextBlock control. It doesn’t have any text, so it’s
invisible. It’s centered and in the bottom row, with
ColumnSpan set to 2 so it spans both columns.

The window has a grid with three rows
and two columns. Each row definition
has its height set to 1*, which gives

it a <RowDefinition/> without any
properties. The column heights work the

same way.

The window has four button
controls, one in each row. Use the
Content property to set their text
to Show a message, If/else, Another

conditional test, and A loop.

Each button is centered in the cell. Use the
Grid.Row and Grid.Column properties to set
the row and column (they default to 0).

The bottom cell has a TextBlock control
named myLabel. Use its Style property

to set the style to BodyTextStyle.

Use the x:Name property to name the buttons
button1, button2, button3, and button4.
Once they’re named, double-click on each of

them to add an event handler method.

When you see these sneakers, it
means that it’s time for you to
come up with code on your own.

If you need to use the Edit Style right-mouse menu to
set this but you’re having trouble selecting the control,
you can right-click on the TextBlock control in the
Document Outline and choose Edit Style from there.

Make sure you choose a sensible name for this project,
because you’ll refer back to it later in the book.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

74 Appendix ii

Here’s our solution to the exercise. Does
your solution look similar? Are the line
breaks different, or the properties in a
different order? If so, that’s OK!

Here are the row and
column definitions: three
rows and two columns.

This button is in the second column and
second row, so these properties are set to 1.

When you double-clicked on each
button, the IDE generated a
method with the name of the
button followed by _Click.

Why do you think the left column and top row are given the
number 0, not 1? Why is it OK to leave out the Grid.Row
and Grid.Column properties for the top-left cell?

Here’s the
<Window> and
<Grid> tags that
the IDE generated
for you when you
created the WPF
application.

A lot of programmers don’t use the
IDE to create their XAML—they build
it by hand. If we asked you to type in
the XAML by hand instead of using
the IDE, would you be able to do it?

Try removing the HorizontalAlignment
or VerticalAlignment property from
one of the buttons. It expands to
fill the entire cell horizontally or
vertically if the alignment isn’t set.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

you are here 4 83

Time to get some practice using if/else statements. Can you build this program?

Build this window.
It’s got a grid with two rows
and two columns, it’s 150
pixels tall and 450 pixels wide,
and it’s got the window title
Fun with if/else statements.

Add a TextBlock.
It’s almost identical to the one you
added to the bottom of the window
in the last project. This time, name
it labelToChange and set its
Grid.Row property to "1".

Add a button and a checkbox.
You can find the checkbox control in the toolbox,
just below the button control. Set the Button’s name
to changeText and the checkbox’s name to
enableCheckbox. Use the Edit Text right-click
menu option to set the text for both controls (hit
Escape to finish editing the text). Right-click on each
control and choose Reset Layout→All, then make
sure both of them have their VerticalAlignment and
HorizontalAlignment set to Center.

Set the TextBlock to this message if the user clicks the button but the box IS
NOT checked.
Here’s the conditional test to see if the checkbox is checked:

 enableCheckbox.IsChecked == true

If that test is NOT true, then your program should execute two statements:

 labelToChange.Text = "Text changing is disabled";
 labelToChange.HorizontalAlignment = HorizontalAlignment.Center;

If the user clicks the button and the box IS checked, change the TextBlock so it
either shows on the left-hand side or on the right-hand side.

If the label’s Text property is currently equal to "Right" then the program should change the text to
"Left" and set its HorizontalAlignment property to HorizontalAlignment.Left. Otherwise, set
its text to "Right"and its HorizontalAlignment property to HorizontalAlignment.Right. This
should cause the program to flip the label back and forth when the user presses the button—but only if the
checkbox is checked.

We’ll give you a lot of exercises like this throughout the book. We’ll give you the answer in a couple of pages. If you get stuck, don’t be afraid to peek at the answer—it’s not cheating!

You’ll be creating a lot of applications
throughout this book, and you’ll need to give
each one a different name. We recommend naming
this one “PracticeUsingIfElse”. It helps to put
programs from a chapter in the same folder.

Hint: you’ll put this
code in the else block.

If you create two rows and set one row’s height to 1* in the IDE, it seems to disappear because it’s collapsed to a tiny size. Just set the other row to 1* and it’ll show up again.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

85 Appendix ii

Time to get some practice using if/else statements. Can you build this program?

Here’s the XAML code for the grid:
<Grid>
 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>

 <Button x:Name="changeText" Content="Change the label if checked"
 HorizontalAlignment="Center" VerticalAlignment="Center"
 Click="changeText_Click"/>

 <CheckBox x:Name="enableCheckbox" Content="Enable label changing"
 HorizontalAlignment="Center" VerticalAlignment="Center"
 IsChecked="true" Grid.Column="1"/>

 <TextBlock x:Name="labelToChange" Grid.Row="1" TextWrapping="Wrap"
 Text="Press the button to set my text"
 HorizontalAlignment="Center" VerticalAlignment="Center"
 Grid.ColumnSpan="2"/>

</Grid>

And here’s the C# code for the button’s event handler method:
private void changeText_Click(object sender, RoutedEventArgs e)
{
 if (enableCheckbox.IsChecked == true)
 {
 if (labelToChange.Text == "Right")
 {
 labelToChange.Text = "Left";
 labelToChange.HorizontalAlignment = HorizontalAlignment.Left;
 }
 else
 {
 labelToChange.Text = "Right";
 labelToChange.HorizontalAlignment = HorizontalAlignment.Right;
 }
 }
 else
 {
 labelToChange.Text = "Text changing is disabled";
 labelToChange.HorizontalAlignment = HorizontalAlignment.Center;
 }
}

We added line breaks as usual to make it easier to read on the window.

If you double-clicked the button in the designer before you set its name, it may have created a Click event handler method called Button_Click_1() instead of changeText_Click().

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

You won't use XAML for the next part of the book.
The rest of Chapter 2 doesn't require Windows 8 and can be done
with Visual Studio 2010, or using a Windows operating system as
early as Windows 2003. You won’t need to replace any pages in the
book until you get to Chapter 10. That’s because the next part of
the book uses Windows Forms Application (or WinForms) projects.
These C# projects use an older technology for building desktop
apps. You’ll use WinForms as a teaching and learning tool, just like
you’ve been using the IDE to learn and explore C# and XAML.

Did you say that I won't need either
Windows 8 or WPF until Chapter 10?

Why aren't you using more current
technology?

Sometimes older technologies make great learning tools.

If you want to build a desktop app, WPF is a superior tool for doing it. But
if you want to learn C#, a simpler technology can make it easier to make
concepts stick. And there’s another important reason for using WinForms.
When you see the same thing done in more than one way, you learn a lot from
seeing what they have in common, and also what’s different between them—
like on page 88, when you rebuild the WPF you just built using WinForms.
We’ll get back to XAML in Chapter 10, and by that time you’ll have laid down
a solid foundation that will make it much easier for those WPF concepts to stick.

 Some chapters use C# features introduced in .NET 4.0 that
are not supported by Visual Studio 2008.

If you’re using Visual Studio 2008, you may run into a few problems once
you reach the end of Chapter 3. That’s because the latest version of the

.NET Framework available in 2008 was 3.5. And that’s a problem, because the book
uses features of C# that were only introduced in .NET 4.0. In Chapter 3 we’ll teach you
about object initializers, and in Chapter 8 you’ll learn about collection initializers
and covariance—and if you’re using Visual Studio 2008, the code for those examples
won’t compile because in 2008 those things hadn’t been added to C# yet! If you
absolutely can’t install a newer version of Visual Studio, you’ll still be able to do almost
all the exercises, but you won’t be able to use these features of C#.

Have a look at page 87,
which explains why switching
to WinForms is a good tool
for getting C# concepts
into your brain.

This applies to WPF, too! Building
these WinForms projects will
help get core C# concepts into
your brain faster, and that's the
quickest route to learning WPF.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

We left this page blank so that you can
read this appendix in two-page mode, so the
exercise and its solution appear on different
two-page spreads. If you’re viewing this as
a PDF in two-page mode, you may want to
turn on the cover page so the even pages are
on the right and the odd pages are on the
left.

this page intentionally left blank

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

Chapter 10

In this chapter, you'll

dive into WPF development

by redesigning some familiar

programs as WPF apps.

You can port your WinForms apps to WPF.

If you’ve completed chapters 3–9 and finished all the exercises
and labs so far, then you’ve written a lot of code. In
this chapter, you’ll revisit some of that code and use it as a
springboard for learning WPF.

Here’s how we recommend that you work through Chapter 10:

 ≥ We recommend that you follow the chapter in the main
part of the book through page 497. This includes doing
everything on page 489, the “Sharpen your Pencil”
exercises, and the “Do this!” exploration project on
page 497.

 ≥ This appendix has replacement pages for pages
498–505, so use those instead.

 ≥ Page 506 applies only to Windows Store projects,
so you can read it but it won’t help you with WPF.

 ≥ After that, use pages 509–511 from this appendix.

 ≥ Finally, read pages 514 and 515 in the book. Once
you’ve read them, you can replace the rest of the
chapter (pages 516–533) with pages in this appendix.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

498 Appendix ii

2 Now have another look at the XAML that defines the page:

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>

 <Button x:Name="changeText" Content="Change the label if checked"
 HorizontalAlignment="Center" Click="changeText_Click"/>

 <CheckBox x:Name="enableCheckbox" Content="Enable label changing"
 HorizontalAlignment="Center" IsChecked="true"
 Grid.Column="1"/>

 <TextBlock x:Name="labelToChange" Grid.Row="1" TextWrapping="Wrap"
 Text="Press the button to set my text"
 HorizontalAlignment="Center" VerticalAlignment="Center"
 Grid.ColumnSpan="2"/>
</Grid>

let’s explore xaml

WPF applicat ions use XAML to create UI objects
When you use XAML to build the user interface for a WPF application, you’re building out an
object graph. And just like with WinForms, you can explore it with IDE’s Watch window. Open
the “fun with if-else statements” program from Chapter 2. Then open MainWindow.
xaml.cs, place a breakpoint in the constructor on the call to InitializeComponent(), and
use the IDE to explore the app’s UI objects.

The XAML
that defines
the controls
on a page
is turned
into a Page
object with
fields and
properties
that contain
references to
UI controls.

labelToChange is an instance of TextBlock

Do this!

1 Start debugging, then press F10 to step over the method. Open a Watch window using the Debug
menu. Start by choosing Debug→Windows→Watch→Watch 1, and add a watch for this:

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 499

windows presentation foundation

3 Add some of the labelToChange properties to the Watch window:

The app automatically sets the properties based on your XAML:

 <TextBlock x:Name="labelToChange" Grid.Row="1" TextWrapping="Wrap"
 Text="Press the button to set my text"
 HorizontalAlignment="Center" VerticalAlignment="Center"
 Grid.ColumnSpan="2"/>

But try putting labelToChange.Grid or labelToChange.ColumnSpan into the Watch window.
The control is a Windows.UI.Controls.TextBlock object, and that object doesn’t have those
properties. Can you guess what’s going on with those XAML properties?

4 Stop your program, open MainWindow.xaml.cs, and find the class declaration for MainWindow. Take a look
at the declaration—it’s a subclass of Window. Hover over Window so the IDE shows you its full class name:

Now start your program again and press F10 to step over the call to InitializeComponent(). Go back to
the Watch window and expand this >> base >> base to traverse back up the inheritance hierarchy.

Take a little time and explore the objects that your XAML generated. We’ll dig into some of these objects later
on in the book. For now, just poke around and get a sense of how many objects are behind your app.

Expand these to see the
superclasses. Expand Content and explore its [System.Windows.Controls.Grid] node.

Hover over Window
to see its class.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

500 Appendix ii

old becomes new

Redesign the Go Fish! form as a WPF applicat ion
The Go Fish! game that you built in Chapter 8 would make a great WPF application. Open Visual Studio
and create a new WPF Application project (just like you did for Save the Humans). Over the next few
pages, you’ll redesign it in XAML, with a main window that adjusts its content as it’s resized. Instead of using
Windows Forms controls on a form, you’ll use WPF XAML controls.

This becomes a
<ScrollViewer/>

This becomes a
<ScrollViewer/>

This becomes a
<TextBox/>

This becomes a
<Button/>

This becomes a
<Button/>

This becomes a
<ListBox/>

We’ll use a horizontal StackPanel
to group the TextBox and
Button controls so they can go
into the same cell in the grid.

This is another control in the toolbox.
It displays a string of text, adding
vertical and/or horizontal scrollbars
if the text grows larger than the
window control.

Do this!

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 501

windows presentation foundation

<TextBox/> <Button/>

<ListBox/>

<ScrollViewer/>

<ScrollViewer/> <Button/>

The controls will be contained in a grid, with rows and columns that expand or contract based on
the size of the window. This will allow the game to shrink or grow if the user resizes the window:

Here’s how those controls will look on the app’s main window:

Most of the
code to manage
the gameplay will
remain the same,
but the UI code
will change.

The game will
be playable no
matter what
the window
dimensions are.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

502 Appendix ii

now that’s a page

<Window x:Class="GoFish.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Go Fish!" Height="500" Width="525" Background="Gray">

 <Grid Margin="10" >

 <TextBlock Text="Your Name" />

 <StackPanel Orientation="Horizontal" Grid.Row="1">
 <TextBox x:Name="playerName" FontSize="12" Width="150" />

 <Button x:Name="startButton" Margin="5,0"
 Content="Start the game!"/>
 </StackPanel>

If the window is made very tall, this ScrollViewer
should grow to fill up the extra vertical space. It
should display scrollbars if the text gets too big.

This ListBox
should also grow to
fill up the extra
vertical space if
the window is made
taller.This ScrollViewer needs to be tall

enough to show various books that have
been discovered, and it should also
display scrollbars if needed.

2

Page layout starts with controls
WPF apps and WinForms have one thing in common: they both rely on controls to lay out your page. The Go Fish!
page has two buttons, a ListBox to show the hand, a TextBox for the user to enter the name, and four TextBlock labels.
It also has two ScrollViewer controls with a white background to display the game progress and books.

The XAML for the main window starts with an opening <Window> tag. The title property sets the title of the
window to “Go Fish!” Setting the Height and Width property changes the window size—and you’ll see the size change
in the designer as soon as you change those properties. Use the Background property to give it a gray background.

Here’s the updated <Window> opening tag. We named our project GoFish—if you use a different name, the first
line will have that name in its x:Class property.

1

3

4

5

6

1

2

We’ll use a StackPanel to put the TextBox for the player’s name and the Start button in one cell:

The window title
and starting width
and height are set
using properties in
the <Window> tag.

This Margin property sets the
left and right margins for the
button to 5, and the top and
bottom margins to 0. We could
also have set it to 5,0,0,0 to
set just the left margin and
left the right margin zero.www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 503

windows presentation foundation

We’ll finish this grid on the next page

 <TextBlock Text="Game progress" Grid.Row="2"
 Margin="0,10,0,0"/>

 <ScrollViewer Grid.Row="3" FontSize="12"
 Background="White" Foreground="Black" />

 <TextBlock Text="Books"
 Margin="0,10,0,0" Grid.Row="4"/>

 <ScrollViewer FontSize="12" Background="White" Foreground="Black"
 Grid.Row="5" Grid.RowSpan="2" />

 <TextBlock Text="Your hand" Grid.Row="0" Grid.Column="2" />

 <ListBox x:Name="cards" Background="White" FontSize="12"
 Height="Auto" Margin="0,0,0,10"
 Grid.Row="1" Grid.RowSpan="5" Grid.Column="2"/>

 <Button x:Name="askForACard" Content="Ask for a card"
 HorizontalAlignment="Stretch" VerticalAlignment="Stretch"
 Grid.Row="6" Grid.Column="2"/>

4

5

6

Each label on the page (“Your name,” “Game progress,” etc.) is a TextBlock. Use the Margin
property to add a 10-pixel margin above the label:

A ScrollViewer control displays the game progress, with scrollbars
that appear if the text is too big for the window:

Here’s another TextBlock and ScrollViewer to display the books. The default vertical and
horizontal alignment for the ScrollViewer is Stretch, and that’s going to be really useful.
We’ll set up the rows and columns so the ScrollViewer controls expand to fit any screen size.

We used a small 40-pixel column to add space, so the ListBox and Button controls need to
go in the third column. The ListBox spans rows 2–6, so we gave it Grid.Row="1" and
Grid.RowSpan="5"—this will also let the ListBox grow to fill the page.

Remember, rows and
columns start at zero, so a
control in the third column
has Grid.Column=“2”.

The “Ask for a card” button has its horizontal and vertical alignment set to Stretch so
that it fills up the cell. The 20-pixel margin at the bottom of the ListBox adds a small gap.

3

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

504 Appendix ii

it grows, it shrinks—it’s all good

<TextBlock/> <TextBlock
Grid.Column= "2"/>

<StackPanel Grid.Row="1">
 <TextBlock/>
 <Button/>
</StackPanel>

<ListBox
Grid.Column="2"
Grid.RowSpan="5"/>

<TextBlock Grid.Row="2"/>

<ScrollViewer
 Grid.Row="3"/>

<TextBlock Grid.Row="4"/>

<ScrollViewer Grid.Row="5" Grid.RowSpan="2">

<Button
Grid.Row="6"
Grid.Column="2" />

<ColumnDefinition Width="5*"/> <ColumnDefinition Width="2*"/>

<ColumnDefinition Width="40"/>

<RowDefinition
Height="Auto"/>

<RowDefinition
Height="Auto"/>

<RowDefinition/>

<RowDefinition
Height="Auto"/>

<RowDefinition
Height="Auto"

MinHeight="150"/>

<RowDefinition
Height="Auto"/>

XAML row and column numbering start at 0, so this button’s row is 6 and its column is 2 (to skip the
middle column). Its vertical and horizontal alignment are set to Stretch so the button takes up the entire
cell. The row has a height of Auto, so its height is based on the contents (the button plus its margin).

This ListBox spans
five rows, including the
fourth row—which will
grow to fill any free
space. This makes the
ListBox expand to fill
up the entire right-
hand side of the page.

This row is set to the default height of 1*,
and the ScrollViewer in it is set to the default
vertical and horizontal alignment of “Stretch”
so it grows or shrinks to fill up the page.

This ScrollViewer has a row span of “2” to span
these two rows. We gave the sixth row (which is
row number 5 in XAML because numbering starts
at 0) a minimum height of 150 to make sure the
ScrollViewer doesn’t get any smaller than that.

Rows and columns can resize to match the page size
Grids are very effective tools for laying out windows because they help you design pages that can be displayed on
many different devices. Heights or widths that end in * adjust automatically to different screen geometries. The
Go Fish! window has three columns. The first and third have widths of 5* and 2*, so they will grow or shrink
proportionally and always keep a 5:2 ratio. The second column has a fixed width of 40 pixels to keep them
separated. Here’s how the rows and columns for the window are laid out (including the controls that live inside them):

Row=“1” means the second row,
because row numbers start at 0.

<RowDefinition
Height="Auto"/>

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 505

windows presentation foundation

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="5*"/>
 <ColumnDefinition Width="40"/>
 <ColumnDefinition Width="2*"/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto" MinHeight="150" />
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>

 </Grid>

</Window>

The first column will always
be 2.5 times as wide as

the third (a 5:2 ratio), with
a 40-pixel column to add

space between them. The
ScrollViewer and ListBox
controls that display data
have HorizontalAlignment
set to “Stretch” to fill up

the columns.

Here’s how the row and column definitions make the window layout work:

Here’s the closing tag for the grid,
followed by the closing tab for the
window. You’ll bring this all together at
the end of the chapter when you finish
porting the Go Fish! game to a WPF app.

The fourth row has the default height of 1*
to make it grow or shrink to fill up any space

that isn’t taken up by the other rows. The
ListBox and first ScrollViewer span this row,

so they will grow and shrink, too.

Almost all the row heights are set to
Auto. There’s only one row that will
grow or shrink, and any control that

spans this row will also grow or shrink.

You can add the row and column
definitions above or below the controls in
the grid. We added them below this time.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

508 Appendix ii

those programs look familiar

Use a Border control to draw a border around ScrollViewers.

If you look in the Properties window or look at the IntelliSense window, you’ll see that the ScrollViewer control has
BorderBrush and BorderThickness properties. This is a little misleading, because these properties don’t actually
do anything. ScrollViewer is a subclass of ContentControl, and it inherits those properties from ContentControl but
doesn’t actually do anything with them.

Luckily, there’s an easy way to draw a border around a ScrollViewer, or any other control, by using a Border control.
Here’s XAML code that you can use in the Breakfast for Lumberjacks window:

Use XAML to redesign each of these Windows desktop forms as WPF
applications. Create a new WPF Application project for each of them, and modify
each page by updating or replacing the grid and adding controls. You don’t need
to get them working. Just create the XAML so they match the screenshots.

The Border control can contain one other control. If you want to put more than one control inside it, use a StackPanel, Grid, Canvas, or other container.

Use the BorderThickness and
BorderBrush properties to set the
thickness and color of the border. You
can also add a background, round the
corners, and make other visual changes.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 509

windows presentation foundation

you are here 4 509

This button is right-
aligned with FontSize
set to 18 and 20 pixel
top and right margin.

<StackPanel Margin=“5”>
<TextBlock/>

<StackPanel Orientation=“Horizontal”>

<StackPanel>
 <TextBlock/>
 <ComboBox>
 <ComboBoxItem/>
 <ComboBoxItem/>
 ... 4 more ...
 </ComboBox>
</StackPanel>

<StackPanel>
 <TextBlock/>
 <TextBox/>
</StackPanel>

<Button/>

<Button/>
<TextBlock/>
<ScrollViewer/>
</StackPanel>

This is a <ComboBox>, and its items are <ComboBoxItem/> tags with the Content property set to the item name.

Set the ComboBox control’s
SelectedIndex property to 0
so it displays the first item.

Use StackPanels to design this window. Its height is set to 300, its width is 525, and its ResizeMode property is set
to NoResize. It uses two <Border> controls, one to draw a border around the top StackPanel and one to draw a
border around the ScrollViewer.

Use the Content property to add text to this
ScrollViewer.  will add line breaks. Give it
a 2-pixel white border using BorderThickness
and BorderBrush, and a height of 250.

Use a Grid to design this form. It has seven rows with height
set to Auto so they expand to fit their contents, and one with the
default height (which is the same as 1*) so that row expands with
the grid. Use StackPanels to put multiple controls in the same
row. Each TextBlock has a 5-pixel margin below it, and the bottom
two TextBlocks each have a 10-pixel margin above them. Use the
<Window> properties

This is a ListBox. It uses <ListBoxItem/>
tags the same way the ComboBox
uses <ComboBoxItem/> tags. Set its
VerticalAlignment to Stretch so when its
row grows and shrinks, the ListBox does too.

<Grid Grid.Row=“1” Margin=“5”>

<TextBlock/>

<TextBox/>

<TextBlock/>

<ListBox VerticalAlignment=“Stretch”>
 <ListBoxitem/>
 <ListBoxitem/>
 ... 4 more ...
</ListBox>

<TextBlock>

<StackPanel Orientation=“Horizontal”>
 <TextBox/>
 <ComboBox> ... 4 items ... </ComboBox>
 <Button/>
</StackPanel>

<ScrollViewer/>

<StackPanel Orientation=“Horizontal”>
 <Button/>
 <Button/>
</StackPanel>

Get your pages to look just like these screenshots by adding
dummy data to the controls that would normally be filled in using
the methods and properties in your classes.

Set this row to the default
height 1* and make all the
other row heights “Auto” so
this row grows and shrinks
when the window is resized.

Use these <Window> properties to set the initial
and minimum size for the window, then resize the
window to make sure they work: Height=“400"
MinHeight=“350" Width=“525" MinWidth=“300"

Set the window's
ResizeMode to
“CanResizeWithGrip" to
display this sizing grip.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

510 Appendix ii

A

<Window x:Class="BeehiveManagementSystem.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Beehive Management System"
 Height="300" Width="525"
 ResizeMode="NoResize">

 <StackPanel Margin="5">
 <TextBlock Text="Worker Bee Assignments" Margin="0,0,0,5" />
 <Border BorderThickness="1" BorderBrush="Black">
 <StackPanel Orientation="Horizontal" Margin="5">
 <StackPanel Margin="0,0,10,0">
 <TextBlock Text="Job"/>
 <ComboBox SelectedIndex="0" >
 <ComboBoxItem Content="Baby bee tutoring"/>
 <ComboBoxItem Content="Egg care"/>
 <ComboBoxItem Content="Hive maintenance"/>
 <ComboBoxItem Content="Honey manufacturing"/>
 <ComboBoxItem Content="Nectar collector"/>
 <ComboBoxItem Content="Sting patrol"/>
 </ComboBox>
 </StackPanel>
 <StackPanel>
 <TextBlock Text="Shifts" />
 <TextBox/>
 </StackPanel>
 <Button Content="Assign this job to a bee"
 VerticalAlignment="Bottom" Margin="10,0,0,0" />
 </StackPanel>
 </Border>

 <Button Content="Work the next shift" Margin="0,20,20,0"
 FontSize="18"
 HorizontalAlignment="Right" />

 <TextBlock Text="Shift report" Margin="0,10,0,5"/>
 <Border BorderBrush="Black" BorderThickness="1" Height="100">
 <ScrollViewer
 Content="
Report for shift #20
Worker #1 will be done with 'Nectar collector' after this shift
Worker #2 finished the job
Worker #2 is not working
Worker #3 is doing 'Sting patrol' for 3 more shifts
Worker #4 is doing 'Baby bee tutoring' for 6 more shifts
 "/>
 </Border>
 </StackPanel>
</Window>

Here’s the dummy data we used
to populate the shift report.
The Content property ignores
line breaks—we added them to
make the solution easier to read.

This Border control
draws a border around
the ScrollViewer.

Here’s the margin we gave you. Specifying
just one number (5) sets the top, left,
bottom, and right margins to the same value.

Does your XAML code look
different from ours? There
are many ways to display

very similar (or even
identical) pages in XAML.

And don’t forget that XAML
is very flexible about tag
order. You can put many

of these tags in a different
order and still create the

same object graph for
your window.

Use XAML to redesign each of these Windows desktop forms as WPF
applications. Create a new WPF Application project for each of them, and modify
each page by updating or replacing the grid and adding controls. You don’t need
to get them working. Just create the XAML so they match the screenshots.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 511

windows presentation foundation
A <Window x:Class="BreakfastForLumberjacks.MainWindow"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Breakfast for Lumberjacks"
 Width="525" Height="400"
 MinWidth="300" MinHeight="350"
 ResizeMode="CanResizeWithGrip" >

 <Grid Grid.Row="1" Margin="5">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition />
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>

 <TextBlock Text="Lumberjack name" Margin="0,0,0,5" />
 <TextBox Grid.Row="1"/>

 <TextBlock Grid.Row="2" Text="Breakfast line" Margin="0,10,0,5" />
 <ListBox Grid.Row="3" VerticalAlignment="Stretch">
 <ListBoxItem Content="1. Ed"/>
 <ListBoxItem Content="2. Billy"/>
 <ListBoxItem Content="3. Jones"/>
 <ListBoxItem Content="4. Fred"/>
 <ListBoxItem Content="5. Johansen"/>
 <ListBoxItem Content="6. Bobby, Jr."/>
 </ListBox>

 <TextBlock Grid.Row="4" Text="Feed a lumberjack" Margin="0,10,0,5" />
 <StackPanel Grid.Row="5" Orientation="Horizontal">
 <TextBox Text="2" Margin="0,0,10,0" Width="30"/>
 <ComboBox SelectedIndex="0" Margin="0,0,10,0">
 <ComboBoxItem Content="Crispy"/>
 <ComboBoxItem Content="Soggy"/>
 <ComboBoxItem Content="Browned"/>
 <ComboBoxItem Content="Banana"/>
 </ComboBox>
 <Button Content="Add flapjacks" />
 </StackPanel>

 <Border BorderThickness="1" BorderBrush="Gray" Grid.Row="6" Margin="0,5,0,0">
 <ScrollViewer Content="Ed has 7 flapjacks"
 BorderThickness="2" BorderBrush="White"
 MinHeight="50"/>
 </Border>

 <StackPanel Grid.Row="7" Orientation="Horizontal" Margin="0,10,0,0">
 <Button Content="Add Lumberjack" Margin="0,0,10,0" />
 <Button Content="Next Lumberjack" />
 </StackPanel>

 </Grid>
</Window>

Just to be 100% clear, we asked you to add these dummy items as part of the exercise, to make the form look like it’s being used. You’re about to learn how to bind controls like this ListBox to properties in your classes.

More dummy content...

You can set the ResizeMode
property to NoResize to prevent all
resizing, CanMinimize to allow only
minimizing, CanResize to allow all
resizing, or CanResizeWithGrip to
display a sizing grip in the lower
right-hand corner of the window.

Here are the Window properties that set
the initial window size to 525x400, and
set a minimum size of 300x350.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

516 Appendix ii

MenuMaker
NumberOfItems
Menu
GeneratedDate

UpdateMenu()

sloppy joe meets windows store

Use data binding to build Sloppy Joe a bet ter menu
Remember Sloppy Joe from Chapter 4? Well, he’s heard that you're becoming an XAML pro,
and he wants a WPF app for his sandwich menu. Let’s build him one.

<StackPanel Grid.Row="1" Margin="120,0">

<StackPanel Orientation="Horizontal">

<StackPanel>
 <TextBlock/>
 <TextBox Text="{Binding NumberOfItems,
 Mode=TwoWay"/>
</StackPanel>

 <Button/>
 </StackPanel>

 <ListView ItemsSource="{Binding Menu}"/>
 <TextBlock>
 <Run/>
 <Run Text="{Binding GeneratedDate}"/>
 </TextBlock>

</StackPanel>

Here’s the window we’re going to build.

It uses one-way data binding to populate a ListView and a Run inside a TextBlock, and it uses
two-way data binding for a TextBox, using one of its <Run> tags to do the actual binding.

We’ll need an object with
properties to bind to.

The Window object will have an
instance of the MenuMaker class,
which has three public properties:
an int called NumberOfItems,
an ObservableCollection
of menu items called Menu,
and a DateTime called
GeneratedDate.

TextBox obje
ct

ListView obje
ct

TextBlock ob
je

ct

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 517

windows presentation foundation

MenuItem
Meat
Condiment
Bread

override ToString()

Window ob
je

ct
MenuMaker o

bj
ec

t

ObservableCo
lle

ct
io

n

MenuItem ob
je

ct

MenuItem ob
je

ct

MenuItem ob
je

ct MenuItem ob
je

ct

MenuItem ob
je

ct

StackPanel o
bj

ec
tStackPanel o
bj

ec
t

StackPanel o
bj

ec
t

TextBlock ob
je

ct

TextBox obje
ct

Button objec
tListView obje

ct

TextBlock ob
je

ct

Here’s a coding challenge. Based on what you’ve read so far, how much of the new and
improved Sloppy Joe app can you build before you flip the page and see the code for it?

The Window object creates
an instance of MenuMaker and
uses it for the data context.

The constructor for the Page object
will set the StackPanel’s DataContext
property to an instance of MenuMaker.
The binding will all be done in XAML.

MenuItems are simple data
objects, overriding the
ToString() method to set
the text in the ListView.

The TextBox uses two-way
binding to set the number of
menu items.

That means the TextBox doesn’t need
an x:Name property. Since it’s bound
to the NumberOfItems property in
the MenuMaker object, we don’t need
to write any C# code that refers to it.

Menu

GeneratedDate

NumberOfItems

The button tells the MenuMaker to update.

The button calls the MenuMaker’s UpdateMenu()
method, which updates its menu by clearing the
ObservableCollection and then adding new MenuItems
to it. The ListView will automatically update anytime the
ObservableCollection changes.

The two-way binding
for the TextBox
means that it gets
initially populated
with the value in
the NumberOfItems
property, and
then updates that
property whenever
the user edits the
value in the TextBox.

The ListView
and TextBlock
objects are
also bound to
properties in
the MenuMaker
object.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

518

sloppy joe 2: the legend of curly fries

using System.Collections.ObjectModel;

class MenuMaker {
 private Random random = new Random();
 private List<String> meats = new List<String>()
 { "Roast beef", "Salami", "Turkey", "Ham", "Pastrami" };
 private List<String> condiments = new List<String>() { "yellow mustard",
 "brown mustard", "honey mustard", "mayo", "relish", "french dressing" };
 private List<String> breads = new List<String>() { "rye", "white", "wheat",
 "pumpernickel", "italian bread", "a roll" };
 public ObservableCollection<MenuItem> Menu { get; private set; }
 public DateTime GeneratedDate { get; set; }
 public int NumberOfItems { get; set; }
 public MenuMaker() {
 Menu = new ObservableCollection<MenuItem>();
 NumberOfItems = 10;
 UpdateMenu();
 }
 private MenuItem CreateMenuItem() {
 string randomMeat = meats[random.Next(meats.Count)];
 string randomCondiment = condiments[random.Next(condiments.Count)];
 string randomBread = breads[random.Next(breads.Count)];
 return new MenuItem(randomMeat, randomCondiment, randomBread);
 }
 public void UpdateMenu() {
 Menu.Clear();
 for (int i = 0; i < NumberOfItems; i++) {
 Menu.Add(CreateMenuItem());
 }
 GeneratedDate = DateTime.Now;
 }
}

 Add the new and improved MenuMaker class.
You’ve come a long way since Chapter 4. Let’s build a well-encapsulated class that lets you set the number of
items with a property. You’ll create an ObservableCollection of MenuItem in its constructor, which is
updated every time the UpdateMenu() is called. That method will also update a DateTime property called
GeneratedDate with a timestamp for the current menu. Add this MenuMaker class to your project:

2

Use DateTime to work with dates
You’ve already seen the DateTime type that lets you store a date. You can also use it to create and modify dates and times. It has a static property called Now that returns the current time. It also has methods like AddSeconds() for adding and converting seconds, milliseconds, days, etc., and properties like Hour and DayOfWeek to break down the date. How timely!

Take a closer look at how this
works. It never actually creates
a new MenuItem collection. It
updates the current one by
clearing it and adding new items.

What happens if the
NumberOfItems is set
to a negative number?

The new CreateMenuItem() method
returns MenuItem objects, not just
strings. That will make it easier to change
the way items are displayed if we want.

You’ll need this using line because
ObservableCollection<T> is in this namespace.

You’ll use data
binding to display
data from these
properties on
your page. You’ll
also use two-way
binding to update
NumberOfItems.

 Create the project.
Create a new WPF Application project. You’ll keep the default window
size. Set the window title to Welcome to Sloppy Joe’s.

1

Just right-click
on the project
name in the
Solution Explorer
and add a new
class, just like
you did with
other projects.

Do this!

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 519

windows presentation foundation

class MenuItem {
 public string Meat { get; set; }
 public string Condiment { get; set; }
 public string Bread { get; set; }

 public MenuItem(string meat, string condiment, string bread) {
 Meat = meat;
 Condiment = condiment;
 Bread = bread;
 }

 public override string ToString() {
 return Meat + " with " + Condiment + " on " + Bread;
 }
}

 Add the MenuItem class.
You’ve already seen how you can build more flexible programs if you use classes instead of
strings to store data. Here’s a simple class to hold a menu item—add it to your project, too:

3

The three strings that
make up the item are
passed into the constructor
and held in read-only
automatic properties.

Override the
ToString() method so the MenuItem knows how to display itself.

 Build the XAML page.
Here’s the screenshot. Can you build it using StackPanels? The TextBox
has a width of 100. The bottom TextBlock has the style BodyTextStyle,
and it has two <Run> tags (the second one just holds the date).

4 Don’t add dummy data
this time. We’ll let data
binding do that for us.

Can you build this page on your own just from the screenshot before you see the XAML?

This is a ListView control. It’s a lot like
the ListBox control—in fact, it inherits
from the same base class as ListBox, so it
has the same item selection functionality.
But the ListView gives you much more
flexibility to customize the way your items
are displayed by letting you specify a data
template for each item. You'll learn more
about that later in the chapter.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

520 Appendix ii

<StackPanel Margin="5" x:Name="pageLayoutStackPanel">
 <StackPanel Orientation="Horizontal" Margin="0,0,0,10">
 <StackPanel Margin="0,0,10,0">
 <TextBlock Text="Number of items" Margin="0,0,0,5" />
 <TextBox Width="100" HorizontalAlignment="Left"
 Text="{Binding NumberOfItems, Mode=TwoWay}" />
 </StackPanel>
 <Button x:Name="newMenu" VerticalAlignment="Bottom"
 Click="newMenu_Click" Content="Make a new menu"/>
 </StackPanel>
 <ListView ItemsSource="{Binding Menu}" Margin="0,0,20,0" />
 <TextBlock>
 <Run Text="This menu was generated on " />
 <Run Text="{Binding GeneratedDate}"/>
 </TextBlock>
</StackPanel>

bound and determined

 Add object names and data binding to the XAML.
Here’s the XAML that gets added to MainWindow.xaml. We used a StackPanel to lay it out, so you
can replace the opening <Grid> and closing </Grid> tags with the XAML below. We named the
button newMenu. Since we used data binding of the ListView, TextBlock, and TextBox, we didn’t need
to give them names. (Here’s a shortcut. We didn’t even really need to name the button; we did it just to get the IDE to
automatically add an event handler named newMenu_Click when we double-clicked it in the IDE. Try it out!)

5

 Add the code-behind for the page to MainWindow.xaml.cs.
The page constructor creates the menu collection and the MenuMaker instance and sets the
data contexts for the controls that use data binding. It also needs a MenuMaker field called
menuMaker.

MenuMaker menuMaker = new MenuMaker();

public MainWindow() {
 this.InitializeComponent();

 pageLayoutStackPanel.DataContext = menuMaker;
}

You just need to set the data context for the outer StackPanel. It will pass that data context
on to all the controls contained inside it.

Finally, double-click on the button to generate a method stub for its Click event handler.
Here’s the code for it—it just updates the menu:

private void newMenu_Click(object sender, RoutedEventArgs e) {
 menuMaker.UpdateMenu();
}

6

We need two-
way data binding
to both get and
set the number
of items with
the TextBox.

This is where <Run> tags
come in handy. You can have
a single TextBlock but bind
only part of its text.

Your main window’s class in
MainWindow.xaml.cs gets a
MenuMaker field, which is used as
the data context for the StackPanel
that contains all the bound controls.

Here’s that
ListView control.
Try swapping it
out for ListBox
to see how it
changes your
window.

There’s an easy way to rename an event handler so that it updates XAML
and C# code at the same time. Flip to leftover #8 in Appendix I to learn

more about the refactoring tools in the IDE.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 521

windows presentation foundation

Now run your program! Try changing the TextBox to different values. Set it to 3, and
it generates a menu with three items:

Now you can play with binding to see just how flexible it is. Try entering “xyz” or
no data at all into the TextBox. Nothing happens! When you enter data into the
TextBox, you’re giving it a string. The TextBox is pretty smart about what it does
with that string. It knows that its binding path is NumberOfItems, so it looks in its
data context to see if there are any properties with that name, and then does its best
to convert the string to whatever that property’s type is.

TextBox obje
ct

My Text
property’s bound to
numberofitemS. And, look,

my data context has a
numberofitemS property! Can I
stick this string “3” into that
property? Looks like I can!

TextBox obje
ct

Hmm, my
data context says
numberofitemS is an int,

and I don’t know how to
convert the string “xyz” to

an int. Guess I won’t do
anything at all.

Keep your eye on the
generated date. It’s not
updating, even though the menu
updates. Hmm, maybe there’s
still something we need to do.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

522

put your data in context

Use stat ic resources to declare your objects in XAML
When you build a page with XAML, you’re creating an object graph with objects like StackPanel, Grid, TextBlock,
and Button. And you’ve seen that there’s no magic or mystery to any of that—when you add a <TextBox> tag to
your XAML, then your page object will have a TextBox field with a reference to an instance of TextBox. And if you
give it a name using the x:Name property, your code-behind C# code can use that name to access the TextBox.

You can do exactly the same thing to create instances of almost any class and store them as fields in your page by
adding a static resource to your XAML. And data binding works particularly well with static resources, especially
when you combine it with the visual designer in the IDE. Let’s go back to your program for Sloppy Joe and move the
MenuMaker to a static resource.

Delete the menumaker field from the code-behind.
You’re going to be setting up the MenuMaker class and the data context in the
XAML, so delete these lines from your C# code:

MenuMaker menuMaker = new MenuMaker();

public MainWindow() {
 this.InitializeComponent();

 pageLayoutStackPanel.DataContext = menuMaker;
}

1

Add your project's namespace to the XAML.
Look at the top of the XAML code for your window, and you’ll see that the opening tag has a
set of xmlns properties. Each of these properties defines a namespace:

Start adding a new xmlns property:

Here's what you'll end up with:

2

Since we named our app SloppyJoeChapter10,
the IDE created this namespace for us. Find
the namespace that corresponds to your app,
because that’s where your MenuMaker lives.

xmlns:local="using:SloppyJoeChapter10"
This is an XML namespace property. It consists of
“xmlns:” followed by an
identifier, in this case “local”.

When the namespace value starts with
“using:” it refers to one of the namespaces in
the project. It can also start with “http://”
to refer to a standard XAML namespace.

You’ll use this identifier to create
objects in your project’s namespace.

When you use
XAML to add a

static resource to
a Window, you can
access it using its

FindResource()
method.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 523

windows presentation foundation

Hmm, something’s not quite right. It updates the menu items when the button is clicked, but the date doesn't change. What’s going on?

Add the static resource to your XAML and set the data context.
Add a <Window.Resources> tag to the top of the XAML (just under the opening tag), and add a closing
</Window.Resources> tag for it. Then type <local: between them to pop up an IntelliSense window:

The window shows all the classes in the namespace that you can use. Choose MenuMaker. Then give it the
resource key menuMaker using the x:Key XAML property:

 <local:MenuMaker x:Key="menuMaker"/>

Now your page has a static MenuMaker resource with the key menuMaker.

3

Set the data context for your StackPanel and all of its children.
Then go to the outermost StackPanel and set its DataContext property:

 <StackPanel Margin="5"
 DataContext="{StaticResource ResourceKey=menuMaker}">

Finally, modify the button’s Click event handler to find the static resource and method to update the menu:

 private void newMenu_Click(object sender, RoutedEventArgs e) {
 MenuMaker menuMaker = FindResource("menuMaker") as MenuMaker;
 menuMaker.UpdateMenu();
 }

Your program will still work, just like before. But did you notice what happened in the IDE when you added the
data context to the XAML? As soon as you added it, the IDE created an instance of MenuMaker and used its
properties to populate all the controls that were bound to it. You got a menu generated immediately, right there
in the designer—before you even ran your program. Neat!

4

The menu shows up in the
designer immediately, even
before you run your program.

You can add static resources only if their classes
have parameterless constructors. This makes sense!
If the constructor has a parameter, how would the

XAML page know what arguments to pass to it?

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

524 Appendix ii

change your list’s look and feel

Use a data template to display objects
When you show items in a list, you’re showing contents of ListViewItem (which you use for ListViews),
ListBoxItem, or ComboBoxItem controls, which get bound to objects in an ObservableCollection.
Each ListViewItem in the Sloppy Joe menu generator is bound to a MenuItem object in its Menu collection.
The ListViewItem objects call the MenuMaker objects’ ToString() methods by default, but you can use
a data template that uses data binding to display data from the bound object’s properties.

<ListView ItemsSource="{Binding Menu}" Margin="0,0,20,0">
 <ListView.ItemTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding}"/>
 </DataTemplate>
 </ListView.ItemTemplate>
</ListView>

Modify the <ListView> tag to add a basic data template. It
uses the basic {Binding} to call the item’s ToString().

Leave the ListView tag
intact, but replace /> with >
and add a closing </ListView>
tag at the bottom. Then add
the ListView.ItemTemplate tag
to contain the data template.

Adding a {Binding} without a path
just calls the ToString() method of
the bound object.

This is a really
basic data
template, and it
looks just like the
default one used
to display the
ListViewItems.

Change your data template to add some color to your menu.

Go crazy! The data template can contain any controls you want.

<DataTemplate>
 <TextBlock>
 <Run Text="{Binding Meat}" Foreground="Blue"/><Run Text=" on "/>
 <Run Text="{Binding Bread}" FontWeight="Light"/><Run Text=" with "/>
 <Run Text="{Binding Condiment}" Foreground="Red" FontWeight="ExtraBold"/>
 </TextBlock>
</DataTemplate>

You can bind individual Run tags. You can change
each tag’s color, font, and other properties, too.Replace the

<DataTemplate>,
but leave the
rest of the
ListView intact.

<DataTemplate>
 <StackPanel Orientation="Horizontal">
 <StackPanel>
 <TextBlock Text="{Binding Bread}"/>
 <TextBlock Text="{Binding Bread}"/>
 <TextBlock Text="{Binding Bread}"/>
 </StackPanel>
 <Ellipse Fill="DarkSlateBlue" Height="Auto" Width="10" Margin="10,0"/>
 <Button Content="{Binding Condiment}" FontFamily="Segoe Script"/>
 </StackPanel>
</DataTemplate>

The DataTemplate object’s
Content property can hold
only one object, so if you
want multiple controls in your
data template, you’ll need a
container like StackPanel.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 525

windows presentation foundation

Q:So I can use a StackPanel or a Grid to lay out my page.
I can use XAML static resources, or I can use fields in code-
behind. I can set properties on controls, or I can use data
binding. Why are there so many ways to do the same things?

A: Because C# and XAML are extremely flexible tools for building
apps. That flexibility makes it possible to design very detailed pages
that work on many different devices and displays. This gives you
a very large toolbox that you can use to get your pages just right.
So don’t look at it as a confusing set of choices; look at it as many
different options that you can choose from.

Q:I’m still not clear on how static resources work. What
happens when I add a tag inside <Window.Resources>?

A:When you add that tag, it updates the Window object and adds
static resources. In this case, it created an instance of MenuMaker
and added it to the Window object’s resources. The Window object
contains a dictionary called Resources, and if you use the debugger
to explore the Window object after you add the tag you can find that it
contains an instance of MenuMaker. When you declared the resource,
you used x:Key to assign the resource a key. That allowed you to
use that key to look up your MenuMaker object in the window's
static resources with the FindResource() method.

Q: I used x:Key to set my MenuMaker resource’s key.
But earlier in the chapter, I used x:Name to give names to
my controls. What’s the difference? Why did I have to use
FindResources() to look up the MenuMaker object—couldn't I
give it a name instead?

A: When you add a control to a WPF window, it actually adds a
field to the Window object that’s created by the XAML. When you
use the x:Name property, you give it a name that you can use
in your code. If you don’t give it a name, the control object is still
created as part of the Window object’s graph. However, if you give it
a name, then the XAML object is given a field with that name with
a reference to that control. You can see this in your code by putting a
breakpoint in the button’s event handler and adding newMenu to
the Watch window. You’ll see that it refers to a System.Windows.Controls.
Button object whose Content property is set to “Make a new menu.”

Resources are treated differently: they’re added to a dictionary
in the Window object. The FindResource() method uses the key
specified in the x:Key markup. Set the same breakpoint and try
adding this.Resources["menuMaker"] to the Watch
window. This time, you’ll see a reference to your MenuMaker object,
because you’re looking it up in the Resources dictionary.

Q: Does my binding path have to be a string property?

A: No, you can bind a property of any type. If it can be converted
between the source and property types, then the binding will work.
If not, the data will be ignored. And remember, not all properties
on your controls are text, either. Let’s say you’ve got a bool in your
data context called EnableMyObject. You can bind it to any
Boolean property, like IsEnabled. This will enable or disable the
control based on the value of the EnableMyObject property:

IsEnabled="{Binding EnableMyObject}"

Of course, if you bind it to a text property it’ll just print True or
False (which, if you think about it, makes perfect sense).

Q: Why did the IDE display the data in my form when I added
the static resource and set the data context in XAML, but not
when I did it in C#?

A: Because the IDE understands your XAML, which has all the
information that it needs to create the objects to render your page. As
soon as you added the MenuMaker resource to your XAML code,
the IDE created an instance of MenuMaker. But it couldn’t do that
from the new statement in its constructor, because there could be
many other statements in the constructor, and they would need to be
run. The IDE runs the code-behind C# code only when the program
is executed. But if you add a static resource to the page, the IDE will
create it, just like it creates instances of TextBlock, StackPanel, and
the other controls on your page. It sets the controls’ properties to
show them in the designer, so when you set up the data context and
binding paths, those got set as well, and your menu items showed up
in the IDE’s designer.

The static resources in your
page are instantiated when the
page is first loaded and can be
used at any time by the objects
in the application.

The name “static resource” is a little misleading.
Static resources are definitely created for each
instance; they’re not static fields!

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

526 Appendix ii

ch-ch-ch changes

INot ifyPropertyChanged le ts bound objects send updates
When the MenuMaker class updates its menu, the ListView that’s bound to it gets updated. But the
MenuMaker updates the GeneratedDate property at the same time. Why doesn’t the TextBlock that’s
bound to it get updated, too? The reason is that every time an ObservableCollection changes, it fires
off an event to tell any bound control that its data has changed. This is just like how a Button control
raises a Click event when it’s clicked, or a Timer raises a Tick event when its interval elapses. Whenever
you add, remove, or delete items from an ObservableCollection, it raises an event.

You can make your data objects notify their target properties and bound controls that data has changed, too.
All you need to do is implement the INotifyPropertyChanged interface, which contains a single
event called PropertyChanged. Just fire off that event whenever a property changes, and watch your
bound controls update themselves automatically.

~
PropertyChanged event

Data object

Source prope
rt

y Target prope
rt

y

Control objec
t

Binding

DATA CONTEXT

The data object fires off
a PropertyChanged event
to notify any control
that it’s bound to that a
property has changed.

 Collections work almost the same way as data objects.

The ObservableCollection<T> object doesn’t actually implement
INotifyPropertyChanged. Instead, it implements a closely related
interface called INotifyCollectionChanged that fires off a

CollectionChanged event instead of a PropertyChanged event. The control
knows to look for this event because ObservableCollection implements the
INotifyCollectionChanged interface. Setting a ListView’s DataContext to an
INotifyCollectionChanged object will cause it to respond to these events.

The control receives the event and
refreshes its target property by reading
the data from the source property that
it’s bound to.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 527

windows presentation foundation

Modify MenuMaker to not ify you when
the GeneratedDate property changes
INotifyPropertyChanged is in the System.ComponentModel
namespace, so start by adding this using statement to the top of the
MenuMaker class file:

using System.ComponentModel;

Update the MenuMaker class to implement INotifyPropertyChanged,
and then use the IDE to automatically implement the interface:

This will be a little different from what you saw in chapters 7 and 8. It won’t add
any methods or properties. Instead, it will add an event:

public event PropertyChangedEventHandler PropertyChanged;

Next, add this OnPropertyChanged() method, which you’ll use to raise the PropertyChanged event.

private void OnPropertyChanged(string propertyName) {

 PropertyChangedEventHandler propertyChangedEvent = PropertyChanged;

 if (propertyChangedEvent != null) {

 propertyChangedEvent(this, new PropertyChangedEventArgs(propertyName));

 }

}

Now all you need to do to notify a bound control that a property is changed is to call OnPropertyChanged()
with the name of the property that’s changing. We want the TextBlock that’s bound to GeneratedDate to refresh
its data every time the menu is updated, so all we need to do is add one line to the end of UpdateMenu():

public void UpdateMenu() {

 Menu.Clear();

 for (int i = 0; i < NumberOfItems; i++) {

 Menu.Add(CreateMenuItem());

 }

 GeneratedDate = DateTime.Now;

 OnPropertyChanged("GeneratedDate");

}

Now the date should change when you generate a menu.

 This is the first
time you’re
raising events.

 You’ve been
writing event handler methods since
Chapter 1, but this is the first time
you’re firing an event. You’ll learn
all about how this works and what’s
going on in Chapter 15. For now, all
you need to know is that an interface
can include an event, and that your
OnPropertyChanged() method
is following a standard C# pattern for
raising events to other objects.

This is a standard
.NET pattern for
raising events.

 Don’t forget to implement
INotifyPropertyChanged.

Data binding works only when the
controls implement that interface.

If you leave : INotifyPropertyChanged
out of the class declaration, your bound
controls won’t get updated—even if the data
object fires PropertyChanged events.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

528 Appendix ii

go fish goes xaml

Finish porting the Go Fish! game to a WPF application. You’ll need to modify the XAML from earlier in
this chapter to add data binding, copy all the classes and enums from the Go Fish! game in Chapter 8
(or download them from our website), and update the Player and Game classes.

Add the existing class files and change their namespace to match your app.
Add these files to your project from the Chapter 8 Go Fish! code: Values.cs, Suits.cs, Card.cs, Deck.cs,
CardComparer_bySuit.cs, CardComparer_byValue.cs, Game.cs, and Player.cs. You can use the Add Existing
Item option in the Solution Explorer, but you’ll need to change the namespace in each of them to
match your new projects (just like you did with multipart projects earlier in the book).

Try building your project. You should get errors in Game.cs and Player.cs that look like this:

1

Remove all references to WinForms classes and objects; add using lines to Game.
You’re not in the WinForms world anymore, so delete using System.Windows.Forms; from
the top of Game.cs and Player.cs. You’ll also need to remove all mentions of TextBox. You’ll need to
modify the Game class to use INotifyPropertyChanged and ObservableCollection<T>,
so add these using lines to the top of Game.cs:

using System.ComponentModel;
using System.Collections.ObjectModel;

2

Add an instance of Game as a static resource and set up the data context.
Modify your XAML to add an instance of Game as a static resource and use it as the data context for
the grid that contains the Go Fish! page you built earlier in the chapter. Here’s the XAML for the static
resource: <local:Game x:Key="game"/> — and you’re going to need a new constructor because
you can include only resources that have parameterless constructors:

 public Game() {
 PlayerName = "Ed";
 Hand = new ObservableCollection<string>();
 ResetGame();
 }

3

Add public properties to the Game class for data binding.
Here are the properties you’ll be binding to properties of the controls in the page:

 public bool GameInProgress { get; private set; }
 public bool GameNotStarted { get { return !GameInProgress; } }
 public string PlayerName { get; set; }
 public ObservableCollection<string> Hand { get; private set; }
 public string Books { get { return DescribeBooks(); } }
 public string GameProgress { get; private set; }

4

Make sure you add the
<Window.Resources>

section to the top of your
XAML, and you’ll also need

to add the xmlns:local
tag, exactly like you did on

pages 522 and 523.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 529

windows presentation foundation

 public void StartGame() {
 ClearProgress();
 GameInProgress = true;
 OnPropertyChanged("GameInProgress");
 OnPropertyChanged("GameNotStarted");
 Random random = new Random();
 players = new List<Player>();
 players.Add(new Player(PlayerName, random, this));
 players.Add(new Player("Bob", random, this));
 players.Add(new Player("Joe", random, this));
 Deal();
 players[0].SortHand();
 Hand.Clear();
 foreach (String cardName in GetPlayerCardNames())
 Hand.Add(cardName);
 if (!GameInProgress)
 AddProgress(DescribePlayerHands());
 OnPropertyChanged("Books");
 }

 public void ResetGame() {
 GameInProgress = false;
 OnPropertyChanged("GameInProgress");
 OnPropertyChanged("GameNotStarted");
 books = new Dictionary<Values, Player>();
 stock = new Deck();
 Hand.Clear();
 }

 public void AddProgress(string progress)
 {
 GameProgress = progress +
 Environment.NewLine +
 GameProgress;
 OnPropertyChanged("GameProgress");
 }

IsEnabled="{Binding GameInProgress}" IsEnabled="{Binding GameNotStarted}"

Use binding to enable or disable the TextBox, ListBox, and Buttons.
You want the “Your Name” TextBox and the “Start the game!” Button to be enabled only when
the game is not started, and you want the “Your hand” ListBox and “Ask for a card” Button
to be enabled only when the game is in progress. You’ll add code to the Game class to set the
GameInProgress property. Have a look at the GameNotStarted property. Figure out how
it works, and then add the following property bindings to the TextBox, ListBox, and two Buttons:

5

IsEnabled="{Binding GameNotStarted}"IsEnabled="{Binding GameInProgress}"

You’ll need
two of each
of these.

Modify the Player class so it tells the Game to display the game’s progress.
The WinForms version of the Player class takes a TextBox as a parameter for its constructor.
Change that to take a reference to the Game class and store it in a private field. (Look at the
StartGame() method below to see how this new constructor is used when adding players.)
Find the lines that use the TextBox reference and replace them with calls to the Game object’s
AddProgress() method.

6

Modify the Game class.
Change the PlayOneRound() method so that it’s void instead of returning a Boolean, and have it use
the AddProgress() method instead of the TextBox to display progress. If a player won, display that
progress, reset the game, and return. Otherwise, refresh the Hand collection and describe the hands.

You’ll also need to add/update these four methods and figure out what they do and how they work.

7

 public void ClearProgress() {
 GameProgress = String.Empty;
 OnPropertyChanged("GameProgress");
 }

You’ll also need to implement the
INotifyPropertyChanged
interface and add the same
OnPropertyChanged() method
that you used in the MenuMaker class.
The updated methods use it, and your
modified PullOutBooks() method
will also use it.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

530 Appendix ii

exercise solution

class Player {
 private string name;
 public string Name { get { return name; } }
 private Random random;
 private Deck cards;
 private Game game;
 public Player(String name, Random random, Game game) {
 this.name = name;
 this.random = random;
 this.game = game;
 this.cards = new Deck(new Card[] { });
 game.AddProgress(name + " has just joined the game");
 }
 public Deck DoYouHaveAny(Values value)
 {
 Deck cardsIHave = cards.PullOutValues(value);
 game.AddProgress(Name + " has " + cardsIHave.Count + " " + Card.Plural(value));
 return cardsIHave;
 }

 public void AskForACard(List<Player> players, int myIndex, Deck stock, Values value) {
 game.AddProgress(Name + " asks if anyone has a " + value);
 int totalCardsGiven = 0;
 for (int i = 0; i < players.Count; i++) {
 if (i != myIndex) {
 Player player = players[i];
 Deck CardsGiven = player.DoYouHaveAny(value);
 totalCardsGiven += CardsGiven.Count;
 while (CardsGiven.Count > 0)
 cards.Add(CardsGiven.Deal());
 }
 }
 if (totalCardsGiven == 0) {
 game.AddProgress(Name + " must draw from the stock.");
 cards.Add(stock.Deal());
 }
 }
 // ... the rest of the Player class is the same ...

A

Game game;

public MainWindow() {
 InitializeComponent();
 game = this.FindResource("game") as Game;
}
private void startButton_Click(object sender, RoutedEventArgs e) {
 game.StartGame();
}
 private void askForACard_Click(object sender, RoutedEventArgs e) {
 if (cards.SelectedIndex >= 0)
 game.PlayOneRound(cards.SelectedIndex);
}
 private void cards_MouseDoubleClick(object sender, MouseButtonEventArgs e) {
 if (cards.SelectedIndex >= 0)
 game.PlayOneRound(cards.SelectedIndex);
}

These are the changes needed for the Player class:

Here’s all the code-behind that you had to write.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 531

windows presentation foundation

<Grid Margin="10" DataContext="{StaticResource ResourceKey=game}">

 <TextBlock Text="Your Name" />
 <StackPanel Orientation="Horizontal" Grid.Row="1">
 <TextBox x:Name="playerName" FontSize="12" Width="150"
 Text="{Binding PlayerName, Mode=TwoWay}"
 IsEnabled="{Binding GameNotStarted}" />
 <Button x:Name="startButton" Margin="5,0" IsEnabled="{Binding GameNotStarted}"
 Content="Start the game!" Click="startButton_Click"/>
 </StackPanel>
 <TextBlock Text="Game progress" Grid.Row="2" Margin="0,10,0,0"/>
 <ScrollViewer Grid.Row="3" FontSize="12" Background="White" Foreground="Black"
 Content="{Binding GameProgress}" />
 <TextBlock Text="Books" Margin="0,10,0,0" Grid.Row="4"/>
 <ScrollViewer FontSize="12" Background="White" Foreground="Black"
 Grid.Row="5" Grid.RowSpan="2"
 Content="{Binding Books}" />
 <TextBlock Text="Your hand" Grid.Row="0" Grid.Column="2" />
 <ListBox x:Name="cards" Background="White" FontSize="12"
 Height="Auto" Margin="0,0,0,10"
 Grid.Row="1" Grid.RowSpan="5" Grid.Column="2"
 ItemsSource="{Binding Hand}" IsEnabled="{Binding GameInProgress}"
 MouseDoubleClick="cards_MouseDoubleClick" />
 <Button x:Name="askForACard" Content="Ask for a card"
 HorizontalAlignment="Stretch" VerticalAlignment="Stretch"
 Grid.Row="6" Grid.Column="2"
 Click="askForACard_Click" IsEnabled="{Binding GameInProgress}" />
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="5*"/>
 <ColumnDefinition Width="40"/>
 <ColumnDefinition Width="2*"/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto" MinHeight="150" />
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>
 </Grid>

A These are the changes needed for the XAML:

The data context for the grid is the
Game class, since all of the binding is
to properties on that class.

Here’s the Click event handler
for the Start button.

The Game Progress and
Books ScrollViewers
bind to the Progress
and Books properties.

The IsEnabled property enables
or disables the control. It’s a
Boolean property, so you can
bind it to a Boolean property
to turn the control on or off
based on that property.

The TextBox
has a two-
way binding to
PlayerName.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

532 Appendix ii

exercise solution

A

class Game : INotifyPropertyChanged {
 private List<Player> players;
 private Dictionary<Values, Player> books;
 private Deck stock;
 public bool GameInProgress { get; private set; }
 public bool GameNotStarted { get { return !GameInProgress; } }
 public string PlayerName { get; set; }
 public ObservableCollection<string> Hand { get; private set; }
 public string Books { get { return DescribeBooks(); } }
 public string GameProgress { get; private set; }

 public Game() {
 PlayerName = "Ed";
 Hand = new ObservableCollection<string>();
 ResetGame();
 }

 public void AddProgress(string progress) {
 GameProgress = progress + Environment.NewLine + GameProgress;
 OnPropertyChanged("GameProgress");
 }

 public void ClearProgress() {
 GameProgress = String.Empty;
 OnPropertyChanged("GameProgress");
 }

 public void StartGame() {
 ClearProgress();
 GameInProgress = true;
 OnPropertyChanged("GameInProgress");
 OnPropertyChanged("GameNotStarted");
 Random random = new Random();
 players = new List<Player>();
 players.Add(new Player(PlayerName, random, this));
 players.Add(new Player("Bob", random, this));
 players.Add(new Player("Joe", random, this));
 Deal();
 players[0].SortHand();
 Hand.Clear();
 foreach (String cardName in GetPlayerCardNames())
 Hand.Add(cardName);
 if (!GameInProgress)
 AddProgress(DescribePlayerHands());
 OnPropertyChanged("Books");
 }

using System.ComponentModel;
using System.Collections.ObjectModel;

Here’s the
StartGame() method
we gave you. It clears
the progress, creates
the players, deals
the cards, and then
updates the progress
and books.

You need these lines for
INotifyPropertyChanged
and ObservableCollection.

These properties are
used by the XAML
data binding.

Here’s the new Game constructor.
We create only one collection and
just clear it when the game is
reset. If we created a new object,
the form would lose its reference
to it, and the updates would stop.These methods

make the game
progress data
binding work.
New lines are
added to the
top so the
old activity
scrolls off the
bottom of the
ScrollViewer.

Here’s everything that changed in the Game class, including the code we gave you with the instructions.

Every program you’ve written in
the book so far can be adapted

or rewritten as a WPF application
using XAML. But there are so many

ways to write them, and that’s
especially true when you’re using
XAML! That’s why we gave you so
much of the code for this exercise.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 533

windows presentation foundation

A

 public void PlayOneRound(int selectedPlayerCard) {
 Values cardToAskFor = players[0].Peek(selectedPlayerCard).Value;
 for (int i = 0; i < players.Count; i++) {
 if (i == 0)
 players[0].AskForACard(players, 0, stock, cardToAskFor);
 else
 players[i].AskForACard(players, i, stock);
 if (PullOutBooks(players[i])) {
 AddProgress(players[i].Name + " drew a new hand");
 int card = 1;
 while (card <= 5 && stock.Count > 0) {
 players[i].TakeCard(stock.Deal());
 card++;
 }
 }
 OnPropertyChanged("Books");
 players[0].SortHand();
 if (stock.Count == 0) {
 AddProgress("The stock is out of cards. Game over!");
 AddProgress("The winner is... " + GetWinnerName());
 ResetGame();
 return;
 }
 }
 Hand.Clear();
 foreach (String cardName in GetPlayerCardNames())
 Hand.Add(cardName);
 if (!GameInProgress)
 AddProgress(DescribePlayerHands());
 }

 public void ResetGame() {
 GameInProgress = false;
 OnPropertyChanged("GameInProgress");
 OnPropertyChanged("GameNotStarted");
 books = new Dictionary<Values, Player>();
 stock = new Deck();
 Hand.Clear();
 }

 public event PropertyChangedEventHandler PropertyChanged;
 private void OnPropertyChanged(string propertyName) {
 PropertyChangedEventHandler propertyChangedEvent = PropertyChanged;
 if (propertyChangedEvent != null) {
 propertyChangedEvent(this, new PropertyChangedEventArgs(propertyName));
 }
 }

 // ... the rest of the Game class is the same ...

This used to return a Boolean value so the form could update its progress. Now it
just needs to call AddProgress, and data binding will take care of the updating for us.

This is the standard
PropertyChanged event
pattern from earlier in
the chapter.

Here are the modifications to
the PlayOneRound() method that
update the progress when the
game is over, or update the hand
and the books if it’s not.

This is the ResetGame() method
from the instructions. It clears
the books, stock, and hand.

The books changed, and the form needs to know about the change so it can refresh its ScrollViewer.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

534 Appendix ii

 Are you getting a strange XAML error about a class not existing in
the namespace? Make sure that ALL your C# code compiles and that
every control's event handler method is declared in the code-behind.

Sometimes you’ll get an error like this when you declare a static resource, even
though you definitely have a class called MyDataClass in the namespace MyWpfApplication:

This is often caused by either an error in the code-behind or a missing event handler for a XAML
control. This can be a little misleading, because the IDE is telling you that there’s an error on the
tag that declares the static resource, when the error is actually somewhere else in the code.

You can reproduce this yourself: create a new WPF project called MyWpfApplication, add a data
class called MyDataClass, add it as a static resource to your page’s <Window.Resources>, and
add a button to your page. Then add Click="Button_Click" to the XAML to add an event
handler for the button, but don’t add the Button_Click() method. When you try to rebuild your
code, you should see the error above. You can make it go away by adding the Button_Click()
method to the code-behind.

Sometimes the error message
becomes a little clearer if you right-click on the project in the Solution
Explorer, click “Unload Project” to
unload it, and then right-click it
again and choose “Reload Project” to load it again. This may cause the
IDE to show you a different error
message that might be more helpful.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 535

windows presentation foundation

Chapter 11
Even though a lot of

this chapter works only
with Windows Store apps, you

can still get the core
learning with WPF.

Windows Store was built for asynchronous programming,
but WPF can still use it... but not all the tools are there.

Read through pages 536 and 537 in the main part of the book—see how Brian
is shocked (shocked!) to find that his familiar file classes from Chapter 9 aren’t
there? Well, WPF apps don’t have that problem. That’s a good thing, because it
means you can keep using the file classes and serialization that you’re used to. But
it also means that your WPF apps can’t take advantage of the new asynchronous
file and dialog classes that come with the .NET Framework for Windows Store.

In this appendix, we’ll give you two replacement projects to show you how to
use the async and await keywords and data contract serialization with WPF
apps. Here’s how we recommend that you work through Chapter 11:

 ≥ Pages 538 and 539 have replacements in this appendix. Use the
replacements in place of the book pages.

 ≥ Pages 540–545 are specific to Windows Store apps. Skip them.

 ≥ Read pages 546 and 547 to learn about data contract serialization.

 ≥ Skip pages 548, 549, and 550; they apply only to Windows Store apps.

 ≥ Read page 551 in the book. Then follow the “Do this!” project on the
replacement pages 552–556 in this appendix.

 ≥ The rest of the chapter has you build a Windows Store replacement for
Brian’s excuse manager. The goal of this project is to learn about the
file tools in the Windows.Storage namespace for Windows Store apps.
We don’t have a WPF alternative for this project, because those classes
are specific to Windows Store apps.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

538 Appendix ii

don’t keep me waiting

C# programs can use await to be more responsive
What happens when you call MessageBox.Show() from a WinForms program? Everything
stops, and your program freezes until the dialog disappears. That’s literally the most unresponsive
that a program can be! Windows Store apps should always be responsive, even when they’re waiting
for feedback from a user. But some things—like waiting for a dialog, or reading or writing all the
bytes in a file—take a long time. When a method sits there and makes the rest of the program wait
for it to complete, programmers call that blocking, and it’s one of the biggest causes of program
unresponsiveness.

Windows Store apps use the await operator and the async modifier to keep from becoming
unresponsive during operations that block. You can see how it works by looking at an example of how
a WPF could call a define task that blocks, but can be called asynchronously:

private async Task LongTaskAsync()
{
 await Task.Delay(5000);
}

Declare the method using the
async modifier to indicate that
it can be called asynchronously.

The await operator causes the method that’s running this code to stop and wait until the ShowAsync() method
completes—and that method will block until the user chooses one of the commands. In the meantime, the rest of the
program will keep responding to other events. As soon as the LongTaskAsync() method returns, the method
that called it will pick up where it left off (although it may wait until after any other events that started up in the meantime
have finished).

If your method uses the await operator, then it must be declared with the async modifier:

 private async void countButton_Click(object sender, RoutedEventArgs e) {
 // ... some code ...
 await LongTaskAsync();
 // ... some more code:
 }

When a method is declared with async, you have some options with how you call it. If you call the method as usual, then
as soon as it hits the await statement it returns, which keeps the blocking call from freezing your app.

The Task class is in the
System.Threading.Tasks
namespace. Its Delay()

method blocks for a specified
number of milliseconds. That
method is really similar to the
Thread.Sleep() method that
you used in Chapter 2, but
it’s defined with the async
modifier so it can be called
asynchronously with await.

Notice how this is a Click event
handler. Since it uses await, it
also needs to be declared with
the async modifier.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 539

windows presentation foundation

You can see exactly how this works by creating a new WPF application with the following main window XAML:
<Window x:Class="WpfAndAsync.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="WPF and async" Height="150" Width="200" ResizeMode="CanResizeWithGrip">
 <Grid>
 <StackPanel>
 <CheckBox x:Name="useAwaitAsync" IsChecked="True" Content="Use await/async" Margin="5"/>
 <Button x:Name="countButton" Content="Start counting"
 HorizontalAlignment="Left" Click="countButton_Click" Margin="5"/>
 <TextBlock x:Name="progress" HorizontalAlignment="Left" Margin="5" />
 </StackPanel>
 </Grid>
</Window>

Here’s the code-behind:
using System.Threading;
using System.Windows.Threading;

public partial class MainWindow : Window {
 DispatcherTimer timer = new DispatcherTimer();

 public MainWindow() {
 InitializeComponent();

 timer.Tick += timer_Tick;
 timer.Interval = TimeSpan.FromSeconds(.1);
 }

 int i = 0;
 void timer_Tick(object sender, EventArgs e) {
 progress.Text = (i++).ToString();
 }

 private async void countButton_Click(object sender, RoutedEventArgs e) {
 countButton.IsEnabled = false;
 timer.Start();
 if (useAwaitAsync.IsChecked == true)
 await LongTaskAsync();
 else
 LongTask();
 countButton.IsEnabled = true;
 }

 private void LongTask() {
 Thread.Sleep(5000);
 timer.Stop();
 }

 private async Task LongTaskAsync() {
 await Task.Delay(5000);
 timer.Stop();
 }
}

Make sure the box is checked, and then click the button. You’ll see the numbers increase, and the form is responsive: the button
disables itself, and you can move and resize the form. Then uncheck the box and click the button—now the form freezes.

Do this!

The button’s event handler uses the CheckBox’s
IsChecked property. If the box is checked, the event
handler calls await LongTaskAsync(), which is

asynchronous. The method is called with await, so the
event handler method pauses and lets the rest of the
program continue to run. Try adding other buttons to

the window that change properties or print output to the
console. You’ll be able to use them while the timer ticks.

If the CheckBox is not checked, IsChecked is false and
the button’s event handler calls LongTask(), which

blocks. This causes the event handler method to block,
which makes the entire program become unresponsive,
and if you add other buttons they won’t respond either.

We named our project WpfAndAsync. If you
named your project something else, you’ll need

to change this line to match its namespace:
x:Class="WpfAndAsync.MainWindow"

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

552 Appendix ii

those guys get around

Stream some Guy objects to a f i le
Here’s a project to help you experiment with data contract serialization. Create a new WPF application.
Then add both classes with the data contracts from page 551 in the book (you’ll need using System.
Runtime.Serialization in each of them). And add the familiar Suits and Values enums, too (for
the Card class). Here’s the window you’ll build next:

Do this!

Before you start coding, you’ll need to right-click on References in the Solution
Explorer and choose Add Reference from the menu. Click on Framework, scroll
down to System.Runtime.Serialization, check it, and click OK:

This will allow your WPF application to use the System.Runtime.Serialization namespace.

You can also add an empty GuyManager class to get rid of the IDE error on the
<local:GuyManager> tag when you add the XAML in step 2. You’ll fill in the
GuyManager in step 3 when you flip the page.

1

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 553

windows presentation foundation

<Window x:Class="GuySerializer.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:GuySerializer"
 Title="Guy Serializer" Height="275" Width="525" ResizeMode="NoResize">

 <Window.Resources>
 <local:GuyManager x:Key="guyManager"/>
 </Window.Resources>

 <Grid DataContext="{StaticResource guyManager}" Margin="5">
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>
 <RowDefinition Height="4*"/>
 <RowDefinition Height="3*"/>
 </Grid.RowDefinitions>

 <StackPanel>
 <Button x:Name="WriteJoe" Content="Write Joe"
 HorizontalAlignment="Left" Click="WriteJoe_Click"/>
 <TextBlock Text="{Binding Joe}" Margin="0,0,10,20" TextWrapping="Wrap"/>
 </StackPanel>

 <StackPanel Grid.Column="1">
 <Button x:Name="WriteBob" Content="Write Bob"
 HorizontalAlignment="Left" Click="WriteBob_Click"/>
 <TextBlock Text="{Binding Bob}" Margin="0,0,0,20" TextWrapping="Wrap"/>
 </StackPanel>

 <StackPanel Grid.Column="2" Margin="10,0,0,0">
 <Button x:Name="WriteEd" Content="Write Ed"
 HorizontalAlignment="Left" Click="WriteEd_Click"/>
 <TextBlock Text="{Binding Ed}" Margin="0,0,0,20" TextWrapping="Wrap"/>
 </StackPanel>

 <StackPanel Grid.Row="1" Grid.ColumnSpan="2" Margin="0,0,20,0">
 <TextBlock>Last filename written</TextBlock>
 <TextBox Text="{Binding GuyFile, Mode=TwoWay}"
 TextWrapping="Wrap" Height="60" Margin="0,0,0,20"/>
 </StackPanel>

 <StackPanel Grid.Row="1" Grid.Column="2" Margin="10,0,0,0">
 <Button x:Name="ReadNewGuy" Content="Read a new Guy"
 HorizontalAlignment="Left" Click="ReadNewGuy_Click" />
 <StackPanel>
 <TextBlock Text="New guy:"/>
 <TextBlock TextWrapping="Wrap" Text="{Binding NewGuy}"/>
 </StackPanel>
 </StackPanel>
 </Grid>
</Window>

Here’s the XAML for the page. 2

The page has
three columns
and two rows.

Each column in
the top row has
a StackPanel
with a TextBlock
and a Button.

ThisTextBlock is bound to the
Ed property in GuyManager.

The first cell in the bottom
row spans two columns. It
has several controls bound to
properties. Why do you think we
used a TextBox for the path?

The grid's data context is the
GuyManager static resource.

We’re not done yet—flip the page!

We named this project GuySerializer. If your project has a different namespace, make sure you change these lines to match it.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

554 Appendix ii

think about separation of concerns

using System.ComponentModel;
using System.IO;
using System.Runtime.Serialization;

class GuyManager : INotifyPropertyChanged
{
 private Guy joe = new Guy("Joe", 37, 176.22M);
 public Guy Joe
 {
 get { return joe; }
 }

 private Guy bob = new Guy("Bob", 45, 4.68M);
 public Guy Bob
 {
 get { return bob; }
 }

 private Guy ed = new Guy("Ed", 43, 37.51M);
 public Guy Ed
 {
 get { return ed; }
 }

 public Guy NewGuy { get; set; }

 public string GuyFile { get; set; }

 public void ReadGuy()
 {
 if (String.IsNullOrEmpty(GuyFile))
 return;

 using (Stream inputStream = File.OpenRead(GuyFile))
 {
 DataContractSerializer serializer = new DataContractSerializer(typeof(Guy));
 NewGuy = serializer.ReadObject(inputStream) as Guy;
 }
 OnPropertyChanged("NewGuy");
 }

Add the GuyManager class.3

There are three read-only
Guy properties with private
backing fields. The XAML has a
TextBlock bound to each of them.

A fourth TextBlock is bound to
this Guy property, which is set
by the ReadGuy() method.

The ReadGuy() method uses familiar
System.IO methods to open a stream
and read from it. But instead of
using a BinaryFormatter, it uses a
DataContractSerializer to serialize
data from an XML file.

This program uses TextBoxes that
are bound to read-only properties

that have only get accessors. If
you try to bind to a property that
has a public get accessor with a

private set accessor, you’ll get an
error. Luckily, a backing field will

work just fine.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 555

windows presentation foundation

 public void WriteGuy(Guy guyToWrite)
 {
 GuyFile = Path.GetFullPath(guyToWrite.Name + ".xml");

 if (File.Exists(GuyFile))
 File.Delete(GuyFile);
 using (Stream outputStream = File.OpenWrite(GuyFile))
 {
 DataContractSerializer serializer = new DataContractSerializer(typeof(Guy));
 serializer.WriteObject(outputStream, guyToWrite);
 }

 OnPropertyChanged("GuyFile");
 }

 public event PropertyChangedEventHandler PropertyChanged;

 private void OnPropertyChanged(string propertyName)
 {
 PropertyChangedEventHandler propertyChangedEvent = PropertyChanged;
 if (propertyChangedEvent != null)
 {
 propertyChangedEvent(this, new PropertyChangedEventArgs(propertyName));
 }
 }
}

public partial class MainWindow : Window
{
 GuyManager guyManager;

 public MainWindow() {
 InitializeComponent();

 guyManager = FindResource("guyManager") as GuyManager;
 }

 private void WriteJoe_Click(object sender, RoutedEventArgs e) {
 guyManager.WriteGuy(guyManager.Joe);
 }
 private void WriteBob_Click(object sender, RoutedEventArgs e) {
 guyManager.WriteGuy(guyManager.Bob);
 }
 private void WriteEd_Click(object sender, RoutedEventArgs e) {
 guyManager.WriteGuy(guyManager.Ed);
 }
 private void ReadNewGuy_Click(object sender, RoutedEventArgs e) {
 guyManager.ReadGuy();
 }
}

Here’s the code-behind for MainWindow.xaml.cs:4

This uses the GetFullPath() method in the Path class (in System.IO) to get the full path of the filename to write.

If the file
exists, it's
deleted, then
recreated using
a file stream.
It's serialized
using the data
contract
serializer.

Here's the same code you
used earlier to implement
INotifyPropertyChanged and
fire off PropertyChanged events.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

556 Appendix ii

serializing guys

Q: Sometimes I make a change in my XAML or my code, and
the IDE’s designer gives me a message that I need to rebuild.
What’s going on?

A: The XAML designer in the IDE is really clever. It’s able to show
you an updated page in real time as you make changes to your XAML
code. You already know that when the XAML uses static resources,
that adds object references to the Page class. Well, those objects
need to get instantiated in order for them to be displayed in the
designer. If you make a change to the class that’s being used for a
static resource, the designer doesn’t get updated until you rebuild
that class. That makes sense—the IDE rebuilds your project only
when you ask it to, and until you do that it doesn’t actually have
the compiled code in memory that it needs to instantiate the static
resources.

You can use the IDE to see exactly how this works. Open your Guy
Serializer and edit the Guy.ToString() method to add some
extra words to the return value. Then go back to the main page designer.
It’s still showing the old output. Now choose Rebuild from the Build
menu. The designer will update itself as soon as the code finishes
rebuilding. Try making another change, but don’t rebuild yet. Instead,
add another TextBlock that’s bound to a Guy object. The IDE will use
the old version of the object until you rebuild.

Q: I’m confused about namespaces. How is the namespace in
the program different from the one in an XML file?

A: Let’s take a step back and understand why namespaces are
necessary. C#, XML files, the Windows filesystem, and web pages all
use different (but often related) naming systems to give each class,
XML document, file, or web page its own unique name. So why is
this important? Well, let’s say back in Chapter 9, you created a class
called KnownFolders to help Brian keep track of excuse folders.
Uh-oh! Now you find out that the .NET Framework for Windows Store
already has a KnownFolders class. No worries. The .NET
KnownFolders class is in the Windows.Storage namespace,
so it can exist happily alongside your class with the same name, and
that’s called disambiguation.

Data contracts also need to disambiguate. You’ve seen several
different versions of a Guy class throughout this book. What if you
wanted to have two different contracts to serialize different versions
of Guy? You can put them in different namespaces to disambiguate
them. And it makes sense that these namespaces would be separate
from the ones for your classes, because you can’t really confuse
classes and contracts.

Take your Guy Serializer for a test dri ve
Use the Guy Serializer to experiment with data contract serialization:

 ≥ Write each Guy object to the files—they’ll be written to the bin\Debug folder in your projects folder. Click the
ReadGuy button to read the guy that was just written. It uses the path in the TextBox to read the file, so try
updating that path to read a different guy. Try reading a file that doesn’t exist. What happens?

 ≥ Open up the Simple Text Editor you built earlier in the chapter. You added XML files as options for the open
and save file pickers, so you can use it to edit Guy files. Open one of the Guy files, change it, save it, and read
it back into your Guy Serializer. What happens if you add invalid XML? What if you change the card suit or
value so it doesn’t match a valid enum value?

 ≥ Try adding or removing the DataMember names ([DataMember(Name="...")]). What does that do
to the XML? What happens when you update the contract and then try to load a previously saved XML file?
Can you fix the XML file to make it work?

 ≥ Try changing the namespace of the Card data contract. What happens to the XML?

One more thing. Your WPF applications can use the
same OpenFileDialog and SaveFileDialog classes that
you used in your WinForms projects. Here’s an MSDN

page that has more information and code samples:

http://msdn.microsoft.com/en-us/library/aa969773.aspx

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

Remember Brian's excuse

manager from chapter 9? well, it's

got a few bugs, and you'll fix them in

this chapter.

Exception handling works the same in WPF
as it does in WinForms and Windows Store.

If you flip through the replacement pages for Chapter 12,
you’ll notice that there’s no XAML. That’s because the
material on exception handling that we cover in Head First
C# is basically the same whether you’re working on a WPF
application, a WinForms program, a Windows Store app, or
even a console application.

Here’s how you should use this appendix for Chapter 12:

 ≥ Read through page 575 in the book, including the
“Sharpen your Pencil” exercise.

 ≥ Use the appendix replacement pages for 576 and 577.

 ≥ Read pages 578 and 579 in the book.

 ≥ Follow pages 580–590 in this appendix, and skip 591
in the main part of the book.

 ≥ Finish the rest of the chapter in the book.

 ≥ Then do all of Chapter 13 in the book, too!

Chapter 12

Once you’re done with this chapter, you can go straight
through Chapter 13 in the book. It doesn’t depend on
Windows 8 or Windows Store apps at all.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

576 Appendix ii

Brian’s code did something unexpected
When Brian wrote his Excuse Manager, he never expected the
user to try to pull a random excuse out of an empty directory.

The problem happened when Brian pointed his Excuse Manager program at an
empty folder on his laptop and clicked the Random Excuse button. Let’s take a
look at it and see if we can figure out what went wrong. Here’s the unhandled
exception window that popped up when he ran the program in the IDE:

1

OK, that’s a good starting point. It’s telling us that there’s some value that
doesn’t fall inside some range. Clicking the Break button drops the IDE back
into the debugger, with the execution halted on a specific line of code:

2

public Excuse(Random random, string folder)
{
 string[] fileNames = Directory.GetFiles(folder, "*.excuse");
 OpenFile(fileNames[random.Next(fileNames.Length)]);
}

Let’s use the Watch window to track down the problem. Add a watch for fileNames.Length. Looks
like that returns 0. Try adding a watch for random.Next(fileNames.Length). That returns 0, too. So
add a watch for fileNames[random.Next(fileNames.Length)]. This time the Value column in the
Watch window has the same error message that you saw in step 1: “Out of bounds array index.”

3

nobody expects the …

You can call methods and use indexers in the Watch window. When one of those
things throws an exception, you’ll see that exception in the Watch window, too.

Do this!

This appendix depends on the Excuse
Manager WinForms app that you built in

Chapter 9. If your code doesn’t match the
code in the appendix, you can download
it from http://headfirstlabs.com/hfcsharp.

www.itbook.store/books/9781449343507

http://headfirstlabs.com/hfcsharp
https://itbook.store/books/9781449343507

you are here 4 577

windows presentation foundation

That’s right. Exceptions are a really useful tool
that you can use to find places where your code
acts in ways you don’t expect.

A lot of programmers get frustrated the first time they see an
exception. But exceptions are really useful, and you can use them to
your advantage. When you see an exception, it’s giving you a lot of
clues to help you figure out when your code is reacting to a situation
that you didn’t anticipate. And that’s good for you: it lets you know
about a new scenario that your program has to handle, and it gives
you an opportunity to do something about it.

So what happened? It turns out that Directory.GetFiles() returns an empty array when you point
it at an empty folder. So fileNames.Length is zero, and passing 0 to Random.Next() will always
return 0 as well. Try to get the 0th element of an empty array and your program will throw a System.
IndexOutOfRangeException, with the message “Index was outside the bounds of the array.”

Now that we know what the problem is, we can fix it. All we need to do is check to see if the selected folder
has excuses in it before we try to load a random excuse from it:

4

private void randomExcuse_Click(object sender, EventArgs e)
{
 if (Directory.GetFiles(selectedFolder).Length == 0)
 MessageBox.Show("There are no excuse files in the selected folder.");
 else if (CheckChanged())
 {
 currentExcuse = new Excuse(random, selectedFolder);
 UpdateForm(false);
 }
}

By checking for excuse
files in the folder before
we create the Excuse
object, we can prevent
the exception from being
thrown—and display a
helpful dialog, too.

Oh, I get it. Exceptions aren’t always
bad. Sometimes they identify bugs, but a

lot of the time they’re just telling me that
something happened that was different

from what I expected.

What do you think about that solution?
Does it make the most sense to put it in the
form, or would it be better to find a way to

encapsulate it inside the Excuse class?

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

580 Appendix ii

Use the IDE’s debugger to ferret out exact ly
what went wrong in the Excuse Manager
Let’s use the debugger to take a closer look at the problem that we ran
into in the Excuse Manager. You’ve probably been using the debugger a
lot over the last few chapters, but we’ll go through it step by step anyway
to make sure we don’t leave out any details.

Add a breakpoint to the Random button’s event handler.
You’ve got a starting point—the exception happens when the Random Excuse button is clicked
after an empty folder is selected. So open up the button’s event handler and use Debug→Toggle
Breakpoint (F9) to add a breakpoint to the first line of the method. Start debugging, choose an
empty folder, and then click the Random button to make your program break at the breakpoint:

1

Debug this

you don’t know where that watch has been

Step into the excuSe constructor.
We want to reproduce the problem, but we already added code to get past it. No
problem. Right-click on the line currentExcuse = new Excuse(random,
selectedFolder); and choose Set Next Statement (Ctrl+Shift+F10). Then
use Step Into (F11) to step into the constructor:

2

You used the
debugger to
skip past the
workaround
that you added
to avoid the
exception, so
now the Excuse
constructor is
about to throw
the exception
again.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 581

windows presentation foundation

Step through the program until it throws the exception.

You’ve already seen how handy the Watch window is. Now we’ll use it to reproduce the exception.
Choose Step Over (F10) twice to get your program to throw the exception. Then use the IDE to select
fileNames.Length, right-click on it, and choose to add a watch. Then do it again
for random.Next(fileNames.Length) and fileNames[random.Next(fileNames.Length)]:

The Watch window has another very useful feature. It lets you change the value of variables and fields
that it’s displaying, and it even lets you execute methods and create new objects. When you do, it
displays its reevaluate icon that you can click to tell it to execute that method again.

3

Add a watch for the exception object.
Debugging is a little like performing a forensic crime scene investigation on your program. You don’t necessarily
know what you’re looking for until you find it, so you need to use your debugger “CSI kit” to follow
clues and track down the culprit. One important tool is adding $exception to the Watch window,
because it shows you the contents of the Exception object that’s been thrown:

4

When you get an exception, you can go back and reproduce it in the
debugger and use the Exception object to help you fix your code.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

582 Appendix ii

Q: How do I know where to put a breakpoint?

A: That’s a really good question, and there’s no one right
answer. When your code throws an exception, it’s always a
good idea to start with the statement that threw it. But usually,
the problem actually happened earlier in the program, and the
exception is just fallout from it. For example, the statement
that throws a divide-by-zero error could be dividing values that
were generated 10 statements earlier but just haven’t been
used yet. So there’s no one good answer to where you should
put a breakpoint, because every situation is different. But as
long as you’ve got a good idea of how your code works, you
should be able to figure out a good starting point.

Q: Can I run any method in the Watch window?

A: Yes. Any statement that’s valid in your program will work
inside the Watch window, even things that make absolutely
no sense to run inside a Watch window. Here’s an example.
Bring up a program, start it running, break it, and then add
this to the Watch window: System.Threading.
Thread.Sleep(2000). That method causes your
program to delay for two seconds.There’s no reason you’d
ever do that in real life, but it’s interesting to see what happens:
the IDE will block and you’ll get a wait cursor for two seconds
while the method evaluates. Then, since Sleep() has
no return value, the Watch window will display the value
Expression has been evaluated and has
no value to let you know that it didn’t return anything. But
it did evaluate it. Not only that, but it displays IntelliSense
pop-ups to help you type code into the window. That’s useful
because it shows the available properties and methods for
objects currently in memory.

Q: Wait, so isn’t it possible for me to run something
in the Watch window that’ll change the way my program
runs?

A: Yes! Not permanently, but it can definitely affect your
program’s output. But even better, just hovering over fields
inside the debugger can cause your program to change its
behavior, because hovering over a property executes its get
accessor. If you have a property that has a get accessor
that executes a method, then hovering over that property will
cause that method to execute. And if that method sets a value
in your program, then that value will stay set if you run the
program again. And that can cause some pretty unpredictable
results inside the debugger. Programmers have a name for
results that seem to be unpredictable and random: they’re
called heisenbugs (which is a joke that makes sense to
physicists and cats trapped in boxes).

When you run your
program inside the IDE,
an unhandled exception
will cause it to break
as if it had run into a
breakpoint.

make a break for it

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 583

windows presentation foundation

Uh-oh—the code’s st i l l got problems…
Brian was happily using his Excuse Manager when he accidentally
chose a folder full of files that weren’t created by the Excuse Manager.
Let’s see what happens when he tries to load one of them....

You can re-create Brian’s problem. Take a random file that isn’t a serialized
excuse and give it the .excuse file extension.

1

Pop open the Excuse Manager in the IDE and open up the file you created. It throws
an exception! Look at the message, then click the Break button to start investigating.

2

Open up the Locals window and expand $exception (you can also enter it into
the Watch window). Take a close look at its members to see if you can figure out
what went wrong.

3

No, not again!

Do you see why the program threw the exception?

Does it make sense for the program to crash if
it encounters an invalid Excuse XML file?

Can you think of anything you can do about this?

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

584 Appendix ii

Wait a second. Of course the
program’s gonna crash. I gave it a bad

file. Users screw up all the time. You can’t
expect me to do anything about that...

right?

Actually, there is something you can do about it.

Yes, it’s true that users screw up all the time. That’s a fact of life.
But that doesn’t mean you can’t do anything about it. There’s
a name for programs that deal with bad data, malformed input,
and other unexpected situations gracefully: they’re called robust
programs. And C# gives you some really powerful exception
handling tools to help you make your programs more robust.
Because while you can’t control what your users do, you can make
sure that your program doesn’t crash when they do it.

ro-bust, adj.
sturdy in construction; able
to withstand or overcome
adverse conditions. After the
Tacoma Narrows Bridge disaster,
the civil engineering team looked
for a more robust design for the
bridge that would replace it.

 Serializers will throw an exception
if there’s anything at all wrong with
a serialized file.

It’s easy to get the Excuse Manager to
throw a SerializationException—

just feed it any file that’s not a serialized Excuse
object. When you try to deserialize an object from a file,
DataContractSerializer expects the file to contain a
serialized object that matches the contract of the class that
it’s trying to read. If the file contains anything else, almost
anything at all, then the ReadObject() method will throw
a SerializationException.

users are unpredictable

The BinaryFormatter class will
also throw a SeralizationException
if you give it a file that doesn’t
contain exactly the right serialized
object. It’s even more finicky than
DataContractSerializer!

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 585

windows presentation foundation

private void OpenFile(string excusePath) {
 try
 {
 this.ExcusePath = excusePath;
 BinaryFormatter formatter = new BinaryFormatter();
 Excuse tempExcuse;
 using (Stream input = File.OpenRead(excusePath))
 {
 tempExcuse = (Excuse)formatter.Deserialize(input);
 }
 Description = tempExcuse.Description;
 Results = tempExcuse.Results;
 LastUsed = tempExcuse.LastUsed;
 }
 catch (SerializationException)
 {
 MessageBox.Show("Unable to read " + excusePath);
 LastUsed = DateTime.Now;
 }
}

Handle except ions with try and catch
In C#, you can basically say, “Try this code, and if an exception occurs,
catch it with this other bit of code.” The part of the code you’re trying is the
try block, and the part where you deal with exceptions is called the catch
block. In the catch block, you can do things like print a friendly error
message instead of letting your program come to a screeching halt:

This is the simplest kind of exception
handling: stop the program, write out the
exception message, and keep running.

The catch keyword means that the block immediately following it contains an exception handler.

If throwing an exception makes your code
automatically jump to the catch block, what
happens to the objects and data you were
working with before the exception happened?

Put the code that might throw an exception inside the try block. If no exception happens, it’ll get run exactly as usual, and the statements in the catch block will be ignored. But if a statement in the try block throws an exception, the rest of the try block won’t get executed.

This is the
try block. You
start exception
handling with
try. In this
case, we’ll put
the existing
code in it.

When an exception is thrown, the program immediately jumps to the catch statement and starts executing the catch block.

You’ll recognize the code
here because we surrounded
the entire method with
this try block.

What happens if you leave out this last
line of code? Can you figure out why
we included it in the catch block?

You’ll also need to add these lines to the top of Excuse.cs:

using System.Runtime.Serialization;

using System.Windows.Forms;

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

586 Appendix ii

1 Let’s say your user is
using your code and
gives it some input
that it didn’t expect.

2 That method does
something risky,
something that might
not work at runtime.

3 You need to know that
the method you’re
calling is risky.

What happens when a method you want to call is r isky?

4 You then write code
that can handle the
failure if it does
happen. You need to be
prepared, just in case.

user
a class

you wrote

a user gives input
to your method

 public void
 Process(Input i) {
 if (i.IsBad()) {
 Explode();
 }
 }

user

your class, now with
exception handling

public class Data {

 public void

 Process(Input i) {

 if (i.IsBad()) {

 explode();

 }

 }

}

a class
you wrote

public class Data {

 public void

 Process(Input i) {

 if (i.IsBad()) {

 explode();

 }

 }

}

public class Data {

 public void

 Process(Input i) {

 if (i.IsBad()) {

 explode();

 }

 }

}

user

now your program’s more robust!

some input

˙∆å˚ß∂ıÏÔ˚œ∑ˆ
øƒ¥∂∫√˚Ω∆¬˙√˚
ÔÒÎ˙˚∆¬åß¥∂ÒÅ
∆˚åƒ˙ß∂∆˙å∆˚ß
ƒå∂ß˙˚ƒ∆˚å∂ß∂
´˙®£√•√∂¨∂¬∆ƒ
ƒ˜å∂√˚ç¥ƒ´∂ˆ´
∂å˚∆ƒ´∫®˚´¨√∂

public class Data {

 public void

 Process(Input i) {

 try {

 if (i.IsBad()) {

 explode();

 } catch {

 HandleIt();

 }

 }

 }

Users are unpredictable. They feed all sorts of weird data into your
program and click on things in ways you never expected. And
that’s just fine, because you can handle unexpected input with good
exception handling.

“Runtime” just means “while your program is running.” Some people refer to exceptions as “runtime errors.”

a class
you wrote

My proceSS()
method will blow
up if it gets bad

input data!

I wonder
what happens
if I click

here…

Wow, this program’s really stable!

risky business

If you can come up with a way to do a
less risky thing that avoids throwing the
exception, that’s the best possible outcome!
But some risks just can’t be avoided, and
that’s when you want to do this.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 587

windows presentation foundation

Q: So when do I use try and catch?

A: Anytime you’re writing risky code, or
code that could throw an exception. The trick
is figuring out which code is risky, and which
code is safer.

You’ve already seen that code that uses
input provided by a user can be risky. Users
give you incorrect files, words instead of
numbers, and names instead of dates, and
they pretty much click everywhere you could
possibly imagine. A good program will take
all that input and work in a calm, predictable
way. It might not give the users a result they
can use, but it will let them know that it found
the problem and hopefully suggest a solution.

Q: How can a program suggest a
solution to a problem it doesn’t even
know about in advance?

A: That’s what the catch block is for. A
catch block is executed only when code
in the try block throws an exception. It’s
your chance to make sure the user knows
that something went wrong, and to let the
user know that it’s a situation that might be
corrected.

If the Excuse Manager simply crashes when
there’s bad input, that’s not particularly
useful. But if it tries to read the input and
displays garbage in the form, that’s also not

useful—in fact, some people might say
that it’s worse. But if you have the program
display an error message telling the user that
it couldn’t read the file, then the user has an
idea of what went wrong, and information
that he can use to fix the problem.

Q: So the debugger should really only
be used to troubleshoot exceptions then?

A: No. As you’ve already seen many
times throughout the book, the debugger’s
a really useful tool that you can use
to examine any code you’ve written.
Sometimes it’s useful to step through your
code and check the values of certain fields
and variables—like when you’ve got a really
complex method and you want to make sure
it’s working properly.

But as you may have guessed from the
name “debugger,” its most common use is
to track down and remove bugs. Sometimes
those bugs are exceptions that get thrown.
But a lot of the time, you’ll be using the
debugger to try to find other kinds of
problems, like code that gives a result that
you don’t expect.

Q: I’m not sure I totally got what you
did with the Watch window.

A: When you’re debugging a program,
you usually want to pay attention to how
a few variables and fields change. That’s
where the Watch window comes in. If you

add watches for a few variables, the Watch
window updates their values every time you
step into, out of, or over code. That lets you
monitor exactly what happens to them after
every statement, which can be really useful
when you’re trying to track down a problem.

The Watch window also lets you type in any
statement you want, and even call methods,
and the IDE will evaluate it and display the
results. If the statement updates any of the
fields and variables in your program, then it
does that, too. That lets you change values
while your program is running, which can
be another really useful tool for reproducing
exceptions and other bugs.

The catch block
is executed only
when code in the
try block throws
an exception. It
gives you a chance
to make sure
your user has the
information to fix
the problem.

Any changes you make in the Watch window just affect the data in memory, and last only as long as the program is running. Restart your program, and values that you changed will be undone.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

588 Appendix ii

An important part of exception handling is that when a statement in
your try block throws an exception, the rest of the code in the block
gets short-circuited. The program’s execution immediately jumps to
the first line in the catch block. But don’t take our word for it... Debug this

Add the try/catch from a few pages ago to your Excuse Manager app’s
ReadExcuseAsync() method. Then place a breakpoint on the opening
bracket { in the try block.

1

go with the flow

Use the debugger to fol low the try/catch f low

Step over the
statements until
your yellow “next
statement” bar
shows that the next
statement to get
executed will read
the Excuse object
from the stream.

Put the breakpoint on
the opening bracket of
the try block.

Start debugging your app and open up a file that’s not a valid excuse file (but still
has the .excuse extension). When the debugger breaks on your breakpoint, click the Step
Over button (or F10) five times to get to the statement that calls ReadObject() to
deserialize the Excuse object. Here’s what your debugger screen should look like:

2

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 589

windows presentation foundation

Step over the next statement. As soon as the debugger executes the Deserialize()
statement, the exception is thrown and the program short-circuits right past the rest
of the method and jumps straight to the catch block.

3

 Keep risky code out of the constructor!

You’ve noticed by now that a constructor doesn’t have a return
value, not even void. That’s because a constructor doesn’t
actually return anything. Its only purpose is to initialize an object—
which is a problem for exception handling inside the constructor.

When an exception is thrown inside the constructor, then the statement that
tried to instantiate the class won’t end up with an instance of the object.

Here’s a career
tip: a lot of C#
programming job
interviews include
a question about
how you deal with
exceptions in a
constructor.

Start the program again by pressing the Continue button (or F5). It’ll begin
running the program again, starting with whatever’s highlighted by the yellow

“next statement” block—in this case, the catch block. It will just display the
dialog and then act as if nothing happened. The ugly crash has now been handled.

4

The debugger will
highlight the catch
statement with
its yellow “next
statement” block,
but it shows the
rest of the block
in gray to show you
that it’s about to
execute the whole
thing.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

590 Appendix ii

If you have code that should
ALWAYS run, use a f inally block
When your program throws an exception, a couple of things can happen. If the exception isn’t handled, your
program will stop processing and crash. If the exception is handled, your code jumps to the catch block. But
what about the rest of the code in your try block? What if you were closing a stream, or cleaning up important
resources? That code needs to run, even if an exception occurs, or you’re going to make a mess of your
program’s state. That’s where the finally block comes in really handy. It comes after the try and catch
blocks. The finally block always runs, whether or not an exception was thrown.

clean up after yourself

private void OpenFile(string excusePath) {
 try {
 this.ExcusePath = excusePath;
 BinaryFormatter formatter = new BinaryFormatter();
 Excuse tempExcuse;
 using (Stream input = File.OpenRead(excusePath))
 {
 tempExcuse = (Excuse)formatter.Deserialize(input);
 }
 Description = tempExcuse.Description;
 Results = tempExcuse.Results;
 LastUsed = tempExcuse.LastUsed;
 }
 catch (SerializationException) {
 MessageBox.Show("Unable to read " + excusePath);
 LastUsed = DateTime.Now;
 }
 finally
 {
 // Any code here will get executed no matter what
 }
}

If there is no
exception thrown
during the try
block, the code
in the finally
block will execute
after the try
block completes.
If there's an
exception handled
by a catch block,
then it will
short-circuit as
usual, and then
run the finally
block after the
catch block.

Always catch specific exceptions like SerializationException. You typically follow a catch statement
with a specific kind of exception telling it what to catch. It’s valid C# code to just have catch (Exception) and you
can even leave the exception type out and just use catch. When you do that, it catches all exceptions, no matter
what type of exception is thrown. But it’s a really bad practice to have a catch-all exception handler like that.
Your code should always catch as specific an exception as possible.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundationReminder: Once you finish Chapter 12, you can go straight
through Chapter 13 in the book. It doesn’t depend on
Windows 8 or Windows Store apps at all.

Chapter 14
In Chapter 14, you'll see a

bunch of LINQ queries. In the book

you'll combine them into a single

Windows Store app. We'll show you how

to build a WPF Application instead.

LINQ works with any kind of C# program.

When you read Chapter 14 in the main part of the book, you’ll see
that it’s structured differently from other chapters. It has a series
of increasingly complex LINQ queries, and small console apps to
demonstrate each of them. Throughout the chapter, you’ll also see
exercises to build a Windows Store app that combines all the queries
into a single user interface. Over the next few pages of this appendix,
we’ll show you how to build a WPF application that executes those
same queries. Here’s how we recommend you use this appendix with
Chapter 14:

 ≥ Read through page 657 in the book.

 ≥ Even though pages in the chapter through 665 are about
building a Windows Store app, read them—especially the parts
about anonymous types. It will help to get a sense of how the
Comic, ComicQuery, and ComicQueryManager classes work.

 ≥ Pages 666 and 667 describe more LINQ queries. You can skim
pages 668 and 669, because those are more Windows Store-
related pages.

 ≥ Read pages 670–680, but don’t do the exercise on page 679.

 ≥ You can skip the rest of the chapter, because it’s related to
Windows Store apps. Instead, follow the replacement pages
680–683.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

680 Appendix ii

Create a new WPF application and Add existing classes and
images from the Comic app.
Before you start this project, you’ll need to download source code to the JimmysComics app from
Chapter 14. See the Head First Labs website (http://headfirstlabs.com/hfcsharp) for a link to the source code.

Once you’ve got the source code, you’ll build a new WPF application called JimmysComics. Then right-click
on the project name in the Solution Explorer and choose “Add Existing Item” to add the following items
from the Windows Store app we built in the book (you can download the source from the book’s website):

• Purchase.cs

• Comic.cs

• ComicQuery.cs

• ComicQueryManager.cs

• PriceRange.cs.

• The following files are in the Assets folder: bluegray_250x250.jpg, bluegray_250x250.jpg, captain_
amazing_250x250.jpg, captain_amazing_zoom_250x250.jpg — add them to the root level of your
WPF application so they’re alongside your XAML and C# files.

Your Solution Explorer should look like this:

1

Build a WPF comic query applicat ion
When you read through Chapter 14 in the book, you saw that we built a Windows Store app to
execute the LINQ queries throughout the chapter. Since we followed the principle of separation
of concerns, the classes for managing data and issuing queries were separated from the code that
created the user interface. That let us reuse the same data and query management classes
to build another app using the Visual Studio Split App template. Now we’ll be able to take advantage
of the same separation of concerns and build a WPF application using the same data and query
classes.

If you give your project a different name, make
sure you change the namespace for the C# files you
added to match your project's namespace.

Do this!

You’ll also need to select each image file in the Solution
Explorer and use the Properties window to set “Build
Action” to Content and “Copy to Output Directory” to
Copy always. Here’s what it looks like—make sure you
do this for each of the .jpg files that you added:

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 681

windows presentation foundation

Add code-behind for the main window.
Here’s all the code-behind you’ll need for MainWindow.xaml.cs.

3

public partial class MainWindow : Window
{
 ComicQueryManager comicQueryManager;

 public MainWindow()
 {
 InitializeComponent();

 comicQueryManager = FindResource("comicQueryManager") as ComicQueryManager;
 comicQueryManager.UpdateQueryResults(comicQueryManager.AvailableQueries[0]);
 }

 private void ListView_SelectionChanged(object sender, SelectionChangedEventArgs e)
 {
 if (e.AddedItems.Count >= 1 && e.AddedItems[0] is ComicQuery)
 {
 comicQueryManager.CurrentQueryResults.Clear();
 comicQueryManager.UpdateQueryResults(e.AddedItems[0] as ComicQuery);
 }
 }
}

private static BitmapImage CreateImageFromAssets(string imageFilename)
{
 try
 {
 Uri uri = new Uri(imageFilename, UriKind.RelativeOrAbsolute);
 return new BitmapImage(uri);
 }
 catch (System.IO.IOException)
 {
 return new BitmapImage();
 }
}

using System.Collections.ObjectModel;
using System.Windows.Media.Imaging;

Make two modifications to comicQuerymanaGer.cS.
There are two small changes you’ll need to make to ComicQueryManager.cs. WPF applications cannot
use the Windows.UI namespace because it’s only part of the .NET Framework for Windows Store.
You’ll need to change the using statements at the top to replace “Windows.UI” with “System.Windows”:

2

And WPF applications load images slightly differently from Windows Store apps, so you’ll need to
change the CreateImageFromAssets() method in ComicQueryManager. Here’s the new method:

You copied the .jpg files into your project's top-level folder. This
new CreateImageFromAssets()
method will load those files.

The ListView control fires its SelectionChanged
event whenever the user selects or deselects
items. The items that were selected can be
found in the e.AddedItems collection.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

682 Appendix ii

<Window x:Class="JimmysComics.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:JimmysComics"
 Title="Jimmy's Comics" Height="350" Width="525">

 <Window.Resources>
 <local:ComicQueryManager x:Key="comicQueryManager"/>
 </Window.Resources>

 <Grid DataContext="{StaticResource ResourceKey=comicQueryManager}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="2*"/>
 <ColumnDefinition Width="3*"/>
 </Grid.ColumnDefinitions>
 <ListView SelectionMode="Single" ItemsSource="{Binding AvailableQueries}"
 SelectionChanged="ListView_SelectionChanged">
 <ListView.ItemTemplate>
 <DataTemplate>
 <Grid Height="55" Margin="6">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <Border Width="55" Height="55">
 <Image Source="{Binding Image}" Stretch="UniformToFill"/>
 </Border>
 <StackPanel Grid.Column="1" VerticalAlignment="Top" Margin="10,0,0,0">
 <TextBlock Text="{Binding Title}" TextWrapping="NoWrap"/>
 <TextBlock Text="{Binding Subtitle}" TextWrapping="NoWrap"/>
 <TextBlock Text="{Binding Description}" TextWrapping="NoWrap"/>
 </StackPanel>
 </Grid>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>

 <ListView Grid.Column="1" SelectionMode="Single"
 ItemsSource="{Binding CurrentQueryResults}">
 <ListView.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <Image Source="{Binding Image}" Margin="0,0,20,0"
 Stretch="UniformToFill" Width="25" Height="25"
 VerticalAlignment="Top" HorizontalAlignment="Right"/>
 <StackPanel>
 <TextBlock Text="{Binding Title}" />
 </StackPanel>
 </StackPanel>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>

 </Grid>
</Window>

Add the XAML for the main window.
Here’s the XAML for the main window. Remember, if you used a different project name, make sure
you change JimmysComics to match your project’s namespace.

4

The ListView on
the right has an
item template
that displays
information about
each query.

The ListView on the
right has an item
template that shows
individual items in
the query results.

This ListView's
SelectionMode is
set to Single so
only one query
can be selected
at a time.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 683

windows presentation foundation

Queries that return comic books have additional
information: price, synopsis, even a cover image.
Can you figure out how to get the comic queries
to display all the information about each comic?
You'll need to add the comic book cover images
to the project. You'll find some helpful XAML
code in the chapter on pages 689 and 690.

When you run the app, the queries appear on the left, and the results of the selected query appear on the
right.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

684 Appendix ii

We left this page blank so that you can
read this appendix in two-page mode, so the
exercise and its solution appear on different
two-page spreads. If you’re viewing this as
a PDF in two-page mode, you may want to
turn on the cover page so the even pages are
on the right and the odd pages are on the
left.

this page intentionally left blank

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 685

windows presentation foundation

Chapter 15

Events are useful for any app, but especially
important for understanding XAML.

Events can be simple and straightforward, because you’ve been using
them throughout the book. But there’s a lot more depth to them than
you might expect. This chapter helps you understand events in more
detail.

Here’s what we recommend for this chapter:

 ≥ Read the chapter in the book through page 711.

 ≥ Use the replacement pages in this appendix for the exercise on
pages 712–713 and its solution on pages 714–715.

 ≥ Read pages 716–719 in the book.

 ≥ Pages 720–723 are specific to Windows Store apps, but we
recommend that you read them anyway. They give you
some insight not just into Windows Store apps, but also into
some basic features of Windows 8.

 ≥ We provide replacement pages for pages 724-729 in this
appendix.

 ≥ Read the rest of the chapter in the book. The only pages you
should skip are the top of page 740, and pages 742–743.

There are only a few pages in
this chapter that are specific to
Windows Store apps. You should

read them anyway!

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

712 Appendix ii

2 It’s time to put what you’ve learned so far into practice. Your job is to complete the Ball and
Pitcher classes, add a Fan class, and make sure they all work together with a very basic
version of your baseball simulator.

Complete the pitcher class.
Below is what we’ve got for Pitcher. Add the CatchBall() and CoverFirstBase()
methods. Both should create a string saying that the catcher has either caught the ball or run
to first base and add that string to a public ObservableCollection<string> called
PitcherSays.

1

class Pitcher {
 public Pitcher(Ball ball) {
 ball.BallInPlay += new EventHandler(ball_BallInPlay);
 }

 void ball_BallInPlay(object sender, EventArgs e) {
 if (e is BallEventArgs){
 BallEventArgs ballEventArgs = e as BallEventArgs;
 if ((ballEventArgs.Distance < 95) && (ballEventArgs.Trajectory < 60))
 CatchBall();
 else
 CoverFirstBase();
 }
 }
}

Write a fan class.
Create another class called Fan. Fan should also subscribe to the BallInPlay event in its
constructor. The fan’s event handler should see if the distance is greater than 400 feet and the
trajectory is greater than 30 (a home run), and grab for a glove to try to catch the ball if it is. If
not, the fan should scream and yell. Everything that the fan screams and yells should be added
to an ObservableCollection<string> called FanSays.

2

You’ll need to implement these two
methods to add a string to the
PitcherSays ObservableCollection.

Pitcher object

Fan object

?Look at the output on the
facing page to see exactly
what it should print.

put it all together

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 713

windows presentation foundation

Build a very simple simulator.
If you didn’t do it already, create a new WPF Application and add the following
BaseballSimulator class. Then add it as a static resource to the page.

3

Build the main window.
Can you come up with the XAML
just from looking at the screenshot to
the right? The two TextBox controls
are bound to the Trajectory
and Distance properties of the
BaseballSimulator static
resource, and the pitcher and fan
chatter are ListView controls bound to
the two ObservableCollections.

See if you can make your simulator
generate the above fan and pitcher
chatter with three successive balls put
into play. Write down the values you
used to get the result below:

4

Ball 3:

Trajectory:

Distance:

Ball 2:

Trajectory:

Distance:

Ball 1:

Trajectory:

Distance:

using System.Collections.ObjectModel;

class BaseballSimulator {
 private Ball ball = new Ball();
 private Pitcher pitcher;
 private Fan fan;
 public ObservableCollection<string> FanSays { get { return fan.FanSays; } }
 public ObservableCollection<string> PitcherSays { get { return pitcher.PitcherSays; } }
 public int Trajectory { get; set; }
 public int Distance { get; set; }
 public BaseballSimulator() {
 pitcher = new Pitcher(ball);
 fan = new Fan(ball);
 }
 public void PlayBall() {
 BallEventArgs ballEventArgs = new BallEventArgs(Trajectory, Distance);
 ball.OnBallInPlay(ballEventArgs);
 }
}

Don’t forget the
Click event handler
for the button.

2

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

714 Appendix ii

Here are the Ball and BallEventArgs from earlier, and the new Fan class that needed to be added:

class Ball {
 public event EventHandler BallInPlay;
 public void OnBallInPlay(BallEventArgs e) {
 EventHandler ballInPlay = BallInPlay;
 if (ballInPlay != null)
 ballInPlay(this, e);
 }
}

class BallEventArgs : EventArgs {
 public int Trajectory { get; private set; }
 public int Distance { get; private set; }
 public BallEventArgs(int trajectory, int distance)
 {
 this.Trajectory = trajectory;
 this.Distance = distance;
 }
}

using System.Collections.ObjectModel;
class Fan {
 public ObservableCollection<string> FanSays = new ObservableCollection<string>();
 private int pitchNumber = 0;
 public Fan(Ball ball) {
 ball.BallInPlay += new EventHandler(ball_BallInPlay);
 }
 void ball_BallInPlay(object sender, EventArgs e) {
 pitchNumber++;
 if (e is BallEventArgs) {
 BallEventArgs ballEventArgs = e as BallEventArgs;
 if (ballEventArgs.Distance > 400 && ballEventArgs.Trajectory > 30)
 FanSays.Add("Pitch #" + pitchNumber
 + ": Home run! I'm going for the ball!");
 else
 FanSays.Add("Pitch #" + pitchNumber + ": Woo-hoo! Yeah!");
 }
 }
}

Here’s the code-behind for the page:

public partial class MainWindow : Window {
 BaseballSimulator baseballSimulator;

 public MainWindow() {
 InitializeComponent();

 baseballSimulator = FindResource("baseballSimulator") as BaseballSimulator;
 }

 private void Button_Click(object sender, RoutedEventArgs e) {
 baseballSimulator.PlayBall();
 }
}

Read-only
automatic
properties
work really
well in event
arguments
because
the event
handlers read
only the data
passed to
them.

The OnBallInPlay() method just raises the BallInPlay event—but it has to check to make sure it’s not null; otherwise, it’ll throw an exception.

The Fan object’s constructor
chains its event handler
onto the BallInPlay event.

The fan’s BallInPlay
event handler looks
for any ball that’s
high and long.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 715

windows presentation foundation

75
105

Here’s the XAML for the page. It also needs: <local:BaseballSimulator x:Key="baseballSimulator"/>

<Window.Resources>
 <local:BaseballSimulator x:Key="baseballSimulator"/>
</Window.Resources>

<Grid Margin="5" DataContext="{StaticResource ResourceKey=baseballSimulator}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="200" />
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>
 <StackPanel Margin="0,0,10,0">
 <TextBlock Text="Trajectory" Margin="0,0,0,5"/>
 <TextBox Text="{Binding Trajectory, Mode=TwoWay}" Margin="0,0,0,5"/>
 <TextBlock Text="Distance" Margin="0,0,0,5"/>
 <TextBox Text="{Binding Distance, Mode=TwoWay}" Margin="0,0,0,5"/>
 <Button Content="Play ball!" Click="Button_Click"/>
 </StackPanel>
 <StackPanel Grid.Column="1">
 <TextBlock Text="Pitcher says" Margin="0,0,0,5"/>
 <ListView ItemsSource="{Binding PitcherSays}" Height="125"/>
 <TextBlock Text="Fan says" Margin="0,0,0,5"/>
 <ListView ItemsSource="{Binding FanSays}" Height="125"/>
 </StackPanel>
</Grid>

And here’s the Pitcher class (it needs using System.Collections.ObjectModel; at the top):
class Pitcher {
 public ObservableCollection<string> PitcherSays = new ObservableCollection<string>();
 private int pitchNumber = 0;
 public Pitcher(Ball ball) {
 ball.BallInPlay += ball_BallInPlay;
 }
 void ball_BallInPlay(object sender, EventArgs e) {
 pitchNumber++;
 if (e is BallEventArgs) {
 BallEventArgs ballEventArgs = e as BallEventArgs;
 if ((ballEventArgs.Distance < 95) && (ballEventArgs.Trajectory < 60))
 CatchBall();
 else
 CoverFirstBase();
 }
 }
 private void CatchBall() {
 PitcherSays.Add("Pitch #" + pitchNumber + ": I caught the ball");
 }
 private void CoverFirstBase() {
 PitcherSays.Add("Pitch #" + pitchNumber + ": I covered first base");
 }
}

48
80

Here are the values we used to get the output. Yours might be a little different.Ball 3:

Trajectory:

Distance:

Ball 2:

Trajectory:

Distance:

Ball 1:

Trajectory:

Distance:

40
435

Make sure you also add
the xmlns:local property
to the <Window> tag.

We gave you the pitcher’s
BallInPlay event handler.
It looks for any low balls.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

724 Appendix ii

bubble bubble, toil and trouble

XAML controls use routed events
Flip to page 722 in the main part of the book and have a closer look at the IntelliSense window that pops
up when you type override into the IDE. Yes, it’s for a Windows Store app, but the same exact principle
applies to WPF. Two of the names of the event argument types are a little different from the others. The
DoubleTapped event’s second argument has the type DoubleTappedRoutedEventArgs, and the
GotFocus event’s is a RoutedEventArgs. The reason is that the DoubleTapped and GotFocus
events are routed events. These are like normal events, except for one difference: when a control object
responds to a routed event, first it fires off the event handler method as usual. Then it does something else:
if the event hasn’t been handled, it sends the routed event up to its container. The container fires the
event, and then if it isn’t handled, it sends the routed event up to its container. The event keeps bubbling
up until it’s either handled or it hits the root, or the container at the very top. Here’s a typical routed event
handler method signature.

private void EventHandler(object sender, RoutedEventArgs e)

The RoutedEventArgs object has a property called Handled that the event handler can use to indicate
that it’s handled the event. Setting this property to true stops the event from bubbling up.

In both routed and standard events, the sender parameter always contains a reference to the object that
called the event handler. So if an event is bubbled up from a control to a container like a Grid, then when
the Grid calls its event handler, sender will be a reference to the Grid control. But what if you want
to find out which control fired the original event? No problem. The RoutedEventArgs object has a
property called OriginalSource that contains a reference to the control that initially fired the event. If
OriginalSource and sender point to the same object, then the control that called the event handler is
the same control that originated the event and started it bubbling up.

IsHitTestVisible determines if an e lement is “v isible”
to the pointer or mouse
Typically, any element on the page can be “hit” by the pointer or mouse—as
long as it meets certain criteria. It needs to be visible (which you can change
with the Visibility property), it has to have a Background or Fill
property that’s not null (but can be Transparent), it must be enabled (with
the IsEnabled property), and it has to have a height and width greater
than zero. If all of these things are true, then the IsHitTestVisible
property will return True, and that will cause it to respond to pointer or
mouse events.

This property is especially useful if you want to make your events “invisible”
to the mouse. If you set IsHitTestVisible to False, then any pointer
taps or mouse clicks will pass right through the control. If there’s another
control below it, that control will get the event instead.

The structure of
controls that contain
other controls that in
turn contain yet more
controls is called
an object tree, and
routed events bubble
up the tree from
child to parent until
they hit the root
element at the top.

You can see a list of input events that are routed events here:
http://msdn.microsoft.com/en-us/library/windows/apps/Hh758286.aspx

www.itbook.store/books/9781449343507

http://msdn.microsoft.com/en-us/library/windows/apps/Hh758286.aspx
https://itbook.store/books/9781449343507

you are here 4 725

windows presentation foundation

<Grid Margin="5">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>
 <StackPanel x:Name="panel" MouseDown="StackPanel_MouseDown">
 <Border BorderThickness="10" BorderBrush="Blue" Width="155" x:Name="border"
 Margin="20" MouseDown="Border_MouseDown">
 <Grid x:Name="grid" MouseDown="Grid_MouseDown">
 <Ellipse Fill="Red" Width="100" Height="100"
 MouseDown="Ellipse_MouseDown"/>
 <Rectangle Fill="Gray" Width="50" Height="50"
 MouseDown="Rectangle_MouseDown" x:Name="grayRectangle"/>
 </Grid>
 </Border>
 <ListBox BorderThickness="1" Width="250" Height="140" x:Name="output" Margin="0,0,20,0"/>
 </StackPanel>
 <StackPanel Grid.Column="1">
 <CheckBox Content="Border sets handled" x:Name="borderSetsHandled"/>
 <CheckBox Content="Grid sets handled" x:Name="gridSetsHandled" />
 <CheckBox Content="Ellipse sets handled" x:Name="ellipseSetsHandled"/>
 <CheckBox Content="Rectangle sets handled" x:Name="rectangleSetsHandled"/>
 <Button Content="Update Rectangle IsHitTestVisible"
 Click="UpdateHitTestButton" Margin="0,20,20,0"/>
 <CheckBox IsChecked="True" Content="New IsHitTestVisible value"
 x:Name="newHitTestVisibleValue" />
 </StackPanel>
</Grid>

Create an app to explore routed events
Here’s a WPF application that you can use to experiment with routed events. It’s got a
StackPanel that contains a Border, which contains a Grid, and inside that grid are an Ellipse
and a Rectangle. Have a look at the screenshot. See how the Rectangle is on top of the Ellipse?
If you put two controls into the same cell, they’ll stack on top of each other. But both of those
controls have the same parent: the Grid, whose parent
is the Border, and the Border’s parent is the StackPanel.
Routed events from the Rectangle or Ellipse bubble up
through the parents to the root of the object tree.

You’ve already seen the CheckBox control,
which you can use to toggle a value on and
off. The Content property sets the label for
the control. The IsChecked property is a
Nullable<bool> because in addition to on and
off, it can also have a third indeterminate state

Routed events
bubble up the
object tree.

IsChecked defaults to False. This CheckBox
has it set to True because controls always
have IsHitTestVisible set to true by default.

Flip the page to finish the app

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

726 Appendix ii

climbing the object tree

public partial class MainWindow : Window {
 ObservableCollection<string> outputItems = new ObservableCollection<string>();

 public MainWindow() {
 this.InitializeComponent();

 output.ItemsSource = outputItems;
 }

private void Ellipse_MouseDown(object sender, MouseButtonEventArgs e) {
 if (sender == e.OriginalSource) outputItems.Clear();
 outputItems.Add("The ellipse was pressed");
 if (ellipseSetsHandled.IsChecked == true) e.Handled = true;
}

private void Rectangle_MouseDown(object sender, MouseButtonEventArgs e) {
 if (sender == e.OriginalSource) outputItems.Clear();
 outputItems.Add("The rectangle was pressed");
 if (rectangleSetsHandled.IsChecked == true) e.Handled = true;
}

private void Grid_MouseDown(object sender, MouseButtonEventArgs e) {
 if (sender == e.OriginalSource) outputItems.Clear();
 outputItems.Add("The grid was pressed");
 if (gridSetsHandled.IsChecked == true) e.Handled = true;
}

private void Border_MouseDown(object sender, MouseButtonEventArgs e) {
 if (sender == e.OriginalSource) outputItems.Clear();
 outputItems.Add("The border was pressed");
 if (borderSetsHandled.IsChecked == true) e.Handled = true;
}

private void StackPanel_MouseDown(object sender, MouseButtonEventArgs e) {
 if (sender == e.OriginalSource) outputItems.Clear();
 outputItems.Add("The panel was pressed");
}

private void UpdateHitTestButton(object sender, RoutedEventArgs e) {
 grayRectangle.IsHitTestVisible = (bool)newHitTestVisibleValue.IsChecked;
}

You’ll need this obServablecollection to display output in the ListBox.
Make a field called outputItems and set the ListBox.ItemsSource property in the page constructor. And don’t
forget to add the using System.Collections.ObjectModel; statement for ObservableCollection<T>.

Here’s the code-behind. Each control’s MouseDown event handler clears the output if it’s the original source, and
then it adds a string to the output. If its “handled” toggle switch is on, it uses e.Handled to handle the event.

The Click event handler for the button uses the IsOn
property of the toggle switch to turn IsHitTestVisible
on or off for the Rectangle control.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 727

windows presentation foundation

ToggleSwit

ch

StackP
an

el
 o

bj
ec

t

Border
 ob

je
ct

Ellipse
ob

je
ct

Grid ob
je

ct

Rectan
gle

 o
bj

ec
t

W

indow obje
ct

This is the Grid that you added to the
XAML, which holds the other controls.

Here’s the StackPanel that contains the
Border, Grid, Ellipse, and Rectangle.

This Grid can receive routed
MouseDown events, but
it won’t raise them. Its
IsHitTestVisible property
defaults to False because it doesn’t
have a Background or Fill
property. If you update the XAML
to add a Background property,
its IsHitTestVisible property
will default to true—even if you
set that property to Transparent.
That will cause it to respond to
pointer presses.

Grid ob
je

ct

Button ob
je

ct

ToggleSwit

ch
 o

bj
ec

ts

StackP
an

el
 o

bj
ec

t

Here’s the object graph for your main window.
The Mainwindow class is at the root of the object tree. When you create
the new WPF application, the MainWindow.xaml and MainWindow.xaml.cs files
create an object that extends the Window class.

Flip the page to use your new app to explore routed events

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

728 Appendix ii

the bubbles go straight to your head

Turn iShitteStviSible off, press the “Update”
button, and then click or tap the rectangle.

 You should see this output.

Wait a minute! You pressed the Rectangle, but the Ellipse control’s
MouseDown event handler fired. What’s going on?

When you pressed the button, its Click event handler updated
the Rectangle control’s IsHitTestVisible property to false,
which made it “invisible” to pointer presses, clicks, and other pointer
events. So when you tapped the Rectangle, your tap passed right
through it to the topmost control underneath it on the page that has

IsHitTestVisible set to true and has a Background property that’s set to a color or Transparent. In
this case, it finds the Ellipse control and fires its MouseDown event.

Run the app and click or tap the gray
Rectangle.

You should see the output in the screenshot to the right.

You can see exactly what’s going on by putting a breakpoint on the first line of
Rectangle_MouseDown(), the Rectangle control’s MouseDown event handler:

Click the gray rectangle again—this time the breakpoint should fire. Use Step
Over (F10) to step through the code line by line. First you’ll see the if block
execute to clear the outputItems ObservableCollection that’s bound to
the ListBox. This happens because sender and e.OriginalSource reference the same Rectangle control,
which is true only inside the event handler method for the control that originated the event (in this case, the control
that you clicked or tapped), so sender == e.OriginalSource is true.

When you get to the end of the method, keep stepping through the program. The event will bubble up
through the object tree, first running the Rectangle’s event handler, then the Grid’s event handler, then the
Border’s, then the Panel’s, and finally it runs an event handler method that’s part of LayoutAwarePage—this
is outside of your code and not part of the routed event, so it will always run. Since none of those controls are the
original source for the event, none of their senders will be the same as e.OriginalSource, so none of them
clear the output.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 729

windows presentation foundation

Use the app to experiment with routed events.
Here are a few things to try:

 ≥ Click on the gray Rectangle and the red Ellipse and watch the output
to see how the events bubble up.

 ≥ Turn on each of the toggle switches, starting at the top, to cause the
event handlers to set e.Handled to true. Watch the events stop
bubbling when they’re handled.

 ≥ Set breakpoints and debug through all of the event handler methods.

 ≥ Try setting a breakpoint in the Ellipse’s event handler method, and
then turn the gray Rectangle’s IsHitTestVisible property on
and off by toggling the bottom switch and pressing the button. Step
through the code for the Rectangle when IsHitTestVisible is
set to false.

 ≥ Stop the program and add a Background property to the Grid to
make it visible to pointer hits.

Check the “Grid sets
handled” box and
click or tap the gray
Rectangle.

You should see this output.

So why did only two lines get
added to the output ListBox?
Step through the code again
to see what’s going on. This time,
gridSetsHandled.IsOn
was true because you toggled the
gridSetsHandled to On, so
the last line in the Grid’s event
handler set e.IsHandled to
true. As soon as a routed event
handler method does that, the event
stops bubbling up. As soon as the
Grid’s event handler completes, the
app sees that the event has been handled, so it doesn’t call the Border or Panel’s event handler method,
and instead skips to the event handler method in LayoutAwarePage that’s outside of the code you
added.

A routed event
first fires the
event handler for
the control that
originated the event,
and then bubbles up
through the control
hierarchy until it
hits the top—or an
event handler sets
e.Handled to true.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

We left this page blank so that you can
read this appendix in two-page mode, so the
exercise and its solution appear on different
two-page spreads. If you’re viewing this as
a PDF in two-page mode, you may want to
turn on the cover page so the even pages are
on the right and the odd pages are on the
left.

this page intentionally left blank

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

Chapter 16

When you build your apps using

the Model-View-ViewModel pattern,

your code is easier to build today... and to

manage tomorrow.

Great developers follow design patterns.

In this chapter, you’ll learn about Model-View-ViewModel (MVVM),
a design pattern for building effective WPF apps. Along the way,
you’ll learn what a design pattern is, and you’ll learn how to use
XAML controls to create great animations.

Here’s how we recommend that you work through Chapter 16:

 ≥ Read through page 749.

 ≥ Follow our replacement pages for 750–757.

 ≥ Read pages 758–764.

 ≥ Start the Stopwatch project on page 762 in the book, and
continue it using a combination of book pages and appendix
replacement pages 765, 768, 770–773, and 781–787.

 ≥ Read page 788 in the book.

 ≥ The rest of Chapter 16 is replaced with pages 789–807 in this
appendix.

 ≥ There’s information on page 806 about how to do Lab #3.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

750 Appendix ii

apply the pattern

Use the MVVM pattern to start building
the basketball roster app
Create a new WPF application and make sure it’s called BasketballRoster
(because we’ll be using the namespace BasketballRoster in the code, and this
will make sure your code matches what’s on the next few pages). Do this

Create the model, vieW, and vieWmodel folders in the project.
Right-click on the project in the Solution Explorer and choose New Folder from the Add menu:

Add a Model folder. Then do it two more times to add
the View and ViewModel folders, so your project looks
like this:

1

These folders will hold
the classes, controls, and
windows for your app.

When you use the Solution
Explorer to add a new
folder to your project,

the IDE creates a new
namespace based on the
folder name. This causes
the Add→Class... menu
option to create classes

with that namespace. So if
you add a class to the Model

folder, the IDE will add
BasketballRoster.Model

to the namespace line at
the top of the class file.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 751

windows presentation foundation

Player
Name: string
Number: int
Starter: bool

Roster
TeamName: string
Players: IEnumerable<string>

namespace BasketballRoster.Model {
 class Player {
 public string Name { get; private set; }
 public int Number { get; private set; }
 public bool Starter { get; private set; }

 public Player(string name, int number, bool starter) {
 Name = name;
 Number = number;
 Starter = starter;
 }
 }
}

namespace BasketballRoster.Model {
 class Roster {
 public string TeamName { get; private set; }

 private readonly List<Player> _players = new List<Player>();
 public IEnumerable<Player> Players {
 get { return new List<Player>(_players); }
 }

 public Roster(string teamName, IEnumerable<Player> players) {
 TeamName = teamName;
 _players.AddRange(players);
 }
 }
}

Start building the model by adding the player class.
Right-click on the Model folder and add a class called Player. When you add
a class into a folder, the IDE updates the namespace to add the folder name to the
end. Here’s the Player class:

2

Finish the model by adding the roSter class
Next, add the Roster class to the Model folder. Here’s the code for it.

3

Your Model folder should now look like this:

When you add a class file into
a folder, the IDE adds the
folder name to the namespace.

We’ll add the view on the next page

These classes are small because they’re only
concerned with keeping track of which players are
in each roster. None of the classes in the Model are

concerned with displaying the data, just managing it.

MODE
L

We added an underscore to the beginning
of the name of the _players field. Adding
an underscore to the beginning of private

fields is a very common naming convention.
We’re going to use it throughout this

chapter so you can get used to seeing it.

The _ tells you
that this field
is private.

Different classes concerned
with different things?
This sounds familiar...

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

752 Appendix ii

take control of your controls

Add a new main window to the vieW folder.
Right-click on the View folder and add a new Window called LeagueWindow.xaml.

Your project’s View folder should now have a XAML window in it called
LeagueWindow.xaml. This is just like the MainWindow.xaml window that you’ve
been working with throughout the book. It’s still a Window object with a graph that’s
defined with XAML. The only difference is that it’s called LeagueWindow instead of
MainWindow.

4

Delete the main window and replace it with your new WindoW.
Delete the MainWindow.xaml file from the project by right-clicking on it and choosing Delete. Now try
building and running your project—you’ll get an exception when the program starts:

Well, that makes sense, since you deleted MainWindow.xaml. When a WPF application starts up, it shows
the window specified in the StartupUri property in the <Application> tag App.xaml:

Open App.xaml and edit StartupUri so your program pops up the window you just added:
<Application x:Class="BasketballRoster.App"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 StartupUri="View/LeagueWindow.xaml">

Once you make that change, rebuild and rerun your program. Now it should start and show your newly
added window.

5

VIEW

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 753

windows presentation foundation

User controls le t you create your own controls
Take a look at the basketball roster program that you’re building. Each team gets an
identical set of controls: a TextBlock, another TextBlock, a ListView, another TextBlock,
and another ListView, all wrapped up by a StackPanel inside a Border. Do we really need
to add two identical sets of controls to the page? What if we want to add a third and fourth
team—that’s going to mean a whole lot of duplication. And that’s where user controls
come in. A user control is a class that you can use to create your own controls. You use
XAML and code-behind to build a user control, just like you do when you build a page.
Let’s get started and add a user control to your BasketballRoster project.

Before you flip the page, see if you can figure out what
XAML should go into the new RosterControl by looking
at the Windows Store app screenshot on page 746.

 ≥ It will have a <StackPanel> to stack up the controls that live
inside a blue <Border>. Can you figure out which property gives
a Border control rounded corners?

 ≥ It has two ListView controls that display data for players, so it also
needs a <UserControl.Resources> section that contains a
DataTemplate. We called it PlayerItemTemplate.

 ≥ Bind the ListView items to properties called Starters and
Bench, and the top TextBlock to a property called TeamName.

 ≥ The Border control lives inside a <Grid> with a single row that
has Height="Auto" to keep it from expanding past the bottom
of the ListView controls to fill up the entire page.

“Teach a man to fish...”

We’re nearing the end of the book,
so we want to challenge you with
problems that are similar to ones

you’ll face in the real world. A good
programmer takes a lot of educated
guesses, so we’re giving you barely

enough information about how
a UserControl works. You don’t
even have binding set up, so you

won’t see data in the designer! How
much of the XAML can you build

before you flip the page to see the
code for RosterControl?

UserControl
is a base class
that gives
you a way to
encapsulate
controls that
are related
to each other,
and lets you
build logic
that defines
the behavior
of the control.

 Add a new user control to your View folder.

Right-click on the View folder and add a new item. Choose from
the dialog and call it RosterControl.xaml.

1

 Look at the code-behind for the new user control.

Open up RosterControl.xaml.cs. Your new control extends the UserControl base
class. Any code-behind that defines the user control’s behavior goes here.

2

 Look at the XAML for the new user control.

The IDE added a user control with an empty <Grid>. Your XAML will go here.

3

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

754 Appendix ii

model view viewmodel

<UserControl x:Class="BasketballRoster.View.RosterControl"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 mc:Ignorable="d"
 d:DesignHeight="450" d:DesignWidth="300">

 <UserControl.Resources>
 <DataTemplate x:Key="PlayerItemTemplate">
 <TextBlock>
 <Run Text="{Binding Name, Mode=OneWay}"/>
 <Run Text=" #"/>
 <Run Text="{Binding Number, Mode=OneWay}"/>
 </TextBlock>
 </DataTemplate>
 </UserControl.Resources>

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>

 <Border BorderThickness="2" BorderBrush="Blue" CornerRadius="6" Background="Black">
 <StackPanel Margin="20">
 <TextBlock Foreground="White" FontFamily="Segoe" FontSize="20px"
 FontWeight="Bold" Text="{Binding TeamName}" />
 <TextBlock Foreground="White" FontFamily="Segoe" FontSize="16px"
 Text="Starting Players" Margin="0,5,0,0"/>
 <ListView Background="Black" Foreground="White" Margin="0,5,0,0"
 ItemTemplate="{StaticResource PlayerItemTemplate}"
 ItemsSource="{Binding Starters}" />
 <TextBlock Foreground="White" FontFamily="Segoe" FontSize="16px"
 Text="Bench Players" Margin="0,5,0,0"/>
 <ListView Background="Black" Foreground="White" ItemsSource="{Binding Bench}"
 ItemTemplate="{StaticResource PlayerItemTemplate}" Margin="0,5,0,0"/>
 </StackPanel>
 </Border>
 </Grid>
</UserControl>

You already know that controls change
size based on their Height and Width
properties. You can change these
numbers to alter how the control
is displayed in the IDE’s Designer
window when you’re modifying it.

You can use the CornerRadius property
to give a Border rounded corners.

Both ListView
controls use the
same template
defined as a
static resource.

 Finish the RosterControl XAML.

Here’s the code for the RosterControl user control that you added to the View folder. Did you
notice how we gave you properties for binding, but no data context? That should make sense. The two
controls on the page show different data, so the page will set different data contexts for each of them.

4

We put the data template for the ListView items in its
own static resource. Then, instead of having a <ListView.

ItemTemplate> section we used the static resource
using the ItemTemplate property in the ListView tag:

ItemTemplate="{StaticResource PlayerItemTemplate}"

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 755

windows presentation foundation

RosterViewModel
TeamName: string

Starters: ObservableCollection
 <PlayerViewModel>

Bench: ObservableCollection
 <PlayerViewModel>

constructor:
 RosterViewModel(Model.Roster)

private UpdateRosters()

LeagueViewModel
JimmysTeam: RosterViewModel
BriansTeam: RosterViewModel

private GetBomberPlayers(): Model.Roster
private GetAmazinPlayers(): Model.Roster

PlayerViewModel
Name: string
Number: int

VIEW
MODE

L

Build the ViewModel for the BasketballRoster app by looking at the data in the
Model and the bindings in the View, and figuring out what “plumbing” the app
needs to connect them together.

<Window.Resources>
 <viewmodel:LeagueViewModel x:Key="LeagueViewModel"/>
</Window.Resources>

<StackPanel Orientation="Horizontal" Margin="5"
 VerticalAlignment="Center" HorizontalAlignment="Center"
 DataContext="{StaticResource ResourceKey=LeagueViewModel}" >
 <view:RosterControl Width="200" DataContext="{Binding JimmysTeam}" Margin="0,0,20,0" />
 <view:RosterControl Width="200" DataContext="{Binding BriansTeam}" />
</StackPanel>

xmlns:view="clr-namespace:BasketballRoster.View"
xmlns:viewmodel="clr-namespace:BasketballRoster.ViewModel"

Add the Roster controls to leaGueWindoW.xaml.
First add these xmlns properties to the page so it recognizes the new namespaces:

1

Then add an instance of LeagueViewModel as a static resource:

Now you can add a StackPanel with two RosterControls to the page:

If the IDE gives you an error message in the XAML designer that LeagueViewModel
does not exist in the ViewModel namespace, but you’re 100% certain you added

it correctly, try right-clicking on the BasketballRoster project and choosing Unload
Project, and then right-click again and choose Reload Project to reload it. But make

sure you don’t have any errors in any of the C# code files.

Create the vieWmodel classes.
Create these three classes in the ViewModel folder.

2

Make the vieWmodel classes work.
 ≥ The PlayerViewModel class is a simple data object with two properties.

 ≥ The LeagueViewModel class has two private methods to create dummy data for the page. It
creates Model.Roster objects for each team that get passed to the RosterViewModel constructor.

 ≥ The RosterViewModel class has a constructor that takes a Model.Roster object. It sets the
TeamName property, and then it calls its private UpdateRosters() method, which uses LINQ
queries to extract the starting and bench players and update the Starters and Bench properties.
Add using Model; to the top of the classes so you can use objects in the Model namespace.

3

Make sure you created the classes and pages
in the right folders; otherwise, the namespaces
won’t match the code in the solution.

See page
748 for a
hint about
the LINQ
query...

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

756 Appendix ii

exercise solution

v

namespace BasketballRoster.ViewModel {
 using Model;
 using System.Collections.ObjectModel;

 class LeagueViewModel {
 public RosterViewModel BriansTeam { get; set; }
 public RosterViewModel JimmysTeam { get; set; }

 public LeagueViewModel() {
 Roster briansRoster = new Roster("The Bombers", GetBomberPlayers());
 BriansTeam = new RosterViewModel(briansRoster);

 Roster jimmysRoster = new Roster("The Amazins", GetAmazinPlayers());
 JimmysTeam = new RosterViewModel(jimmysRoster);
 }

 private IEnumerable<Player> GetBomberPlayers() {
 List<Player> bomberPlayers = new List<Player>() {
 new Player("Brian", 31, true),
 new Player("Lloyd", 23, true),
 new Player("Kathleen",6, true),
 new Player("Mike", 0, true),
 new Player("Joe", 42, true),
 new Player("Herb",32, false),
 new Player("Fingers",8, false),
 };
 return bomberPlayers;
 }

 private IEnumerable<Player> GetAmazinPlayers() {
 List<Player> amazinPlayers = new List<Player>() {
 new Player("Jimmy",42, true),
 new Player("Henry",11, true),
 new Player("Bob",4, true),
 new Player("Lucinda", 18, true),
 new Player("Kim", 16, true),
 new Player("Bertha", 23, false),
 new Player("Ed",21, false),
 };
 return amazinPlayers;
 }
 }
}

namespace BasketballRoster.ViewModel {
 class PlayerViewModel {
 public string Name { get; set; }
 public int Number { get; set; }

 public PlayerViewModel(string name, int number) {
 Name = name;
 Number = number;
 }
 }
}

The ViewModel for the BasketballRoster app has three classes: LeagueViewModel,
PlayerViewModel, and RosterViewModel. They all live in the ViewModel folder.

This private method
generates dummy
data for the
Bombers by creating
a new List of
Player objects.

You use classes from
the View to store
your data, which
is why this method
returns Player
objects and not
PlayerViewModel
objects.

LeagueViewModel exposes
RosterViewModel objects
that a RosterControl can
use as its data context.
It creates the Roster
model object for the
RosterViewModel to use.

Here’s the PlayerViewModel. It’s just a simple data object with properties for the data template to bind to.

Dummy data typically goes in
the ViewModel because the

state of an MVVM application
is managed using instances

of the Model classes that
are encapsulated inside the

ViewModel objects.

If you left out the using Model; line
then you’d have to use Model.Roster

instead of Roster everywhere.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 757

windows presentation foundation

v namespace BasketballRoster.ViewModel {
 using Model;
 using System.Collections.ObjectModel;
 using System.ComponentModel;

 class RosterViewModel {
 public ObservableCollection<PlayerViewModel> Starters { get; set; }
 public ObservableCollection<PlayerViewModel> Bench { get; set; }

 private Roster _roster;

 private string _teamName;
 public string TeamName {
 get { return _teamName; }
 set {
 _teamName = value;
 }
 }

 public RosterViewModel(Roster roster) {
 _roster = roster;

 Starters = new ObservableCollection<PlayerViewModel>();
 Bench = new ObservableCollection<PlayerViewModel>();

 TeamName = _roster.TeamName;

 UpdateRosters();
 }

 private void UpdateRosters() {
 var startingPlayers =
 from player in _roster.Players
 where player.Starter
 select player;

 foreach (Player player in startingPlayers)
 Starters.Add(new PlayerViewModel(player.Name, player.Number));

 var benchPlayers =
 from player in _roster.Players
 where player.Starter == false
 select player;

 foreach (Player player in benchPlayers)
 Bench.Add(new PlayerViewModel(player.Name, player.Number));
 }
 }
}

This LINQ query
finds all the starting
players and adds
them to the Starters
ObservableCollection
property.

Here’s a similar LINQ
query to find the
bench players.

Whenever the TeamName property
changes, the RosterViewModel fires off
a PropertyChanged event so any object
bound to it will get updated.

This is where the app stores its state—in Roster objects
encapsulated inside the ViewModel. The rest of the class translates
the Model data into properties that the View can bind to.

In a typical MVVM app, only classes in the ViewModel
implement INotifyPropertyChanged because those

are the only objects that XAML controls are bound to.

In a typical MVVM app, only classes in the ViewModel implement INotifyPropertyChanged.
That's because the ViewModel contains the only objects that XAML controls are bound to. In this

project, however, we didn’t need to implement INotifyPropertyChanged because the bound properties
are updated in the constructor. If you wanted to modify the project to let Brian and Jimmy change their

team names, you'd need to fire a PropertyChanged event in the TeamName set accessor.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

There is one change you’ll need to make to get the ViewModel
code on pages 766 and 767 in the book to work. On page 766

you’re given three using statements, including this one:

using Windows.UI.Xaml;

You’ll need to replace it with this using statement:

using System.Windows.Threading;

The Windows.UI.Xaml namespace is part of the .NET
Framework for Windows Store, so you don’t use it for WPF

applications. But you need System.Windows.Threading
because your ViewModel has a DispatcherTimer.

Other than that change, the code is identical. This is a good
example of decoupled layers in the Model-View-ViewModel
pattern: since you used identical C# code (except for that
one using statement) for the ViewModel and Model, you

could reuse those classes to port the stopwatch app to WPF.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 765

windows presentation foundation

<UserControl x:Class="Stopwatch.View.BasicStopwatch"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="300"
 xmlns:viewmodel="clr-namespace:Stopwatch.ViewModel">

 <UserControl.Resources>
 <viewmodel:StopwatchViewModel x:Key="viewModel"/>
 </UserControl.Resources>

 <Grid DataContext="{StaticResource ResourceKey=viewModel}">
 <StackPanel>
 <TextBlock>
 <Run>Elapsed time: </Run>
 <Run Text="{Binding Hours, Mode=OneWay}"/>
 <Run>:</Run>
 <Run Text="{Binding Minutes, Mode=OneWay}"/>
 <Run>:</Run>
 <Run Text="{Binding Seconds, Mode=OneWay}"/>
 </TextBlock>
 <TextBlock>
 <Run>Lap time: </Run>
 <Run Text="{Binding LapHours, Mode=OneWay}"/>
 <Run>:</Run>
 <Run Text="{Binding LapMinutes, Mode=OneWay}"/>
 <Run>:</Run>
 <Run Text="{Binding LapSeconds, Mode=OneWay}"/>
 </TextBlock>
 <StackPanel Orientation="Horizontal">
 <Button Click="StartButton_Click" Margin="0,0,5,0">Start</Button>
 <Button Click="StopButton_Click" Margin="0,0,5,0">Stop</Button>
 <Button Click="ResetButton_Click" Margin="0,0,5,0">Reset</Button>
 <Button Click="LapButton_Click">Lap</Button>
 </StackPanel>
 </StackPanel>
 </Grid>
</UserControl>

VIEW

Build the v iew for a simple stopwatch
Here’s the XAML for a simple stopwatch control. Add a WPF user control to the View
folder called BasicStopwatch.xaml and add this code. The control has TextBlock controls
to display the elapsed and lap times, and buttons to start, stop, reset, and take the lap time.

The code for the ViewModel is on pages 766 and 767 in the book. How much of the
ViewModel code can you build just from the View and Model code before you flip the page?
Add a BasicStopwatch control to the main window and see how far you can get.

You’ll need this xmlns
property to add the
namespace. We called
our project Stopwatch,
so the ViewModel
namespace is
Stopwatch.ViewModel.

This user control stores an
instance of the ViewModel as a

static resource and uses it as its
data context. It doesn’t need its
container to set a data context.
It keeps track of its own state.

This TextBlock is bound
to properties in the
ViewModel that return
the elapsed time.

This TextBlock
is bound to
properties that
expose the lap time.

The ViewModel
must be firing off PropertyChanged events to keep these values up to date.

You’ll need to add Click event
handlers to the control and a
StopwatchViewModel class
to the ViewModel namespace

for this to compile.

Here’s a hint: use a DispatcherTimer to constantly
check the Model and update the properties.

But be really careful and don’t assume the IDE is necessarily wrong. Sometimes an error in the
XAML for one page (like a broken xmlns property) can cause all the designers to break.

The ViewModel
has read-only
properties for

Hours, Minutes,
Seconds, etc.
WPF requires

one-way binding
for read-only

properties.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

768 Appendix ii

tick tick tick

Finish the stopwatch app
There are just a few more loose ends to tie together. Your BasicStopwatch
user control doesn’t have event handlers, so you need to add them. And
then you just need to add the control to your main window.

<Window x:Class="Stopwatch.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="150" Width="250"
 xmlns:view="clr-namespace:Stopwatch.View">
 <Grid>
 <view:BasicStopwatch Margin="5"/>
 </Grid>
</Window>

Here’s all the XAML for MainWindow.xaml:2

Your app should now run. Click the Start, Stop, Reset, and
Lap buttons to see your stopwatch work.

ViewModel.StopwatchViewModel viewModel;

public BasicStopwatch() {
 InitializeComponent();

 viewModel = FindResource("viewModel") as ViewModel.StopwatchViewModel;
}

private void StartButton_Click(object sender, RoutedEventArgs e) {
 viewModel.Start();
}

private void StopButton_Click(object sender, RoutedEventArgs e) {
 viewModel.Stop();
}

private void ResetButton_Click(object sender, RoutedEventArgs e) {
 viewModel.Reset();
}

private void LapButton_Click(object sender, RoutedEventArgs e) {
 viewModel.Lap();
}

First, go back to BasicStopwatch.xaml.cs and add these event handlers to the code-behind:1

The buttons in
the view just call
methods in the
ViewModel. This
is a pretty typical
pattern for the
View.

All the behavior is
in the user control,
so there’s no
code-behind for
the main window.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

windows presentation foundation

We left this page blank so that you can
read this appendix in two-page mode, so the
exercise and its solution appear on different
two-page spreads. If you’re viewing this as
a PDF in two-page mode, you may want to
turn on the cover page so the even pages are
on the right and the odd pages are on the
left.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

770

useful tools for viewmodels

Converters automatically convert values for binding
Anyone with a digital clock knows that it typically shows the minutes with a leading zero. Our
stopwatch should also show the minutes with two digits. And it should show the seconds with two
digits, and round to the nearest hundredth of a second. We could modify the ViewModel to expose
string values that are formatted properly, but that would mean that we’d need to keep adding
more and more properties each time we wanted to reformat the same data. That’s where value
converters come in very handy. A value converter is an object that the XAML binding uses to
modify data before it’s passed to the control. You can build a value converter by implementing the
IValueConverter interface (which is in the System.Windows.Data namespace). Add a value
converter to your stopwatch now.

using System.Windows.Data;

class TimeNumberFormatConverter : IValueConverter {
 public object Convert(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture) {
 if (value is decimal)
 return ((decimal)value).ToString("00.00");
 else if (value is int) {
 if (parameter == null)
 return ((int)value).ToString("d1");
 else
 return ((int)value).ToString(parameter.ToString());
 }
 return value;
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture) {
 throw new NotImplementedException();
 }
}

Add the TimeNumberFormatConverter class to the ViewModel folder.
Add using System.Windows.Data; to the top of the class, and then have it
implement the IValueConverter interface. Use the IDE to automatically implement
the interface. This will add two method stubs for the Convert() and ConvertBack()
methods.

1

Implement the Convert() method in the value converter.
The Convert() method takes several parameters—we’ll use two of them. The value parameter is
the raw value that’s passed into the binding, and parameter lets you specify a parameter in XAML.

2

This converter
knows how to
convert decimal
and int values. For
int values, you can
optionally pass in
a parameter.

The ConvertBack() method is used for two-way
binding. We’re not using that in this project, so you
can leave the method stub as is.

VIEW
MODE

L

Converters
are useful
tools for
building your
ViewModel.

Is it a good idea to leave this NotImplementedException in your code? For
this project, this is code that is never supposed to be run. If it does get run,

is it better to fail silently, so the user never sees it? Or is it better to throw an
exception so that you can track down the problem? Which of those gives you

a more robust app? There’s not necessarily one right answer.
www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 771

windows presentation foundation

<TextBlock>

 <Run>Elapsed time: </Run>

 <Run Text="{Binding Hours, Mode=OneWay,

 Converter={StaticResource timeNumberFormatConverter}}"/>

 <Run>:</Run>

 <Run Text="{Binding Minutes, Mode=OneWay,

 Converter={StaticResource timeNumberFormatConverter}, ConverterParameter=d2}"/>

 <Run>:</Run>

 <Run Text="{Binding Seconds, Mode=OneWay,

 Converter={StaticResource timeNumberFormatConverter}}"/>

</TextBlock>

<TextBlock>

 <Run>Lap time: </Run>

 <Run Text="{Binding LapHours, Mode=OneWay,

 Converter={StaticResource timeNumberFormatConverter}}"/>

 <Run>:</Run>

 <Run Text="{Binding LapMinutes, Mode=OneWay,

 Converter={StaticResource timeNumberFormatConverter}, ConverterParameter=d2}"/>

 <Run>:</Run>

 <Run Text="{Binding LapSeconds, Mode=OneWay,

 Converter={StaticResource timeNumberFormatConverter}}"/>

</TextBlock>

<UserControl.Resources>

 <viewmodel:StopwatchViewModel x:Key="viewModel"/>

 <viewmodel:TimeNumberFormatConverter x:Key="timeNumberFormatConverter"/>

</UserControl.Resources>

Add the converter to your stopwatch control as a static resource.
It should go right below the ViewModel object:

3

Update the XAML code to use the value converter.
Modify the {Binding} markup by adding the Converter= to it in each of the <Run> tags.

4

Use the ConverterParameter
syntax to pass a parameter
into the converter.

If there’s no parameter specified, don’t forget the extra closing bracket }}.

Now the stopwatch runs the values through
the converter before passing them into the
TextBlock controls, and the numbers are
formatted correctly on the page.

VIEW

The designer may make you rebuild the solution
after you add this line. In rare cases, you might
even need to unload and reload the project.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

772 Appendix ii

converting different types

int _lastHours;
int _lastMinutes;
decimal _lastSeconds;
bool _lastRunning;
void TimerTick(object sender, object e) {
 if (_lastRunning != Running) {
 _lastRunning = Running;
 OnPropertyChanged("Running");
 }
 if (_lastHours != Hours) {
 _lastHours = Hours;
 OnPropertyChanged("Hours");
 }
 if (_lastMinutes != Minutes) {
 _lastMinutes = Minutes;
 OnPropertyChanged("Minutes");
 }
 if (_lastSeconds != Seconds) {
 _lastSeconds = Seconds;
 OnPropertyChanged("Seconds");
 }
}

Converters can work with many different types
TextBlock and TextBox controls work with text, so binding strings or numbers to the Text property makes
sense. But there are many other properties, and you can bind to those as well. If your ViewModel has a
Boolean property, it can be bound to any true/false property. You can even bind properties that use
enums—the IsVisible property uses the Visibility enum, which means you can also write value
converters for it. Let’s add Boolean and Visibility binding and conversion to the stopwatch.

Modify the ViewModel’s Tick event handler.
Modify the DispatcherTimer’s Tick event handler to raise a PropertyChanged event if
the value of the Running property has changed:

1

We added the
Running check to
the timer. Would
it make more
sense to have the
Model fire an
event instead?

VIEW
MODE

L

Here are two converters that will come in handy.

Sometimes you want to bind Boolean properties like IsEnabled so that a control
is enabled if the bound property is false. We’ll add a new converter called

BooleanNotConverter, which uses the ! operator to invert a Boolean target property.

IsEnabled="{Binding Running, Converter={StaticResource notConverter}}"

You’ll often want to have controls show or hide themselves based on a Boolean property in
the data context. You can only bind the Visibility property of a control to a target property
that’s of the type Visibility (meaning it returns values like Visibility.Collapsed).

We’ll add a converter called BooleanVisibilityConverter that will let us bind a control’s
Visibility property to a Boolean target property to make it visible or invisible.

Visibility="{Binding Running, Converter={StaticResource visibilityConverter}}"

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 773

windows presentation foundation

using System.Windows.Data;

class BooleanNotConverter : IValueConverter {
 public object Convert(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture) {
 if ((value is bool) && ((bool)value) == false)
 return true;
 else
 return false;
 }
 public object ConvertBack(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture) {
 throw new NotImplementedException();
 }
}

using System.Windows;
using System.Windows.Data;

class BooleanVisibilityConverter : IValueConverter {
 public object Convert(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture) {
 if ((value is bool) && ((bool)value) == true)
 return Visibility.Visible;
 else
 return Visibility.Collapsed;
 }
 public object ConvertBack(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture) {
 throw new NotImplementedException();
 }
}

Add a converter that inverts Boolean values.
Here’s a value converter that converts true to false and vice versa. You can use it with
Boolean properties on your controls like IsEnabled.

2

<StackPanel Orientation="Horizontal">
 <Button IsEnabled="{Binding Running, Converter={StaticResource notConverter}}"
 Click="StartButton_Click" Margin="0,0,5,0">Start</Button>
 <Button IsEnabled="{Binding Running}" Click="StopButton_Click"
 Margin="0,0,5,0">Stop</Button>
 <Button Click="ResetButton_Click" Margin="0,0,5,0">Reset</Button>
 <Button IsEnabled="{Binding Running}" Click="LapButton_Click">Lap</Button>
</StackPanel>
<TextBlock Text="Stopwatch is running"
 Visibility="{Binding Running, Converter={StaticResource visibilityConverter}}"/>

Add a converter that converts Booleans to Visibility enums.
You’ve already seen how you can make a control visible or invisible by setting its Visibility
property to Visible or Collapsed. These values come from an enum in the System.Windows
namespace called Visibility. Here’s a converter that converts Boolean values to Visibility values:

3

Modify your basic stopwatch control to use the converters.
Modify BasicStopwatch.xaml to add instances of these converters as static resources:

4

<viewmodel:BooleanVisibilityConverter x:Key="visibilityConverter"/>
<viewmodel:BooleanNotConverter x:Key="notConverter"/>

Now you can bind the controls’ IsEnabled and Visibility properties to the ViewModel’s Running
property:

This enables the
Start button only
if the stopwatch
is not running.

This causes a TextBlock to become
visible when the stopwatch is running.

VIEW
MODE

L

VIEW

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

We left this page blank so that you can
read this appendix in two-page mode, so the
exercise and its solution appear on different
two-page spreads. If you’re viewing this as
a PDF in two-page mode, you may want to
turn on the cover page so the even pages are
on the right and the odd pages are on the
left.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 781

windows presentation foundation

 d:DesignHeight="300"
 d:DesignWidth="400"
 xmlns:viewmodel="clr-namespace:Stopwatch.ViewModel">

Build an analog stopwatch using the same ViewModel
The MVVM pattern decouples the View from the ViewModel, and the ViewModel from the Model.
This is really useful if you need to make changes to one of the layers. Because of that decoupling,
you can be very confident that the changes you make will not cause the “shotgun surgery” effect and
ripple into the other layers. So did we do a good job decoupling the stopwatch program’s View from its
ViewModel? There’s one way to be sure: let’s build an entirely new View without changing the existing
classes in the ViewModel. The only change you’ll need in the C# code is a new converter in the
ViewModel that converts minutes and seconds into angles.

using System.Windows.Data;
class AngleConverter : IValueConverter {
 public object Convert(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture) {
 double parsedValue;
 if ((value != null)
 && double.TryParse(value.ToString(), out parsedValue)
 && (parameter != null))
 switch (parameter.ToString()) {
 case "Hours":
 return parsedValue * 30;
 case "Minutes":
 case "Seconds":
 return parsedValue * 6;
 }
 return 0;
 }
 public object ConvertBack(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture) {
 throw new NotImplementedException();
 }
}

An hour value ranges from 0 to
11, so to convert to an angle it’s
multiplied by 30.

Minutes and seconds range from
0 to 60, so the angle conversion
means multiplying by 6.

 <UserControl.Resources>
 <viewmodel:StopwatchViewModel x:Key="viewModel"/>
 <viewmodel:BooleanNotConverter x:Key="notConverter"/>
 <viewmodel:AngleConverter x:Key="angleConverter"/>
 </UserControl.Resources>

And add the ViewModel, two converters, and a style to the user control’s static resources.

VIEW
MODE

L

VIEW

Add a converter to convert time to angles.
Add the AngleConverter class to the ViewModel folder. You’ll use it for the hands on the face.

1

Add the new uSercontrol.
Add a new WPF user control called AnalogStopwatch to the View folder and add the
ViewModel namespace to the <UserControl> tag. Also, change the design width and height:

2

Remember how you used
the data classes you
built for Jimmy’s Comics
in Chapter 14 and
reused them to create
a Split App without
making any changes?
This is the same idea.

Do this!

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

782 Appendix ii

transform your controls

<Grid x:Name="baseGrid" DataContext="{StaticResource ResourceKey=viewModel}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="400"/>
 </Grid.ColumnDefinitions>
 <Ellipse Width="300" Height="300" Stroke="Black" StrokeThickness="2">
 <Ellipse.Fill>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FFB03F3F"/>
 <GradientStop Color="#FFE4CECE" Offset="1"/>
 </LinearGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <Rectangle RenderTransformOrigin="0.5,0.5" Width="2" Height="150" Fill="Black">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <TranslateTransform Y="-60"/>
 <RotateTransform Angle="{Binding Seconds,
 Converter={StaticResource ResourceKey=angleConverter},
 ConverterParameter=Seconds}"/>
 </TransformGroup>
 </Rectangle.RenderTransform>
 </Rectangle>
 <Rectangle RenderTransformOrigin="0.5,0.5" Width="4" Height="100" Fill="Black">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <TranslateTransform Y="-50"/>
 <RotateTransform Angle="{Binding Minutes,
 Converter={StaticResource ResourceKey=angleConverter},
 ConverterParameter=Minutes}"/>
 </TransformGroup>
 </Rectangle.RenderTransform>
 </Rectangle>
 <Rectangle RenderTransformOrigin="0.5,0.5" Width="1" Height="150" Fill="Yellow">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <TranslateTransform Y="-60"/>
 <RotateTransform Angle="{Binding LapSeconds,
 Converter={StaticResource ResourceKey=angleConverter},
 ConverterParameter=Seconds}"/>
 </TransformGroup>
 </Rectangle.RenderTransform>
 </Rectangle>
 <Rectangle RenderTransformOrigin="0.5,0.5" Width="2" Height="100" Fill="Yellow">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <TranslateTransform Y="-50"/>
 <RotateTransform Angle="{Binding LapMinutes,
 Converter={StaticResource ResourceKey=angleConverter},
 ConverterParameter=Minutes}"/>
 </TransformGroup>
 </Rectangle.RenderTransform>
 </Rectangle>
 <Ellipse Width="10" Height="10" Fill="Black"/>
</Grid>

This draws an extra circle in the middle to cover up where the hands overlap. Since it’s at the bottom of the Grid, it’s drawn last and ends up on top.

This is the face of the stopwatch.
It has a black outline and a
grayish gradient background.

Setting
the column
width keeps
it from
expanding to
fill whatever
container
it’s in.

Here’s the second
hand. It’s a long,
thin rectangle
with a translate
and rotate
transform.

VIEW
Add the face and hands to the Grid.
Modify the <Grid> tag to add the stopwatch face, using four rectangles for hands.

3

Here’s the
minute
hand.

There are
two yellow
hands for
the lap
time.

Every control can have one
RenderTransform section.

The TransformGroup tag lets
you apply multiple transforms
to the same control.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 783

windows presentation foundation

<TranslateTransform Y="-60"/>

<RotateTransform Angle="{Binding Seconds,
 Converter={StaticResource ResourceKey=angleConverter},
 ConverterParameter=Seconds}"/>

The stopwatch face is filled
with a gradient brush, just

like the background you
used in Save the Humans.

Every control can have one
RenderTransform element

that changes how it’s
displayed. This can include
rotating, moving to an offset,
skewing, scaling its size up

or down, and more.

You used transforms in Save
the Humans to change the

shape of the ellipses in the
enemy to make it look like

an alien.

Each hand is transformed twice. It starts out
centered in the face, so the first transform
shifts it up so that it’s in position to rotate.

The second transform rotates the hand to
the correct angle. The Angle property of the
rotation is bound to seconds or minutes in the
ViewModel, and uses the angle converter to
convert it to an angle.

Your stopwatch will start
ticking as soon as you add the
second hand, because it creates
an instance of the ViewModel
as a static resource to render
the control in the designer.
The designer may stop it
updating, but you can restart
it by switching away from the
designer window and back again.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

784 Appendix ii

adding resources

Add the buttons to the stopwatch.
Since the ViewModel is the same, the buttons should work the same. Add the
same buttons to AnalogStopwatch.xaml that you used for the basic stopwatch:

4

<StackPanel Orientation="Horizontal" VerticalAlignment="Bottom">

 <Button IsEnabled="{Binding Running, Converter={StaticResource notConverter}}"

 Click="StartButton_Click" Margin="0,0,5,0">Start</Button>

 <Button IsEnabled="{Binding Running}"

 Click="StopButton_Click" Margin="0,0,5,0">Stop</Button>

 <Button Click="ResetButton_Click" Margin="0,0,5,0">Reset</Button>

 <Button IsEnabled="{Binding Running}" Click="LapButton_Click">Lap</Button>

</StackPanel>

ViewModel.StopwatchViewModel viewModel;

public AnalogStopwatch() {

 InitializeComponent();

 viewModel = FindResource("viewModel") as ViewModel.StopwatchViewModel;

}

private void StartButton_Click(object sender, RoutedEventArgs e) {

 viewModel.Start();

}

private void StopButton_Click(object sender, RoutedEventArgs e) {

 viewModel.Stop();

}

private void ResetButton_Click(object sender, RoutedEventArgs e) {

 viewModel.Reset();

}

private void LapButton_Click(object sender, RoutedEventArgs e) {

 viewModel.Lap();

}

Here’s the code-behind for AnalogStopwatch.xaml.cs:

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 785

windows presentation foundation

Update the main window to show both stopwatches.
Now you just need to modify your MainWindow.xaml to add an AnalogStopwatch control:

5

<Window x:Class="Stopwatch.MainWindow"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Title="Two Stopwatches" Height="450" Width="400" ResizeMode="NoResize"

 xmlns:view="clr-namespace:Stopwatch.View">

 <Grid>

 <StackPanel>

 <view:BasicStopwatch Margin="5"/>

 <view:AnalogStopwatch Margin="5"/>

 </StackPanel>

 </Grid>

</Window>

Run your app. Now you have two
stopwatch controls on the page.

Each stopwatch keeps
its own time, because
each one has its own
separate instance of
the ViewModel as a
static resource.

Try changing the ViewModel to
make the _stopwatchModel field

static. What does this change
about how the stopwatch app
behaves? Can you figure out

why that happens?

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

786 Appendix ii

in the end, it’s all just code

public sealed partial class AnalogStopwatch : UserControl {

 public AnalogStopwatch() {
 InitializeComponent();

 viewModel = FindResource("viewModel") as ViewModel.StopwatchViewModel;
 AddMarkings();
 }

 private void AddMarkings() {
 for (int i = 0; i < 360; i += 3) {
 Rectangle rectangle = new Rectangle();
 rectangle.Width = (i % 30 == 0) ? 3 : 1;
 rectangle.Height = 15;
 rectangle.Fill = new SolidColorBrush(Colors.Black);
 rectangle.RenderTransformOrigin = new Point(0.5, 0.5);

 TransformGroup transforms = new TransformGroup();
 transforms.Children.Add(new TranslateTransform() { Y = -140 });
 transforms.Children.Add(new RotateTransform() { Angle = i });
 rectangle.RenderTransform = transforms;
 baseGrid.Children.Add(rectangle);
 }
 }
 // ... the button event handlers stay the same

UI controls can be instant iated with C# code, too
You already know that your XAML code instantiates classes in the Windows.UI namespace,
and you even used the Watch window in the IDE back in Chapter 10 to explore them. But
what if you want to create controls from inside your code? Well, controls are just objects, so you
can create them and work with them just like you would with any other object. Go ahead and
modify the code-behind to add markings to the face of your analog stopwatch.

Modify the constructor
to call a method that
adds the markings.

This creates
instances of the
same Rectangle
object that you
created with the
<Rectangle> tag.

This statement uses the
% modulo operator to

make the marks for the
hours thicker than the

ones for the minutes. i %
30 returns 0 only if i is

divisible by 30.

Flip back to the XAML for the
hour and minute hands. This code
sets up exactly the same transform,
except instead of binding the Angle
property it sets it to a value.

Controls like Grid, StackPanel, and
Canvas have a Children collection

with references to all the other controls
contained inside them. You can add

controls to the grid with its Add() method
and remove all controls by calling its

Clear() method. You add transforms to a
TransformGroup the same way.

You used a Binding object to set up data
binding in C# code back in Chapter 11.
Can you figure out how to remove the
XAML to create the Rectangle controls for
the hour and minute hands and replace it
with C# code to do the same thing?

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 787

windows presentation foundation

Thanks for giving
us everything we need
for our game! Now we
can compete for the

prestigious objectville
trophy.

Now that you added the
markings to the stopwatch, the
ref will make all the right calls.

Which team will dominate
the conference and win
the Objectville Trophy?
Nobody’s sure. All we know
is that Joe, Bob, and Ed
will be betting on it!

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

For the next few projects, you’ll need to download the bee images from the Head
First Labs website (http://www.headfirstlabs.com/hfcsharp). Make sure that you
add the images to your project so they’re in the top-level folder, just like you did

with the Jimmy’s Comics app. You’ll also need to select each image file in the
Solution Explorer and use the Properties window to set the “Build Action” to

Content and “Copy to Output Directory” to Copy always. Here’s what it looks
like when you did it for the Jimmy’s Comics app:

Make sure you do this for Bee animation 1.png, Bee animation 2.png,
Bee animation 3.png, and Bee animation 4.png.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 789

windows presentation foundation

Create a user control to animate a picture
Let’s encapsulate all the frame-by-frame animation code. Add a WPF user control called
AnimatedImage to your View folder. It has very little XAML—all the intelligence is in the
code-behind. Here’s everything inside the <UserControl> tag in the XAML:

using System.Windows.Media.Animation;
using System.Windows.Media.Imaging;

public partial class AnimatedImage : UserControl {
 public AnimatedImage() {
 InitializeComponent();
 }

 public AnimatedImage(IEnumerable<string> imageNames, TimeSpan interval)
 : this() {
 StartAnimation(imageNames, interval);
 }

 public void StartAnimation(IEnumerable<string> imageNames, TimeSpan interval) {
 Storyboard storyboard = new Storyboard();
 ObjectAnimationUsingKeyFrames animation = new ObjectAnimationUsingKeyFrames();
 Storyboard.SetTarget(animation, image);
 Storyboard.SetTargetProperty(animation, new PropertyPath(Image.SourceProperty));

 TimeSpan currentInterval = TimeSpan.FromMilliseconds(0);
 foreach (string imageName in imageNames) {
 ObjectKeyFrame keyFrame = new DiscreteObjectKeyFrame();
 keyFrame.Value = CreateImageFromAssets(imageName);
 keyFrame.KeyTime = currentInterval;
 animation.KeyFrames.Add(keyFrame);
 currentInterval = currentInterval.Add(interval);
 }

 storyboard.RepeatBehavior = RepeatBehavior.Forever;
 storyboard.AutoReverse = true;
 storyboard.Children.Add(animation);
 storyboard.Begin();
 }
 private static BitmapImage CreateImageFromAssets(string imageFilename) {
 try {
 Uri uri = new Uri(imageFilename, UriKind.RelativeOrAbsolute);
 return new BitmapImage(uri);
 } catch (System.IO.IOException) {
 return new BitmapImage();
 }
 }
}

<Grid>
 <Image x:Name="image" Stretch="Fill"/>
</Grid>

The work is done in the code-behind. Notice its overloaded constructor that calls the StartAnimation() method,
which creates storyboard and key frame animation objects to animate the Source property of the Image
control.

BitmapImage is in the
Media.Imaging namespace.
Storyboard and the other
animation classes are
in the Media.Animation
namespace.

Every control must have a parameterless constructor if
you want to create an instance of the control using XAML.

You can still add overloaded constructors, but that’s
useful only if you’re writing code to create the control.

The static SetTarget()
and SetTargetProperty()

methods from the
Storyboard class set the

target object being animated
("image"), and the property

that will change (Source)
using the PropertyPath() class.

Once the Storyboard object is set up and animations
have been added to its Children collection, call its

Begin() method to start the animation.

This is the same
method you used
in Chapter 14.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

790 Appendix ii

bees gotta fly

Make your bees f ly around a page
Let’s take your AnimatedImage control out for a test flight.

<Window x:Class="AnimatedBee.View.FlyingBees"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:view="clr-namespace:AnimatedBee.View"

 Title="Flying Bees" Height="600" Width="600">

 <Grid>

 <Canvas Background="SkyBlue">

 <view:AnimatedImage Canvas.Left="55" Canvas.Top="40"

 x:Name="firstBee" Width="50" Height="50"/>

 <view:AnimatedImage Canvas.Left="80" Canvas.Top="260"

 x:Name="secondBee" Width="200" Height="200"/>

 <view:AnimatedImage Canvas.Left="230" Canvas.Top="100"

 x:Name="thirdBee" Width="300" Height="125"/>

 </Canvas>

 </Grid>

</Window>

Replace the main window with a window in the View folder.
Add a Window to your View folder called FlyingBees.xaml. Delete MainWindow.xaml from the project.
Then modify the StartupUri property in the <Application> tag App.xaml:

 StartupUri="View\FlyingBees.xaml"

1

The bees will fly around a Canvas control.
Here’s the code for the window (you’ll need to change the AnimatedBee namespace if you used a different
project name). It uses a Canvas control in FlyingBees.xaml. A Canvas control is a container, so it can
contain other controls like a Grid or StackPanel. The difference is that a Canvas lets you set the coordinates of
the controls using the Canvas.Left and Canvas.Top properties. You used a Canvas back in Chapter 1 to
create the play area for Save the Humans. Here’s the XAML for the FlyingBees.xaml window:

2

The AnimatedImage control is invisible until
its CreateFrameImages() method is called,
so the controls in the Canvas will show up
only as outlines. You can select them using

the Document Outline. Try dragging the
controls around the canvas to see the Canvas.
Left and Canvas.Top properties change.

Do this!

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 791

windows presentation foundation

public FlyingBees() {
 this.InitializeComponent();

 List<string> imageNames = new List<string>();
 imageNames.Add("Bee animation 1.png");
 imageNames.Add("Bee animation 2.png");
 imageNames.Add("Bee animation 3.png");
 imageNames.Add("Bee animation 4.png");

 firstBee.StartAnimation(imageNames, TimeSpan.FromMilliseconds(50));
 secondBee.StartAnimation(imageNames, TimeSpan.FromMilliseconds(10));
 thirdBee.StartAnimation(imageNames, TimeSpan.FromMilliseconds(100));

 Storyboard storyboard = new Storyboard();
 DoubleAnimation animation = new DoubleAnimation();
 Storyboard.SetTarget(animation, firstBee);
 Storyboard.SetTargetProperty(animation, new PropertyPath(Canvas.LeftProperty));
 animation.From = 50;
 animation.To = 450;
 animation.Duration = TimeSpan.FromSeconds(3);
 animation.RepeatBehavior = RepeatBehavior.Forever;
 animation.AutoReverse = true;
 storyboard.Children.Add(animation);
 storyboard.Begin();
}

using System.Windows.Media.Animation;

Add the code-behind for the page.
You’ll need this using statement for the namespace that contains Storyboard and DoubleAnimation:

3

Now you can modify the constructor in FlyingBees.xaml.cs to start up the bee animation. Let’s also
create a DoubleAnimation to animate the Canvas.Left property. Compare the code for creating a
storyboard and animation to the XAML code with <DoubleAnimation> earlier in the chapter.

Run your program. Now you can see three bees flapping
their wings. You gave them different intervals, so they flap at
different rates because their timers are waiting for different
timespans before changing frames. The top bee has its Canvas.
Left property animated from 50 to 450 and back, which causes
it to move around the page. Take a close look at the properties
that are set on the DoubleAnimation object and compare them
with the XAML properties you used earlier in the chapter.

The CreateFrameImages() method
takes a sequence of asset names
and a TimeSpan to set the rate
that the frames are updated.

Instead of using
a <Storyboard>
tag and a
<DoubleAnimation>
tag like earlier in
the chapter, you
can create the
Storyboard and
DoubleAnimation
objects and set
their properties
in code.

Something’s not right about this project. Can you spot it?

The Storyboard is garbage-
collected after the animation

completes. You can see this for
yourself by using to

watch it and clicking to refresh
it after the animation ends.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

792 Appendix ii

remember, mvvm is a pattern

That won't work. Data binding doesn’t work with
container controls’ Children property—and for
good reason.

Data binding is built to work with attached properties, which are
the properties that show up in the XAML code. The Canvas object
does have a public Children property, but if you try to set it using
XAML (Children="{Binding ...}") your code won’t compile.

However, you already know how to bind a collection of objects to a
XAML control, because you did that with ListView and GridView
controls using the ItemsSource property. We can take advantage
of that data binding to add child controls to a Canvas.

This is easy. Just add an
obServablecollection of controls, and bind

the Children property of the Canvas to it. Why
are you making such a big deal about it?

VIEW
MODE

L

VIEW

MODE
L

???

Something’s not right: there’s nothing in your
Model or ViewModel folder, and you’re creating
dummy data in the View. That’s not MVVM!
If we wanted to add more bees, we’d have to create more controls
in the View and then initialize them individually. What if we want
different sizes or kinds of bees? Or other things to be animated? If
we had a Model that was optimized for data, it would be a lot easier.
How can we make this project follow the MVVM pattern?

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 793

windows presentation foundation

Use ItemsPanelTemplate to bind controls to a Canvas
When you used the ItemsSource property to bind items to a ListView, GridView, or ListBox, it didn’t
matter which one you were binding to, because the ItemsSource property always worked the same way.
If you were going to build three classes that had exactly the same behavior, you would put that behavior
in a base class and have the three classes extend it, right? Well, the Microsoft team did exactly the same
thing when they built the selector controls. The ListView, GridView, and ListBox all extend a class called
Selector, which is a subclass of the ItemsControl class that displays a collection of items.

<ItemsControl

 DataContext="{StaticResource viewModel}"

 ItemsSource="{Binding Path=Sprites}" >

 <ItemsControl.ItemsPanel>

 <ItemsPanelTemplate>

 <Canvas Background="SkyBlue" />

 </ItemsPanelTemplate>

 </ItemsControl.ItemsPanel>

</ItemsControl>

xmlns:viewmodel="clr-namespace:AnimatedBee.ViewModel"

<viewmodel:BeeViewModel x:Key="viewModel"/>

Next, add an empty class called BeeViewModel to your ViewModel folder,
and then add an instance of that class as a static resource to FlyingBees.xaml:

2

We’re going to use its ItemsPanel property to set up a template for
the panel that controls the layout of the items. Start by adding the
ViewModel namespace to FlyingBees.xaml:

1

Edit FlyingBees.xaml.cs and delete all the additional code that you added to the
FlyingBees() constructor in the FlyingBees control. Make sure that you
don’t delete the InitializeComponent() method!

Here’s the XAML for the ItemsControl. Open FlyingBees.xaml, delete the
<Canvas> tag you added, and replace it with this ItemsControl:

43

Use the ItemsPanel
property to set up an

ItemsPanelTemplate. This
contains a single Panel

control, and both Grid and
Canvas extend the Panel
class. Any items bound to
ItemsSource will be added

to the Panel’s Children.

You can set up the
panel however you
want. We’ll use a

Canvas with a sky-
blue background.

Use the static
ViewModel resource as
the data context, and
bind the ItemsSource
to a property called
Sprites.

When the ItemsControl is created, it creates
a Panel to hold all of its items and uses the

ItemsPanelTemplate as the control template.

If you used a
different project
name, change
AnimatedBee to the
correct namespace.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

794 Appendix ii

bee factory

using System.Windows;
using System.Windows.Controls;
using System.Windows.Media.Animation;

static class BeeHelper {
 public static AnimatedImage BeeFactory(
 double width, double height, TimeSpan flapInterval) {
 List<string> imageNames = new List<string>();
 imageNames.Add("Bee animation 1.png");
 imageNames.Add("Bee animation 2.png");
 imageNames.Add("Bee animation 3.png");
 imageNames.Add("Bee animation 4.png");

 AnimatedImage bee = new AnimatedImage(imageNames, flapInterval);
 bee.Width = width;
 bee.Height = height;
 return bee;
 }

 public static void SetBeeLocation(AnimatedImage bee, double x, double y) {
 Canvas.SetLeft(bee, x);
 Canvas.SetTop(bee, y);
 }

 public static void MakeBeeMove(AnimatedImage bee,
 double fromX, double toX, double y) {
 Canvas.SetTop(bee, y);
 Storyboard storyboard = new Storyboard();
 DoubleAnimation animation = new DoubleAnimation();
 Storyboard.SetTarget(animation, bee);
 Storyboard.SetTargetProperty(animation,
 new PropertyPath(Canvas.LeftProperty));
 animation.From = fromX;
 animation.To = toX;
 animation.Duration = TimeSpan.FromSeconds(3);
 animation.RepeatBehavior = RepeatBehavior.Forever;
 animation.AutoReverse = true;
 storyboard.Children.Add(animation);
 storyboard.Begin();
 }
}

Create a new class in the View folder
called BeeHelper. Make sure it’s a static class,
because it’ll have only static methods to help your
ViewModel manage its bees.

4

This is the same code
that was in the page’s
constructor. Now it’s in
a static helper method.

The factory method pattern
MVVM is just one of many design patterns. One
of the most common—and most useful—patterns is
the factory method pattern, where you have a
“factory” method that creates objects. The factory
method is usually static, and the name often ends
with “Factory” so it’s obvious what’s going on.

This factory
method creates
bee controls. It
makes sense to
keep this in the
View, because it’s
all UI-related
code. When you take a small block of code that’s reused a lot and put

it in its own (often static) method, it’s sometimes called a helper
method. Putting helper methods in a static class with a name that

ends with “Helper” makes your code easier to read.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 795

windows presentation foundation

using View;
using System.Collections.ObjectModel;
using System.Collections.Specialized;

class BeeViewModel {
 private readonly ObservableCollection<System.Windows.UIElement>
 _sprites = new ObservableCollection<System.Windows.UIElement>();
 public INotifyCollectionChanged Sprites { get { return _sprites; } }

 public BeeViewModel() {
 AnimatedImage firstBee =
 BeeHelper.BeeFactory(50, 50,
 TimeSpan.FromMilliseconds(50));
 _sprites.Add(firstBee);

 AnimatedImage secondBee =
 BeeHelper.BeeFactory(200, 200, TimeSpan.FromMilliseconds(10));
 _sprites.Add(secondBee);

 AnimatedImage thirdBee =
 BeeHelper.BeeFactory(300, 125, TimeSpan.FromMilliseconds(100));
 _sprites.Add(thirdBee);

 BeeHelper.MakeBeeMove(firstBee, 50, 450, 40);
 BeeHelper.SetBeeLocation(secondBee, 80, 260);
 BeeHelper.SetBeeLocation(thirdBee, 230, 100);
 }
} The readonly keyword

An important reason that we use encapsulation is to prevent one class from accidentally overwriting another class’s data. But what’s preventing a class from overwriting its own data? The readonly keyword can help with that. Any field that you mark readonly can be modified only in its declaration or in the constructor.

We’re taking two steps to encapsulate
the Sprites property. The backing
field is marked readonly so it can’t
be overwritten later, and we expose
it as an INotifyCollectionChanged
property so other classes can only
observe it but not modify it.

When the AnimatedImage control is added to
the _sprites ObservableCollection that’s bound
to the ItemsControl’s ItemsSource property,
the control is added to the item panel, which
is created based on the ItemsPanelTemplate.

A sprite is
the term for

any 2D image
or animation

that gets
incorporated
into a larger

game or
animation.

Run your app. It should look exactly the
same as before, but now the behavior is
split across the layers, with UI-specific
code in the View and code that deals
with bees and moving in the ViewModel.

6

Here’s the code for the empty BeeViewModel class that you
added to the ViewModel folder. By moving the UI-specific code
to the View, we can keep the code in the ViewModel simple
and specific to managing bee-related logic.

5

All XAML controls inherit from the UIElement base class in the System.Windows namespace. We
explicitly used the namespace (System.Windows.UIElement) in the body of the class instead of

adding a using statement to limit the amount of UI-related code we added to the ViewModel.

We used UIElement because it’s the most abstract class that all the sprites extend. For some
projects, a subclass like FrameworkElement may be more appropriate, because that’s where many

properties are defined, including Width, Height, Opacity, HorizontalAlignment, etc.

You’re changing properties
and adding animations on the
controls after they were added
to the ObservableCollection.
Why does that work?

This will come
in handy in
the last lab.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

796 Appendix ii

This is the last exercise in the book. Your job is to build a program that animates bees and stars.
There’s a lot of code to write, but you’re up to the task...and once you have this working, you’ll
have all the tools you need to build a complete video game. (Can you guess what’s in Lab #3?)

Here’s the app you’ll create.

Bees with flapping wings fly around a dark blue canvas, while behind them, stars fade in and out. You’ll
build a View that contains the bees, stars, and page to display them; a Model that keeps track of where they
are and fires off events when bees move or stars change; and a ViewModel to connect the two together.

1

The bees fly around the sky to random
locations. If the canvas size changes, the
bees fly to new positions on the canvas.

Stars fade in and out.

If the canvas play area size changes, the stars instantly move and bees slowly fly to their new locations.
You can test this by running this program and dragging the window to resize it. The stars move quickly!

<Canvas Background="Blue" SizeChanged="SizeChangedHandler" />

Add the ViewModel as a static resource and change the page name:

Visual Studio comes with a fantastic tool to help you experiment with shapes!
Fire up Blend for Visual Studio 2013 and use the pen, pencil, and toolbox to

create XAML shapes that you can copy and paste into your C# projects.

Create a new window in the View folder.
Delete MainWindow.xaml. Then add a window in the View folder called BeesOnAStarryNight.
xaml. Add the namespace to the top-level tag in the BeesOnAStarryNight.xaml (it should match your
project’s name, StarryNight):

3

 StartupUri="View\BeesOnAStarryNight.xaml"

Create a new WPF Application project.
Create a new project called StarryNight. Next, add the Model, View, and ViewModel folders. Once
that’s done, you’ll need to add an empty class called BeeStarViewModel to the ViewModel folder.

2

The
SizeChanged
event is fired

when a control
changes
size, with
EventArgs

properties for
the new size.

Then modify the <Application> tag in App.xaml so the application starts with the new window:

<Window.Resources>
 <viewmodel:BeeStarViewModel x:Key="viewModel"/>
</Window.Resources>

The XAML for the page is exactly the same as FlyingBees.xaml in the last project, except
the Canvas control’s background is Blue and it has a SizeChanged event handler:

xmlns:viewmodel="clr-namespace:StarryNight.ViewModel"

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 797

windows presentation foundation

Add code-behind for the page and the app.
Add the SizeChanged event handler to BeesOnAStarryNight.xaml.cs in the View folder:

4

ViewModel.BeeStarViewModel viewModel;

public BeesOnAStarryNight() {
 InitializeComponent();

 viewModel = FindResource("viewModel") as ViewModel.BeeStarViewModel;
}

private void SizeChangedHandler(object sender, SizeChangedEventArgs e) {
 viewModel.PlayAreaSize = new Size(e.NewSize.Width, e.NewSize.Height);
}

The code in step 4 won’t compile until you add the PlayAreaSize property to the ViewModel in step 9. You can use the IDE to generate a property stub for it for now.

<UserControl
 // The usual XAML code that the IDE generates is fine,
 // no extra namespaces are needed for this User Control.
 >

 <UserControl.Resources>
 <Storyboard x:Key="fadeInStoryboard">
 <DoubleAnimation From="0" To="1" Storyboard.TargetName="starPolygon"
 Storyboard.TargetProperty="Opacity" Duration="0:0:1.5" />
 </Storyboard>
 <Storyboard x:Key="fadeOutStoryboard">
 <DoubleAnimation From="1" To="0" Storyboard.TargetName="starPolygon"
 Storyboard.TargetProperty="Opacity" Duration="0:0:1.5" />
 </Storyboard>
 </UserControl.Resources>

 <Grid>
 <Polygon Points="0,75 75,0 100,100 0,25 150,25" Fill="Snow"
 Stroke="Black" x:Name="starPolygon"/>
 </Grid>
</UserControl>

A Polygon control uses a set of
points to draw a polygon. This

UserControl uses it to draw a star.

Add a user control called Starcontrol to the View folder.
This control draws a star. It also has two storyboards, one to fade in and one to fade out. Add
methods called FadeIn() and FadeOut() to the code-behind to trigger the storyboards.

6

Add the animatedimaGe control to the View folder.
Go back to the View folder and add the AnimatedImage control. This is exactly the same control from
earlier in the chapter. Make sure you add the image files for the animation frames to the project
and update each file’s Build Action to Content and its Copy to Output Directory to Copy always.

5

There are even more shapes beyond ellipses, rectangles, and polygons:
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh465055.aspx

You’ll need to add public FadeIn() and FadeOut()
methods to the code-behind that starts these
storyboards. That’s how the stars will fade in and out.

This polygon draws the star. You
can replace it with other shapes to experiment with how they work.

VIEW

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

798 Appendix ii

oh my stars

 (continued)
Add the beeStarhelper class to the View.
Here’s a useful helper class. It’s got some familiar tools and a
couple of new ones. Put it in the View folder.

7

using System.Windows;
using System.Windows.Controls;
using System.Windows.Media.Animation;
using System.Windows.Shapes;

static class BeeStarHelper {
 public static AnimatedImage BeeFactory(double width, double height, TimeSpan flapInterval) {
 List<string> imageNames = new List<string>();
 imageNames.Add("Bee animation 1.png");
 imageNames.Add("Bee animation 2.png");
 imageNames.Add("Bee animation 3.png");
 imageNames.Add("Bee animation 4.png");

 AnimatedImage bee = new AnimatedImage(imageNames, flapInterval);
 bee.Width = width;
 bee.Height = height;
 return bee;
 }

 public static void SetCanvasLocation(UIElement control, double x, double y) {
 Canvas.SetLeft(control, x);
 Canvas.SetTop(control, y);
 }

 public static void MoveElementOnCanvas(UIElement uiElement, double toX, double toY) {
 double fromX = Canvas.GetLeft(uiElement);
 double fromY = Canvas.GetTop(uiElement);

 Storyboard storyboard = new Storyboard();
 DoubleAnimation animationX = CreateDoubleAnimation(uiElement,
 fromX, toX, new PropertyPath(Canvas.LeftProperty));
 DoubleAnimation animationY = CreateDoubleAnimation(uiElement,
 fromY, toY, new PropertyPath(Canvas.TopProperty));
 storyboard.Children.Add(animationX);
 storyboard.Children.Add(animationY);
 storyboard.Begin();
 }

 public static DoubleAnimation CreateDoubleAnimation(UIElement uiElement,
 double from, double to, PropertyPath propertyToAnimate) {
 DoubleAnimation animation = new DoubleAnimation();
 Storyboard.SetTarget(animation, uiElement);
 Storyboard.SetTargetProperty(animation, propertyToAnimate);
 animation.From = from;
 animation.To = to;
 animation.Duration = TimeSpan.FromSeconds(3);
 return animation;
 }

 public static void SendToBack(StarControl newStar)
 {
 Canvas.SetZIndex(newStar, -1000);
 }
}

“Z Index” means the order
the controls are layered on a
panel. A control with a higher

Z index is drawn on top of
one with a lower Z index.

Canvas has SetLeft() and GetLeft() methods to set and get the X
position of a control. The SetTop() and GetTop() methods set and get

the Y position. They work even after a control is added to the Canvas.

VIEW

We added a helper called
CreateDoubleAnimation()
that creates a three-second
DoubleAnimation. This
method uses it to move a
UIElement from its current
location to a new point by
animating its Canvas.Left
and Canvas.Top properties.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 799

windows presentation foundation

Add the bee, Star, and eventarGS classes to the Model.
Your model needs to keep track of the bees’ positions and sizes, and the stars’ positions, and
it will fire off events so the ViewModel knows whenever there’s a change to a bee or a star.

8

using System.Windows;
class Bee {
 public Point Location { get; set; }
 public Size Size { get; set; }
 public Rect Position { get { return new Rect(Location, Size); } }
 public double Width { get { return Position.Width; } }
 public double Height { get { return Position.Height; } }

 public Bee(Point location, Size size) {
 Location = location;
 Size = size;
 }
}

The Points property on
the Polygon control is a
collection of Point structs.

using System.Windows;
class BeeMovedEventArgs : EventArgs {
 public Bee BeeThatMoved { get; private set; }
 public double X { get; private set; }
 public double Y { get; private set; }

 public BeeMovedEventArgs(Bee beeThatMoved, double x, double y) {
 BeeThatMoved = beeThatMoved;
 X = x;
 Y = y;
 }
}

using System.Windows;
class StarChangedEventArgs : EventArgs {
 public Star StarThatChanged { get; private set; }
 public bool Removed { get; private set; }

 public StarChangedEventArgs(Star starThatChanged, bool removed) {
 StarThatChanged = starThatChanged;
 Removed = removed;
 }
}

The Rect struct has several
overloaded constructors, and
methods that let you extract its
width, height, size, and location
(either as a Point or individual X
and Y double coordinates).

using System.Windows;
class Star {
 public Point Location {
 get; set;
 }

 public Star(Point location) {
 Location = location;
 }
}

The Point, Size, and Rect structs
The System.Windows namespace has several very useful structs. Point uses

X and Y double properties to store a set of coordinates. Size has two
double properties too, Width and Height, and also a special Empty value.
Rect stores two coordinates for the top-left and bottom-right corner
of a rectangle. It has a lot of useful methods to find its width, height,
intersection with other Rects, and more.

The model will fire events that use these EventArgs
to tell the ViewModel when changes happen.

Once you get your program working,
try adding a Boolean Rotating
property to the Star class and use it
to make some of your stars slowly spin
around.

MODE
L

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

800 Appendix ii

buzz buzz buzz

 (continued)

MODE
Lusing System.Windows;

class BeeStarModel {
 public static readonly Size StarSize = new Size(150, 100);

 private readonly Dictionary<Bee, Point> _bees = new Dictionary<Bee, Point>();
 private readonly Dictionary<Star, Point> _stars = new Dictionary<Star, Point>();
 private Random _random = new Random();

 public BeeStarModel() {
 _playAreaSize = Size.Empty;
 }

 public void Update() {
 MoveOneBee();
 AddOrRemoveAStar();
 }

 private static bool RectsOverlap(Rect r1, Rect r2) {
 r1.Intersect(r2);
 if (r1.Width > 0 || r1.Height > 0)
 return true;
 return false;
 }

 public Size PlayAreaSize {
 // Add a backing field, and have the set accessor call CreateBees() and CreateStars()
 }
 private void CreateBees() {
 // If the play area is empty, return. If there are already bees, move each of them.
 // Otherwise, create between 5 and 15 randomly sized bees (40 to 150 pixels), add
 // it to the _bees collection, and fire the BeeMoved event.
 }
 private void CreateStars() {
 // If the play area is empty, return. If there are already stars,
 // set each star's location to a new point and fire the StarChanged
 // event, otherwise call CreateAStar() between 5 and 10 times.
 }
 private void CreateAStar() {
 // Find a new non-overlapping point, add a new Star object to the
 // _stars collection, and fire the StarChanged event.
 }
 private Point FindNonOverlappingPoint(Size size) {
 // Find the upper-left corner of a rectangle that doesn't overlap any bees or stars.
 // You'll need to try random Rects, then use LINQ queries to find any bees or stars
 // that overlap (the RectsOverlap() method will be useful).
 }
 private void MoveOneBee(Bee bee = null) {
 // If there are no bees, return. If the bee parameter is null, choose a random bee,
 // otherwise use the bee argument. Then find a new non-overlapping point, update the bee's
 // location, update the _bees collection, and then fire the OnBeeMoved event.
 }
 private void AddOrRemoveAStar() {
 // Flip a coin (_random.Next(2) == 0) and either create a star using CreateAStar() or
 // remove a star and fire OnStarChanged. Always create a star if there are <= 5, remove
 // one if >= 20. _stars.Keys.ToList()[_random.Next(_stars.Count)] will find a random star.
 }
 // You'll need to add the BeeMoved and StarChanged events and methods to call them.
 // They use the BeeMovedEventArgs and StarChangedEventArgs classes.
}

If the method’s tried
1,000 random locations
and hasn’t found one
that doesn’t overlap, the
play area has probably
run out of space, so just
return any point.

Add the beeStarmodel class to the Model.
We’ve filled in the private fields and a couple of useful methods. Your job is
to finish building the BeeStarModel class.

9

The ViewModel will use a timer to call
this Update() method periodically.

This method checks two Rect
structs and returns true if they
overlap each other using the
Rect.Intersect() method.

Size.Empty is a value of Size that’s reserved
for an empty size. You’ll use it only to create
bees and stars when the play area is resized.

You can use readonly to create a constant struct value.

PlayAreaSize
is a property.

You can debug your app with the simulator to make sure
it works with different screen sizes and orientations.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 801

windows presentation foundation

using View;
using Model;
using System.Collections.ObjectModel;
using System.Collections.Specialized;
using System.Windows;
using DispatcherTimer = Windows.UI.Xaml.DispatcherTimer;
using UIElement = Windows.UI.Xaml.UIElement;

class BeeStarViewModel {
 private readonly ObservableCollection<UIElement>
 _sprites = new ObservableCollection<UIElement>();
 public INotifyCollectionChanged Sprites { get { return _sprites; } }

 private readonly Dictionary<Star, StarControl> _stars = new Dictionary<Star, StarControl>();
 private readonly List<StarControl> _fadedStars = new List<StarControl>();

 private BeeStarModel _model = new BeeStarModel();

 private readonly Dictionary<Bee, AnimatedImage> _bees = new Dictionary<Bee, AnimatedImage>();

 private DispatcherTimer _timer = new DispatcherTimer();

 public Size PlayAreaSize { /* get and set accessors return and set _model.PlayAreaSize */ }

 public BeeStarViewModel() {
 // Hook up the event handlers to the BeeStarModel's BeeMoved and StarChanged events,
 // and start the timer ticking every two seconds.
 }
 void timer_Tick(object sender, object e) {
 // Every time the timer ticks, find all StarControl references in the _fadedStars
 // collection and remove each of them from _sprites, then call the BeeViewModel's
 // Update() method to tell it to update itself.
 }
 void BeeMovedHandler(object sender, BeeMovedEventArgs e) {
 // The _bees dictionary maps Bee objects in the Model to AnimatedImage controls
 // in the view. When a bee is moved, the BeeViewModel fires its BeeMoved event to
 // tell anyone listening which bee moved and its new location. If the _bees
 // dictionary doesn't already contain an AnimatedImage control for the bee, it needs
 // to create a new one, set its canvas location, and update both _bees and _sprites.
 // If the _bees dictionary already has it, then we just need to look up the corresponding
 // AnimatedImage control and move it on the canvas to its new location with an animation.
 }
 void StarChangedHandler(object sender, StarChangedEventArgs e) {
 // The _stars dictionary works just like the _bees one, except that it maps Star objects
 // to their corresponding StarControl controls. The EventArgs contains references to
 // the Star object (which has a Location property) and a Boolean to tell you if the star
 // was removed. If it is then we want it to fade out, so remove it from _stars, add it
 // to _fadedStars, and call its FadeOut() method (it'll be removed from _sprites the next
 // time the Update() method is called, which is why we set the timer’s tick interval to
 // be greater than the StarControl's fade out animation).
 //
 // If the star is not being removed, then check to see if _stars contains it - if so, get
 // the StarControl reference; if not, you'll need to create a new StarControl, fade it in,
 // add it to _sprites, and send it to back so the bees can fly in front of it. Then set
 // the canvas location for the StarControl.
 }
}

VIEW
MODE

L
We wanted to make sure that

DispatcherTimer and UIElement
are the only classes from the Windows.
UI.Xaml namespace that we used in
the ViewModel. The using keyword

lets you use = to declare a single
member in another namespace.

When you set the new Canvas location, the control is updated—even if it’s already on
the Canvas. This is how the stars move themselves around when the play area is resized.

Add the beeStarvieWmodel class to the ViewModel.
Fill in the commented methods. You’ll need
to look closely at how the Model works and
what the View expects. The helper methods
will also come in very handy.

10

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

802 Appendix ii

exercise solution

using System.Windows;

class BeeStarModel {
 public static readonly Size StarSize = new Size(150, 100);

 private readonly Dictionary<Bee, Point> _bees = new Dictionary<Bee, Point>();
 private readonly Dictionary<Star, Point> _stars = new Dictionary<Star, Point>();
 private Random _random = new Random();

 public BeeStarModel() {
 _playAreaSize = Size.Empty;
 }

 public void Update() {
 MoveOneBee();
 AddOrRemoveAStar();
 }

 private static bool RectsOverlap(Rect r1, Rect r2) {
 r1.Intersect(r2);
 if (r1.Width > 0 || r1.Height > 0)
 return true;
 return false;
 }

 private Size _playAreaSize;
 public Size PlayAreaSize {
 get { return _playAreaSize; }
 set
 {
 _playAreaSize = value;
 CreateBees();
 CreateStars();
 }
 }

 private void CreateBees() {
 if (PlayAreaSize == Size.Empty) return;

 if (_bees.Count() > 0) {
 List<Bee> allBees = _bees.Keys.ToList();
 foreach (Bee bee in allBees)
 MoveOneBee(bee);
 } else {
 int beeCount = _random.Next(5, 10);
 for (int i = 0; i < beeCount; i++) {
 int s = _random.Next(50, 100);
 Size beeSize = new Size(s, s);
 Point newLocation = FindNonOverlappingPoint(beeSize);
 Bee newBee = new Bee(newLocation, beeSize);
 _bees[newBee] = new Point(newLocation.X, newLocation.Y);
 OnBeeMoved(newBee, newLocation.X, newLocation.Y);
 }
 }
 }

 SOLUTION
Here are the filled-in methods in the BeeStarModel class.

We gave these to you.

Whenever the PlayAreaSize property
changes, the Model updates the
_playAreaSize backing field and then calls
CreateBees() and CreateStars(). This
lets the ViewModel tell the Model to
adjust itself whenever the size changes—
which will happen if you run the program
on a tablet and change the orientation.

If there are
already bees, move
each of them.
MoveOneBee()
will find a new
nonoverlapping
location for each
bee and fire a
BeeMoved event.

If there aren’t any bees in the
model yet, this creates new
Bee objects and sets their
locations. Any time a bee is added
or changes, we need to fire a
BeeMoved event.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 803

windows presentation foundation

 private void CreateStars() {
 if (PlayAreaSize == Size.Empty) return;

 if (_stars.Count > 0) {
 foreach (Star star in _stars.Keys) {
 star.Location = FindNonOverlappingPoint(StarSize);
 OnStarChanged(star, false);
 }
 } else {
 int starCount = _random.Next(5, 10);
 for (int i = 0; i < starCount; i++)
 CreateAStar();
 }
 }

 private void CreateAStar() {
 Point newLocation = FindNonOverlappingPoint(StarSize);
 Star newStar = new Star(newLocation);
 _stars[newStar] = new Point(newLocation.X, newLocation.Y);
 OnStarChanged(newStar, false);
 }

 private Point FindNonOverlappingPoint(Size size) {
 Rect newRect = new Rect();
 bool noOverlap = false;
 int count = 0;
 while (!noOverlap) {
 newRect = new Rect(_random.Next((int)PlayAreaSize.Width - 150),
 _random.Next((int)PlayAreaSize.Height - 150),
 size.Width, size.Height);

 var overlappingBees =
 from bee in _bees.Keys
 where RectsOverlap(bee.Position, newRect)
 select bee;

 var overlappingStars =
 from star in _stars.Keys
 where RectsOverlap(
 new Rect(star.Location.X, star.Location.Y, StarSize.Width, StarSize.Height),
 newRect)
 select star;

 if ((overlappingBees.Count() + overlappingStars.Count() == 0) || (count++ > 1000))
 noOverlap = true;
 }
 return new Point(newRect.X, newRect.Y);
 }

 private void MoveOneBee(Bee bee = null) {
 if (_bees.Keys.Count() == 0) return;
 if (bee == null) {
 int beeCount = _stars.Count;
 List<Bee> bees = _bees.Keys.ToList();
 bee = bees[_random.Next(bees.Count)];
 }
 bee.Location = FindNonOverlappingPoint(bee.Size);
 _bees[bee] = bee.Location;
 OnBeeMoved(bee, bee.Location.X, bee.Location.Y);
 }

If this iterated 1,000 times,
it means we’re probably out
of nonoverlapping spots in
the play area and need to
break out of an infinite loop.

This creates a random Rect and then checks if it overlaps. We gave it a 250-pixel gap on the right and a 150-pixel gap on the bottom so the stars and bees don’t leave the play area.

These LINQ queries call RectsOverlap()
to find any bees or stars that overlap
the new Rect. If either return value has
a count, the new Rect overlaps something.

If there are already stars,
we just set each existing
star’s location to a new
point on the PlayArea and
fire the StarChanged event.
It’s up to the ViewModel to
handle that event and move
the corresponding control.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

804 Appendix ii

exercise solution

SOLUTION

using View;
using Model;
using System.Collections.ObjectModel;
using System.Collections.Specialized;
using System.Windows;
using DispatcherTimer = System.Windows.Threading.DispatcherTimer;
using UIElement = System.Windows.UIElement;

class BeeStarViewModel {
 private readonly ObservableCollection<UIElement>
 _sprites = new ObservableCollection<UIElement>();
 public INotifyCollectionChanged Sprites { get { return _sprites; } }

 private readonly Dictionary<Star, StarControl> _stars = new Dictionary<Star, StarControl>();
 private readonly List<StarControl> _fadedStars = new List<StarControl>();

 private BeeStarModel _model = new BeeStarModel();

 private readonly Dictionary<Bee, AnimatedImage> _bees
 = new Dictionary<Bee, AnimatedImage>();

 private DispatcherTimer _timer = new DispatcherTimer();

 private void AddOrRemoveAStar() {
 if (((_random.Next(2) == 0) || (_stars.Count <= 5)) && (_stars.Count < 20))
 CreateAStar();
 else {
 Star starToRemove = _stars.Keys.ToList()[_random.Next(_stars.Count)];
 _stars.Remove(starToRemove);
 OnStarChanged(starToRemove, true);
 }
 }

 public event EventHandler<BeeMovedEventArgs> BeeMoved;

 private void OnBeeMoved(Bee beeThatMoved, double x, double y)
 {
 EventHandler<BeeMovedEventArgs> beeMoved = BeeMoved;
 if (beeMoved != null)
 {
 beeMoved(this, new BeeMovedEventArgs(beeThatMoved, x, y));
 }
 }

 public event EventHandler<StarChangedEventArgs> StarChanged;

 private void OnStarChanged(Star starThatChanged, bool removed)
 {
 EventHandler<StarChangedEventArgs> starChanged = StarChanged;
 if (starChanged != null)
 {
 starChanged(this, new StarChangedEventArgs(starThatChanged, removed));
 }
 }
}

The last few members of the BeeStarModel class.

Here are the filled-in methods of the BeeStarViewModel class.

These are typical
event handlers and
methods to fire them.

Every time the Update() method is called,
we want to either add or remove a star. The
CreateAStar() method already creates stars.
If we’re removing a star, we just remove it
from _stars and fire a StarChanged event.

We gave these to you.

Flip a coin by choosing either 0 or 1 at
random, but always create a star if there
are under 5 and remove if 20 or more.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 805

windows presentation foundation

 public Size PlayAreaSize {
 get { return _model.PlayAreaSize; }
 set { _model.PlayAreaSize = value; }
 }

 public BeeStarViewModel() {
 _model.BeeMoved += BeeMovedHandler;
 _model.StarChanged += StarChangedHandler;

 _timer.Interval = TimeSpan.FromSeconds(2);
 _timer.Tick += timer_Tick;
 _timer.Start();
 }

 void timer_Tick(object sender, object e) {
 foreach (StarControl starControl in _fadedStars)
 _sprites.Remove(starControl);

 _model.Update();
 }

 void BeeMovedHandler(object sender, BeeMovedEventArgs e) {
 if (!_bees.ContainsKey(e.BeeThatMoved)) {
 AnimatedImage beeControl = BeeStarHelper.BeeFactory(
 e.BeeThatMoved.Width, e.BeeThatMoved.Height, TimeSpan.FromMilliseconds(20));
 BeeStarHelper.SetCanvasLocation(beeControl, e.X, e.Y);
 _bees[e.BeeThatMoved] = beeControl;
 _sprites.Add(beeControl);
 } else {
 AnimatedImage beeControl = _bees[e.BeeThatMoved];
 BeeStarHelper.MoveElementOnCanvas(beeControl, e.X, e.Y);
 }
 }

 void StarChangedHandler(object sender, StarChangedEventArgs e) {
 if (e.Removed) {
 StarControl starControl = _stars[e.StarThatChanged];
 _stars.Remove(e.StarThatChanged);
 _fadedStars.Add(starControl);
 starControl.FadeOut();
 } else {
 StarControl newStar;
 if (_stars.ContainsKey(e.StarThatChanged))
 newStar = _stars[e.StarThatChanged];
 else {
 newStar = new StarControl();
 _stars[e.StarThatChanged] = newStar;
 newStar.FadeIn();
 BeeStarHelper.SendToBack(newStar);
 _sprites.Add(newStar);
 }
 BeeStarHelper.SetCanvasLocation(
 newStar, e.StarThatChanged.Location.X, e.StarThatChanged.Location.Y);
 }
 }
}

The _fadedStars collection contains
the controls that are currently fading
and will be removed the next time the
ViewModel’s Update() method is called.

If a star is being added, it needs to have its FadeIn() method called. If it’s already there, it’s just being moved because the play area size changed. Either way, we want to move it to its new location on the Canvas.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

806 Appendix ii

Here are the methods for the StarControl code-behind:
using System.Windows.Media.Animation;

public partial class StarControl : UserControl {
 public StarControl()
 {
 InitializeComponent();
 }

 public void FadeIn() {
 Storyboard fadeInStoryboard = FindResource("fadeInStoryboard") as Storyboard;
 fadeInStoryboard.Begin();
 }

 public void FadeOut() {
 Storyboard fadeOutStoryboard = FindResource("fadeOutStoryboard") as Storyboard;
 fadeOutStoryboard.Begin();
 }
}

SOLUTION

The ViewModel’s PlayAreaSize property just passes through to
the property on the Model—but the Model’s PlayAreaSize set
accessor calls methods that fire BeeMoved and StarChanged
events. So when the screen resolution changes: 1) the Canvas
fires its SizeChanged event, which 2) updates the ViewModel’s
PlayAreaSize property, which 3) updates the Model’s property,

which 4) calls methods to update bees and stars, which 5)
fire BeeMoved and StarChanged events, which 6) trigger the
ViewModel’s event handlers, which 7) update the Sprites

collection, which 8) update the controls on the Canvas. This is an
example of loose coupling, where there’s no single, central object

to coordinate things. This is a very stable way to build software
because each object doesn’t need to have explicit knowledge of
how the other objects work. It just needs to know one small job:
handle an event, fire an event, call a method, set a property, etc.

If you’ve done a good job with separation
of concerns, your designs often tend to
naturally end up being loosely coupled.

You've got all the tools to do Lab #3 and build Invaders!

We saved the best for last. In the last lab in the book, you’ll build your
own version of Space Invaders, the grandfather of video games.
And while the lab is aimed at Windows Store apps, if you
finished the Bees on a Starry Night project—and you understood
it all—then you have the knowledge and know-how to build a
WPF version of the Invaders game. Almost everything in the
lab applies to WPF. The only thing that’s different is how the
user controls the ship. Windows Store apps have advanced
gesture events that process touch and mouse input, but WPF
windows don’t support those events. You’ll need to use the
WPF Window object’s KeyUp and KeyDown events. Luckily,
you’ve already got a good example. Flip back to the Key Game
in Chapter 4—your Invaders game can handle keystrokes in
exactly the same way.

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

you are here 4 807

windows presentation foundation

The
humans forgot about us!

Time to attack while they’ve
lowered their guard!

Congratulat ions! (But you’re not done yet...)
Did you finish that last exercise? Did you understand everything that was going on? If
so, then congratulations—you’ve learned a whole lot of C#, and probably in less time
than you’d expected! The world of programming awaits you.

Still, there are a few things that you should do before you move on to the last lab, if you
really want to make sure all the information you put in your brain stays there.

Take one last look through Save the Humans.

If you did everything we asked you to do, you’ve built Save the
Humans twice, once at the beginning of the book and again before
you started Chapter 10. Even the second time around, there were
parts of it that seemed like magic. But when it comes to programming,
there is no magic. So take one last pass through the code you built.
You’ll be surprised at how much you understand! There’s almost
nothing that seals a lesson into your brain like positive reinforcement.

When it
comes to
programming,
there is no
magic. Every
program works
because it
was built to
work, and all
code can be
understood.

...but it’s a lot easier
to understand code if
the programmer used
good design patterns
and object-oriented
programming principles.

Take a break. Even better, take a nap.

Your brain has absorbed a lot of information, and
sometimes the best thing you can do to “lock in” all
that new knowledge is to sleep on it. There’s a lot of
neuroscience research that shows that information
absorption is significantly improved after a good
night’s sleep. So give your brain a well-deserved
rest!

Talk about it with your friends.

Humans are social animals, and when you
talk through things you’ve learned with your
social circle you do a better job of retaining
them. And these days, “talking” means
social networking, too! Plus, you’ve really
accomplished something here. Go ahead
and claim your bragging rights!

www.itbook.store/books/9781449343507

https://itbook.store/books/9781449343507

