
DATA / DATABA SES / SECURIT Y

Accumulo

ISBN: 978-1-449-37418-1

US $49.99 CAN $57.99

“	If	you	need	random	access
to	large	datasets	you'd	
be	wise	to	learn	about	
Accumulo.		And	there's	no	
better	place	to	start	than	
with	this	book.”

—Doug Cutting
Founder of Hadoop

“	Aaron	Cordova,	Billie
Rinaldi,	and	Michael	Wall	
have	been	leaders	in	the	
Accumulo	community	
since	its	inception,	and	
I	can	think	of	no	one	
more	qualified	to	write	
the	definitive	book	on	
Accumulo.”

—Jeremy Kepner
MIT Lincoln Laboratory

Twitter: @oreillymedia
facebook.com/oreilly

Get up to speed on Apache Accumulo, the flexible, high-performance
key-value store created by the US National Security Agency (NSA) and
based on Google’s Bigtable data storage system. Written by former
NSA team members, this comprehensive tutorial and reference covers
Accumulo architecture, application development, table design, and
cell-level security.

With clear information on system administration, performance tuning, and
best practices, this book is ideal for developers seeking to write Accumulo
applications, administrators charged with installing and maintaining
Accumulo, and other professionals interested in what Accumulo has to
offer. You will find everything you need to use this system fully.

■ Get a high-level introduction to Accumulo’s architecture and
data model

■ Take a rapid tour through single- and multiple-node
installations, data ingest, and query

■ Learn how to write Accumulo applications for several use
cases, based on examples

■ Dive into Accumulo internals, including information not
available in the documentation

■ Get detailed information for installing, administering, tuning,
and measuring performance

■ Learn best practices based on successful implementations in
the field

Aaron Cordova, a cofounder of Koverse Inc., started and led the Apache Accumulo
project as a computer systems researcher at the US National Security Agency.

Billie Rinaldi, a senior technical staff member at Hortonworks, Inc., was a leader
of the NSA computer science research team that implemented Accumulo.

Michael Wall, a graduate of the US Air Force Academy, served as a software
engineer for the NSA and other government agencies. He develops a variety of
applications with Accumulo.

A
ccum

ulo
Cordova,

Rinaldi &
 W

all

Aaron Cordova,
Billie Rinaldi & Michael Wall

Accumulo
APPLICATION DEVELOPMENT, TABLE DESIGN, AND BEST PRACTICES

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

DATA / DATABA SES / SECURIT Y

Accumulo

ISBN: 978-1-449-37418-1

US $49.99 CAN $57.99

“	If	you	need	random	access
to	large	datasets	you'd	
be	wise	to	learn	about	
Accumulo.		And	there's	no	
better	place	to	start	than	
with	this	book.”

—Doug Cutting
Founder of Hadoop

“	Aaron	Cordova,	Billie
Rinaldi,	and	Michael	Wall	
have	been	leaders	in	the	
Accumulo	community	
since	its	inception,	and	
I	can	think	of	no	one	
more	qualified	to	write	
the	definitive	book	on	
Accumulo.”

—Jeremy Kepner
MIT Lincoln Laboratory

Twitter: @oreillymedia
facebook.com/oreilly

Get up to speed on Apache Accumulo, the flexible, high-performance
key-value store created by the US National Security Agency (NSA) and
based on Google’s Bigtable data storage system. Written by former
NSA team members, this comprehensive tutorial and reference covers
Accumulo architecture, application development, table design, and
cell-level security.

With clear information on system administration, performance tuning, and
best practices, this book is ideal for developers seeking to write Accumulo
applications, administrators charged with installing and maintaining
Accumulo, and other professionals interested in what Accumulo has to
offer. You will find everything you need to use this system fully.

■ Get a high-level introduction to Accumulo’s architecture and
data model

■ Take a rapid tour through single- and multiple-node
installations, data ingest, and query

■ Learn how to write Accumulo applications for several use
cases, based on examples

■ Dive into Accumulo internals, including information not
available in the documentation

■ Get detailed information for installing, administering, tuning,
and measuring performance

■ Learn best practices based on successful implementations in
the field

Aaron Cordova, a cofounder of Koverse Inc., started and led the Apache Accumulo
project as a computer systems researcher at the US National Security Agency.

Billie Rinaldi, a senior technical staff member at Hortonworks, Inc., was a leader
of the NSA computer science research team that implemented Accumulo.

Michael Wall, a graduate of the US Air Force Academy, served as a software
engineer for the NSA and other government agencies. He develops a variety of
applications with Accumulo.

A
ccum

ulo
Cordova,

Rinaldi &
 W

all

Aaron Cordova,
Billie Rinaldi & Michael Wall

Accumulo
APPLICATION DEVELOPMENT, TABLE DESIGN, AND BEST PRACTICES

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

978-1-449-37418-1

[LSI]

Accumulo: Application Development, Table Design, and Best Practices
by Aaron Cordova, Billie Rinaldi, and Michael Wall

Copyright © 2015 Aaron Cordova, Billie Rinaldi, Michael Wall. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Marie Beaugureau
Production Editor: Matthew Hacker
Copyeditor: Kim Cofer
Proofreader: Eileen Cohen

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrators: Aaron Cordova and Billie Rinaldi

July 2015: First Edition

Revision History for the First Edition
2015-06-30: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781449374181 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Accumulo: Application Development,
Table Design, and Best Practices, the cover image of a yak, and related trade dress are trademarks of
O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Table of Contents

Foreword. xiii

Preface. xv

1. Architecture and Data Model. 1
Recent Trends 1
The Role of Databases 2
Distributed Applications 4
Fast Random Access 7

Accessing Sorted Versus Unsorted Data 7
Versions 11
History 12
Data Model 13

Rows and Columns 14
Data Modification and Timestamps 17

Advanced Data Model Components 19
Column Families 19
Column Visibility 22
Full Data Model 26

Tables 27
Introduction to the Client API 28

Approach to Rows 32
Exploiting Sort Order 33

Architecture Overview 34
ZooKeeper 35
Hadoop 35
Accumulo 36
A Typical Cluster 41

iii

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Additional Features 42
Automatic Data Partitioning 42
High Consistency 42
Automatic Load Balancing 43
Massive Scalability 43
Failure Tolerance and Automatic Recovery 43
Support for Analysis: Iterators 44
Support for Analysis: MapReduce Integration 44
Data Lifecycle Management 45
Compression 45
Robust Timestamps 45

Accumulo and Other Data Management Systems 46
Comparisons to Relational Databases 46
Comparisons to Other NoSQL Databases 50

Use Cases Suited for Accumulo 56
A New Kind of Flexible Analytical Warehouse 56
Building the Next Gmail 56
Massive Graph or Machine-Learning Problems 57
Relieving Relational Databases 57
Massive Search Applications 57
Applications with a Long History of Versioned Data 58

2. Quick Start. 59
Demo of the Shell 60

The help Command 61
Creating a Table and Inserting Some Data 61
Scanning for Data 62
Using Authorizations 63
Using a Simple Iterator 63

Demo of Java Code 63
Creating a Table and Inserting Some Data 64
Scanning for Data 68
Using Authorizations 69
Using a Simple Iterator 70

A More Complete Installation 71
Other Important Resources 79
One Last Example with a Unit Test 80
Additional Resources 80

3. Basic API. 81
Development Environment 82

Obtaining the Client Library 83

iv | Table of Contents

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Using Maven 83
Configuring the Classpath 83

Introduction to the Example Application: Wikipedia Pages 84
Wikipedia Data 84
Data Modeling 85
Obtaining Example Code 88
Downloading Sample Wikipedia Pages 89
Downloading All English Wikipedia Articles 89

Connect 90
Insert 90

Committing Mutations 93
Handling Errors 95
Insert Example 97
Using Lexicoders 99
Writing to Multiple Tables 100

Lookups and Scanning 103
Lookup Example 106
Crafting Ranges 108
Grouping by Rows 110
Reusing Scanners 111
Isolated Row Views 111
Tuning Scanners 112

Batch Scanning 113
Update: Overwrite 116

Overwrite Example 116
Allowing Multiple Versions 117

Update: Appending or Incrementing 118
Update: Read-Modify-Write and Conditional Mutations 118

Conditional Mutation API 119
Conditional Mutation Batch API 121
Conditional Mutation Example 121

Delete 125
Deleting and Reinserting 126
Removing Deleted Data from Disk 127
Batch Deleter 127

Testing 129
MockAccumulo 129
MiniAccumuloCluster 129

4. Table API. 131
Basic Table Operations 131

Creating Tables 131

Table of Contents | v

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Renaming 135
Deleting Tables 135
Deleting Ranges of Rows 135
Deleting Entries Returned from a Scan 136
Configuring Table Properties 137
Locality Groups 138
Bloom Filters 142
Caching 144
Tablet Splits 145
Compacting 149
Additional Properties 151
Online Status 156
Cloning 157
Importing and Exporting Tables 158
Additional Administrative Methods 159

Table Namespaces 160
Creating 161
Renaming 162
Setting Namespace Properties 162
Deleting 163
Configuring Iterators 164
Configuring Constraints 164
Testing Class Loading for a Namespace 165

Instance Operations 165
Setting Properties 165
Cluster Information 166
Precedence of Properties 171

5. Security API. 175
Authentication 176
Permissions 177

System Permissions 178
Namespace Permissions 180
Table Permissions 181

Authorizations 183
Column Visibilities 184
Limiting Authorizations Written 184
An Example of Using Authorizations 185
Using a Default Visibility 190
Making Authorizations Work 193

Auditing Security Operations 194
Custom Authentication, Permissions, and Authorization 195

vi | Table of Contents

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Custom Authentication Example 196
Other Security Considerations 197

Using an Application Account for Multiple Users 198
Network 198
Disk Encryption 198

6. Server-Side Functionality and External Clients. 201
Constraints 201

Constraint Configuration API 202
Constraint Configuration Example 203
Creating Custom Constraints 205
Custom Constraint Example 205

Iterators 209
Iterator Configuration API 211
VersioningIterator 212
Iterator Configuration Example 213
Adding Iterators by Setting Properties 215
Filtering Iterators 215
Combiners 220
Other Built-in Iterators 228

Thrift Proxy 236
Starting a Proxy 237
Python Example 238
Generating Client Code 240

Language-Specific Clients 241
Integration with Other Tools 242

Apache Hive 242
Apache Pig 248
Apache Kafka 251

Integration with Analytical Tools 255

7. MapReduce API. 257
Formats 257
Writing Worker Classes 259
MapReduce Example 259
MapReduce over Underlying RFiles 262

Example of Running a MapReduce Job over RFiles 263
Delivering Rows to Map Workers 264
Ingesters and Combiners as MapReduce Computations 264
MapReduce and Bulk Import 268

Bulk Ingest to Avoid Duplicates 269

Table of Contents | vii

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

8. Table Design. 271
Single-Table Designs 271

Implementing Paging 274
Secondary Indexing 275

Index Partitioned by Term 276
Querying a Term-Partitioned Index 279
Maintaining Consistency Across Tables 283
Index Partitioned by Document 284
Querying a Document-Partitioned Index 287
Indexing Data Types 288

Full-Text Search 295
wikipediaMetadata 295
wikipediaIndex 295
wikipedia 296
wikipediaReverseIndex 297
Ingesting WikiSearch Data 297
Querying the WikiSearch Data 299

Designing Row IDs 304
Lexicoders 304
Composite Row IDs 304
Key Size 305
Avoiding Hotspots 305
Designing Row IDs for Consistent Updates 306

Designing Values 307
Storing Files and Large Values 310
Human-Readable Versus Binary Values and Formatters 311

Designing Authorizations 313
Designing Column Visibilities 314

9. Advanced Table Designs. 317
Time-Ordered Data 317
Graphs 319

Building an Example Graph: Twitter 323
Traversing Graph Tables 325
Traversing the Example Twitter Graph 326

Semantic Triples 329
Semantic Triples Example 329

Spatial Data 334
Open Source Projects 334
Space-Filling Curves 335

Multidimensional Data 337
D4M and Matlab 337

viii | Table of Contents

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

D4M Example 338
Machine Learning 343

Storing Feature Vectors 343
A Machine-Learning Example 345

Approximating Relational and SQL Database Properties 351
Schema Constraints 351
SQL Operations 352

10. Internals. 357
Tablet Server 357

Write Path 358
Read Path 359
Resource Manager 360
Write-Ahead Logs 367
File formats 369
Caching 373

Master 374
FATE 374
Load Balancer 375

Garbage Collector 376
Monitor 377
Tracer 377
Client 378

Locating Keys 378
Metadata Table 379
Uses of ZooKeeper 379
Accumulo and the CAP Theorem 379

11. Administration: Setup. 383
Preinstallation 383

Operating Systems 383
Kernel Tweaks 384
Native Libraries 385
User Accounts 385
Linux Filesystem 385
System Services 385
Software Dependencies 386

Installation 387
Tarball Distribution Install 387
Installing on Cloudera’s CDH 388
Installing on Hortonworks’ HDP 394
Installing on MapR 396

Table of Contents | ix

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Running via Amazon Web Services 398
Building from Source 399

Configuration 401
File Permissions 401
Server Configuration Files 402
Client Configuration 406
Deploying JARs 407
Setting Up Automatic Failover 409
Initialization 410

Running Very Large-Scale Clusters 411
Networking 411
Limits 412
Metadata Table 412
Tablet Sizing 413
File Sizing 413
Using Multiple HDFS Volumes 413

Security 416
Column Visibilities and Accumulo Clients 416
Supporting Software Security 416
Network Security 417
Encryption of Data at Rest 422
Kerberized Hadoop 423
Application Permissions 424

12. Administration: Running. 425
Starting Accumulo 425

Via the start-all.sh Script 425
Via init.d Scripts 426

Stopping Accumulo 427
Via the stop-all.sh Script 427
Via init.d scripts 427
Stopping Individual Processes 427

Starting After a Crash 428
Monitoring 429

Monitor Web Service 429
JMX Metrics 433
Logging 436
Tracing 436

Cluster Changes 438
Adding New Worker Nodes 438
Removing Worker Nodes 438
Adding New Control Nodes 439

x | Table of Contents

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Removing Control Nodes 439
Table Operations 440

Changing Settings 440
Changing Online Status 444
Cloning 444
Import, Export, and Backups 446

Data Lifecycle 449
Versioning 449
Data Age-off 450
Compactions 451
Merging Tablets 453
Garbage Collection 456

Failure Recovery 456
Typical Failures 456
More-Serious Failures 457
Tips for Restoring a Cluster 458
Troubleshooting 461

13. Performance. 469
Understanding Read Performance 470
Understanding Write Performance 471

BatchWriters 472
Bulk Loading 472

Hardware Selection 473
Storage Devices 474
Networking 475
Virtualization 475
Running in a Public Cloud Environment 476

Cluster Sizing 476
Modeling Required Write Performance 477
Cluster Planning Example 478

Analyzing Performance 481
Using Tracing 481
Using the Monitor 483
Using Local Logs 487

Tablet Server Tuning 488
External Settings 488
Memory Settings 489
Write-Ahead Log Settings 491
Resource Settings 493
Timeouts 495
Scaling Vertically 496

Table of Contents | xi

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Cluster Tuning 496
Splitting Tables 498
Balancing Tablets 500
Balancing Reads and Writes 501
Data Locality 501
Sharing ZooKeeper 502

A. Shell Commands Quick Reference. 505

B. Metadata Table. 511

C. Data Stored in ZooKeeper. 519

Index. 523

xii | Table of Contents

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

CHAPTER 1

Architecture and Data Model

Apache Accumulo is a highly scalable, distributed, open source data store modeled
after Google’s Bigtable design. Accumulo is built to store up to trillions of data ele‐
ments and keeps them organized so that users can perform fast lookups. Accumulo
supports flexible data schemas and scales horizontally across thousands of machines.
Applications built on Accumulo are capable of serving a large number of users and
can process many requests per second, making Accumulo an ideal choice for
terabyte- to petabyte-scale projects.

Recent Trends
Over the past few decades, several trends have driven the progress of data storage and
processing systems. The first is that more data is being produced, at faster rates than
ever before. The rate of available data is increasing so fast that more data was pro‐
duced in the past few years than in all previous years. In recent years a huge amount
of data has been produced by people for human consumption, and this amount is
dwarfed by the amount of data produced by machines. These systems and devices
promise to generate an enormous amount of data in the coming years. Merely storing
this data can be a challenge, let alone organizing and processing it.

The second trend is that the cost of storage has dropped dramatically. Hard drives
now store multiple terabytes for roughly the same price as gigabyte drives stored gig‐
abytes of data a decade ago. Although computer memory is also falling in price, mak‐
ing it possible for many applications to run with their working data sets entirely in
memory, systems that store most data on disk still have a big cost advantage.

The third trend is that disk throughput has improved more than disk seek times, for
conventional spinning-disk hard drives. Though solid-state drives (SSDs) have
altered this balance somewhat, the advantage of the sequential read performance of

1

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

conventional hard drives versus random read performance is a large factor in the
design of the systems we’ll be discussing.

Finally, we’ve seen a shift from using one processor to multiple processors as increa‐
ses in single-processor performance have slowed. This is reflected in a shift not only
to multithreaded programs on a single server but also to programs distributed over
multiple separate servers.

These trends have caused system and application developers to take a hard look at
conventional designs and to consider alternatives. The question many are asking is:
how should we build applications so we can take advantage of all this data, in light of
current hardware trends, and in the most cost-effective way possible?

The Role of Databases
Conventional relational databases have served as the workhorse for persisting appli‐
cation data and as the processing engine for data analysis for many years. With the
advent of the World Wide Web, web applications can be exposed to millions of con‐
current users, creating the need for highly scalable data storage and retrieval technol‐
ogies. Many applications begin with a single relational database as the storage engine
and gradually reduce the number of features enabled on the database in order to get
better performance and serve more requests per second. Eventually a single database
is just not enough, and applications begin to resort to distributing data among several
database instances in order to keep up with demand. All of the overhead for manag‐
ing multiple databases and distributing data to them has to be handled by the
application.

Similarly, databases have also played an important role in analytical applications.
Often a relational database will be at the center of a data warehouse in which records
from operational databases are combined and refactored to support queries that
answer analytical questions. The field of Business Intelligence has grown up around
the capabilities of data warehouses. As more and more data becomes available, the
need for these analytical systems to scale becomes greater. Not only are organizations
collecting and keeping more structured data from operational systems, but interest is
also growing in other types of data that’s less well-structured—such as application
logs, social media data, and text documents. The ability to combine all of these data
sets in one place in order to ask questions across them is a compelling use case that is
driving innovation in scalable systems.

Accumulo is unlike some other new distributed databases in that it was developed
with more of a focus on building analytical platforms, rather than simply as the scala‐
ble persistence layer for data generated via a web application. The flexibility of the
data model and support for building indexes in Accumulo make analyzing data from
a variety of sources easier. Accumulo also introduces fine-grained access control to

2 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

make it possible for organizations to confidently protect data of varying sensitivity
levels in the same physical cluster.

Analysis and Column Storage
Many analytical databases take advantage of column-oriented storage rather than
row-oriented storage, which is the primary storage for most databases.

Row-oriented storage is useful for operational applications that need to maintain
some state across multiple fields or multiple rows. When updating multiple fields in a
row, perhaps as part of a transaction, it is convenient to store all the fields that need to
be updated simultaneously together on disk, read them off of disk together into mem‐
ory in order to change values as part of a transaction, and write them back to disk
together to maintain a consistent view of the data at all times.

In contrast, analytical applications often do not require any updates to data and are
instead aggregating and summarizing the data. In many cases analytical questions are
designed to calculate some statistic for one or a subset of the fields across all of the
rows. It is inconvenient to store data in row-oriented format because it requires all the
fields of one row to be read before any fields of the next row can be accessed. As a
result, analytical storage engines often store data in column-oriented formats. This
way, all of the data for a particular field across all rows can be found together on disk.
This drastically reduces the time required to read data to answer these types of analyt‐
ical questions. Because similarity is a property that compression relies on to reduce
storage size, column-oriented storage also improves the opportunities for compres‐
sion because the data values within a single field are often similar to one another.

Accumulo makes it possible to group sets of columns together on disk via a feature
called locality groups so analytical applications can gain these advantages. As part of
Accumulo’s additional focus on analytical applications, its support for locality groups
is more powerful than in some other distributed databases because the names of col‐
umns don’t have to be declared beforehand, there is no penalty for a large number of
different column names, and the columns can be mapped to locality groups in any
way desired. We discuss locality groups in depth in “Column Families” on page 19.

Some relational databases have adopted a distributed approach to scaling to meet
demand. In all distributed systems there are trade-offs. Distributed applications
introduce new complexities and failure modes that might not have existed in one-
server applications, so many distributed applications also ensure that the design and
APIs offered are simple to make understanding the behavior of the entire system eas‐
ier. In many ways new platforms like Accumulo represent stepping back to look at the
problem and building a data store from the ground up to support these larger work‐
loads and the concise set of features they require. The goal of Accumulo, being based
on Google’s Bigtable, is to provide a set of features that work well even as data sizes

The Role of Databases | 3

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

grow into the tens of petabytes—even in the presence of the regular failures expected
of cheaper, commodity-class hardware that is commonly used.

Distributed Applications
To effectively use increasing amounts of available data, a few application design pat‐
terns have emerged for automatically distributing data and processing over many
separate commodity-class servers connected via a network, and that vastly prefer
sequential disk operations over random disk seeks. Unlike some distributed systems,
applications that implement these patterns do not share memory or storage, an
approach called a shared-nothing architecture. These applications are designed to han‐
dle individual machine failures automatically with no interruption in operations.

Perhaps the most popular of these is Apache Hadoop, which can be used to distribute
data over many commodity-class machines and to run distributed processing jobs
over the data in parallel. This allows data to be processed in a fraction of the time it
would take on a single computer. Hadoop uses sequential I/O, opening and reading
files from beginning to end during the course of a distributed processing job, and
writing output to new files in sequential chunks. A graphical representation of vertical
scaling versus horizontal or shared-nothing scaling is shown in Figure 1-1.

Shared-Nothing Architectures
Some distributed applications are built to run on hardware platforms featuring many
processors and large amounts of shared random-access memory (RAM), and often
connect to a storage area network (SAN) via high-speed interconnects such as Fibre
Channel to access shared data storage.

In contrast, shared-nothing architectures do not share RAM and do not connect to
shared storage, but rather consist of many individual servers, each with its own pro‐
cessors, RAM, and hard drives. These systems are still connected to one another via a
network such as Gigabit Ethernet. Often the individual servers are of the more inex‐
pensive sort and often include cheaper individual components, such as Serial ATA
(SATA) drives rather than Small Computer System Interface (SCSI) drives.

Technologies that increase the resilience of a single server, such as hardware Redun‐
dant Array of Independent Disks (RAID) cards, which allow several hard drives
within a server to be grouped together for redundancy, are unnecessary in a shared-
nothing architecture. These can be replaced with an application layer that tolerates
the failure of entire servers, such as the Hadoop Distributed File System (HDFS).

4 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Figure 1-1. Scaling strategies

Accumulo employs this distributed approach by partitioning data across multiple
servers and keeping track of which server has which partition. In some cases these
data partitions are called shards, as in pieces of something that has been shattered. In
Accumulo’s case, data is stored in tables, and tables are partitioned into tablets. Each
server hosts a number of tablets. These servers are called tablet servers (Figure 1-2).

Some other systems support this type of data partitioning and require that a particu‐
lar field within the data be specified for the purpose of mapping a particular row to a
partition. For example, a relational database may allow a table to be split into parti‐
tions based on the Date field. All of the rows that have a date value in January might
be in one partition, and the rows with a date value in February in another. This struc‐
ture is very sensitive to the distribution of values across rows. If many more rows
have date values in February, that partition will be larger than the other partitions.

Distributed Applications | 5

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

1 R. Sen, A. Farris, and P. Guerra, “Benchmarking Apache Accumulo BigData Distributed Table Store Using Its
Continuous Test Suite.” in IEEE International Congress on Big Data, 2013, pp. 334–341.

Figure 1-2. Tables are partitioned into tablets and distributed

In contrast, Accumulo does not require you to specify how to partition data. Instead,
it automatically finds good points to use to split the data into tablets. As new data
arrives, a particular single tablet may become larger than the others. When it reaches
a configurable threshold, the tablet is split into two tablets. This way, tablets can be
uniform in size without any intervention from administrators.

Partitions also have to be mapped to particular servers. If responsibility for storage is
coupled with responsibility for processing requests for a particular tablet, movement
of read and write processing for a tablet from one server to another also requires that
the data be moved. This data movement can be expensive. So, rather than coupling
responsibility for reads and writes with the storage of a tablet, Accumulo allows tablet
servers to be responsible for tablets that are stored on another server, at least tem‐
porarily. Over time, tablet servers will create local copies of the data in background
operations to avoid reads over the network in response to client requests.

The flexibility in assigning tablets to tablet servers allows Accumulo to be very
responsive to handling individual hardware failures without requiring additional
intervention from applications or administrators. This is crucial to running a large-
scale cluster, because hardware failure becomes a common occurrence with hundreds
or thousands of machines. Instances of Accumulo have been known to run on more
than a thousand servers, hosting trillions of key-value pairs.1

Accumulo includes features that can be used to build a wide variety of scalable dis‐
tributed applications, including storing structured or semistructured sparse and
dynamic data, building rich text-search capabilities, indexing geospatial or multidi‐

6 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

mensional data, storing and processing large graphs, and maintaining continuously
updated summaries over raw events using server-side programming mechanisms.

Fast Random Access
Fast random access is important to many applications. Random access implies that
even though the particular element of data that is sought is not known until the time
of execution, the access time for any particular data element is roughly the same. This
is in contrast to sequential access, in which the reads start at the beginning of a set of
data and proceed to read more data until reaching the end. It’s also important that
that access time be fast enough to satisfy application requirements. Many web appli‐
cations require that the data requested be accessible in less than one second.

There are several techniques for achieving good random-access performance. Two
popular techniques are hashing and sorting. These techniques are used all the time in
computer applications accessing data held in memory, but they conveniently also
apply to data stored on disk, and even across multiple machines.

Unlike Hadoop jobs, where the data is often unorganized and where each job pro‐
cesses most or all of the data, Accumulo is designed to store data in an organized fash‐
ion so users can quickly find the data they need or incrementally add to or update a
data set. Accumulo’s role in life is to store key-value pairs, keeping the keys sorted at
all times. This enables applications to achieve fast, interactive response times even
when the data sizes range in the petabytes.

Accessing Sorted Versus Unsorted Data
Imagine a scenario in which you need to catch a flight, and your ticket shows your
flight leaving from gate D5. Suppose that the gates are unordered; that is, gate A1 is
right next to F3, which is right next to B2. If you are currently standing at gate B2,
you would have no idea how close you are to D5, and no idea in which direction you
should go to get closer to D5. The only strategy guaranteed to locate gate D5 is to
begin visiting all the gates in the hope that you stumble across D5. This strategy is
fine if you have hours and hours to spend searching. If you’re in a hurry, chances are
you will miss your flight. Not only is this too slow to be practical, but it is horribly
inefficient. Every person trying to catch a flight will waste at least several hours and a
lot of effort finding the right gate.

If the gates are sorted in a known order, such as alphabetical and numerical order so
that gate A1 is physically next to gate A2 and the last A gate is next to the first B gate,
finding a particular gate is much easier. You know that to find gate D5 you must skip
all the A, B, and C gates, and that if you see E gates you’ve gone too far. Once you’ve
found one of the D gates, say D8, you know that your gate is only three gates away. If

Fast Random Access | 7

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

the next gate you see is D7 or D9, you now know whether to keep going or to turn
around to get to D5.

This is the same way that computers use sorted data. A computer uses an algorithm
known as a binary search to find a key-value pair in a list sorted by key (Figure 1-3).
Binary search works by looking at the key in the middle of the list and comparing
that to the key it wants to find. If the key in the middle of the list is greater than the
key sought, the computer will then search the first half of the list. If the key in the
middle of the list is less than the key sought, the computer will search the second half
of the list.

Whichever half is chosen, the computer again picks the key in the middle and com‐
pares that to the key it’s looking for, and based on this comparison it decides in which
direction it must continue searching. This continues until the computer finds an
exact match or determines that the key sought is not in the list.

Figure 1-3. An example of binary search

This dramatically reduces the number of keys that must be examined and makes
searching for a particular key faster. How much faster? If it takes 10 milliseconds to
fetch and examine one key, finding a particular key in an unsorted list of a billion

8 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

keys will take an average of 57 days, because the right key could be anywhere—best
case it’s the first one you look at; worst case it’s the last.

If the list is sorted, it only takes an average of 300 milliseconds. If the sorted list has
not a billion key-value pairs, but a trillion, it takes 400 milliseconds—only 30 percent
longer for a 1000× increase in data!

Algorithms that have this kind of performance are said to exhibit logarithmic access
time with respect to the number of data elements, as opposed to linear access time,
because the access time is a function not of the number of data elements but of the
logarithm of the number of elements.

Hashing Versus Sorting
Hashing is a popular technique for organizing data so that a given data element can
be accessed quickly. If we are storing key-value pairs, where each key is associated
with a single value, a hash function applied to the key can be used to determine where
a key-value pair will be stored. Good hash functions map inputs to a range of output
values uniformly. When storing key-value pairs, the key is passed as the input to the
hash function (called hashing the key) and the output hash is used as the address of
the key-value pair in the storage medium. For example, we might decide to store the
key-value pair favoriteColor→red by first hashing the key, favoriteColor, which pro‐
duces the value 1004, and so we store that key-value pair in the 1004th slot in
memory.

Lookups designed to retrieve the value of a known key consist of hashing the key,
noting the hash output value and jumping to the place referenced by that hash, and
retrieving the value of the key-value pair. The hash can refer to a location in memory,
on disk, or on a particular machine in a cluster. If we need to look up the value for the
key favoriteColor, we simply hash it to obtain the address 1004 and go directly to the
1004th memory slot to retrieve the key-value pair (Figure 1-4).

In distributed systems hashing is sometimes used to distribute key-value pairs across
machines in a cluster. Hashing has the advantage of not requiring the system to do
anything special to keep the data uniformly spread out across machines. Lookups can
consist of simply hashing the key to find the server on which a key-value pair is
stored, and then hashing again to find the spot within the server that contains the
key-value pair.

Because these lookups consist of just one step, hashing enables very fast random
access to data. However, because the hash function is designed to spread keys out uni‐
formly across the address space, any similarity among keys is lost. For, example if we
wanted to be able to access the values for not just favoriteColor but favoriteIceCream
and favoriteMovie, we would have to do three separate lookups because these key-
value pairs would end up being assigned to different places by the hash function.

Accumulo does not rely on hashing for data distribution; it uses sorting instead.

Fast Random Access | 9

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Like hashing, sorting data can enable fast random access, but unlike hashing, sorting
can preserve some of the relationships among keys. This way, we can quickly find one
key that we want by doing a binary search, but also any closely related keys by reading
a few additional keys that appear sequentially after the first key. Because disks can
read sequential data much faster than accessing data randomly, the difference
between finding and returning one key versus finding one key and scanning 1,000 of
the keys that follow sequentially is minimal.

This property of sorted data allows application designers to exploit any relationships,
sometimes called locality, in their data by creating keys that group related information
together when sorted (Figure 1-5).

Maintaining asorted set of key-value pairs, especially when distributed across multi‐
ple machines, is more work than using hashing. Specifically, you have to maintain an
additional mapping of which machine has which portion of the sorted set. In Accu‐
mulo, this mapping is called the metadata table, and Accumulo has a lot of functional‐
ity built in to handle the additional work of maintaining this information. We discuss
the metadata table in depth in “Metadata Table” on page 379.

Figure 1-4. Hashing a key to an address

10 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Figure 1-5. Accessing related keys in sorted data

Versions
The first public open source version of Accumulo is 1.3.

Version 1.4 has been used in production for years on very large clusters.

As of this writing, the latest stable version of Accumulo is 1.6. We will focus this book
on version 1.6, pointing out differences in other versions where appropriate. Version
1.6 includes the following new features and improvements over previous versions:

• Multivolume support (running over multiple HDFS instances)
• Table namespaces
• Conditional mutations
• Partial encryption support
• Pluggable compaction strategies
• Lexicoders (tools for sorting tuples properly)
• Locality groups in memory
• Service IP addresses
• Support for ViewFS
• Maven plug-in
• Default key size constraint

Versions | 11

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

You can find the complete Release Notes for the 1.6 release at the Apache Accumulo
site.

History
Accumulo is one of several implementations based on Google’s Bigtable. The others
include Apache HBase, Hypertable, and Apache Cassandra.

Accumulo has been an open source project since 2011 and has since seen several
releases. A brief history of the project is as follows:

2003
Google publishes a paper describing the Google File System (GFS), a distributed
filesystem for storing very large files across many commodity-class servers.

2004
Google publishes a paper describing a simplified distributed programming model
and associated fault-tolerant execution framework called MapReduce.

2006
Google publishes a paper entitled “Bigtable: A Distributed Storage System for
Structured Data”. That same year a team from Yahoo! releases an open source
version called Apache Hadoop.

Fall 2007
An open source implementation of Google’s Bigtable called HBase is started by a
team at the company Powerset.

January 2008
Hadoop becomes a top-level Apache project. HBase becomes a subproject.

At the same time, a team of computer scientists and mathematicians at the US
National Security Agency (NSA) are evaluating the use of various big data tech‐
nologies, including Apache Hadoop and HBase, in an effort to help solve the
issues involved with storing and processing large amounts of data of different
sensitivity levels. Authors Billie Rinaldi and Aaron Cordova are part of this team.

July 2008
Powerset is acquired by Microsoft.

After reviewing existing solutions and comparing the stated objectives of existing
open source projects to the agency’s goals, the NSA team begins a new imple‐
mentation of Google’s Bigtable. The team focuses on performance, resilience, and
access control of individual data elements. The intent is to follow the design as
described in the paper closely in order to build on as much of the effort and expe‐
rience of Google’s engineers as possible.

12 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

The team extends the Bigtable design with additional features that includes a
method for labeling each key-value pair with its own access information, called
column visibilities, and a mechanism for performing additional server-side func‐
tionality, called iterators.

May 2009
Version 1.0 of Accumulo is released, but it is not yet publicly available.

May 2010
HBase becomes a top-level Apache project.

September 2011
Accumulo becomes a public open source incubator project hosted by the Apache
Software Foundation.

March 2012
Accumulo graduates to top-level project status. First publicly available release is
1.3.5.

April 2012
Version 1.4 is released.

May 2013
Version 1.5 is released and includes a Thrift proxy, more control over compac‐
tions, and table import and export

May 2014
Version 1.6 is released and extends the API to include conditional mutations and
table namespaces.

Data Model
At the most basic level, Accumulo stores key-value pairs on disk (Figure 1-6), keeping
the keys sorted at all times. This allows a user to look up the value of a particular key
or range of keys very quickly. Values are stored as byte arrays, and Accumulo doesn’t
restrict the type or size of the values stored. The default constraint on the maximum
size of the key is 1 MB.

Figure 1-6. A simple key-value pair

Data Model | 13

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Rather than simple keys as shown in Figure 1-6, Accumulo keys are made up of sev‐
eral components. Inside the key there are three main components: a row ID, a col‐
umn, and a timestamp (Figure 1-7).

Figure 1-7. Main components of the key

Rows and Columns
The row ID and column components allow developers to model their data similarly
to how one might store data in a relational database, or perhaps a spreadsheet. One
major difference is that relational databases often have autogenerated row IDs and
rely on secondary indexes for all data access, whereas the row IDs in Accumulo can
contain data that is relevant to an application.

When sorting keys, Accumulo first sorts the data by row ID, then sorts keys with the
same row ID by column, and finally sorts keys with the same row ID and column by
timestamp. Row IDs and columns are sorted in ascending, lexicographical order—
which means, roughly, alphabetical order—byte-by-byte.

The row ID is used to group several key-value pairs into a logical row. All the key-
value pairs that have the same row ID are considered to be a part of the same row.
Row IDs are simply byte arrays. A logical row in Accumulo can consist of more data
than can fit in memory. Values for multiple columns within a row can be changed
atomically.

The ability to modify rows atomically is an important feature for application design‐
ers to keep in mind when modeling their data. This means that Accumulo will com‐
mit the changes to a particular row all at once, or not at all in the case of a failure.
This allows applications always to have a consistent view of the data in a row, and not
to have to handle cases in which a change is partially applied. (We discuss atomicity
more in “Transactions” on page 47.)

Columns allow a row to contain multiple elements, as in a relational database table.
Each column is mapped to a value. But unlike in a relational database, you don’t have
to declare columns before storing data in them, and not every row has to have the
same columns present. Further, the type of data stored under a particular column
does not have to be the same across rows. Finally, columns do not have a specified
maximum length in which values must fit. (Column names, being part of the key, are

14 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

by default limited, because the total key is constrained to be less than 1 MB. However,
the values under these columns are not constrained in size by default.)

Accumulo tables can cope with missing or additional columns and changes in the
underlying schema of the data because Accumulo does not make any assumptions
about the schema. If rows imported every day for a month contain 10 columns and
suddenly they now contain 11 columns, Accumulo will not reject a request to store
the new rows; it will simply store them. Applications designed to read from the 10
known columns can continue to do so even with the new rows and simply ignore the
additional column.

This departure from the relational model represents a trade-off. On the one hand, the
flexibility makes storing data much easier. It is easier to store data that does not con‐
form to a well-known schema, and it is also easier to store data whose structure
changes over time.

However, whereas applications built on a relational database can rely on the database
to ensure that values conform to specified types and lengths, applications built on
Accumulo cannot assume that value types and lengths conform to any constraints,
unless Accumulo is configured to apply specific constraints to the data. Application
designers can decide whether to implement constraints to be applied by Accumulo at
insert-time or whether to handle varying value types and lengths at read-time in the
application.

For example, we may have a table that we use to store Wikipedia articles. The table
contains some structured data, or metadata, about each article, along with the actual
article text. Individual metadata elements may not be the same from one article to the
next.

Notice that not all the rows in Figure 1-8 have data stored in every column, a prop‐
erty known as sparseness. In other systems, missing values must be indicated by stor‐
ing a NULL value, which takes up space on disk. In Accumulo, the missing values
simply do not appear in the list of key-value pairs. On disk, this data is laid out as a
long series of sorted key-value pairs.

Data Model | 15

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Figure 1-8. A table consisting of rows and columns

Note that there is no key-value pair in Figure 1-9 for the comment field for Apache
Thrift, for example. Because Accumulo stores data this way, it can handle sparse data
sets very efficiently. Writing a key-value pair that contains a column that doesn’t
appear in any other row is no different from Accumulo’s perspective than storing any
other key-value pair.

If you are coming from a relational database background, it might
be confusing to think of a row in Accumulo as a set of key-value
pairs. Looking at data retrieved in the Accumulo shell, which we
touch on first in “Demo of the Shell” on page 60, a row will actually
be many lines on the screen. Figure 1-8 may be a more familiar
representation of the data, and you can see how it might translate
into Accumulo in Figure 1-9. In this example, a row, defined as a
set of key-value pairs, is analogous to a record in a relational data‐
base. Everything with the same row ID contains information about
a given record.

16 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Figure 1-9. Key-value pairs representing data for various rows and columns

Data Modification and Timestamps
Accumulo allows applications to update and delete existing information. These oper‐
ations are essential to developing operational applications. Rather than modifying the
data already written to disk, however, Accumulo handles modifications of this type
via versioning.

The timestamp element of the key adds a new dimension to the well-known two-
dimensional row-column model, and this allows data under a particular row-column
pair to have more than one version (Figure 1-10). By default, Accumulo keeps only
the newest version of a row-column pair, but it can be configured to store a specific
number of versions, versions newer than a certain date, or all versions ever written.

Figure 1-10. A table consisting of rows and columns with multiple versions

Data Model | 17

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

The set of key-value pairs on disk appears as in Figure 1-11.

Figure 1-11. Two key-value pairs that represent two versions of data for one row-column
pair

Timestamps are stored as 64-bit integers using the Java long data type. They are sor‐
ted in descending order, unlike rows and columns, so that the newest versions of a
row-column pair appear first when scanning down a table. In this way, Accumulo
handles updates by simply storing new versions of key-value pairs. If only the newest
version is retrieved, it appears as if the value has changed.

Timestamps that are assigned to key-value pairs by the tablet server
use the number of milliseconds since midnight, January 1, 1970,
also known as the Unix epoch.

Similarly, deletes are implemented using a special marker inserted in front of any
existing versions. The appearance of a key-value pair with a delete marker is inter‐
preted by Accumulo to mean “ignore all versions of this row-column pair older than
this timestamp.”

For example, if we wanted to remove the comment for the row identified by
Apache_Accumulo, the Accumulo client library would insert a delete marker with the
Apache_Accumulo row ID and the comment column, and that delete marker would be

18 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

assigned a timestamp representing the current time by the receiving tablet server.
Subsequent reads of the Apache_Accumulo row would encounter the delete marker
and know to skip any key-value pairs for that row and column appearing after the
delete marker.

To add a comment field back into that row we would simply write a new key-value
pair, which would get a newer timestamp than the delete marker, and so it would be
returned by subsequent scans.

It is possible to specify the timestamp when inserting a new key
into Accumulo, but this should only be done for advanced applica‐
tions, because timestamps are used in determining the ordering of
insertions and deletions. In the typical case in which the timestamp
is not specified by the client, the tablet server that receives the key-
value pair will use the time at which the data arrived as the
timestamp.
Applications that use time information typically store that time
information as the value of a separate column rather than storing it
in the timestamp portion of the key.

Advanced Data Model Components
Accumulo’s data model includes additional components that help applications ach‐
ieve better performance and data protection. These components are extensions to the
basic concept of a column.

Columns are split into three components: a column family, a column qualifier, and a
column visibility.

Most applications will start by simply assigning the names of fields to the column
qualifier. Column families and column visibilities do not have to be populated. When
developers have an idea for how data will be accessed, and for the sensitivity levels of
various columns, these additional components can be used to help optimize and pro‐
tect information.

Column Families
Often, applications find that they will access some columns together, and not other
columns. Other times they need to access all of the columns within rows. This is
especially prevalent in analytical applications.

When scanning for only a subset of the columns, it can be useful to change the way
groups of columns are stored on disk so that frequently grouped columns are stored
together, and so that columns containing large amounts of data that are not always
scanned can be isolated.

Advanced Data Model Components | 19

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

For example, we might have some columns storing relatively small, structured data,
and other columns storing larger values such as text or perhaps media such as
imagery, audio, or video. In the Wikipedia table, the text column stores long text val‐
ues. Sometimes our application may need to scan just the structured details about a
user or multiple users and other times will need to scan the user details and the larger
columns containing media content.

To cause related columns to be stored in consecutive key-value pairs in Accumulo,
application designers can place these columns in the same column family. To apply
this to our earlier example, we can choose to put the text and comment columns
under a column family called content and the other columns under the metadata col‐
umn family. If we retrieve the metadata column family, the tablet server can do less
work to read just that one column family than if the individual metadata columns
were scattered throughout each row, interleaved with content columns.

Unlike Bigtable and HBase, Accumulo column families need not be declared before
being used, and Accumulo tables can have a very high number of column families if
necessary.

Although grouping columns into families can make retrieving a single column family
within one row more efficient, it can still be inefficient to read one column family
across multiple rows, because we’ll still have to scan over other column families
before accessing the next row. For example, it would be inefficient if we always had to
read the Wikipedia content off of disk when we are only interested in the user details.

To help avoid reading data unnecessarily from disk, application designers can choose
to assign column families to a locality group. Locality groups are stored in separate
contiguous chunks of data on disk so that an application that is only scanning over
column families in one locality group doesn’t need to read data from any other local‐
ity groups. This gives Accumulo more of a columnar-style storage that is amenable to
many analytical access patterns.

Applying locality groups to our earlier example, we can choose to put the content col‐
umn family in one locality group and the metadata column family in another locality
group. Before we assigned column families to locality groups, a scan configured to
read only the metadata columns would still end up reading the content columns off
of disk (Figure 1-12), and tablet servers would filter them out, returning only the data
requested.

20 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Figure 1-12. Reading over one column family still requires filtering out other column
families

Once we assign the content column family to its own locality group, Accumulo will
begin to store this textual content in a separate section on disk (Figure 1-13). Now
when we read just the columns containing Wikipedia metadata, we don’t have to read
all of the text for each article off of disk.

Accumulo allows the assignment of column families to locality groups to change over
time. New data written to Accumulo will always be written to disk according to the
current assignment of column families to locality groups. Any data written prior to
the change in assignment will need to be reprocessed before the benefit of the new
locality groups is realized. Accumulo will reprocess data on disk automatically via a
process called compaction, but compactions can also be forced as necessary. Using
compactions to get previously written data to reflect changes in locality group assign‐
ments is described in “Locality Groups” on page 138.

Advanced Data Model Components | 21

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Figure 1-13. Column families in different locality groups are stored together on disk

Column Visibility
Accumulo’s focus on supporting analysis of data from several different sources has
resulted in an additional component to the Bigtable data model called column visibil‐
ity. The column visibility component is designed to logically isolate certain types of
data based on sensitivity, by associating each value with a security label expression.
This enables data to be protected from unauthorized access and for data sets of differ‐
ing sensitivity to be stored in the same physical tables.

This feature is designed to reduce the amount of data movement that needs to occur
when an organization decides that an application or an analytical process is allowed
to look at two data sets. Imagine the case in which two data sets had to be stored in
two physically separate systems for security reasons, called system A and system B. If
one day an organization decides that it needs to join these data sets to answer an ana‐
lytical question, the data from one system would have to be physically moved into the
other system, say A into B, if there happens to be enough room. And the users of sys‐
tem B would have to be denied access to it while the data from system A resides there,
if not all of them are also authorized to read data from system A. Or perhaps a third
system will need to be stood up to handle the combination of this data, requiring that

22 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

new hardware be acquired, software installed, and the data from both system A and
system B to be copied to the new system. That process could take months.

If the data is already all stored together physically, and protected with column visibili‐
ties, then granting access of a single analytical application to both data sets is trivial.
While the analytical process is running, users authorized to read only one type of data
or another can continue to submit queries against the system without ever seeing
anything they aren’t authorized to see.

In our example, we might decide that the data residing under the comment and pageid
columns does not need to be exposed to applications that allow the public to read the
article text and titles (Figure 1-14), and so we can decide to protect the data in these
columns using the column visibility component of the key.

Figure 1-14. Two columns are deemed viewable by internal applications and users

The way we protect these values is by populating the column visibility components
with security label expressions, sometimes called simply security labels. Security label
expressions consist of one or more tokens combined by logical operators &, repre‐
senting logical AND, and |, representing logical OR. Subexpressions can be grouped
using parentheses.

In our simple example here, we are using just single-token expressions in our column
visibility. On disk these key-value pairs now look like Figure 1-15.

Advanced Data Model Components | 23

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Figure 1-15. Individual key-value pairs are labeled with column visibilities

Column visibilities are an extremely fine-grained form of access control. Sometimes
the term cell-level is used when discussing Accumulo’s ability to allow every value to
have its own security label, which is stored in the column visibility element of the key.
The term cell-level is used to contrast the granularity of Accumulo’s security model
with row-level or column-level security in which one can control access to all the data
in a row or all the data in a column. It is not often the case that any one raw data set
requires that each column of each row to have a different column visibility. Usually
some combination of row-level or column-level access control will suffice, which col‐
umn visibilities can support just as well.

But because a common application on Accumulo involves building secondary
indexes, perhaps across several types of data of differing sensitivity levels, each key-
value pair in an index will end up needing a specific column visibility based on the
row and column from which it originated. Applications that use these types of
indexes are very powerful because they allow different views of the data to be com‐
posed on the fly, according to the access level of the user performing the query.

For example, a user with only the public access token can scan this table and will only
see the data with the public token in the column visibility portion of the key
(Figure 1-16).

24 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Figure 1-16. View of only public data in the table

A user with both the public and internal access tokens will see all of the data in the
table when doing a scan (Figure 1-17).

Figure 1-17. View of all of the data in the table

Advanced Data Model Components | 25

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

A user or application with only the internal access token will only see the data with a
column visibility containing the internal token (Figure 1-18).

Figure 1-18. View of only internal data in the table

Because column visibilities are used to filter data after specific rows
and columns have been selected for a scan, table designers should
be careful not to design an application that relies too heavily on fil‐
tering, because this will impact read performance.

The assignment of access tokens to applications, individual users, or groups of users
is typically handled outside of Accumulo by a central user-management system,
although access tokens can be restricted in conjunction with Accumulo or using only
Accumulo if desired.

We discuss using column visibilities in designing applications in depth in “Column
Visibilities” on page 184.

Full Data Model
Now that we’ve discussed all of the components of the Accumulo data model we can
show the full model containing all components of the key, with the components of the
column broken out (Figure 1-19).

26 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Figure 1-19. Accumulo key structure

Not all of the components must be used. At the very least, you can choose to use only
the row ID and value portions of the key-value pair. In this case Accumulo will oper‐
ate like a simple key-value store. Many applications start with rows and columns, and
apply the use of additional components as designs are optimized.

Developers should consider carefully the components of the key that their application
requires when designing tables.

Tables
When stored in Accumulo, key-value pairs are grouped into tables. You can apply
some settings at the table level to control the behavior and management of the data.
The key-value pairs within tables are partitioned into tablets and distributed automat‐
ically across multiple machines in a cluster.

Each table begins life as a single tablet, spanning all possible keys. Once data is writ‐
ten to a table and it reaches a certain size threshold, the tablet server hosting it finds a
good point in the middle of the tablet and splits it into two tablets.

When a tablet server does this it always splits a tablet on a row boundary, guarantee‐
ing that the data for each row is fully contained within one tablet and therefore
resides on exactly one server. This is important to allowing consistent updates to be
applied atomically to the data in an individual row.

For example, as our Wikipedia table grows, it will eventually be split along a row
boundary into two tablets (Figure 1-20).

Tables | 27

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Figure 1-20. Splitting a tablet into tablets

Accumulo takes care of distributing responsibility for tablets evenly across tablet
servers. A single tablet server can host several hundred tablets or more
simultaneously.

We discuss the splitting process more in depth in “Splits” on page 365.

Introduction to the Client API
Accumulo provides application developers with a client library that is used to locate
and communicate with tablet servers for writing data, and reading one or more key-
value pairs.

Rather than providing a query language such as SQL, Accumulo provides developers
with a simple API and a high degree of control over data layout, so that by designing
tables carefully, many concurrent user requests can be satisfied very quickly with a
minimal amount of work done at read time. Accumulo’s read API is simple and
straightforward.

As you would expect from a key-value store, clients can provide a key and look up the
associated value, if it exists. Instead of returning one value, however, clients can opt to
scan a range of key-value pairs beginning at a particular key. The performance differ‐

28 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

ence between looking up and retrieving a single value versus scanning, say, a few hun‐
dred kilobytes of key-value pairs is fairly small, because the cost of reading that
amount of data sequentially is dominated by the disk seek time.

This pattern allows clients to design rows such that the data elements required for a
given request can be sorted near one another within the same table. Because rows
may not all have the same columns, applications can be designed to take advantage of
whatever data is available, potentially discovering new information in new columns
along the way.

The ability to discover new information via scanning is valuable for applications that
want to combine information about similar subjects from different sources that may
not contain the same information about each subject.

Furthermore, it is up to the application to interpret the columns and values retrieved.
Some applications store simple strings or numbers, while others store serialized pro‐
grammatic objects. Some applications store map tile images in values and assemble
the tiles retrieved into a user-facing web interface, the way Google Maps uses
Bigtable.

Accumulo is written in Java and provides a Java client library. Clients in other lan‐
guages can communicate with Accumulo via the provided Thrift proxy. All clients use
three basic classes to communicate with Accumulo:

BatchWriter

All new inserts, updates, and deletes are packaged up into Mutation objects and
given to a BatchWriter. A Mutation object contains a set of changes to be
applied to a single row. The batch writer knows how the table is split into tablets
and which servers the tablets are assigned to. Using this information, the batch
writer efficiently groups Mutation objects into batches to increase write through‐
put. Batch writers send batches of Mutation objects to various tablet servers. The
batch writer is multithreaded, and the trade-off between latency and throughput
can be tuned. See Figure 1-21.

Introduction to the Client API | 29

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Figure 1-21. Writing mutations

Scanner

Key-value pairs are read out of a table using a Scanner object. A scanner can start
at the beginning of a table or at a particular key, and can stop at the end of the
table or a given key. After seeking to the initial key, scanners proceed to read out
key-value pairs sequentially in key order until reaching the end of the table or the
specified ending key. Scanners can be configured to read only certain columns.
Additional configuration for a scanner can be made to apply additional logic
classes called iterators, and specific options to iterators, to alter the set of key-
value pairs returned from a particular scanner. See Figure 1-22.

30 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Figure 1-22. Scanning one row

BatchScanner

When multiple ranges of keys are to be read from a table, a BatchScanner can be
used to read the key-value pairs for the ranges using multiple threads. The ranges
are grouped by tablet server to maximize the efficiency of communication
between threads and tablet servers. This can be useful for applications whose
design requires many individual scans to answer a single question. In particular,
tables designed for working with time series, secondary indexes, and complex
text search can all benefit from using batch scanners. See Figure 1-23.

Introduction to the Client API | 31

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Figure 1-23. Scanning a batch of rows

More detail on developing applications using Accumulo’s API is found in the chapters
beginning with Chapter 3.

Approach to Rows
Accumulo takes a slightly different approach to rows in the client API than do some
other implementations based on Bigtable, such as HBase. Accumulo’s read API is
designed to stream key-value pairs to the client rather than to package up all the key-
value pairs for a row into a single unit before returning the data to the user.

This is often less convenient than working with data on a row-by-row basis, and
applications that want to work with entire rows can do additional configuration to
assist with this, as described in “Grouping by Rows” on page 110. The upside is that
rows in an Accumulo table can be very large and do not need to fit in the memory of
the tablet server or the client. Working with key-value pairs can come in handy when
row IDs are coming from external data and the number of columns per row may be
unknown or may vary widely, as can happen when building secondary indexes.

32 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Exploiting Sort Order
The trick to taking full advantage of Accumulo’s design is to exploit the fact that
Accumulo keeps keys sorted. This requires application designers to determine a way
to order the data such that most user queries can be satisfied with one or a small
number of scans, each consisting of a lookup into a table to return one or more
sequential key-value pairs.

A single scan is able to perform this lookup and return one or even hundreds of key-
value pairs, often in less than a second, even when tables contain trillions of key-value
pairs. Applications that understand and use this property can achieve subsecond
response times for most user requests without having to worry about performance
degrading as the amount of data stored in the system increases dramatically.

This sometimes requires creative thinking in order to discover a key design that
works for a particular application. A good example of this is the way Google describes
the row ID of its WebCrawl table in the Bigtable paper. In this table, the intent is to
provide users with the ability to look up information about a given website, identified
by the hostname. Because hostnames are hierarchical and because users may want to
look at a specific hostname or all hostnames within a domain, Google chose to trans‐
form the hostname to support these access patterns by reversing the order in which
domain name components are stored under the row ID, as shown in Table 1-1.

Table 1-1. Google’s WebCrawl row design

Row ID

com.google.analytics

com.google.mail

com.google.maps

com.microsoft

com.microsoft.bing

com.microsoft.developers

com.microsoft.search

com.microsoft.www

com.yahoo

com.yahoo.mail

Introduction to the Client API | 33

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

com.yahoo.search

com.yahoo.www

Achieving optimal performance also depends on the ability to satisfy user requests
without having to filter out or ignore a large amount of key-value pairs as a part of
the scan.

Because developers have such a high degree of control over how data is arranged,
there are a wide variety of options for designing tables. We cover these in depth in
Chapter 8.

Architecture Overview
Accumulo is a distributed application that depends on Apache Hadoop for storage
and Apache ZooKeeper for configuration (Figure 1-24).

Figure 1-24. Accumulo architecture

Because Accumulo is based on Google’s Bigtable, as HBase is, it uses some of the same
names for components that Bigtable does, but there are some differences (Table 1-2).

Table 1-2. Accumulo and HBase Bigtable naming conventions

Apache Accumulo Bigtable Apache HBase

Tablet Tablet Region

Tablet Server Tablet Server Region Server

Minor Compaction Minor Compaction Flush

34 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Major Compaction Merging Compaction Minor Compaction

(Full) Major Compaction Major Compaction Major Compaction

Write-Ahead Log Commit Log Write-Ahead Log

HDFS GFS HDFS

Hadoop MapReduce MapReduce Hadoop MapReduce

MemTable MemTable MemStore

RFile SSTable HFile

ZooKeeper Chubby ZooKeeper

ZooKeeper
ZooKeeper is a highly available, highly consistent, distributed application in which all
data is replicated on all machines in a cluster so that if one machine fails, clients read‐
ing from ZooKeeper can quickly switch over to one of the remaining machines. Zoo‐
Keeper plays the role for Accumulo of a centralized directory and lock service that
Google’s Chubby provides for Bigtable. In addition, write replication is synchronous,
which means clients wait until data is replicated and confirmed on all machines
before considering a write successful. In practice, ZooKeeper instances tend to con‐
sist of three or five machines.

Accumulo uses ZooKeeper to store configuration and status information and to track
changes in the cluster. ZooKeeper is also used to help clients begin the process of
locating the right servers for the data they seek.

Hadoop
In the same way that Google’s Bigtable stores its data in a distributed filesystem called
GFS, Accumulo stores its data in HDFS. Accumulo relies on HDFS to provide persis‐
tent storage, replication, and fault tolerance. Having a separate storage layer allows
Accumulo to balance the responsibility for serving portions of tables independently
of where they are stored, although data tends to be served from the same server on
which it is stored.

Like Accumulo, HDFS is a distributed application, but one that allows users to view a
collection of machines as a single, scalable filesystem. HDFS files can be very large, up
to terabytes per file. HDFS automatically breaks these files into blocks—by default 64
MB or 128 MB in size depending on the version of HDFS—and distributes these
blocks across the cluster uniformly. In addition, each block is replicated on multiple

Architecture Overview | 35

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

machines (Figure 1-25). The default replication factor is three in order to avoid losing
data when one machine or even an entire rack of servers becomes unavailable. Usu‐
ally, one replica is written to the local hard drive, another to another machine in the
same rack, and a third to a machine in another rack. This way, even the loss of an
entire rack won’t cause data loss.

Figure 1-25. Hadoop Distributed File System

Accumulo
An Accumulo instance consists of several types of processes running on one to thou‐
sands of machines.

Analogous to HDFS files, Accumulo tables can be very large in size, up to tens of tril‐
lions of key-value pairs or more. Accumulo automatically partitions these into tablets
and assigns responsibility for hosting tablets to servers called tablet servers
(Figure 1-26).

However, unlike HDFS block replicas, Accumulo tablets are assigned to exactly one
tablet server at a time. This allows one server to manage all the reads and writes for a
particular range of keys, enabling reads and writes to be highly consistent because no
synchronization has to occur between tablet servers. When a client writes a piece of
information to a row, clients reading that row immediately after the write will see the
new information.

Typically, a server will run one tablet server process and one HDFS DataNode process
(Figure 1-27). This allows most tablets to have a local replica of the files they
reference.

36 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Figure 1-26. Accumulo

As a result, a tablet server can host a tablet whose file replicas are all located on other
servers. This situation does not prevent the tablet’s data from being read and is usu‐
ally temporary, because any time a tablet server performs compaction of a tablet’s
files, it will by default create one local replica of each new file. Over time, a tablet
tends to have one local replica for each file it references.

Figure 1-27. Typical process distribution

Architecture Overview | 37

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Tablet servers
Tablet servers host a set of tablets and are responsible for all the writes and reads for
those tablets. Clients connect directly to tablet servers to read and write data. Tablet
servers can host hundreds or even thousands of tablets, each consisting of about 1 GB
of data or more. Tablet servers store data written to these tablets in memory and in
files in HDFS, and handle scanning data for clients, applying any additional filtering
or processing the clients request.

Master
Every Accumulo cluster has one active master process that is responsible for making
sure all tablets are assigned to exactly one tablet server at all times and that tablets are
load-balanced across servers. The master also helps with certain administrative oper‐
ations such as startup, shutdown, and table and user creation and deletion.

Accumulo’s master can fail without causing interruption to tablet servers and clients.
If a tablet server fails while the master is down, some portion of the tablets will be
unavailable until a new master process is started on any machine. When the new
master process starts, it will reassign any tablets that do not have a tablet server
assignment.

It is possible to configure Accumulo to run multiple master processes so that one
master is always running in the event that one fails. Whichever process obtains a
master ZooKeeper lock first will be the active master, and the remaining processes
will watch the lock so that one of them can take over if the active master fails.

Garbage collector
The garbage collector process finds files that are no longer being used by any tablets
and deletes them from HDFS to reclaim disk space.

A cluster needs only one garbage collector process running at any given time.

Monitor
Accumulo ships with an informative monitor that reports cluster activity and logging
information into one web interface (Figure 1-28). This monitor is useful for verifying
that Accumulo is operating properly and for helping understand and troubleshoot
cluster and application performance. “Monitor Web Service” on page 429 gives
descriptions of the information displayed by the monitor.

38 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Figure 1-28. Monitor UI

Client
Accumulo provides a Java client library for use in applications. Many Accumulo cli‐
ents can read and write data from an Accumulo instance simultaneously. Clients
communicate directly with tablet servers to read and write data (Figure 1-29). Occa‐
sionally, clients will communicate with ZooKeeper and with the Accumulo master for

Architecture Overview | 39

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

certain table operations, but no data is sent or received through ZooKeeper or the
master.

Figure 1-29. Accumulo clients

Thrift proxy
As of version 1.5, Accumulo provides an optional Thrift proxy that can be used to
develop clients in languages other than those that run on the Java Virtual Machine
(JVM). These other clients can connect to the Thrift proxy, which communicates
with the Accumulo cluster and allows data to be read and written by these other
clients.

Accumulo versions 1.4 and older use logger processes to record
each new write in an unsorted write-ahead log on disk that can be
used to recover any data that was lost from the memory of a failed
tablet server. Accumulo 1.5 no longer has dedicated logger pro‐
cesses. The write-ahead logs are written directly to files in HDFS.

40 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

A Typical Cluster
A typical Accumulo cluster consists of a few control nodes and a few to many worker
nodes (Figure 1-30).

Control nodes include:

• One, three, or five machines running ZooKeeper
• Ideally, two machines running HDFS NameNode processes, one active, one for

failover
• One to two machines running Accumulo master, garbage collector, and/or moni‐

tor
• For Hadoop 1, an optional machine running a Hadoop job tracker process if

MapReduce jobs are required
• For Hadoop 2, an optional machine running a YARN resource manager process

if MapReduce jobs are required

Each worker node typically includes:

• One HDFS DataNode process for storing data
• One tablet server process for serving queries and inserts
• For Hadoop 1, an optional Hadoop task tracker for running MapReduce jobs
• For Hadoop 2, an optional YARN node manager for running MapReduce jobs

The logger process mentioned in Accumulo versions 1.4 and earlier
would have typically run on each worker node.

In addition, applications require one to many processes using the Accumulo client
library to write and read data.

Architecture Overview | 41

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Figure 1-30. A typical cluster

Additional Features
In addition to the features already described, Accumulo provides more features to
help you build scalable applications running on large clusters. Not all of these are
unique to Accumulo, but the combination of these features is likely unique.

Automatic Data Partitioning
Accumulo tables can be very large, up to petabytes in size. You can tune the tablet-
splitting process, but you don’t have to worry about choosing a good key on which to
partition because Accumulo automatically finds good split points.

High Consistency
Accumulo provides a highly consistent view of the data. Tablets are assigned to
exactly one tablet server at a time. An update to a particular key’s value is
immediately reflected in subsequent reads because those updates and reads go to the
same server.

42 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Other NoSQL systems allow writes for a particular key to happen on more than one
server, and consistency is achieved via communication between these servers.
Because this communication is not instantaneous, these systems are considered even‐
tually consistent. One advantage of eventually consistent systems is that a single
instance of the database can run over geographically disparate data centers, and
writes to some servers can continue even if those servers cannot communicate with
all of the other servers participating in the cluster.

An Accumulo instance is designed to be deployed within a single data center and to
provide a highly consistent view of the data. One advantage of high consistency is
that application logic can be simplified.

Automatic Load Balancing
The Accumulo master automatically balances the responsibility for serving tablets
across tablet servers. When one tablet server has more tablets than another, the mas‐
ter process will instruct the overloaded tablet server to stop serving a tablet and
instruct the underloaded tablet server to begin hosting that tablet.

Massive Scalability
Accumulo is considered a horizontally scalable application, meaning that you can
increase the capabilities of the system by adding more machines, rather than by
replacing existing machines with bigger, more capable machines (vertical scaling).
New machines joining an Accumulo cluster begin participating in the cluster very
quickly, because no data movement is required for these new machines to start host‐
ing tablets and the reads and writes associated with them.

Accumulo can also work well at large scale, meaning on clusters consisting of thou‐
sands of machines hosting petabytes of data.

A major benefit to building on Accumulo is that an application can be written and
deployed on a small cluster when the amount of data and the number of concurrent
writes and reads is low. As data or read-write demand grows, the Accumulo cluster
can be expanded to handle more data and reads without an application rewrite.

Many distributed systems today are built to scale from one server to many. Accumulo
may be one of the most scalable data stores out there. As of version 1.6, Accumulo is
capable of running across multiple instances of HDFS with different HDFS NameNo‐
des. This means that Accumulo can be configured to support more update operations
than can be accommodated by a single HDFS instance.

Failure Tolerance and Automatic Recovery
Like Hadoop, Accumulo is designed to survive single server failures and even the fail‐
ure of a single rack. If a single Accumulo tablet server fails, the master process notes

Additional Features | 43

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

this and reassigns its tablets to the remaining tablet servers. Accumulo clients auto‐
matically manage the failover from one tablet server to another. Application develop‐
ers do not need to worry about retrying their operations simply because a machine
fails.

In a large cluster these types of failures are commonplace, and Accumulo does a lot of
work to minimize the burden on application developers as well as administrators so
that a single instance running on thousands of machines is tractable.

Support for Analysis: Iterators
Storing large amounts of data and making it searchable is only part of the solution to
the problem of taking full advantage of big data. Often data needs to be aggregated,
summarized, or modeled in order to be fully understood and utilized. Accumulo pro‐
vides a few mechanisms for performing analysis on data in tables.

One of these mechanisms, Accumulo iterators, enable custom aggregation and sum‐
marization within tablet servers to allow you to maintain result sets efficiently and
store the data at a higher level of abstraction. They are called iterators because they
iterate over key-value pairs and allow developers to alter the data before writing to
disk or returning information to users.

There are various types of iterators that range from filtering to simple sums to main‐
taining a set of statistics. These are covered in “Iterators” on page 209.

Developers have used iterators to incrementally update edge weights in large graphs
for applications such as social network analysis or computer network modeling. Oth‐
ers have used iterators to build complex feature vectors from a variety of sources to
represent entities such as website users. These feature vectors can be used in
machine-learning algorithms like clustering and classification to model underlying
groups within the data or for predictive analysis.

Support for Analysis: MapReduce Integration
Beyond iterators, Accumulo supports analysis via integration with the popular
Hadoop MapReduce framework. Accumulo stores its data in HDFS and can be used
as the source of data for a MapReduce job or as the destination of the output from a
MapReduce job. MapReduce jobs can either read from tablet servers using the Accu‐
mulo client library, or from the underlying files in which Accumulo stores data via
the use of specific MapReduce input and output formats.

In either case, Accumulo supports the type of data locality that MapReduce jobs
require, allowing MapReduce workers to read data that is stored locally rather than
having to read it all from remote machines over the network.

We cover using MapReduce with Accumulo in depth in Chapter 7.

44 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Data Lifecycle Management
Accumulo provides a good degree of control over how data is managed in order to
comply with storage space, legal, or policy requirements.

In addition, the timestamps that are part Accumulo’s key structure can be used with
iterators to age data off according to a policy set by the administrator. This includes
aging off data older than a certain amount of time from now, or simply aging off data
older than a specific date.

Timestamps can also be used to distinguish among two or more versions of otherwise
identical keys. The built-in VersioningIterator can be configured to allow any
number of versions, or only a specific number of versions, to be stored. Google’s orig‐
inal Bigtable paper describes using timestamps to distinguish among various versions
of the Web as it was crawled and stored from time to time.

With this built-in functionality in the database, work that otherwise must be done in
a batch-oriented fashion involving a lot of reading and writing data back to the sys‐
tem can be performed incrementally and efficiently.

We cover age-off in depth in “Data Age-off ” on page 450.

Compression
Accumulo compresses data by default using several methods. One is to apply a com‐
pression algorithm such as GZip or LZO to blocks of data stored on disk. The other is
a technique called relative-key encoding, in which the shared prefixes of a set of keys
are stored only once, and the following keys only need express the changes to the ini‐
tial key.

Compressing data in this way can improve I/O, because reading compressed data and
doing decompression can be faster than reading uncompressed data and not doing
decompression. Compression also helps offset the cost of the block replication that is
performed by HDFS.

The Bigtable paper describes two types of compression. One compresses long com‐
mon strings across a large window, and the other does compression over small win‐
dows of data. These types of custom compression are not implemented in Accumulo.

Robust Timestamps
When Accumulo tablet servers are assigning timestamps to key-value pairs, Accu‐
mulo ensures that the timestamps are internally consistent. Accumulo only assigns
new timestamps that are later than the most recent timestamp for a given tablet. In
other words, timestamps assigned by a tablet server are guaranteed to increase.

Additional Features | 45

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

This addresses the inevitable situation in which some servers in the cluster have
clocks that are off and are applying timestamps from the future to keys. If these keys
were transferred to another server, newly written data would be treated as older than
existing data. It would be very confusing for users not to see the data they expect. It
would be an even more critical problem in the Accumulo metadata that keeps track of
tablets and their files. Entire data files could be lost if this problem were allowed to
occur. Thus, Accumulo only assigns new timestamps that are later than the most
recent timestamp for a given tablet.

It is also possible to use a one-up counter for timestamps by configuring a table with
a time type of logical instead of the default time type of milliseconds since the UNIX
epoch (Midnight UTC on January 1, 1970). In either case, tablet servers ensure that a
newly written key-value pair is never stamped with a timestamp that precedes the
most recent timestamp for the key’s tablet. This does not, however, prevent arbitrary
user-assigned timestamps from being written to a table.

Accumulo and Other Data Management Systems
Application developers and systems engineers face a wide range of choices for man‐
aging their data today. Often the differences among these options are subtle and
require a deep understanding of technologies’ capabilities as well as the problem
domain. To help in deciding when Accumulo is or isn’t a good fit for a particular pur‐
pose, we compare Accumulo to some other popular options.

Comparisons to Relational Databases
Relational databases, by far the most popular type of database in use today, have been
around for several decades and serve a wide variety of uses. Understanding the rela‐
tive strengths and weaknesses of these systems is useful for determining how and
when to use them instead of Accumulo.

SQL
One of the strengths of relational databases is that they implement a set of operations
known as relational algebra codified in Structured Query Language (SQL). SQL
allows users to perform rich and complex operations at query time, including set
intersection, joins, aggregations, and sorting. Relational databases are heavily opti‐
mized to perform these operations at query time.

One challenge of using SQL is that of performing this work at query time on a large
amount of data. Relational Massively Parallel Processing (MPP) databases approach
this by dividing the work to perform SQL operations among many servers. The
approach taken by Accumulo is to encourage aggressive precomputation where
possible, often using far more storage to achieve the space-time trade-off, in order to

46 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

minimize the work done at query time and maintain fast lookups even when storing
petabytes of data.

Space-Time Trade-off and Cheap Space
In computer science, the space-time trade-off refers to the fact that you can use more
space to store the results of computation in order to reduce the time required to get
answers to users. Conversely, you can save space by waiting until users ask and com‐
puting answers on the fly.

Over the past decade the cost of storage has dropped dramatically. As a result, Accu‐
mulo applications tend to precompute as much as possible, often combining into one
table data that would be stored as two or more tables in a relational database.

When applications are designed to support answering analytical questions about enti‐
ties of interest, it is common to precompute the answer for all entities periodically, or
to update the answers via iterators when new raw data is ingested, so that queries can
consist of a simple, very fast lookup.

Transactions
Many relational databases provide very strong guarantees around data updates, com‐
monly termed ACID, for Atomicity, Consistency, Isolation, and Durability.

ACID
Atomicity

Either all the changes in a transaction are made or none is made. No partial
changes are committed.

Consistency
The database is always in a consistent state. This means different things in differ‐
ent contexts. For databases in which some rows can refer to others, consistency
means that a referenced row must exist.

Isolation
Each transaction is made independent of other transactions. Changes appear the
same whether done serially or concurrently.

Durability
Changes are persistent and survive certain types of failure.

In relational databases these properties are delivered via several mechanisms. One
such mechanism is a transaction, which bundles a set of operations together into a

Accumulo and Other Data Management Systems | 47

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

logical unit. Transactions are important for supporting operational workloads such as
maintaining information about inventory, keeping bank accounts in order, and track‐
ing the current state of business operations. Transactions can contain changes to mul‐
tiple values within a row, changes to values in two or more rows in the same table, or
even updates to multiple rows in multiple tables. These types of workloads are con‐
sidered online transaction processing (OLTP).

Accumulo guarantees these ACID properties for a single mutation (a set of changes
for a single row) but does not provide support for atomic updates across multiple
rows. Nor does Accumulo maintain consistent references between rows. Row isola‐
tion for reads can be obtained by enabling the feature for a particular scanner (see
“Isolated Row Views” on page 111).

Normalization
If you store multiple copies of the same data in different places, it can be difficult to
ensure a high degree of consistency. You might update the value in one place but not
the other. Therefore, storing copies of the same values should be avoided.

Values that don’t have a one-to-one relationship to each other are often divided into
separate tables that keep pointers between themselves. For example, a person typically
only has one birth date, so you can store birth date in the same table as first name and
other one-to-one data (Figure 1-31).

But a person may have many nicknames or favorite songs. This type of one-to-many
data is stored in a separate table (Figure 1-32). There is a well-defined process, called
normalization, for deciding which data elements to put into separate tables. There are
several degrees to which normalization can be applied, but it typically involves break‐
ing out data involved in one-to-many or many-to-many relationships into multiple
tables and joining them at query time.

Another group of workloads is termed online analytical processing (OLAP). Rela‐
tional databases have been used to support these kinds of workloads as well. Often
analysis takes the approach of looking at snapshots of operational data, or simply may
bring together reference data that doesn’t require updates but requires efficient read
and aggregation capabilities. Because these data snapshots are no longer updated,
there is no opportunity for the data to become inconsistent, and the need for normal‐
ization is diminished.

Because OLAP workloads require fewer updates, tables are often precombined, or
denormalized, to cut down on the operations that are carried out a query time
(Figure 1-33). This is another example of the space-time trade-off, whereby an
increase in storage space used reduces the time to get data in the format requested.

48 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Figure 1-31. A table containing a one-to-one relationship

Figure 1-32. An example of normalization

Accumulo and Other Data Management Systems | 49

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

2 “NoSQL Relational Database Management System: Home Page.” Strozzi.it. 2 October 2007. Retrieved 29
March 2010.

Figure 1-33. An example of denormalization

In the example in Figure 1-33 of denormalizing data for analysis, it is easy to see how
you would want a system like Accumulo that is highly scalable, employs compression
of redundant data, and handles sparse data well.

Accumulo does not implement relational algebra. Accumulo provides ACID guaran‐
tees, but on a more limited basis. The only transactions allowed by Accumulo are
inserts, deletes, or updates to multiple values within a single row. These transactions
are atomic, consistent, isolated, and durable. But a set of updates to multiple rows in
the same table, or rows in different tables, do not have these guarantees.

Accumulo is therefore often used for massive operational workloads that can be per‐
formed via single-row updates, or for massive OLAP workloads.

Comparisons to Other NoSQL Databases
Accumulo belongs to a group of applications known as NoSQL databases. The term
NoSQL refers to the fact that these databases support data access methods other than
SQL and is short for Not SQL or Not Only SQL—although the engineer who coined
the term NoSQL, Carlo Strozzi, has expressed that it may be more appropriate to call
these applications nonrelational databases.2

50 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Rather than using SQL for creating queries to fetch data and perform aggregation,
Accumulo provides a simplified API for writing and reading data. Departing from the
relational model and SQL has two major implications: increased flexibility in how
data is modeled and stored, and the fact that some operations that other databases
perform at query time are instead applied when data is written. In other words,
results are precomputed so that query-time operations can consist solely of simple,
fast tasks.

Compared to other NoSQL databases, Accumulo has some features that make it espe‐
cially dynamic and scalable.

Data model
NoSQL it’s a somewhat nebulous term, and is applied to applications as varied as
Berkley DB, memcached, Bigtable, Accumulo, MongoDB, Neo4j, Amazon’s Dynamo,
and others.

Some folks have grouped distributed software systems into categories based on the
data model supported. These categories can consist of the following:

Pure key-value
• Riak
• Dynamo
• memcached

Columnar (Bigtable)
• Bigtable
• Accumulo
• HBase
• Cassandra

Document
• MongoDB
• CouchDB

Graph
• Neo4j

Some of these applications have in common a key-value data model at a high level.
Accumulo’s data model consists of key-value pairs at the highest level, but because of
the structure of the key it achieves some properties of conventional two-dimensional,

Accumulo and Other Data Management Systems | 51

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

flat-record tables, columnar and row-oriented databases, and a little bit of hierarchy
in the data model via column families and column qualifiers.

Apache Accumulo, Apache Cassandra, and Apache HBase share this basic Bigtable
data model.

Other NoSQL data stores, such as MongoDB and CouchDB, are considered to be
document-oriented stores because they store JavaScript Object Notation (JSON)–like
documents natively.

Neo4j is a graph-oriented database whose data model consists of vertices and edges.

Choosing which data model is most appropriate for an application is probably the
first and foremost factor one should consider when choosing a NoSQL technology.
There is some flexibility in applying the data model because, for example, a key-value
store can be made to store graph data and because a document-based data model is
sort of a superset of the key-value model.

Key ordering
Some NoSQL databases use hashing to distribute their keys to servers. This makes
lookups simple for clients but can require some data to be moved when machines are
added to or removed from the cluster. It can also make scanning across a sequential
range of keys more difficult or impossible.

Because Accumulo maintains its own dynamic mapping of keys to servers it can very
quickly handle machines joining or leaving the cluster, with no data movement and
minimal interruption to clients. In addition, the key space is partitioned dynamically
and automatically so that the data is distributed evenly throughout the cluster.

Tight Hadoop integration
Many NoSQL databases have their own storage mechanism. Accumulo uses HDFS.
This offers several advantages:

• Accumulo can use the output of MapReduce jobs without having to move large
amounts of data. Accumulo can also serve as the source of input data for MapRe‐
duce jobs. This allows Hadoop clusters to be used for mixed workloads.

• Accumulo benefits from the significant work done by the Hadoop community to
make HDFS resilient, scalable, and stable.

• Because Hadoop is becoming the de-facto standard for large data processing in
many organizations, Accumulo reduces the cost of acquiring a scalable, low-
latency query capability by building on existing investment in Hadoop.

52 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

High versus eventual consistency
Some NoSQL databases are designed to run over geographically distributed data cen‐
ters and allow data to be written in more than one place simultaneously. This results
in a property known as eventual consistency, in which a value read from the database
may not be the most up-to-date version.

Accumulo is designed to run within a single data center and provides a highly consis‐
tent view of the data at all times. This means that users are guaranteed to always see
the most up-to-date version of the data, which simplifies application development.

When comparing NoSQL databases, you may want to consider which trade-offs have
been made in the design. In particular, much attention has been paid to the CAP the‐
orem, which states that in designing a distributed database, you can choose to pro‐
vide at most two of the following properties: high Consistency, Availability, and
Partition-tolerance (hence CAP). A good treatment of this concept is in “Brewer’s
Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web Serv‐
ices” by Seth Gilbert and Nancy Lynch.

See “Accumulo and the CAP Theorem” on page 379 for a discussion on the choices
made in the Accumulo design with respect to the CAP Theorem.

Column visibility and access control
Organizations are turning to Accumulo in order to satisfy stringent data-access
requirements and to comply with legal and corporate requirements and policies.

Most databases provide a level of access control over the data. Accumulo’s column
visibilities are often more fine-grained and can be used to implement a wide variety
of access-control scenarios.

HBase in particular has implemented Accumulo’s column visibilities—including the
same types of security label expressions as Accumulo as well as a different mode of
access involving attaching access-control lists (ACLs) to cells.

One important note is that HBase includes a NOT operator (!) that can make it impos‐
sible to allow users to view the data using a subset of all their tokens, because they
could remove a token used as part of a NOT expression to protect data. See the Accu‐
mulo mailing list for the thread “‘NOT’ operator in visibility string.”

For example, suppose there were multiple cells with the following labels:

 kvpair1: private
 kvpair2: (private | admin) & !probationary
 kvpair3: admin

To query Accumulo’s key-value pairs, the user must always provide a list of authoriza‐
tion tokens to use for the query. Accumulo’s built-in ColumnVisibilityFilter deter‐
mines whether a particular set of tokens is sufficient to view a particular key-value

Accumulo and Other Data Management Systems | 53

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

pair. Each user has a maximum set of tokens he is allowed to use for queries. It is not
uncommon for applications developed on Accumulo to allow users to issue queries
with a subset of their allowed tokens in order to see data as it would be viewed at dif‐
ferent visibility levels. For example, a user with both the private and admin tokens
might choose to query the data with just the private token. This helps with publishing
data to other groups of users that are granted different authorization tokens.

In the presence of the NOT operator, applications cannot allow users to view the data
with any fewer than all of their tokens, because removing a token from a query would
increase the number of key-value pairs visible to the user, amounting to an elevation
of privilege. In the preceding example, imagine issuing a query with the private and
probationary tokens versus a query with just the private token.

Another important note is that HBase does not consider the security label expression
to be a part of the key portion of the data model, as Accumulo does. This implies a
model in which a key-value pair at one visibility level can be overwritten with a dif‐
ferent visibility level. In Accumulo’s visibility model, you can store multiple values at
different visibility levels for the same row and column, because the visibility is con‐
sidered part of the key. It is not possible to overwrite one visibility with another less
restrictive visibility.

HBase’s implementation is also a bit different from Accumulo’s in that it utilizes cop‐
rocessors since HBase doesn’t have a construct like Accumulo iterators. There may be
performance differences as a result.

MongoDB has recently added a feature called redact as part of its Aggregation Frame‐
work that can be used to filter out subdocuments based on a flexible set of expres‐
sions. It appears likely that Accumulo’s filtering logic could also be implemented in
this framework.

Iterators
Accumulo’s iterators allow application developers to push some computation to the
server side, which can result in a dramatic increase in performance depending on the
operations performed. HBase provides a mechanism called coprocessors, which exe‐
cute code and can be triggered at many places. Unlike coprocessors, iterators operate
in only three places, are stackable, and are an integral part of the data processing
pipeline since much of the tablet server’s core behavior is implemented in built-in
system iterators.

Iterators are applied at scan time, when flushing memory to disk
(minor compaction), and when combining files (major
compaction).

54 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Because iterators can be used much like MapReduce map or combine functions, iter‐
ators can help execute analytical functionality in a more streamlined and organized
manner than batch-oriented MapReduce jobs. Developers looking to efficiently create
and maintain result sets should consider iterators as an option.

Dynamic column families and locality groups
As mentioned in “Column Families” on page 19, Accumulo can have any number of
column families, and column families can be assigned arbitrarily to locality groups.
Accumulo does not require column families to be declared before they can be used.
Accumulo stores key-value pairs together on disk according to how their column
families are mapped to locality groups within a single file, rather than using separate
files or directories to separate the data, which keeps file management overhead con‐
stant. Furthermore, changes can be made to how the data is stored on disk by reconfi‐
guring locality groups on the fly, without changing how data is modeled in the
Accumulo key.

In contrast, HBase requires column families to be declared beforehand, and each col‐
umn family is stored in a separate directory in HDFS, which drastically limits the
flexibility of column family usage. Because column families are mapped to HDFS
directories in HBase, they must consist of printable characters, whereas in Accumulo
they are arbitrary byte arrays. Because every column family is a separate storage
directory in HBase, in practice it is recommended that tables have fewer than 10 col‐
umn families total (see Lars George’s HBase: The Definitive Guide [O’Reilly]). Each
column family in HBase is effectively in its own locality group, and multiple families
cannot be grouped together.

File handle resources are limited per server, and the overall number of files and direc‐
tories in HDFS is limited by the capacity of the NameNode, so having the number of
files be dependent on your specific data model rather than on the overall amount of
data becomes a consequence that every application must consider. Accumulo applica‐
tion designers do not have to consider this problem because Accumulo does not have
this limitation.

HBase requires that at least one column family be declared per table, and every key-
value pair inserted must specify a column family, whereas Accumulo does not require
the column family portion of the key to be filled out. It can be left blank, even if col‐
umn qualifiers or other parts of the key are filled out.

Support for very large rows
Accumulo does not assume that rows must fit entirely in memory. Key-value pairs are
streamed back to the client in batches, and it’s possible for the client to fetch a portion
of a row first and to stream the rest of the row in separate batches.

Accumulo and Other Data Management Systems | 55

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

An example of an application design that may require arbitrarily large rows is in the
use of tables to store secondary indexes for document search, where the row ID is
used to store search terms that may be mapped to many document IDs stored in col‐
umn qualifiers. The row corresponding to a common search term would be especially
large, because that term is likely to appear in a large number of documents.

Parallelized BatchScanners
In addition to being able to scan over a single range of key-value pairs, Accumulo
provides a BatchScanner in its client API that can be used to fetch rows from multi‐
ple places in a table simultaneously in multiple threads. This is also useful for applica‐
tions performing queries using secondary indexes.

Namespaces
Accumulo tables can be assigned to a namespace, which enables them to be config‐
ured and managed as a group. This makes it easier to have multiple groups of people
managing tables in the same cluster. See “Table Namespaces” on page 160 for details.

Use Cases Suited for Accumulo
Accumulo’s design represents a set of objectives and technical features different from
those in data management systems such as filesystems and relational databases.
Application and system designers need to understand how these features work
together. We present here a few applications that could leverage Accumulo’s strengths.

A New Kind of Flexible Analytical Warehouse
In attempts to build a system to analyze all the data in an organization by bringing
together many disparate data sources, three problems can easily arise: a scalability
problem, a problem managing sparse dynamic data, and security concerns.

Accumulo directly addresses all three of these with horizontal scalability, a rich key-
value data model that supports efficiently storing sparse data and that facilitates dis‐
covery, and fine-grained access control. An analytical data warehouse built around
Accumulo is still different from what one would build around a relational database.
Analytical results would be aggressively precomputed, potentially using MapReduce.
Many types of data could be involved, including semistructured JSON or XML, or
features extracted from text or imagery.

Building the Next Gmail
The original use case behind Bigtable was for building websites that support massive
scale in two dimensions: number of simultaneous users and amount of data managed.
If your plan is to build the next Gmail, Accumulo would be a good starting point.

56 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Massive Graph or Machine-Learning Problems
Features such as iterators, MapReduce support, and a data model that supports stor‐
ing dimensional sparse data make Accumulo a good candidate for creating, maintain‐
ing, storing, and processing extremely large graphs or large sets of feature vectors for
machine-learning applications.

MapReduce has been used in conjunction with Accumulo’s scan capabilities to effi‐
ciently traverse graphs with trillions of edges, processing hundreds of millions of
edges per second.

Some machine-learning techniques, especially nonparametric algorithms such as k-
nearest neighbors, are memory-based and require storing all the data rather than
building a statistical model to represent the data. Keeping or “remembering” all the
data points is what is meant by “memory-based,” not that the data all lives in RAM.
Accumulo is able to store large amounts of these data points and provides the basic
data selection operations for supporting these algorithms efficiently. See “Machine
Learning” on page 343 for more on this.

In addition, for predictive applications that use models built from slowly changing
historical data, Accumulo can be used to store historical data and make it available
for query, and to support building models from this data via MapReduce. Accumulo’s
ability to manage large tables allows users to use arbitrarily complex predictive mod‐
els to score all known entities and store their results for fast lookup, rather than hav‐
ing to compute scores at query time.

Relieving Relational Databases
Because relational databases have performed well over the past several decades, they
have become the standard place for putting all data and have had to support a wide
variety of data management problems. But as database expert Michael Stonebraker
and others have argued, trying to have only one platform can result in challenges
stemming from the difficulty of optimizing a single system for many use cases.

Accumulo has been used to offload the burden of storing large amounts of raw data
from relational databases, freeing them up for more specialized workloads such as
performing complex runtime operations on selected subsets or summaries of the
data.

Massive Search Applications
Google has used Bigtable to power parts of its primary search application. Accumulo
has features such as automatic partitioning, batch scanning, and flexible iterators that
can be used to support complex and large-scale text search applications.

Use Cases Suited for Accumulo | 57

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

Applications with a Long History of Versioned Data
Wikipedia is an application with millions of articles edited by people around the
world. Part of the challenge of these types of massive-scale collaborative applications
is storing many versions of the data as users edit individual elements. Accumulo’s data
model allows several versions of data to be stored, and for users to retrieve versions in
several ways. Accumulo’s scalability makes having to store all versions of data for all
time a more tractable proposition.

58 | Chapter 1: Architecture and Data Model

www.itbook.store/books/9781449374181

https://itbook.store/books/9781449374181

	Copyright
	Table of Contents
	Foreword
	Preface
	Goals and Audience
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Architecture and Data Model
	Recent Trends
	The Role of Databases
	Distributed Applications
	Fast Random Access
	Accessing Sorted Versus Unsorted Data

	Versions
	History
	Data Model
	Rows and Columns
	Data Modification and Timestamps

	Advanced Data Model Components
	Column Families
	Column Visibility
	Full Data Model

	Tables
	Introduction to the Client API
	Approach to Rows
	Exploiting Sort Order

	Architecture Overview
	ZooKeeper
	Hadoop
	Accumulo
	A Typical Cluster

	Additional Features
	Automatic Data Partitioning
	High Consistency
	Automatic Load Balancing
	Massive Scalability
	Failure Tolerance and Automatic Recovery
	Support for Analysis: Iterators
	Support for Analysis: MapReduce Integration
	Data Lifecycle Management
	Compression
	Robust Timestamps

	Accumulo and Other Data Management Systems
	Comparisons to Relational Databases
	Comparisons to Other NoSQL Databases

	Use Cases Suited for Accumulo
	A New Kind of Flexible Analytical Warehouse
	Building the Next Gmail
	Massive Graph or Machine-Learning Problems
	Relieving Relational Databases
	Massive Search Applications
	Applications with a Long History of Versioned Data

	Chapter 2. Quick Start
	Demo of the Shell
	The help Command
	Creating a Table and Inserting Some Data
	Scanning for Data
	Using Authorizations
	Using a Simple Iterator

	Demo of Java Code
	Creating a Table and Inserting Some Data
	Scanning for Data
	Using Authorizations
	Using a Simple Iterator

	A More Complete Installation
	Other Important Resources
	One Last Example with a Unit Test
	Additional Resources

	Chapter 3. Basic API
	Development Environment
	Obtaining the Client Library
	Using Maven
	Configuring the Classpath

	Introduction to the Example Application: Wikipedia Pages
	Wikipedia Data
	Data Modeling
	Obtaining Example Code
	Downloading Sample Wikipedia Pages
	Downloading All English Wikipedia Articles

	Connect
	Insert
	Committing Mutations
	Handling Errors
	Insert Example
	Using Lexicoders
	Writing to Multiple Tables

	Lookups and Scanning
	Lookup Example
	Crafting Ranges
	Grouping by Rows
	Reusing Scanners
	Isolated Row Views
	Tuning Scanners

	Batch Scanning
	Update: Overwrite
	Overwrite Example
	Allowing Multiple Versions

	Update: Appending or Incrementing
	Update: Read-Modify-Write and Conditional Mutations
	Conditional Mutation API
	Conditional Mutation Batch API
	Conditional Mutation Example

	Delete
	Deleting and Reinserting
	Removing Deleted Data from Disk
	Batch Deleter

	Testing
	MockAccumulo
	MiniAccumuloCluster

	Chapter 4. Table API
	Basic Table Operations
	Creating Tables
	Renaming
	Deleting Tables
	Deleting Ranges of Rows
	Deleting Entries Returned from a Scan
	Configuring Table Properties
	Locality Groups
	Bloom Filters
	Caching
	Tablet Splits
	Compacting
	Additional Properties
	Online Status
	Cloning
	Importing and Exporting Tables
	Additional Administrative Methods

	Table Namespaces
	Creating
	Renaming
	Setting Namespace Properties
	Deleting
	Configuring Iterators
	Configuring Constraints
	Testing Class Loading for a Namespace

	Instance Operations
	Setting Properties
	Cluster Information
	Precedence of Properties

	Chapter 5. Security API
	Authentication
	Permissions
	System Permissions
	Namespace Permissions
	Table Permissions

	Authorizations
	Column Visibilities
	Limiting Authorizations Written
	An Example of Using Authorizations
	Using a Default Visibility
	Making Authorizations Work

	Auditing Security Operations
	Custom Authentication, Permissions, and Authorization
	Custom Authentication Example

	Other Security Considerations
	Using an Application Account for Multiple Users
	Network
	Disk Encryption

	Chapter 6. Server-Side Functionality and External Clients
	Constraints
	Constraint Configuration API
	Constraint Configuration Example
	Creating Custom Constraints
	Custom Constraint Example

	Iterators
	Iterator Configuration API
	VersioningIterator
	Iterator Configuration Example
	Adding Iterators by Setting Properties
	Filtering Iterators
	Combiners
	Other Built-in Iterators

	Thrift Proxy
	Starting a Proxy
	Python Example
	Generating Client Code

	Language-Specific Clients
	Integration with Other Tools
	Apache Hive
	Apache Pig
	Apache Kafka

	Integration with Analytical Tools

	Chapter 7. MapReduce API
	Formats
	Writing Worker Classes
	MapReduce Example
	MapReduce over Underlying RFiles
	Example of Running a MapReduce Job over RFiles

	Delivering Rows to Map Workers
	Ingesters and Combiners as MapReduce Computations
	MapReduce and Bulk Import
	Bulk Ingest to Avoid Duplicates

	Chapter 8. Table Design
	Single-Table Designs
	Implementing Paging

	Secondary Indexing
	Index Partitioned by Term
	Querying a Term-Partitioned Index
	Maintaining Consistency Across Tables
	Index Partitioned by Document
	Querying a Document-Partitioned Index
	Indexing Data Types

	Full-Text Search
	wikipediaMetadata
	wikipediaIndex
	wikipedia
	wikipediaReverseIndex
	Ingesting WikiSearch Data
	Querying the WikiSearch Data

	Designing Row IDs
	Lexicoders
	Composite Row IDs
	Key Size
	Avoiding Hotspots
	Designing Row IDs for Consistent Updates

	Designing Values
	Storing Files and Large Values
	Human-Readable Versus Binary Values and Formatters

	Designing Authorizations
	Designing Column Visibilities

	Chapter 9. Advanced Table Designs
	Time-Ordered Data
	Graphs
	Building an Example Graph: Twitter
	Traversing Graph Tables
	Traversing the Example Twitter Graph

	Semantic Triples
	Semantic Triples Example

	Spatial Data
	Open Source Projects
	Space-Filling Curves

	Multidimensional Data
	D4M and Matlab
	D4M Example

	Machine Learning
	Storing Feature Vectors
	A Machine-Learning Example

	Approximating Relational and SQL Database Properties
	Schema Constraints
	SQL Operations

	Chapter 10. Internals
	Tablet Server
	Write Path
	Read Path
	Resource Manager
	Write-Ahead Logs
	File formats
	Caching

	Master
	FATE
	Load Balancer

	Garbage Collector
	Monitor
	Tracer
	Client
	Locating Keys

	Metadata Table
	Uses of ZooKeeper
	Accumulo and the CAP Theorem

	Chapter 11. Administration: Setup
	Preinstallation
	Operating Systems
	Kernel Tweaks
	Native Libraries
	User Accounts
	Linux Filesystem
	System Services
	Software Dependencies

	Installation
	Tarball Distribution Install
	Installing on Cloudera’s CDH
	Installing on Hortonworks’ HDP
	Installing on MapR
	Running via Amazon Web Services
	Building from Source

	Configuration
	File Permissions
	Server Configuration Files
	Client Configuration
	Deploying JARs
	Setting Up Automatic Failover
	Initialization

	Running Very Large-Scale Clusters
	Networking
	Limits
	Metadata Table
	Tablet Sizing
	File Sizing
	Using Multiple HDFS Volumes

	Security
	Column Visibilities and Accumulo Clients
	Supporting Software Security
	Network Security
	Encryption of Data at Rest
	Kerberized Hadoop
	Application Permissions

	Chapter 12. Administration: Running
	Starting Accumulo
	Via the start-all.sh Script
	Via init.d Scripts

	Stopping Accumulo
	Via the stop-all.sh Script
	Via init.d scripts
	Stopping Individual Processes

	Starting After a Crash
	Monitoring
	Monitor Web Service
	JMX Metrics
	Logging
	Tracing

	Cluster Changes
	Adding New Worker Nodes
	Removing Worker Nodes
	Adding New Control Nodes
	Removing Control Nodes

	Table Operations
	Changing Settings
	Changing Online Status
	Cloning
	Import, Export, and Backups

	Data Lifecycle
	Versioning
	Data Age-off
	Compactions
	Merging Tablets
	Garbage Collection

	Failure Recovery
	Typical Failures
	More-Serious Failures
	Tips for Restoring a Cluster
	Troubleshooting

	Chapter 13. Performance
	Understanding Read Performance
	Understanding Write Performance
	BatchWriters
	Bulk Loading

	Hardware Selection
	Storage Devices
	Networking
	Virtualization
	Running in a Public Cloud Environment

	Cluster Sizing
	Modeling Required Write Performance
	Cluster Planning Example

	Analyzing Performance
	Using Tracing
	Using the Monitor
	Using Local Logs

	Tablet Server Tuning
	External Settings
	Memory Settings
	Write-Ahead Log Settings
	Resource Settings
	Timeouts
	Scaling Vertically

	Cluster Tuning
	Splitting Tables
	Balancing Tablets
	Balancing Reads and Writes
	Data Locality
	Sharing ZooKeeper

	Appendix A. Shell Commands Quick Reference
	Debugging
	Exiting
	Help
	Iterator
	Permissions Administration
	Shell Execution
	Shell State
	Table Administration
	Table Control
	User Administration
	Writing, Reading, and Removing Data

	Appendix B. Metadata Table
	Row ID
	File Column Family
	Scan Column Family
	future, last, and loc Column Families
	log Column Family
	srv Column Family
	~tab:~pr Column
	Other Columns

	Appendix C. Data Stored in ZooKeeper
	masters, tservers, gc, monitor, and tracers Nodes
	problems/problem_info Nodes
	root_tablet Node
	tables/table_id Nodes
	config/system_property_name Node
	users/username Nodes
	Other Nodes

	Index
	About the Authors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

