
Ian F. Darwin

 Android
Cookbook
PROBLEMS AND SOLUTIONS
FOR ANDROID DEVELOPERS

2nd Edition

Covers Android Nougat 7.0

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

O’Reilly ebooks.
Your bookshelf on your devices.

When you buy an ebook through oreilly.com you get lifetime access to the
book, and whenever possible we provide it to you in four DRM-free file
formats—PDF, .epub, Kindle-compatible .mobi, and DAISY—that you can
use on the devices of your choice. Our ebook files are fully searchable,
and you can cut-and-paste and print them. We also alert you when we’ve
updated the files with corrections and additions.

Learn more at ebooks.oreilly.com
You can also purchase O’Reilly ebooks through the

iBookstore, the Android Marketplace, and Amazon.com.

©2015 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 15055

ePubPDF Mobi DAISY

www.itbook.store/books/9781449374433

http://www.oreilly.com/
http://shop.oreilly.com/category/ebooks.do
https://play.google.com/store/books?hl=en
http://www.amazon.com/
https://itbook.store/books/9781449374433

978-1-449-37443-3

[LSI]

Android Cookbook
by Ian F. Darwin

Copyright © 2017 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://www.oreilly.com/safari). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Dawn Schanafelt and Meghan Blanchette
Production Editor: Colleen Lobner
Copyeditor: Kim Cofer
Proofreader: Rachel Head

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

May 2017: Second Edition

Revision History for the Second Edition
2017-05-05: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781449374433 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Android Cookbook, the cover image of
a marine iguana, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

Table of Contents

Preface. xiii

1. Getting Started. 1
1.1 Understanding the Android Application Architecture 1
1.2 Understanding the Android Activity Life Cycle 3
1.3 Learning About Android Releases 5
1.4 Learning the Java Language 7
1.5 Creating a “Hello, World” Application from the Command Line 8
1.6 Creating a “Hello, World” App with Apache Maven 13
1.7 Choosing an IDE for Android Development 15
1.8 Setting Up Android Studio 18
1.9 Installing Platform Editions and Keeping the SDK Updated 21
1.10 Creating a “Hello, World” App Using Android Studio 25
1.11 Converting an Eclipse ADT Project to Android Studio 30
1.12 Preserving History While Converting from Eclipse to Android Studio 34
1.13 Building an Android Application with both Eclipse and Android Studio 36
1.14 Setting Up Eclipse with AndMore (Replacing ADT) 39
1.15 Creating a “Hello, World” Application Using Eclipse 46
1.16 Installing the Eclipse Marketplace Client in Your Eclipse 51
1.17 Upgrading a Project from Eclipse ADT to Eclipse AndMore 53
1.18 Controlling Emulators/Devices Using Command-Line ADB 57
1.19 Sharing Java Classes from Another Eclipse Project 59
1.20 Referencing Libraries to Implement External Functionality 62
1.21 Using New Features on Old Devices via the Compatibility Libraries 67
1.22 Using SDK Samples to Help Avoid Head Scratching 68
1.23 Taking a Screenshot/Video from the Emulator/Android Device 70
1.24 Program: A Simple CountDownTimer Example 76
1.25 Program: Tipster, a Tip Calculator for the Android OS 79

v

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

2. Designing a Successful Application. 97
2.1 Exception Handling 101
2.2 Requesting Android Permissions at Runtime 104
2.3 Accessing Android’s Application Object as a “Singleton” 106
2.4 Keeping Data When the User Rotates the Device 109
2.5 Monitoring the Battery Level of an Android Device 111
2.6 Creating Splash Screens in Android 113
2.7 Designing a Conference/Camp/Hackathon/Institution App 117
2.8 Using Google Analytics in an Android Application 119
2.9 Setting First-Run Preferences 122
2.10 Formatting Numbers 123
2.11 Formatting with Correct Plurals 127
2.12 Formatting the Time and Date for Display 130
2.13 Simplifying Date/Time Calculations with the Java 8 java.time API 132
2.14 Controlling Input with KeyListeners 134
2.15 Backing Up Android Application Data 137
2.16 Using Hints Instead of Tool Tips 144

3. Application Testing. 147
3.1 Setting Up an Android Virtual Device (AVD) for App Testing 148
3.2 Testing on a Wide Range of Devices with Cloud-Based Testing 154
3.3 Testing with Eclipse and JUnit 155
3.4 Testing with Android Studio and JUnit 158
3.5 Testing with Robolectric and JUnit 4 163
3.6 Testing with ATSL, Espresso, and JUnit 4 166
3.7 Troubleshooting Application Crashes 170
3.8 Debugging Using Log.d() and LogCat 173
3.9 Getting Bug Reports Automatically with Crash Reporting 175
3.10 Using a Local Runtime Application Log for Analysis of Field Errors or

Situations 178
3.11 Reproducing Activity Life-Cycle Scenarios for Testing 181
3.12 Keeping Your App Snappy with StrictMode 186
3.13 Static Code Testing with Android Lint 187
3.14 Dynamic Testing with the Monkey Program 189
3.15 Sending Text Messages and Placing Calls Between AVDs 191

4. Inter-/Intra-Process Communication. 193
4.1 Opening a Web Page, Phone Number, or Anything Else with an Intent 194
4.2 Emailing Text from a View 196
4.3 Sending an Email with Attachments 199
4.4 Pushing String Values Using Intent.putExtra() 201
4.5 Retrieving Data from a Subactivity Back to Your Main Activity 202

vi | Table of Contents

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

4.6 Keeping a Background Service Running While Other Apps Are on Display 205
4.7 Sending/Receiving a Broadcast Message 207
4.8 Starting a Service After Device Reboot 208
4.9 Creating a Responsive Application Using Threads 209
4.10 Using AsyncTask to Do Background Processing 210
4.11 Sending Messages Between Threads Using an Activity Thread Queue and

Handler 218
4.12 Creating an Android Epoch HTML/JavaScript Calendar 220

5. Graphics. 227
5.1 Using a Custom Font 227
5.2 Drawing a Spinning Cube with OpenGL ES 230
5.3 Adding Controls to the OpenGL Spinning Cube 234
5.4 Freehand Drawing Smooth Curves 237
5.5 Taking a Picture Using an Intent 242
5.6 Taking a Picture Using android.media.Camera 244
5.7 Scanning a Barcode or QR Code with the Google ZXing Barcode Scanner 248
5.8 Using AndroidPlot to Display Charts and Graphs 251
5.9 Using Inkscape to Create an Android Launcher Icon from

OpenClipArt.org 254
5.10 Using Paint.NET to Create Launcher Icons from OpenClipArt.org 259
5.11 Using Nine Patch Files 267
5.12 Creating HTML5 Charts with Android RGraph 270
5.13 Adding a Simple Raster Animation 274
5.14 Using Pinch to Zoom 278

6. Graphical User Interface. 281
6.1 Understanding and Following User Interface Guidelines 282
6.2 Looking Good with Material Design 283
6.3 Choosing a Layout Manager (a.k.a. ViewGroup) and Arranging

Components 287
6.4 Handling Configuration Changes by Decoupling the View from the Model 288
6.5 Controlling the Action Bar 291
6.6 Adding a Share Action to Your Action Bar 295
6.7 Building Modern UIs with the Fragment API 299
6.8 Creating a Button and Its Click Event Listener 304
6.9 Enhancing UI Design Using Image Buttons 305
6.10 Using a FloatingActionButton 306
6.11 Wiring Up an Event Listener in Many Different Ways 309
6.12 Using CheckBoxes and RadioButtons 314
6.13 Using Card Widgets 318
6.14 Offering a Drop-Down Chooser via the Spinner Class 320

Table of Contents | vii

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

6.15 Handling Long-Press/Long-Click Events 323
6.16 Displaying Text Fields with TextView and EditText 324
6.17 Constraining EditText Values with Attributes and the TextWatcher

Interface 325
6.18 Implementing AutoCompleteTextView 328
6.19 Feeding AutoCompleteTextView Using a SQLite Database Query 330
6.20 Turning Edit Fields into Password Fields 332
6.21 Changing the Enter Key to “Next” on the Soft Keyboard 333
6.22 Processing Key-Press Events in an Activity 336
6.23 Let Them See Stars: Using RatingBar 337
6.24 Making a View Shake 341
6.25 Providing Haptic Feedback 342
6.26 Navigating Different Activities Within a TabView 346
6.27 Creating a Loading Screen that Will Appear Between Two Activities 347
6.28 Adding a Border with Rounded Corners to a Layout 349
6.29 Detecting Gestures in Android 351
6.30 Creating a Simple App Widget 358

7. GUI Alerts: Menus, Dialogs, Toasts, Snackbars, and Notifications. 363
7.1 Alerting the User with Toast and Snackbar 364
7.2 Customizing the Appearance of a Toast 366
7.3 Creating and Displaying a Menu 367
7.4 Handling Choice Selection in a Menu 369
7.5 Creating a Submenu 370
7.6 Creating a Pop-up/Alert Dialog 372
7.7 Using a Timepicker Widget 374
7.8 Creating an iPhone-like WheelPicker for Selection 376
7.9 Creating a Tabbed Dialog 379
7.10 Creating a ProgressDialog 382
7.11 Creating a Custom Dialog with Buttons, Images, and Text 383
7.12 Creating a Reusable “About Box” Class 385
7.13 Creating a Notification in the Status Bar 389

8. Other GUI Elements: Lists and Views. 395
8.1 Building List-Based Applications with RecyclerView 395
8.2 Building List-Based Applications with ListView 399
8.3 Creating a “No Data” View for ListViews 403
8.4 Creating an Advanced ListView with Images and Text 405
8.5 Using Section Headers in ListViews 409
8.6 Keeping the ListView with the User’s Focus 413
8.7 Writing a Custom List Adapter 414
8.8 Using a SearchView to Search Through Data in a ListView 418

viii | Table of Contents

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

8.9 Handling Orientation Changes: From ListView Data Values to Landscape
Charting 420

9. Multimedia. 425
9.1 Playing a YouTube Video 425
9.2 Capturing Video Using MediaRecorder 426
9.3 Using Android’s Face Detection Capability 429
9.4 Playing Audio from a File 432
9.5 Playing Audio Without Interaction 435
9.6 Using Speech to Text 437
9.7 Making the Device Speak with Text-to-Speech 438

10. Data Persistence. 441
10.1 Reading and Writing Files in Internal and External Storage 442
10.2 Getting File and Directory Information 446
10.3 Reading a File Shipped with the App Rather than in the Filesystem 451
10.4 Getting Space Information About the SD Card 453
10.5 Providing a Preference Activity 454
10.6 Checking the Consistency of Default Shared Preferences 459
10.7 Using a SQLite Database in an Android Application 461
10.8 Performing Advanced Text Searches on a SQLite Database 464
10.9 Working with Dates in SQLite 470
10.10 Exposing Non-SQL Data as a SQL Cursor 472
10.11 Displaying Data with a CursorLoader 475
10.12 Parsing JSON Using JSONObject 478
10.13 Parsing an XML Document Using the DOM API 480
10.14 Storing and Retrieving Data via a Content Provider 482
10.15 Writing a Content Provider 483
10.16 Adding a Contact Through the Contacts Content Provider 487
10.17 Reading Contact Data Using a Content Provider 490
10.18 Implementing Drag and Drop 492
10.19 Sharing Files via a FileProvider 496
10.20 Backing Up Your SQLite Data to the Cloud with a SyncAdapter 501
10.21 Storing Data in the Cloud with Google Firebase 510

11. Telephone Applications. 517
11.1 Doing Something When the Phone Rings 517
11.2 Processing Outgoing Phone Calls 521
11.3 Dialing the Phone 525
11.4 Sending Single-part or Multipart SMS Messages 527
11.5 Receiving an SMS Message 529
11.6 Using Emulator Controls to Send SMS Messages to the Emulator 531

Table of Contents | ix

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

11.7 Using Android’s TelephonyManager to Obtain Device Information 532

12. Networked Applications. 543
12.1 Consuming a RESTful Web Service Using a URLConnection 544
12.2 Consuming a RESTful Web Service with Volley 547
12.3 Notifying Your App with Google Cloud Messaging “Push Messaging” 549
12.4 Extracting Information from Unstructured Text Using Regular

Expressions 558
12.5 Parsing RSS/Atom Feeds Using ROME 559
12.6 Using MD5 to Digest Clear Text 564
12.7 Converting Text into Hyperlinks 565
12.8 Accessing a Web Page Using a WebView 566
12.9 Customizing a WebView 567
12.10 Writing an Inter-Process Communication Service 568

13. Gaming and Animation. 575
13.1 Building an Android Game Using flixel-gdx 576
13.2 Building an Android Game Using AndEngine 580
13.3 Processing Timed Keyboard Input 587

14. Social Networking. 589
14.1 Authenticating Users with OAUTH2 589
14.2 Integrating Social Networking Using HTTP 593
14.3 Loading a User’s Twitter Timeline Using HTML or JSON 596

15. Location and Map Applications. 599
15.1 Getting Location Information 599
15.2 Accessing GPS Information in Your Application 601
15.3 Mocking GPS Coordinates on a Device 603
15.4 Using Geocoding and Reverse Geocoding 606
15.5 Getting Ready for Google Maps API V2 Development 607
15.6 Using the Google Maps API V2 612
15.7 Displaying Map Data Using OpenStreetMap 618
15.8 Creating Overlays in OpenStreetMap Maps 621
15.9 Using a Scale on an OpenStreetMap Map 623
15.10 Handling Touch Events on an OpenStreetMap Overlay 624
15.11 Getting Location Updates with OpenStreetMap Maps 627

16. Accelerometer. 631
16.1 Checking for the Presence or Absence of a Sensor 631
16.2 Using the Accelerometer to Detect Shaking 632
16.3 Checking Whether a Device Is Facing Up or Down 636

x | Table of Contents

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

16.4 Reading the Temperature Sensor 637

17. Bluetooth. 639
17.1 Enabling Bluetooth and Making the Device Discoverable 639
17.2 Connecting to a Bluetooth-Enabled Device 641
17.3 Accepting Connections from a Bluetooth Device 644
17.4 Implementing Bluetooth Device Discovery 645

18. System and Device Control. 647
18.1 Accessing Phone Network/Connectivity Information 647
18.2 Obtaining Information from the Manifest File 648
18.3 Changing Incoming Call Notification to Silent, Vibrate, or Normal 649
18.4 Copying Text and Getting Text from the Clipboard 652
18.5 Using LED-Based Notifications 652
18.6 Making the Device Vibrate 653
18.7 Determining Whether a Given Application Is Running 654

19. All the World’s Not Java: Other Programming Languages and Frameworks. 657
19.1 Learning About Cross-Platform Solutions 658
19.2 Running Shell Commands from Your Application 659
19.3 Running Native C/C++ Code with JNI on the NDK 661
19.4 Getting Started with SL4A, the Scripting Layer for Android 667
19.5 Creating Alerts in SL4A 669
19.6 Fetching Your Google Documents and Displaying Them in a ListView

Using SL4A 673
19.7 Sharing SL4A Scripts in QR Codes 676
19.8 Using Native Handset Functionality from a WebView via JavaScript 678
19.9 Building a Cross-Platform App with Xamarin 680
19.10 Creating a Cross-Platform App Using PhoneGap/Cordova 685

20. All the World’s Not English: Strings and Internationalization. 689
20.1 Internationalizing Application Text 690
20.2 Finding and Translating Strings 693
20.3 Handling the Nuances of strings.xml 695

21. Packaging, Deploying, and Distributing/Selling Your App. 701
21.1 Creating a Signing Certificate and Using It to Sign Your Application 701
21.2 Distributing Your Application via the Google Play Store 705
21.3 Distributing Your Application via Other App Stores 707
21.4 Monetizing Your App with AdMob 708
21.5 Obfuscating and Optimizing with ProGuard 714
21.6 Hosting Your App on Your Own Server 717

Table of Contents | xi

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

21.7 Creating a “Self-Updating” App 718
21.8 Providing a Link to Other Published Apps in the Google Play Store 720

Index. 725

xii | Table of Contents

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

CHAPTER 2

Designing a Successful Application

This chapter is about design guidelines for writing imaginative and useful Android
applications. Several recipes describe specific aspects of successful design. This sec‐
tion will list some others.

One purpose of this chapter is to explain the benefits of developing native Java
Android applications over other methods of delivering rich content on mobile
devices.

Requirements of a native handset application
There are a number of key requirements for successfully delivering any mobile hand‐
set application, regardless of the platform onto which it will be deployed:

• The application should be easy to install, remove, and update on a device.
• It should address the user’s needs in a compelling, unique, and elegant way.
• It should be feature-rich while remaining usable by both novice and expert users.
• It should be familiar to users who have accessed the same information through

other routes, such as a website.
• Key areas of functionality should be readily accessible.
• It should have a common look and feel with other native applications on the

handset, conforming to the target platform’s standards and style guidelines.
• It should be stable, scalable, usable, and responsive.
• It should use the platform’s capabilities tastefully, when it makes the user’s experi‐

ence more compelling.

97

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

Android application design
Colin Wilcox

The Android application we will design in this chapter will exploit the features and
functions unique to the Android OS platform. In general, the application will be an
Activity-based solution allowing independent and controlled access to data on a
screen-by-screen basis. This approach helps to localize potential errors and allows
sections of the flow to be readily replaced or enhanced independently of the rest of
the application.

Navigation will use a similar approach to that of the Apple iPhone solution in that all
key areas of functionality will be accessed from a single navigation bar control. The
navigation bar will be accessible from anywhere within the application, allowing the
user to freely move around the application.

The Android solution will exploit features inherent to Android devices, supporting
the devices’ touch-screen features, the hardware button that allows users to switch the
application to the background, and application switching capability.

Android provides the ability to jump back into an application at the point where it
was switched out. This will be supported, when possible, within this design.

The application will use only standard Android user interface controls to make it as
portable as possible. The use of themes or custom controls is outside the scope of this
chapter.

The application will be designed such that it interfaces to a thin layer of RESTful web
services that provide data in a JSON format. This interface will be the same as the one
used by the Apple iPhone, as well as applications written for other platforms.

The application will adopt the Android style and design guidelines wherever possible
so that it fits in with other Android applications on the device.

Data that is local to each view will be saved when the view is exited and automatically
restored with the corresponding user interface controls repopulated when the view is
next loaded.

A number of important device characteristics should be considered, as discussed in
the following subsections.

Screen size and density. In order to categorize devices by their screen type, Android
defines two characteristics for each device: screen size (the physical dimensions of the
screen) and screen density (the physical density of the pixels on the screen, or dpi
[dots per inch]). To simplify all the different types of screen configurations, the
Android system generalizes them into select groups that make them easier to target.

98 | Chapter 2: Designing a Successful Application

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

The designer should take into account the most appropriate choices for screen size
and screen density when designing the application.

By default, an application is compatible with all screen sizes and densities, because the
Android system makes the appropriate adjustments to the UI layout and image
resources. However, you should create specialized layouts for certain screen sizes and
provide specialized images for certain densities, by using alternative layout resources
and by declaring in your manifest exactly which screen sizes your application sup‐
ports.

Input configurations. Many devices provide a different type of user input mechanism,
such as a hardware keyboard, a trackball, or a five-way navigation pad. If your appli‐
cation requires a particular kind of input hardware, you must declare it in the
AndroidManifest.xml file, and be aware that the Google Play Store will not display
your app on devices that lack this feature. However, it is rare for an application to
require a certain input configuration.

Device features. There are many hardware and software features that may or may not
exist on a given Android-powered device, such as a camera, a light sensor, Bluetooth
capability, a certain version of OpenGL, or the fidelity of the touch screen. You should
never assume that a certain feature is available on all Android-powered devices (other
than the availability of the standard Android library).

A sophisticated Android application will use both types of menus provided by the
Android framework, depending on the circumstances:

• Options menus contain primary functionality that applies globally to the current
Activity or starts a related Activity. An options menu is typically invoked by a
user pressing a hard button, often labeled Menu, or a soft menu button on an
Action Bar (a vertical stack of three dots).

• Context menus contain secondary functionality for the currently selected item. A
context menu is typically invoked by a user performing a long-press (press and
hold) on an item. Like on the options menu, the selected operation can run in
either the current or another Activity. A context menu is for any commands that
apply to the current selection.

The commands on the context menu that appear when you long-press on an item
should be duplicated in the Activity you get to by a normal press on that item.

As very general guidance:

• Place the most frequently used operations first in the menu.

Designing a Successful Application | 99

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

• Only the most important commands should appear as buttons on the screen; del‐
egate the rest to the menu.

• Consider moving menu items to the action bar if your application uses one.

The system will automatically lay out the menus and provide standard ways for users
to access them, ensuring that the application will conform to the Android user inter‐
face guidelines. In this sense, menus are familiar and dependable ways for users to
access functionality across all applications.

Our Android application will make extensive use of Google’s Intent mechanism for
passing data between Activity objects. Intents not only are used to pass data between
views within a single application, but also allow data, or requests, to be passed to
external modules. As such, much functionality can be adopted by the Android appli‐
cation by embedded functionality from other applications invoked by Intent calls.
This reduces the development process and maintains the common look and feel and
functionality behavior across all applications.

Data feeds and feed formats. It is not a good idea to interface directly to any third-
party data source; for example, it would be a bad idea to use a Type 3 JDBC driver in
your mobile application to talk directly to a database on your server. The normal
approach would be to mediate the data, from several sources in potentially multiple
data formats, through middleware, which then passes data to an application through
a series of RESTful web service APIs in the form of JSON data streams.

Typically, data is provided in such formats as XML, SOAP, or some other XML-
derived representation. Representations such as SOAP are heavyweight, and as such,
transferring data from the backend servers in this format increases development time
significantly as the responsibility of converting this data into something more man‐
ageable falls on either the handset application or an object on the middleware server.

Mitigating the source data through a middleware server also helps to break the
dependency between the application and the data. Such a dependency has the disad‐
vantage that if, for some reason, the nature of the data changes or the data cannot be
retrieved, the application may be broken and become unusable, and such changes
may require the application to be republished. Mitigating the data on a middleware
server ensures that the application will continue to work, albeit possibly in a limited
fashion, regardless of whether the source data exists. The link between the application
and the mitigated data will remain.

100 | Chapter 2: Designing a Successful Application

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

2.1 Exception Handling
Ian Darwin

Problem
Java has a well-defined exception handling mechanism, but it takes some time to
learn to use it effectively without frustrating either users or tech support people.

Solution
Java offers an exception hierarchy that provides considerable flexibility when used
correctly. Android offers several mechanisms, including dialogs and toasts, for noti‐
fying the user of error conditions. The Android developer should become acquainted
with these mechanisms and learn to use them effectively.

Discussion
Java has had two categories of exceptions (actually of Exception’s parent, Throwable)
since it was introduced: checked and unchecked. In Java Standard Edition, apparently
the intention was to force the programmer to face the fact that, while certain things
could be detected at compile time, others could not. For example, if you were instal‐
ling a desktop application on a large number of PCs, it’s likely that the disk on some
of those PCs would be near capacity, and trying to save data on them could fail;
meanwhile, on other PCs some file that the application depended upon might have
gone missing, not due to programmer error but to user error, filesystem happen‐
stance, gerbils chewing on the cables, or whatever. So the category of IOException was
created as a “checked exception,” meaning that the programmer would have to check
for it, either by having a try-catch clause inside the file-using method or by having a
throws clause on the method definition. The general rule, which all well-trained Java
developers memorize, is the following:

Throwable is the root of the throwable hierarchy. Exception, and all of its subclasses
other than RuntimeException or any subclass thereof, is checked. All else is unchecked.

This means that Error and all of its subclasses are unchecked (see Figure 2-1). If you
get a VMError, for example, it means there’s a bug in the runtime. There’s nothing you
can do about this as an application programmer. RuntimeException subclasses include
things like the excessively long-named ArrayIndexOutOfBoundsException; this and friends
are unchecked because it is your responsibility to catch these exceptions at develop‐
ment time, by testing for them (see Chapter 3).

2.1 Exception Handling | 101

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

Figure 2-1. Throwable hierarchy

Where to catch exceptions
The (over)use of checked exceptions led a lot of early Java developers to write code
that was sprinkled with try-catch blocks, partly because the use of the throws clause
was not emphasized early enough in some training programs and books. As Java itself
has moved more to enterprise work, and newer frameworks such as Spring, Hiber‐
nate, and JPA have come along and are emphasizing the use of unchecked exceptions,
this early position has shifted. It is now generally accepted that you want to catch
exceptions as close to the user as possible. Code that is meant for reuse—in libraries
or even in multiple applications—should not try to do error handling. What it can do
is what’s called exception translation; that is, turning a technology-specific (and usu‐
ally checked) exception into a generic, unchecked exception. Example 2-1 shows the
basic pattern.

Example 2-1. Exception translation

public class ExceptionTranslation {
 public String readTheFile(String f) {
 try (BufferedReader is = new BufferedReader(new FileReader(f))) {
 String line = is.readLine();
 return line;
 } catch (FileNotFoundException fnf) {
 throw new RuntimeException("Could not open file " + f, fnf);
 } catch (IOException ex) {
 throw new RuntimeException("Problem reading file " + f, ex);
 }
 }
}

102 | Chapter 2: Designing a Successful Application

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

Note that prior to Java 7, you’d have had to write an explicit finally clause to close
the file:

 } finally {
 if (is != null) {
 try {
 is.close();
 } catch(IOException grr) {
 throw new RuntimeException("Error on close of " + f, grr);
 }
 }
 }
}

Note how the use of checked exceptions clutters even that code: it is virtually impos‐
sible for the is.close() to fail, but since you want to have it in a finally block (to
ensure that it gets tried if the file was opened but then something went wrong), you
have to have an additional try-catch around it. So, checked exceptions are (more often
than not) an annoyance, should be avoided in new APIs, and should be paved over
with unchecked exceptions when using code that requires them.

There is an opposing view, espoused by the official Oracle website and others. In a
comment on the website from which this book was produced, reader Al Sutton points
out the following:

Checked exceptions exist to force developers to acknowledge that an error condition
can occur and that they have thought about how they want to deal with it. In many
cases there may be little that can be done beyond logging and recovery, but it is still an
acknowledgment by the developer that they have considered what should happen with
this type of error. The example shown … stops callers of the method from differentiat‐
ing between when a file doesn’t exist (and thus may need to be re-fetched), and when
there is a problem reading the file (and thus the file exists but is unreadable), which are
two different types of error conditions.

Android, wishing to be faithful to the Java API, has a number of these checked excep‐
tions (including the ones shown in the example), so they should be treated the same
way.

What to do with exceptions
Exceptions should almost always be reported. When I see code that catches excep‐
tions and does nothing at all about them, I despair. They should, however, be
reported only once (do not both log and translate/rethrow!). The point of all normal
exceptions is to indicate, as the name implies, an exceptional condition. Since on an
Android device there is no system administrator or console operator, exceptional
conditions need to be reported to the user.

You should think about whether to report exceptions via a dialog or a toast. The
exception handling situation on a mobile device is different from that on a desktop

2.1 Exception Handling | 103

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

computer. The user may be driving a car or operating other machinery, interacting
with people, and so on, so you should not assume you have her full attention.

I know that most examples, even in this book, use a toast, because it involves less cod‐
ing than a dialog. But remember that a toast will only appear on the screen for a few
seconds; blink and you may miss it. If the user needs to do something to correct the
problem, you should use a dialog.

Toasts simply pop up and then obliviate. Dialogs require the user to acknowledge an
exceptional condition, and either do, or give the app permission to do, something
that might cost money (such as turning on internet access in order to run an applica‐
tion that needs to download map tiles).

Use toasts to “pop up” unimportant information; use dialogs to dis‐
play important information and to obtain confirmation.

See Also
Recipe 3.9.

2.2 Requesting Android Permissions at Runtime
Mike Way

Problem
In Android 6 and later, you must check permissions at runtime in addition to specify‐
ing them in the manifest.

Solution
“Dangerous” resources are those that could affect the user’s stored information, or
privacy, etc. To access resources protected by “dangerous” permissions you must:

• Check if the user has already granted permission before accessing a resource.
• Explicitly request permissions from the user if the permissions have not previ‐

ously been granted.
• Have an alternate course of action so the application does not crash if the permis‐

sion is not granted.

104 | Chapter 2: Designing a Successful Application

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

Discussion
Before accessing a resource that requires permission, you must first check if the user
has already granted permission. To do this, call the Activity method
checkSelfPermission(permission). It will return either PERMISSION_GRANTED or
PERMISSION_DENIED:

if (ActivityCompat.checkSelfPermission(this,
 Manifest.permission.WRITE_EXTERNAL_STORAGE) ==
 PackageManager.PERMISSION_GRANTED) {
 // If you get here then you have the permission and can do some work
} else {
 // See below
}

If the preceding check indicates that the permission has not been granted, you must
explicitly request it by calling the Activity method requestPermissions():

void requestPermissions (String[] permissions, int requestCode)

As this will interact with the user, it is an asynchronous request. You must override
the Activity method onRequestPermissionsResult() to get notified of the response:

public void onRequestPermissionsResult(
 int requestCode, String[] permissions, int[] grantResults);

For example:
// Unique request code for the particular permissions request
private static int REQUEST_EXTERNAL_STORAGE = 1;
...
// Request the permission from the user
ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.WRITE_EXTERNAL_STORAGE },
 REQUEST_EXTERNAL_STORAGE);

// Callback handler for the eventual response
@Override
public void onRequestPermissionsResult(
 int requestCode, String[] permissions, int[] grantResults) {

 boolean granted = true;
 if (requestCode == REQUEST_EXTERNAL_STORAGE) {
 // Received permission result for external storage permission.
 Log.i(TAG, "Got response for external storage permission request.");

 // Check if all the permissions have been granted
 if (grantResults.length > 0) {
 for (int result : grantResults) {
 if (result != PackageManager.PERMISSION_GRANTED) {
 granted = false;
 }
 }
 } else {
 granted = false;

2.2 Requesting Android Permissions at Runtime | 105

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

 }
 }
 ...
 // If granted is true: carry on and perform the action. Calling
 // checkSelfPermission() will now return PackageManager.PERMISSION_GRANTED

It is usually a good idea to provide the user with information as to why the permis‐
sions are required. To do this you call the Activity method boolean

shouldShowRequestPermissionRationale(String permission). If the user has previously
refused to grant the permissions this method will return true, giving you the opportu‐
nity to display extra information as to why they should be granted:

if (ActivityCompat.shouldShowRequestPermissionRationale(this,
 Manifest.permission.WRITE_EXTERNAL_STORAGE)) {
 // Provide additional info if the permission was not granted
 // and the user would benefit from additional
 // context for the use of the permission
 Log.i(TAG, "Displaying permission rationale to provide additional context.");
 Snackbar.make(mLayout, R.string.external_storage_rationale,
 Snackbar.LENGTH_INDEFINITE)
 .setAction(R.string.ok, new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 ActivityCompat.requestPermissions(MainActivity.this,
 new String[]{
 Manifest.permission.WRITE_EXTERNAL_STORAGE,
 Manifest.permission.READ_EXTERNAL_STORAGE},
 REQUEST_EXTERNAL_STORAGE);
 }
 }).show();

This uses a Snackbar (see Recipe 7.1) to display the rationale, until the user clicks the
Snackbar to dismiss it.

See Also
This permission checking technique is also used in the example project in Recipe
14.1. There is more documention at the official documentation site.

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory PermissionRequest (see “Getting and Using the Code Examples” on page
18).

2.3 Accessing Android’s Application Object as a
“Singleton”
Adrian Cowham

106 | Chapter 2: Designing a Successful Application

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

Problem
You need to access “global” data from within your Android app.

Solution
The best solution is to subclass android.app.Application and treat it as a singleton with
static accessors. Every Android app is guaranteed to have exactly one
android.app.Application instance for the lifetime of the app. If you choose to subclass
android.app.Application, Android will create an instance of your class and invoke the
android.app.Application life-cycle methods on it. Because there’s nothing preventing
you from creating another instance of your subclassed android.app.Application, it isn’t a
genuine singleton, but it’s close enough.

Having global access to such objects as session handlers, web service gateways, or
anything that your application only needs a single instance of will dramatically sim‐
plify your code. Sometimes these objects can be implemented as singletons, and
sometimes they cannot because they require a Context instance for proper initializa‐
tion. In either case, it’s still valuable to add static accessors to your subclassed
android.app.Application instance so that you can consolidate all globally accessible data
in one place, have guaranteed access to a Context instance, and easily write “correct”
singleton code without having to worry about synchronization.

Discussion
When writing your Android app you may find it necessary to share data and services
across multiple Activities. For example, if your app has session data, such as the iden‐
tity of the currently logged-in user, you will likely want to expose this information.
When developing on the Android platform, the pattern for solving this problem is to
have your android.app.Application instance own all global data, and then treat your
Application instance as a singleton with static accessors to the various data and serv‐
ices.

When writing an Android app you’re guaranteed to only have one instance of the
android.app.Application class, so it’s safe (and recommended by the Google Android
team) to treat it as a singleton. That is, you can safely add a static getInstance()
method to your Application implementation. Example 2-2 provides an example.

Example 2-2. The Application implementation

public class AndroidApplication extends Application {

 private static AndroidApplication sInstance;

 private SessionHandler sessionHandler; // Generic your-application handler

2.3 Accessing Android’s Application Object as a “Singleton” | 107

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

 public static AndroidApplication getInstance() {
 return sInstance;
 }

 public Session Handler getSessionHandler()
 return sessionHandler;
 }

 @Override
 public void onCreate() {
 super.onCreate();
 sInstance = this;
 sInstance.initializeInstance();
 }

 protected void initializeInstance() {
 // Do all your initialization here
 sessionHandler = new SessionHandler(
 this.getSharedPreferences("PREFS_PRIVATE", Context.MODE_PRIVATE));
 }

 /** This is a stand-in for some application-specific session handler;
 * would normally be a self-contained public class.
 */
 private class SessionHandler {
 SharedPreferences sp;
 SessionHandler(SharedPreferences sp) {
 this.sp = sp;
 }
 }
}

This isn’t the classical singleton implementation, but given the constraints of the
Android framework it’s the closest thing we have; it’s safe, and it works.

The notion of the “session handler” is that it keeps track of per-user information such
as name and perhaps password, or any other relevant information, across different
Activities and the same Activity even if it gets destroyed and re-created. Our
SessionHandler class is a placeholder for you to compose such a handler, using what‐
ever information you need to maintain across Activities!

Using this technique in this app has simplified and cleaned up the implementation.
Also, it has made it much easier to develop tests. Using this technique in conjunction
with the Robolectric testing framework (see Recipe 3.5), you can mock out the entire
execution environment in a straightforward fashion.

Also, don’t forget to add the application class’s android:"name" declaration to the exist‐
ing application element in your AndroidManifest.xml file:

<application android:icon="@drawable/app_icon"
 android:label="@string/app_name"
 android:name=".AndroidApplication">

108 | Chapter 2: Designing a Successful Application

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

See Also
My blog post.

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory AppSingleton (see “Getting and Using the Code Examples” on page 18).

2.4 Keeping Data When the User Rotates the Device
Ian Darwin

Problem
When the user rotates the device, Android will normally destroy and re-create the
current Activity. You want to keep some data across this cycle, but all the fields in
your Activity are lost during it.

Solution
There are several approaches. If all your data comprises primitive types, consists of
Strings, or is Serializable, you can save it in onSaveInstanceState() in the Bundle that is
passed in.

Another solution lets you return a single arbitrary object. You need only override
onRetainNonConfigurationInstance() in your Activity to save some values, call
getLastNonConfigurationInstance() near the end of your onCreate() method to see if there
is a previously saved value, and, if so, assign your fields accordingly.

Discussion

Using onSaveInstanceState()
See Recipe 1.2.

Using onRetainNonConfigurationInstance()
The getLastNonConfigurationInstance() method’s return type is Object, so you can return
any value you want from it. You might want to create a Map or write an inner class in
which to store the values, but it’s often easier just to pass a reference to the current
Activity, for example, using this:

public class MyActivity extends Activity {
 ...

 /** Returns arbitrary single token object to keep alive across

2.4 Keeping Data When the User Rotates the Device | 109

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

 * the destruction and re-creation of the entire Enterprise.
 */
 @Override
 public Object onRetainNonConfigurationInstance() {
 return this;
 }

The preceding method will be called when Android destroys your main Activity. Sup‐
pose you wanted to keep a reference to another object that was being updated by a
running service, which is referred to by a field in your Activity. There might also be a
Boolean to indicate whether the service is active. In the preceding code, we return a
reference to the Activity from which all of its fields can be accessed (even private
fields, since the outgoing and incoming Activity objects are of the same class). In my
geotracking app JPSTrack, for example, I have a FileSaver class that accepts data from
the location service; I want it to keep getting the location, and saving it to disk, in
spite of rotations, rather than having to restart it every time the screen rotates. Rota‐
tion is unlikely if the device is anchored in a car dash mount (we hope), but quite
likely if a passenger, or a pedestrian, is taking pictures or typing notes while geotrack‐
ing.

After Android creates the new instance, it calls onCreate() to notify the new instance
that it has been created. In onCreate() you typically do constructor-like actions such as
initializing fields and assigning event listeners. You still need to do those, so leave
them alone. Near the end of onCreate(), however, you will add some code to get the old
instance, if there is one, and get some of the important fields from it. The code should
look something like Example 2-3.

Example 2-3. The onCreate() method

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 saving = false;
 paused = false;

 // Lots of other initializations...

 // Now see if we just got interrupted by, e.g., rotation
 Main old = (Main) getLastNonConfigurationInstance();
 if (old != null) {
 saving = old.saving;
 paused = old.paused;

 // This is the most important line: keep saving to same file!
 fileSaver = old.fileSaver;
 if (saving) {
 fileNameLabel.setText(fileSaver.getFileName());
 }

110 | Chapter 2: Designing a Successful Application

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

 return;
 }

 // I/O helper
 fileSaver = new GPSFileSaver(...);
}

The fileSaver object is the big one, the one we want to keep running and not re-create
every time. If we don’t have an old instance, we create the fileSaver only at the very
end of onCreate(), since otherwise we’d be creating a new one just to replace it with the
old one, which is (at the least) bad for performance. When the onCreate() method fin‐
ishes, we hold no reference to the old instance, so it should be eligible for Java
garbage collection. The net result is that the Activity appears to keep running nicely
across screen rotations, despite the re-creation.

An alternative possibility is to set android:configChanges="orientation" in your Android‐
Manifest.xml. This approach prevents the Activity from being destroyed and re-
created, but typically also prevents the application from displaying correctly in land‐
scape mode, and is officially regarded as not good practice—see the following refer‐
ence.

See Also
Recipe 2.3, the developer documentation on handling configuration changes.

Source Download URL
You can download the source code for this example from GitHub. Note that if you
want it to compile, you will also need the jpstrack project, from the same GitHub
account.

2.5 Monitoring the Battery Level of an Android Device
Pratik Rupwal

Problem
You want to detect the battery level on an Android device so that you can notify the
user when the battery level goes below a certain threshold, thereby avoiding unexpec‐
ted surprises.

Solution
A broadcast receiver that receives the broadcast message sent when the battery status
changes can identify the battery level and can issue alerts to users.

2.5 Monitoring the Battery Level of an Android Device | 111

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

Discussion
Sometimes we need to show an alert to the user when the battery level of an Android
device goes below a certain limit. The code in Example 2-4 sets the broadcast message
to be sent whenever the battery level changes and creates a broadcast receiver to
receive the broadcast message, which can alert the user when the battery gets dis‐
charged below a certain level.

Example 2-4. The main Activity

public class MainActivity extends Activity {

 /** Called when the Activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 /** This registers the receiver for a broadcast message to be sent
 * to when the battery level is changed. */

 this.registerReceiver(this.myBatteryReceiver,
 new IntentFilter(Intent.ACTION_BATTERY_CHANGED));

 /** Intent.ACTION_BATTERY_CHANGED can be replaced with
 * Intent.ACTION_BATTERY_LOW for receiving
 * a message only when battery level is low rather than sending
 * a broadcast message every time battery level changes.
 * There is also ACTION_BATTERY_OK for when the battery
 * has been charged a certain amount above the level that
 * would trigger the low condition.
 */
 }

 private BroadcastReceiver myBatteryReceiver =
 new BroadcastReceiver() {

 @Override
 public void onReceive(Context ctx, Intent intent) {
 // bLevel is battery percent-full as an integer
 int bLevel = intent.getIntExtra("level", 0);
 Log.i("BatteryMon", "Level now " + bLevel);
 }
 };
}

The ACTION_BATTERY_LOW and ACTION_BATTERY_OK levels are not documented, and are setta‐
ble only by rebuilding the operating system, but they may be around 10 and 15, or 15
and 20, respectively.

112 | Chapter 2: Designing a Successful Application

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

2.6 Creating Splash Screens in Android
Rachee Singh and Ian Darwin

Problem
You want to create a splash screen that will appear while an application is loading.

Solution
You can construct a splash screen as an Activity or as a dialog. Since its purpose is
accomplished within a few seconds, it can be dismissed after a short time interval has
elapsed or upon the click of a button in the splash screen.

Discussion
The splash screen was invented in the PC era, initially as a cover-up for slow GUI
construction when PCs were slow. Vendors have kept them for branding purposes.
But in the mobile world, where the longest app start-up time is probably less than a
second, people are starting to recognize that splash screens have become somewhat
anachronistic. When I (Ian Darwin) worked at eHealth Innovation, we recognized
this by making the splash screen for our BANT application disappear after just one
second. The question arises whether we still need splash screens at all. With most
mobile apps, the name and logo appear in the app launcher, and on lots of other
screens within the app. Is it time to make the splash screen disappear altogether?

The answer to that question is left up to you and your organization. For complete‐
ness, here are two methods of handling the application splash screen.

The first version uses an Activity that is dedicated to displaying the splash screen. The
splash screen displays for two seconds or until the user presses the Menu key, and
then the main Activity of the application appears. First we use a thread to wait for a
fixed number of seconds, and then we use an Intent to start the real main Activity.
The one downside to this method is that your “main” Activity in your AndroidMani‐
fest.xml file is the splash Activity, not your real main Activity. Example 2-5 shows the
splash Activity.

Example 2-5. The splash Activity

public class SplashScreen extends Activity {
 private long ms=0;
 private long splashTime=2000;
 private boolean splashActive = true;
 private boolean paused=false;
 @Override
 protected void onCreate(Bundle savedInstanceState) {

2.6 Creating Splash Screens in Android | 113

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

 super.onCreate(savedInstanceState);
 setContentView(R.layout.splash);
 Thread mythread = new Thread() {
 public void run() {
 try {
 while (splashActive && ms < splashTime) {
 if(!paused)
 ms=ms+100;
 sleep(100);
 }
 } catch(Exception e) {}
 finally {
 Intent intent = new Intent(SplashScreen.this, Main.class);
 startActivity(intent);
 }
 }
 };
 mythread.start();
 }

}

Example 2-6 shows the layout of the splash Activity, splash.xml.

Example 2-6. The splash layout

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <ImageView android:src="@drawable/background"
 android:id="@+id/image"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

 <ProgressBar android:id="@+id/progressBar1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal">
 </ProgressBar>
</LinearLayout>

One additional requirement is to put the attribute android:noHistory="true" on the
splash Activity in your AndroidManifest.xml file so that this Activity will not appear
in the history stack, meaning if the user uses the Back button from the main app he
will go to the expected Home screen, not back into your splash screen (see
Figure 2-2).

114 | Chapter 2: Designing a Successful Application

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

Figure 2-2. Splash screen

Two seconds later, this Activity leads to the next Activity, which is the standard
“Hello, World” Android Activity, as a proxy for your application’s main Activity (see
Figure 2-3).

Figure 2-3. “Main” Activity

In the second version (Example 2-7), the splash screen displays until the Menu key on
the Android device is pressed, then the main Activity of the application appears. For
this, we add a Java class that displays the splash screen. We check for the pressing of
the Menu key by checking the KeyCode and then finishing the Activity (see
Example 2-7).

2.6 Creating Splash Screens in Android | 115

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

Example 2-7. Watching for KeyCodes

public class SplashScreen extends Activity {
 private long ms=0;
 private long splashTime=2000;
 private boolean splashActive = true;
 private boolean paused=false;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.splash);
 }

 public boolean onKeyDown(int keyCode, KeyEvent event) {
 super.onKeyDown(keyCode, event);
 if (KeyEvent.KEYCODE_MENU == keyCode) {
 Intent intent = new Intent(SplashScreen.this, Main.class);
 startActivity(intent);
 }
 if (KeyEvent.KEYCODE_BACK == keyCode) {
 finish();
 }
 return false;
 }
}

The layout of the splash Activity, splash.xml, is unchanged from the earlier version.

As before, after the button press this Activity leads to the next Activity, which repre‐
sents the main Activity.

The other major method involves use of a dialog, started from the onCreate() method
in your main method. This has a number of advantages, including a simpler Activity
stack and the fact that you don’t need an extra Activity that’s only used for the first
few seconds. The disadvantage is that it takes a bit more code, as you can see in
Example 2-8.

Example 2-8. The splash dialog

public class SplashDialog extends Activity {
 private Dialog splashDialog;

 /** Called when the Activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 StateSaver data = (StateSaver) getLastNonConfigurationInstance();
 if (data != null) { // "All this has happened before"
 if (data.showSplashScreen) { // And we didn't already finish
 showSplashScreen();
 }
 setContentView(R.layout.main);

116 | Chapter 2: Designing a Successful Application

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

 // Do any UI rebuilding here using saved state
 } else {
 showSplashScreen();
 setContentView(R.layout.main);
 // Start any heavy-duty loading here, but on its own thread
 }
 }

The basic idea is to display the splash dialog at application startup, but also to redis‐
play it if you get, for example, an orientation change while the splash screen is run‐
ning, and to be careful to remove it at the correct time if the user backs out or if the
timer expires while the splash screen is running.

See Also
Ian Clifton’s blog post titled “Android Splash Screens Done Right” argues passionately
for the dialog method.

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory SplashDialog (see “Getting and Using the Code Examples” on page 18).

2.7 Designing a Conference/Camp/Hackathon/Institution
App
Ian Darwin

Problem
You want to design an app for use at a conference, BarCamp, or hackathon, or inside
a large institution such as a hospital.

Solution
Provide at least the required functions listed in this recipe’s “Discussion” section, and
as many of the optional ones as you think make sense.

Discussion
A good app of this type requires some or most of the following functions, as appro‐
priate:

• A map of the building, showing the locations of meetings, food services, wash‐
rooms, emergency exits, and so on. You get extra points if you provide a visual
slider for moving up or down levels if your conference takes place on more than

2.7 Designing a Conference/Camp/Hackathon/Institution App | 117

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

one floor or level in the building (think about a 3D fly-through of San Francisco’s
Moscone Center, including the huge escalators). Remember that some people
may know the building, but others will not. Consider having a “where am I”
function (the user will type in the name or number of a room he sees; you get
extra points if you offer visual matching or use the GPS instead of making the
user type) as well as a “where is” function (the user selects from a list and the
application jumps to the map view with a pushpin showing the desired location).
Turn-by-turn walking directions through a maze of twisty little passages?

• A map of the exhibit hall (if there is a show floor, have a map and an easy way to
find a given exhibitor). Ditto for poster papers if your conference features these.

• A schedule view. Highlight changes in red as they happen, including additions,
last-minute cancellations, and room changes.

• A sign-up button if your conference has Birds of a Feather (BOF) gatherings; you
might even want a “Suggest a new BOF” Activity.

• A local area map. This could be OpenStreetMap or Google Maps, or maybe
something more detailed than the standard map. Add folklore, points of interest,
navigation shortcuts, and other features. Limit it to a few blocks so that you can
get the details right. A university campus is about the right size.

• An overview map of the city. Again, this is not the Google map, but an artistic,
neighborhood/zone view with just the highlights.

• Tourist attractions within an hour of the site. Your mileage may vary.
• A food finder. People always get tired of convention food and set out on foot to

find something better to eat.
• A friend finder. If Google’s Latitude app were open to use by third-party apps,

you could tie into Google’s data. If it’s a security conference, implement this func‐
tionality yourself.

• Private voice chat. If it’s a small security gathering, provide a Session Initiation
Protocol (SIP) server on a well-connected host, with carefully controlled access;
it should be possible to have almost walkie talkie–like service.

• Sign-ups for impromptu group formation for trips to tourist attractions or any
other purpose.

• Functionality to post comments to Twitter, Facebook, and LinkedIn.
• Note taking! Many people will have Android on large-screen tablets, so a “Note‐

pad” equivalent, ideally linked to the session the notes are taken in, will be useful.
• A way for users to signal chosen friends that they want to eat (at a certain time, in

so many minutes, right now), including the type of food or restaurant name and
seeing if they’re also interested.

118 | Chapter 2: Designing a Successful Application

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

See Also
The rest of this book shows how to implement most of these functions.

Google Maps has recently started serving building maps. The article shows who to
contact to get your building’s internal locations added to the map data; if appropriate,
consider getting the venue operators to give Google their building’s data.

2.8 Using Google Analytics in an Android Application
Ashwini Shahapurkar

Problem
Developers often want to track their applications in terms of features used by users.
How can you determine which feature is most used by your app’s users?

Solution
Use Google Analytics to track the app based on defined criteria, similar to Google
Analytics’s website-tracking mechanism.

Discussion
Before we use Google Analytics in our app, we need an analytics account which you
can get for free from Google using one of two approaches to getting the Google Ana‐
lytics SDK running:

Automated Approach
For Android Studio only, you can follow the steps to get the Analytics SDK given at
https://developers.google.com/analytics/devguides/collection/android/resources, which
involve having Google generate a simple configuration file containing your Analytics
account, then adding two classpath dependencies and a Gradle plugin in your Gradle
build scripts. The plugin will read your downloaded configuration file and apply the
information to your code.

Hands-On Approach
A more hands-on approach involves creating your account directly at https://
accounts.google.com/SignUp?continue=https%3A%2F%2Fwww.google.com%2Fanalyt
ics%2Fmobile%2F&hl=en, then adding two dependencies and providing the analytics
account to the SDK. The two dependencies are com.google.gms:google-services:3.0.0
and com.google.android.gms:play-services-analytics:10.0.1.

2.8 Using Google Analytics in an Android Application | 119

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

Now, sign in to your analytics account and create a website profile for the app. The
website URL can be fake but should be descriptive. I recommend that you use the
reverse package name for this. For example, if the application package name is
com.example.analytics.test, the website URL for this app can be http://test.analyt
ics.example.com. After you create the website profile, a web property ID is generated
for that profile. Jot it down - save it in a safe place-as we will be using this ID in our
app. The ID, also known as the UA number of the tracking code, uniquely identifies
the website profile.

Common Steps
Next, ensure you have the following permissions in your project’s AndroidMani‐
fest.xml file:

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

For both legal and licensing reasons, you must inform your users
that you are collecting anonymous user data in your app. You can
do so via a policy statement, in the end-user license agreement, or
somewhere else where users will see this information. See Recipe
2.9.

Now we are ready to track our application. Obtain the singleton instance of the
tracker by calling the GoogleAnalytics.getInstance().newTracker() method. Usually, you
will want to track more than Activities in the app. In such a scenario, it’s a good idea
to have this tracker instance in the onCreate() method of the Application class of the
app (see Example 2-9).

Example 2-9. The application implementation for tracking

public class GADemoApp extends Application {
 /*
 * Define web property ID obtained after creating a profile for the app. If
 * using the Gradle plugin, this should be available as R.xml.global_tracker.
 */
 private String webId = "UA-NNNNNNNN-Y";

 /* Analytics tracker instance */
 Tracker tracker;

 /* This is the getter for the tracker instance. This is called from
 * within the Activity to get a reference to the tracker instance.
 */
 public synchronized Tracker getTracker() {
 if (tracker == null) {
 // Get the singleton Analytics instance, get Tracker from it
 GoogleAnalytics instance = GoogleAnalytics.getInstance(this);

120 | Chapter 2: Designing a Successful Application

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

 // Start tracking the app with your web property ID
 tracker = instance.newTracker(webId);

 // Any app-specific Application setup code goes here...
 }
 return tracker;
 }
}

You can track page views and events in the Activity by calling the setScreenName() and
send() methods on the tracker instance (see Example 2-10).

Example 2-10. The Main Activity with tracking

public class MainActivity extends Activity {
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // Track the page view for the Activity
 Tracker tracker =
 ((GADemoApp)getApplication()).getTracker();
 tracker.setScreenName("MainActivity");
 tracker.send(new HitBuilders.ScreenViewBuilder().build());

 /* You can track events like button clicks... */
 findViewById(R.id.actionButton).setOnClickListener(v -> {
 Tracker tracker =
 ((GADemoApp)getApplication()).getTracker();
 tracker.send(new HitBuilders.EventBuilder(
 "Action Event", "Button Clicked").build());
 });
 }
}

Using this mechanism, you can track all the Activities and events inside them. You
then visit the Analytics web site to see how many times each Activity or other event
has been invoked.

See Also
The main page for the Android Analytics API[https://developer.android.com/distrib
ute/analyze/start.html].

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory Analytics (see “Getting and Using the Code Examples” on page 18).

2.8 Using Google Analytics in an Android Application | 121

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

2.9 Setting First-Run Preferences
Ashwini Shahapurkar

Problem
You have an application that collects app usage data anonymously, so you are obliga‐
ted to make users aware of this the first time they run your application.

Solution
Use shared preferences as persistent storage to store a value, which gets updated only
once. Each time the application launches, it will check for this value in the preferen‐
ces. If the value has been set (is available), it is not the first run of the application;
otherwise it is the first run.

Discussion
You can manage the application life cycle by using the Application class of the Android
framework. We will use shared preferences as persistent storage to store the first-run
value.

We will store a Boolean flag in the preferences if this is the first run. When the appli‐
cation is installed and used for the first time, there are no preferences available for it.
They will be created for us. In that case the flag will return a value of true. After get‐
ting the true flag, we can update this flag with a value of false as we no longer need it
to be true. See Example 2-11.

Example 2-11. First-run preferences

public class MyApp extends Application {

 SharedPreferences mPrefs;

 @Override
 public void onCreate() {
 super.onCreate();

 Context mContext = this.getApplicationContext();
 // 0 = mode private. Only this app can read these preferences.
 mPrefs = mContext.getSharedPreferences("myAppPrefs", 0);

 // Your app initialization code goes here
 }

 public boolean getFirstRun() {
 return mPrefs.getBoolean("firstRun", true);
 }

122 | Chapter 2: Designing a Successful Application

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

 public void setRunned() {
 SharedPreferences.Editor edit = mPrefs.edit();
 edit.putBoolean("firstRun", false);
 edit.commit();
 }
}

This flag from the preferences will be tested in the launcher Activity, as shown in
Example 2-12.

Example 2-12. Checking whether this is the first run of this app

 if(((MyApp) getApplication()).getFirstRun()) {
 // This is the first run
 ((MyApp) getApplication()).setRunned();

 // Your code for the first run goes here

 }
 else {
 // This is not the first run on this device
 }

Even if you publish updates for the app and the user installs the updates, these prefer‐
ences will not be modified; therefore, the code will work for only the first run after
installation. Subsequent updates to the app will not bring the code into the picture,
unless the user has manually uninstalled and reinstalled the app.

You could use a similar technique for distributing shareware ver‐
sions of an Android app (i.e., limit the number of trials of the
application). In this case, you would use an integer count value in
the preferences to indicate the number of trials. Each trial would
update the preferences. After the desired value is reached, you
would block the usage of the application until the user pays the
usage fee.

2.10 Formatting Numbers
Ian Darwin

Problem
You need to format numbers, because the default formatting of Double.toString() and
friends does not give you enough control over how the results are displayed.

2.10 Formatting Numbers | 123

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

Solution
Use String.format() or one of the NumberFormat subclasses.

Discussion
The printf() function was first included in the C programming language in the 1970s,
and it has been used in many other languages since, including Java. Here’s a simple
printf() example in Java SE:

System.out.printf("Hello %s at %s%n", userName, time);

The preceding example could be expected to print something like this:
Hello Robin at Wed Jun 16 08:38:46 EDT 2010

Since we don’t use System.out in Android, you’ll be relieved to note that you can get
the same string that would be printed, for putting it into a view, by using:

String msg = String.format("Hello %s at %s%n", userName, time);

If you haven’t seen printf() before, the first argument is obviously the format code
string, and any other arguments here, (userName and time) are values to be formatted.
The format codes begin with a percent sign (%) and have at least one “type” code;
Table 2-1 shows some common type codes.

Table 2-1. Some common format codes
Character Meaning
s String (convert primitive values using defaults; convert objects by toString)

d Decimal integer (int, long)

f Floating point (float, double)

n Newline

t Time/date formats, Java-specific; see the discussion referred to in the “See Also” section at the end of the recipe

The default date formatting is pretty ugly, so we often need to expand on it. The
printf() formatting capabilities are actually housed in the java.util.Formatter class, to
which reference should be made for the full details of its formatting language.

Unlike printf() in other languages you may have used, all these format routines
optionally allow you to refer to arguments by their number, by putting a number plus
a dollar sign after the % lead-in but before the formatting code proper; for example,
%2$3.1f means to format the second argument as a decimal number with three charac‐
ters and one digit after the decimal place. This numbering can be used for two pur‐
poses: to change the order in which arguments print (often useful with internationali‐
zation), and to refer to a given argument more than once. The date/time format char‐

124 | Chapter 2: Designing a Successful Application

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

acter t requires a second character after it, such as Y for the year, m for the month, and
so on. Here we take the time argument and extract several fields from it:

msg = String.format("Hello at %1$tB %1$td, %1$tY%n", time);

This might format as July 4, 2010.

To print numbers with a specific precision, you can use f with a width and a preci‐
sion, such as:

msg = String.format("Latitude: %10.6f", latitude);

This might yield:
Latitude: -79.281818

While such formatting is OK for specific uses such as latitudes and longitudes, for
general use such as currencies, it may give you too much control.

General formatters
Java has an entire package, java.text, that is full of formatting routines as general and
flexible as anything you might imagine. Like printf(), it has an involved formatting
language, described in the online documentation page. Consider the presentation of
numbers. In North America, the number “one thousand twenty-four and a quarter” is
written 1,024.25; in most of Europe it is 1 024,25, and in some other parts of the
world it might be written 1.024,25. The formatting of currencies and percentages is
equally varied. Trying to keep track of this yourself would drive the average software
developer around the bend rather quickly.

Fortunately, the java.text package includes a Locale class. Furthermore, the Java or
Android runtime automatically sets a default Locale object based on the user’s envi‐
ronment; this code works the same on desktop Java as it does in Android. To provide
formatters customized for numbers, currencies, and percentages, the NumberFormat
class has static factory methods that normally return a DecimalFormat with the correct
pattern already instantiated. A DecimalFormat object appropriate to the user’s locale can
be obtained from the factory method NumberFormat.getInstance() and manipulated
using set methods. Surprisingly, the method setMinimumIntegerDigits() turns out to be
the easy way to generate a number format with leading zeros. Example 2-13 is an
example.

Example 2-13. Number formatting demo

import java.text.NumberFormat;

/*
 * Format a number our way and the default way.
 */
public class NumFormat2 {
 /** A number to format */

2.10 Formatting Numbers | 125

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

 public static final double data[] = {
 0, 1, 22d/7, 100.2345678
 };

 public static void main(String[] av) {
 // Get a format instance
 NumberFormat form = NumberFormat.getInstance();

 // Tailor it to look like 999.99[99]
 form.setMinimumIntegerDigits(3);
 form.setMinimumFractionDigits(2);
 form.setMaximumFractionDigits(4);

 // Now print using it
 for (int i=0; i<data.length; i++)
 System.out.println(data[i] + "\tformats as " +
 form.format(data[i]));
 }
}

This prints the contents of the array using the NumberFormat instance form. We show
running it as a main program instead of in an Android application just to isolate the
effects of the NumberFormat.

For example, $ java NumFormat2 0.0 formats as 000.00; with the argument 1.0 it formats
as 001.00, with 3.142857142857143 it formats as 003.1429, and with 100.2345678 it formats as
100.2346.

You can also construct a DecimalFormat with a particular pattern or change the pattern
dynamically using applyPattern(). Table 2-2 shows some of the more common pattern
characters.

Table 2-2. Common DecimalFormat pattern characters
Character Explanation
Numeric digit (leading zeros suppressed)

0 Numeric digit (leading zeros provided)

. Locale-specific decimal separator (decimal point)

, Locale-specific grouping separator (comma in English)

- Locale-specific negative indicator (minus sign)

% Shows the value as a percentage

; Separates two formats: the first for positive and the second for negative values

' Escapes one of the preceding characters so that it appears as itself

Anything else Appears as itself

The NumFormatTest program uses one DecimalFormat to print a number with only two
decimal places and a second to format the number according to the default locale, as
shown in Example 2-14.

126 | Chapter 2: Designing a Successful Application

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

Example 2-14. NumberFormat demo Java SE program

import java.text.DecimalFormat;
import java.text.NumberFormat;

public class NumFormatDemo {
 /** A number to format */
 public static final double intlNumber = 1024.25;
 /** Another number to format */
 public static final double ourNumber = 100.2345678;

 public static void main(String[] av) {

 NumberFormat defForm = NumberFormat.getInstance();
 NumberFormat ourForm = new DecimalFormat("##0.##");
 // toPattern() will reveal the combination of #0., etc.
 // that this particular Locale uses to format with
 System.out.println("defForm's pattern is " +
 ((DecimalFormat)defForm).toPattern());
 System.out.println(intlNumber + " formats as " +
 defForm.format(intlNumber));
 System.out.println(ourNumber + " formats as " +
 ourForm.format(ourNumber));
 System.out.println(ourNumber + " formats as " +
 defForm.format(ourNumber) + " using the default format");
 }
}

This program prints the given pattern and then formats the same number using sev‐
eral formats:

$ java NumFormatTest
defForm's pattern is #,##0.###
1024.25 formats as 1,024.25
100.2345678 formats as 100.23
100.2345678 formats as 100.235 using the default format

See Also
Chapter 10 of my book Java Cookbook and Part VI of [Java I/O] by Elliotte Rusty
Harold (both from O’Reilly).

2.11 Formatting with Correct Plurals
Ian Darwin

Problem
You’re displaying something like "Found "+ n +" reviews", but in English, “Found 1
reviews” is ungrammatical. You want "Found 1 review" for the case n==1.

2.11 Formatting with Correct Plurals | 127

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

Solution
For simple, English-only results, use a conditional statement. For better results that
can be internationalized, use a ChoiceFormat. On Android, you can use <plural> in an
XML resources file.

Discussion
The “quick and dirty” method is to use Java’s ternary operator (cond ? trueval :
falseval) in a string concatenation. Since in English, for most nouns, both zero and
plurals get an s appended to the noun (“no books, one book, two books”), we need
only test for n==1:

// FormatPlurals.java
public static void main(String argv[]) {
 report(0);
 report(1);
 report(2);
}
/** report -- using conditional operator */
public static void report(int n) {
 System.out.println("Found " + n + " item" + (n==1?"":"s"));
}

Running this on Java SE as a main program shows the following output:
$ java FormatPlurals
Found 0 items
Found 1 item
Found 2 items

The final println() statement is short for:
if (n==1)
 System.out.println("Found " + n + " item");
else
 System.out.println("Found " + n + " items");

This is longer, so Java’s ternary conditional operator is worth learning.

Of course, you can’t use this arbitrarily, because English is a strange and somewhat
idiosyncratic language. Some nouns, such as bus, require “es” at the end, while others,
such as cash, are collective nouns with no plural (you can have two flocks of geese or
two stacks of cash, but you cannot have “two geeses” or “two cashes”). Still other
nouns, such as fish, can be considered plural as they are, although fishes is also a cor‐
rect plural.

A better way
The ChoiceFormat class from java.text is ideal for handling plurals; it lets you specify
singular and plural (or, more generally, range) variations on the noun. It is capable of
more, but in Example 2-15 I’ll show only a couple of the simpler uses. I specify the

128 | Chapter 2: Designing a Successful Application

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

values 0, 1, and 2 (or more), and the string values to print corresponding to each
number. The numbers are then formatted according to the range they fall into.

Example 2-15. Formatting plurals using ChoiceFormat

import java.text.*;

/**
 * Format a plural correctly, using a ChoiceFormat.
 */
public class FormatPluralsChoice extends FormatPlurals {

 // ChoiceFormat to just give pluralized word
 static double[] limits = { 0, 1, 2 };
 static String[] formats = { "reviews", "review", "reviews"};
 static ChoiceFormat pluralizedFormat =
 new ChoiceFormat(limits, formats);

 // ChoiceFormat to give English text version, quantified
 static ChoiceFormat quantizedFormat = new ChoiceFormat(
 "0#no reviews|1#one review|1<many reviews");

 // Test data
 static int[] data = { -1, 0, 1, 2, 3 };

 public static void main(String[] argv) {
 System.out.println("Pluralized Format");
 for (int i : data) {
 System.out.println("Found " + i + " " +
 pluralizedFormat.format(i));
 }

 System.out.println("Quantized Format");
 for (int i : data) {
 System.out.println("Found " +
 quantizedFormat.format(i));
 }
 }
}

Either of these loops generates output similar to the basic version. The code using the
ChoiceFormat is slightly longer, but more general, and lends itself better to internation‐
alization. Put the string for the “quantized” form constructor into strings.xml and it
will be part of your localization actions.

The best way (Android only)
Create a file in /res/values$$/ containing something like this:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <plurals name="numberOfSongsAvailable">
 <item quantity="one">One item found.</item>

2.11 Formatting with Correct Plurals | 129

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

 <item quantity="other">%d items found.</item>
 </plurals>
</resources>

In your code, you can then use the following:
int count = getNumberOfsongsAvailable();
Resources res = getResources();
String songsFound =
 res.getQuantityString(R.plurals.numberOfSongsAvailable, count);

This use of XML resources was suggested by Tomas Persson.

See Also
For the Android-specific way, see the developer documentation on quantity strings.

Source Download URL
You can download the source code for this example from GitHub.

2.12 Formatting the Time and Date for Display
Pratik Rupwal

Problem
You want to display the time and date in different standard formats.

Solution
The DateFormat class provides APIs for formatting time and date in a custom format.
Using these APIs requires minimal effort.

Discussion
Example 2-16 adds five different TextViews for showing the time and date in different
formats.

Example 2-16. The TextView layout

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"

130 | Chapter 2: Designing a Successful Application

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

 android:id="@+id/textview1"
 />
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview2"
 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview3"
 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview4"
 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview5"
 />

</LinearLayout>

Example 2-17 obtains the current time and date using the java.util.Date class and
then displays it in different formats (please refer to the comments for sample output).

Example 2-17. The date formatter Activity

package com.sym.dateformatdemo;

import java.util.Date;
import android.app.Activity;
import android.os.Bundle;
import android.text.format.DateFormat;
import android.widget.TextView;

public class TestDateFormatterActivity extends Activity {
 /** Called when the Activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 TextView textView1 = (TextView) findViewById(R.id.textview1);
 TextView textView2 = (TextView) findViewById(R.id.textview2);
 TextView textView3 = (TextView) findViewById(R.id.textview3);
 TextView textView4 = (TextView) findViewById(R.id.textview4);
 TextView textView5 = (TextView) findViewById(R.id.textview5);

 String delegate = "MM/dd/yy hh:mm a"; // 09/21/2011 02:17 pm
 Date noteTS = new Date();
 textView1.setText("Found Time :: "+DateFormat.format(delegate,noteTS));

2.12 Formatting the Time and Date for Display | 131

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

 delegate = "MMM dd, yyyy h:mm aa"; // Sep 21,2011 02:17 pm
 textView2.setText("Found Time :: "+DateFormat.format(delegate,noteTS));

 delegate = "MMMM dd, yyyy h:mmaa"; // September 21,2011 02:17pm
 textView3.setText("Found Time :: "+DateFormat.format(delegate,noteTS));

 delegate = "E, MMMM dd, yyyy h:mm:ss aa";//Wed, September 21,2011 02:17:48 pm
 textView4.setText("Found Time :: "+DateFormat.format(delegate,noteTS));

 delegate =
 "EEEE, MMMM dd, yyyy h:mm aa"; //Wednesday, September 21,2011 02:17:48 pm
 textView5.setText("Found Time :: "+DateFormat.format(delegate,noteTS));
 }
}

See Also
Recipe 2.13. Also, the classes shown in the following table, in the package
android.text.format, may be of use in this type of application.

Name Usage
DateUtils This class contains various date-related utilities for creating text for things like elapsed time and date ranges,

strings for days of the week and months, and a.m./p.m. text.

Formatter This is a utility class to aid in formatting common values that are not covered by java.util.Formatter.

Time This class is a faster replacement for the java.util.Calendar and java.util.GregorianCalendar
classes.

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory DateFormatDemo (see “Getting and Using the Code Examples” on page 18).

2.13 Simplifying Date/Time Calculations with the Java 8
java.time API
Ian Darwin

Problem
You’ve heard that the JSR-310 date/time API, included in Java SE 8, simplifies date
and time calculations, and you’d like to use it in Android.

Solution
You can use the new java.time API in Android O and later. Since Android did not
become fully compliant with JDK 8 even in Android Nougat, despite being “based
on” OpenJDK 8, for Android Nougat and earlier, you must use a third-party library

132 | Chapter 2: Designing a Successful Application

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

such as the JSR-310 “backport” to access the java.time facilities, albeit with a different
package name.

Discussion
There is a long history to the java.time API that I won’t bore you with here; suffice it
to say that we are all indebted to Steven Colbourne for inventing it and for his con‐
stancy in urging first Sun, then Oracle, to incorporate it into Java, which finally hap‐
pened in Java 8. For licensing reasons, the backport of JSR-310—by its original author
—to Java 6/7 was placed in a non-Java package, org.threeten.bp.

Since Android N didn’t provide full compatibility with Java 8, we use an external
library. We’ll use an Android-specific version of this “backport” library, by Jake
Wharton, is available on GitHub. You can add it to any Gradle or Maven project just
by adding the coordinates compile 'com.jakewharton.threetenabp:threetenabp:1.0.3' to
your build script (the version number may change over time, of course).

Here is an example to show you the level of complexity of the kinds of calculations
that are built in. I’ve omitted the imports because they differ from the backport libra‐
ries and “standard Java” and Android O. The example shows how little code is needed
to figure out the day of the month on which the next weekly and monthly paydays
occur:

LocalDateTime now = LocalDateTime.now();
LocalDateTime weeklyPayDay =
 now.with(TemporalAdjusters.next(DayOfWeek.FRIDAY));
weekly.setText("Weekly employees' payday is Friday " +
 weeklyPayDay.getMonth() + " " +
 weeklyPayDay.getDayOfMonth());
LocalDateTime monthlyPayDay =
 now.with(TemporalAdjusters.lastInMonth(DayOfWeek.FRIDAY));
monthly.setText("Monthly employees are paid on " +
 monthlyPayDay.getMonth() + " " +
 monthlyPayDay.getDayOfMonth());

The API includes LocalDate objects, which just represent one particular day; LocalTime
objects, which represent a time of day; and LocalDateTime objects, which represent a
date and a time. As the names imply, all three are local, not meant to represent time
across the world’s time zones. For that, you want to use one of several classes that rep‐
resent time zones. See the java.time documentation for details of all the classes.

To use the backport library on Android N and earlier, you need one extra call to initi‐
alize it, either in your Application class (see Recipe 2.3) or in your Activity. In the main
Activity’s onCreate() method you’d say:

AndroidThreeTen.init(getApplication());

The result should look like Figure 2-4.

2.13 Simplifying Date/Time Calculations with the Java 8 java.time API | 133

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

Figure 2-4. Java time example

See Also
The new API is covered in Chapter 6 of my Java Cookbook and in some tutorials on
the web. Make sure you use the version of the tutorial corresponding to the API you
are using. The Java 8 version differs slightly from “ThreeTen” versions, and these both
differ from the original Joda Time versions.

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory JavaTimeDemo (see “Getting and Using the Code Examples” on page 18).

2.14 Controlling Input with KeyListeners
Pratik Rupwal

Problem
Your application contains text boxes in which you want to restrict users to entering
only numbers; also, in some cases you want to allow only positive numbers, or inte‐
gers, or dates.

Solution
Android provides KeyListener classes to help you restrict users to entering only num‐
bers, positive numbers, integers, positive integers, and much more.

134 | Chapter 2: Designing a Successful Application

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

Discussion
The Android.text.method package includes a KeyListener interface, along with some
classes such as DigitsKeyListener and DateKeyListener that implement this interface.

Example 2-18 is a sample application that demonstrates a few of these classes. This
layout file creates five TextViews and five EditTexts; the TextViews display the input type
allowed for their respective EditTexts.

Example 2-18. Layout with TextViews and EditTexts

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview1"
 android:text="digits listener with signs and decimal points"
 />
 <EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/editText1"
 />

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview2"
 android:text="digits listener without signs and decimal points"
 />
 <EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/editText2"
 />

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview3"
 android:text="date listener"
 />
 <EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/editText3"
 />

2.14 Controlling Input with KeyListeners | 135

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview4"
 android:text="multitap listener"
 />
 <EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/editText4"
 />

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview5"
 android:text="qwerty listener"
 />
 <EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/editText5"
 />
</LinearLayout>

Example 2-19 is the code for the Activity that restricts the EditText inputs to numbers,
positive integers, and so on (refer to the comments for groups of keys allowed).

Example 2-19. The main Activity

import android.app.Activity;
import android.os.Bundle;
import android.text.method.DateKeyListener;
import android.text.method.DigitsKeyListener;
import android.text.method.MultiTapKeyListener;
import android.text.method.QwertyKeyListener;
import android.text.method.TextKeyListener;
import android.widget.EditText;

public class KeyListenerDemo extends Activity {
 /** Called when the Activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 // Allows digits with positive/negative signs and decimal points
 EditText editText1=(EditText)findViewById(R.id.editText1);
 DigitsKeyListener digkl1=DigitsKeyListener.getInstance(true,true);
 editText1.setKeyListener(digkl1);

 // Allows positive integers only (no decimal values allowed)
 EditText editText2=(EditText)findViewById(R.id.editText2);
 DigitsKeyListener digkl2=DigitsKeyListener.getInstance();
 editText2.setKeyListener(digkl2);

136 | Chapter 2: Designing a Successful Application

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

 // Allows dates only
 EditText editText3=(EditText)findViewById(R.id.editText3);
 DateKeyListener dtkl=new DateKeyListener();
 editText3.setKeyListener(dtkl);

 // Allows multitap with 12-key keypad layout
 EditText editText4=(EditText)findViewById(R.id.editText4);
 MultiTapKeyListener multitapkl =
 new MultiTapKeyListener(TextKeyListener.Capitalize.WORDS,true);
 editText4.setKeyListener(multitapkl);

 // Allows qwerty layout for typing
 EditText editText5=(EditText)findViewById(R.id.editText5);
 QwertyKeyListener qkl =
 new QwertyKeyListener(TextKeyListener.Capitalize.SENTENCES,true);
 editText5.setKeyListener(qkl);
 }
}

To use MultiTapKeyListener, your phone should support the 12-key layout and it needs
to be activated. To activate the 12-key layout, go to Settings → Language and Key‐
board → On-screen Keyboard Layout and then select the “Phone layout” options.

See Also
The Listener types in the following table will be of use in writing this type of applica‐
tion.

Name Usage
BaseKeyListener This is an abstract base class for key listeners.

DateTimeKeyListener This is for entering dates and times in the same text field.

MetaKeyKeyListener This base class encapsulates the behavior for tracking the state of meta keys such as SHIFT, ALT,
and SYM, as well as the pseudo-meta state of selecting text.

NumberKeyListener This is for numeric text entry.

TextKeyListener This is the key listener for typing normal text.

TimeKeyListener This is for entering times in a text field.

2.15 Backing Up Android Application Data
Pratik Rupwal

Problem
When a user performs a factory reset or converts to a new Android-powered device,
the application loses stored data or application settings.

2.15 Backing Up Android Application Data | 137

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

Solution
Android’s Backup Manager helps to automatically restore backup data or application
settings when the application is reinstalled.

Discussion
Android’s Backup Manager basically operates in two modes: backup and restore.
During a backup operation, the Backup Manager (BackupManager class) queries your
application for backup data, then hands it to a backup transport, which then delivers
the data to cloud-based storage. During a restore operation, the Backup Manager
retrieves the backup data from the backup transport and returns it to your applica‐
tion so that your application can restore the data to the device. It’s possible for your
application to request a restore, but not necessary because Android performs a
restore operation when your application is installed and backup data associated with
the user exists. The primary scenario in which backup data is restored happens when
a user resets her device or upgrades to a new device and her previously installed
applications are reinstalled.

Example 2-20 shows how to implement the Backup Manager for your application so
that you can save the current state of your application.

Example 2-20. The backup/restore layout

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

 <ScrollView
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1">

 <LinearLayout
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

 <TextView android:text="@string/filling_text"
 android:textSize="20dp"
 android:layout_marginTop="20dp"
 android:layout_marginBottom="10dp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>

 <RadioGroup android:id="@+id/filling_group"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"

138 | Chapter 2: Designing a Successful Application

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

 android:layout_marginLeft="20dp"
 android:orientation="vertical">

 <RadioButton android:id="@+id/bacon"
 android:text="@string/bacon_label"/>
 <RadioButton android:id="@+id/pastrami"
 android:text="@string/pastrami_label"/>
 <RadioButton android:id="@+id/hummus"
 android:text="@string/hummus_label"/>

 </RadioGroup>

 <TextView android:text="@string/extras_text"
 android:textSize="20dp"
 android:layout_marginTop="20dp"
 android:layout_marginBottom="10dp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>

 <CheckBox android:id="@+id/mayo"
 android:text="@string/mayo_text"
 android:layout_marginLeft="20dp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>

 <CheckBox android:id="@+id/tomato"
 android:text="@string/tomato_text"
 android:layout_marginLeft="20dp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>

 </LinearLayout>

 </ScrollView>

</LinearLayout>

Here is a basic description of the procedure in step-by-step form:

1. Create a BackupManagerExample project in Eclipse.
2. Open the layout/backup_restore.xml file and insert the code in Example 2-20 into

it.
3. Open the values/string.xml file and insert into it the code shown in Example 2-21.
4. Your manifest file will look like the code shown in Example 2-22.
5. The code in Example 2-23 completes the implementation of the Backup Manager

for your application.

2.15 Backing Up Android Application Data | 139

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

Example 2-21. Strings for the example

<resources>
 <string name="hello">Hello World, BackupManager!</string>
 <string name="app_name">BackupManager</string>
 <string name="filling_text">Choose Settings for your application:</string>
 <string name="bacon_label">Sound On</string>
 <string name="pastrami_label">Vibration On</string>
 <string name="hummus_label">Backlight On</string>
 <string name="extras_text">Extras:</string>
 <string name="mayo_text">Use Orientation?</string>
 <string name="tomato_text">Use Camera?</string>
</resources>

Example 2-22. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.sym.backupmanager"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="9" />

 <application android:label="Backup/Restore" android:icon="@drawable/icon"
 android:backupAgent="ExampleAgent"> <!--Here you specify the backup agent-->

 <!--Some backup transports may require API keys or other metadata-->
 <meta-data android:name="com.google.android.backup.api_key"
 android:value="INSERT YOUR API KEY HERE" />

 <activity android:name=".BackupManagerExample">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity> </application>

</manifest>

Example 2-23. The backup/restore Activity

package com.sym.backupmanager;

import android.app.Activity;
import android.app.backup.BackupManager;
import android.os.Bundle;
import android.util.Log;
import android.widget.CheckBox;
import android.widget.CompoundButton;
import android.widget.RadioGroup;
import java.io.File;
import java.io.IOException;
import java.io.RandomAccessFile;

140 | Chapter 2: Designing a Successful Application

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

public class BackupManagerExample extends Activity {
 static final String TAG = "BRActivity";

 static final Object[] sDataLock = new Object[0];

 static final String DATA_FILE_NAME = "saved_data";

 RadioGroup mFillingGroup;
 CheckBox mAddMayoCheckbox;
 CheckBox mAddTomatoCheckbox;

 File mDataFile;

 BackupManager mBackupManager;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.backup_restore);

 mFillingGroup = (RadioGroup) findViewById(R.id.filling_group);
 mAddMayoCheckbox = (CheckBox) findViewById(R.id.mayo);
 mAddTomatoCheckbox = (CheckBox) findViewById(R.id.tomato);

 mDataFile = new File(getFilesDir(), BackupManagerExample.DATA_FILE_NAME);

 mBackupManager = new BackupManager(this);

 populateUI();
 }

 void populateUI() {
 RandomAccessFile file;

 int whichFilling = R.id.pastrami;
 boolean addMayo = false;
 boolean addTomato = false;

 synchronized (BackupManagerExample.sDataLock) {
 boolean exists = mDataFile.exists();
 try {
 file = new RandomAccessFile(mDataFile, "rw");
 if (exists) {
 Log.v(TAG, "datafile exists");
 whichFilling = file.readInt();
 addMayo = file.readBoolean();
 addTomato = file.readBoolean();
 Log.v(TAG, " mayo=" + addMayo
 + " tomato=" + addTomato
 + " filling=" + whichFilling);
 } else {
 Log.v(TAG, "creating default datafile");
 writeDataToFileLocked(file,
 addMayo, addTomato, whichFilling);

2.15 Backing Up Android Application Data | 141

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

 mBackupManager.dataChanged();
 }
 } catch (IOException ioe) {
 // Do some error handling here!
 }
 }

 mFillingGroup.check(whichFilling);
 mAddMayoCheckbox.setChecked(addMayo);
 mAddTomatoCheckbox.setChecked(addTomato);

 mFillingGroup.setOnCheckedChangeListener(
 new RadioGroup.OnCheckedChangeListener() {
 public void onCheckedChanged(RadioGroup group,
 int checkedId) {
 Log.v(TAG, "New radio item selected: " + checkedId);
 recordNewUIState();
 }
 });

 CompoundButton.OnCheckedChangeListener checkListener
 = new CompoundButton.OnCheckedChangeListener() {
 public void onCheckedChanged(CompoundButton buttonView,
 boolean isChecked) {
 Log.v(TAG, "Checkbox toggled: " + buttonView);
 recordNewUIState();
 }
 };
 mAddMayoCheckbox.setOnCheckedChangeListener(checkListener);
 mAddTomatoCheckbox.setOnCheckedChangeListener(checkListener);
 }

 void writeDataToFileLocked(RandomAccessFile file,
 boolean addMayo, boolean addTomato, int whichFilling)
 throws IOException {
 file.setLength(0L);
 file.writeInt(whichFilling);
 file.writeBoolean(addMayo);
 file.writeBoolean(addTomato);
 Log.v(TAG, "NEW STATE: mayo=" + addMayo
 + " tomato=" + addTomato
 + " filling=" + whichFilling);
 }

 void recordNewUIState() {
 boolean addMayo = mAddMayoCheckbox.isChecked();
 boolean addTomato = mAddTomatoCheckbox.isChecked();
 int whichFilling = mFillingGroup.getCheckedRadioButtonId();
 try {
 synchronized (BackupManagerExample.sDataLock) {
 RandomAccessFile file = new RandomAccessFile(mDataFile, "rw");
 writeDataToFileLocked(file, addMayo, addTomato, whichFilling);
 }
 } catch (IOException e) {
 Log.e(TAG, "Unable to record new UI state");
 }

142 | Chapter 2: Designing a Successful Application

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

 mBackupManager.dataChanged();
 }
}

Data backup is not guaranteed to be available on all Android-powered devices. How‐
ever, your application is not adversely affected in the event that a device does not pro‐
vide a backup transport. If you believe that users will benefit from data backup in
your application, you can implement it as described in this recipe, test it, and then
publish your application without any concern about which devices actually perform
backups. When your application runs on a device that does not provide a backup
transport, the application will operate normally but will not receive callbacks from
the Backup Manager to back up data.

Although you cannot know what the current transport is, you are always assured that
your backup data cannot be read by other applications on the device. Only the
Backup Manager and backup transport have access to the data you provide during a
backup operation.

Because the cloud storage and transport services can differ among
devices, Android makes no guarantees about the security of your
data while using backup. You should always be cautious about
using backup to store sensitive data, such as usernames and pass‐
words.

Testing your backup agent
Once you’ve implemented your backup agent, you can use the bmgr command to test
the backup and restore functionality by following these steps:

1. Install your application on a suitable Android system image, running any current
emulator or device with Google Play Services.

2. Ensure that backup capability is enabled. If you are using the emulator, you can
enable backup with the following command from your SDK tools/path:

$ adb shell bmgr enable true

3. If you are using a device, open the system settings, select Privacy, and then enable
“Back up my data” and “Automatic restore.”

4. Open your application and initialize some data.
If you’ve properly implemented backup capability in your application, it should
request a backup each time the data changes. For example, each time the user
changes some data, your app should call dataChanged(), which adds a backup
request to the Backup Manager queue. For testing purposes, you can also make a
request with the following ++bmgr++ command:

2.15 Backing Up Android Application Data | 143

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

$ adb shell bmgr backup your.package.name

5. Initiate a backup operation:
$ adb shell bmgr run

This forces the Backup Manager to perform all backup requests that are in its
queue.

6. Uninstall your application:
$ adb uninstall your.package.name

7. Reinstall your application.
If your backup agent is successful, all the data you initialized in step 4 is restored.

2.16 Using Hints Instead of Tool Tips
Daniel Fowler

Problem
Android devices can have small screens, so there may not be room for help text, and
tool tips are not part of the platform.

Solution
Android provides the hint attribute for Views.

Discussion
Sometimes an input field needs clarification with regard to the value that should be
entered. For example, a stock-ordering application asking for item quantities may
need to state the minimum order size. In desktop programs, with large screens and
the use of a mouse, extra messages can be displayed in the form of tool tips (a pop-up
label over a field when the mouse moves over it). Alternatively, long descriptive labels
may be used. With Android devices, the screen may be small and no mouse is gener‐
ally used. The alternative here is to use the android:hint attribute on a View. This causes
a “watermark” containing the hint text to be displayed in the input field when it is
empty; this disappears when the user starts typing in the field. The corresponding
function for android:hint is setHint(int resourceId). Figure 2-5 shows an example hint.

144 | Chapter 2: Designing a Successful Application

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

Figure 2-5. An example with hints

You can set the color of the hint text with android:textColorHint, with
setHintTextColor(int color) being the associated function.

Using hints can also help with screen layouts when space is tight. A screen design can
sometimes be improved by removing a label and using a hint, as shown in Figure 2-6.

The EditText definition in Figure 2-6 is shown in the following code so that you can
see android:hint in use:

<EditText android:id="@+id/etQuantity"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:hint="Number of boxes of ten"
 android:textSize="18sp"/>

Figure 2-6. A hint and no label

Hints can guide users as they are filling in app fields, though as with any feature over‐
use is possible. Hints should not be used when it is obvious what is required; a field
with a label of “First Name” would not need a hint such as “Enter your first name
here,” for example. Figure 2-6 shows our hypothetical ordering application improved
somewhat by removing the redundant label.

2.16 Using Hints Instead of Tool Tips | 145

www.itbook.store/books/9781449374433

https://itbook.store/books/9781449374433

Want to
read more?

You can buy this book at oreilly.com
in print and ebook format.

Buy 2 books, get the 3rd FREE!
Use discount code OPC10

All orders over $29.95 qualify for free shipping within the US.

It’s also available at your favorite book retailer, including
the iBookstore, the Android Marketplace, and Amazon.com.

©2015 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 15055

www.itbook.store/books/9781449374433

https://play.google.com/store/books?hl=en
http://www.amazon.com/
http://shop.oreilly.com/product/0636920038092.do
https://itbook.store/books/9781449374433

	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Getting and Using the Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. Getting Started
	1.1 Understanding the Android Application Architecture
	Problem
	Discussion

	1.2 Understanding the Android Activity Life Cycle
	Problem
	Solution
	Discussion

	1.3 Learning About Android Releases
	Problem
	Discussion

	1.4 Learning the Java Language
	Problem
	Solution
	Discussion
	See Also

	1.5 Creating a “Hello, World” Application from the Command Line
	Problem
	Solution
	Discussion
	See Also

	1.6 Creating a “Hello, World” App with Apache Maven
	Problem
	Solution
	Discussion
	See Also

	1.7 Choosing an IDE for Android Development
	Problem
	Solution
	Discussion

	1.8 Setting Up Android Studio
	Problem
	Solution
	Discussion
	See Also

	1.9 Installing Platform Editions and Keeping the SDK Updated
	Problem
	Solution
	Discussion
	See Also

	1.10 Creating a “Hello, World” App Using Android Studio
	Problem
	Solution
	Discussion

	1.11 Converting an Eclipse ADT Project to Android Studio
	Problem
	Solution
	Discussion

	1.12 Preserving History While Converting from Eclipse to Android Studio
	Problem
	Solution
	Discussion
	See Also

	1.13 Building an Android Application with both Eclipse and Android Studio
	Problem
	Solution
	Discussion

	1.14 Setting Up Eclipse with AndMore (Replacing ADT)
	Problem
	Solution
	Discussion
	See Also

	1.15 Creating a “Hello, World” Application Using Eclipse
	Problem
	Solution
	Discussion
	See Also

	1.16 Installing the Eclipse Marketplace Client in Your Eclipse
	Problem
	Solution
	Discussion

	1.17 Upgrading a Project from Eclipse ADT to Eclipse AndMore
	Problem
	Solution
	Discussion

	1.18 Controlling Emulators/Devices Using Command-Line ADB
	Problem
	Solution
	Discussion

	1.19 Sharing Java Classes from Another Eclipse Project
	Problem
	Solution
	Discussion
	See Also

	1.20 Referencing Libraries to Implement External Functionality
	Problem
	Solution
	Discussion

	1.21 Using New Features on Old Devices via the Compatibility Libraries
	Problem
	Solution
	Discussion

	1.22 Using SDK Samples to Help Avoid Head Scratching
	Problem
	Solution
	Discussion
	See Also

	1.23 Taking a Screenshot/Video from the Emulator/Android Device
	Problem
	Solution
	Discussion
	See Also

	1.24 Program: A Simple CountDownTimer Example
	Problem
	Solution
	Discussion
	Source Download URL

	1.25 Program: Tipster, a Tip Calculator for the Android OS
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	Chapter 2. Designing a Successful Application
	2.1 Exception Handling
	Problem
	Solution
	Discussion
	See Also

	2.2 Requesting Android Permissions at Runtime
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	2.3 Accessing Android’s Application Object as a “Singleton”
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	2.4 Keeping Data When the User Rotates the Device
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	2.5 Monitoring the Battery Level of an Android Device
	Problem
	Solution
	Discussion

	2.6 Creating Splash Screens in Android
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	2.7 Designing a Conference/Camp/Hackathon/Institution App
	Problem
	Solution
	Discussion
	See Also

	2.8 Using Google Analytics in an Android Application
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	2.9 Setting First-Run Preferences
	Problem
	Solution
	Discussion

	2.10 Formatting Numbers
	Problem
	Solution
	Discussion
	See Also

	2.11 Formatting with Correct Plurals
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	2.12 Formatting the Time and Date for Display
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	2.13 Simplifying Date/Time Calculations with the Java 8 java.time API
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	2.14 Controlling Input with KeyListeners
	Problem
	Solution
	Discussion
	See Also

	2.15 Backing Up Android Application Data
	Problem
	Solution
	Discussion

	2.16 Using Hints Instead of Tool Tips
	Problem
	Solution
	Discussion

	Chapter 3. Application Testing
	3.1 Setting Up an Android Virtual Device (AVD) for App Testing
	Problem
	Solution
	Discussion
	See Also

	3.2 Testing on a Wide Range of Devices with Cloud-Based Testing
	Problem
	Solution
	Discussion

	3.3 Testing with Eclipse and JUnit
	Problem
	Solution
	Discussion
	Source Download URL

	3.4 Testing with Android Studio and JUnit
	Problem
	Solution
	Discussion
	Source Download URL
	See Also

	3.5 Testing with Robolectric and JUnit 4
	Problem
	Solution
	Discussion
	See Also

	3.6 Testing with ATSL, Espresso, and JUnit 4
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	3.7 Troubleshooting Application Crashes
	Problem
	Solution
	Discussion
	See Also

	3.8 Debugging Using Log.d() and LogCat
	Problem
	Solution
	Discussion

	3.9 Getting Bug Reports Automatically with Crash Reporting
	Problem
	Solution
	Discussion
	See Also

	3.10 Using a Local Runtime Application Log for Analysis of Field Errors or Situations
	Problem
	Solution
	Discussion
	See Also

	3.11 Reproducing Activity Life-Cycle Scenarios for Testing
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	3.12 Keeping Your App Snappy with StrictMode
	Problem
	Solution
	Discussion
	See Also

	3.13 Static Code Testing with Android Lint
	Problem
	Solution
	Discussion
	See Also

	3.14 Dynamic Testing with the Monkey Program
	Problem
	Solution
	Discussion
	See Also

	3.15 Sending Text Messages and Placing Calls Between AVDs
	Problem
	Solution
	Discussion
	See Also

	Chapter 4. Inter-/Intra-Process Communication
	4.1 Opening a Web Page, Phone Number, or Anything Else with an Intent
	Problem
	Solution
	Discussion
	Source Download URL

	4.2 Emailing Text from a View
	Problem
	Solution
	Discussion
	Source Download URL

	4.3 Sending an Email with Attachments
	Problem
	Solution
	Discussion
	Source Download URL

	4.4 Pushing String Values Using Intent.putExtra()
	Problem
	Solution
	Discussion
	See Also

	4.5 Retrieving Data from a Subactivity Back to Your Main Activity
	Problem
	Solution
	Discussion
	See Also

	4.6 Keeping a Background Service Running While Other Apps Are on Display
	Problem
	Solution
	Discussion

	4.7 Sending/Receiving a Broadcast Message
	Problem
	Solution
	Discussion

	4.8 Starting a Service After Device Reboot
	Problem
	Solution
	Discussion

	4.9 Creating a Responsive Application Using Threads
	Problem
	Solution
	Discussion

	4.10 Using AsyncTask to Do Background Processing
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	4.11 Sending Messages Between Threads Using an Activity Thread Queue and Handler
	Problem
	Solution
	Discussion

	4.12 Creating an Android Epoch HTML/JavaScript Calendar
	Problem
	Solution
	Discussion
	Source Download URL

	Chapter 5. Graphics
	5.1 Using a Custom Font
	Problem
	Solution
	Discussion
	Source Download URL

	5.2 Drawing a Spinning Cube with OpenGL ES
	Problem
	Solution
	Discussion
	See Also

	5.3 Adding Controls to the OpenGL Spinning Cube
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	5.4 Freehand Drawing Smooth Curves
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	5.5 Taking a Picture Using an Intent
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	5.6 Taking a Picture Using android.media.Camera
	Problem
	Solution
	Discussion
	See Also

	5.7 Scanning a Barcode or QR Code with the Google ZXing Barcode Scanner
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	5.8 Using AndroidPlot to Display Charts and Graphs
	Problem
	Solution
	Discussion
	Source Download URL

	5.9 Using Inkscape to Create an Android Launcher Icon from OpenClipArt.org
	Problem
	Solution
	Discussion
	See Also

	5.10 Using Paint.NET to Create Launcher Icons from OpenClipArt.org
	Problem
	Solution
	Discussion
	See Also

	5.11 Using Nine Patch Files
	Problem
	Solution
	Discussion
	See Also

	5.12 Creating HTML5 Charts with Android RGraph
	Problem
	Solution
	Discussion
	Source Download URL

	5.13 Adding a Simple Raster Animation
	Problem
	Solution
	Discussion
	See Also

	5.14 Using Pinch to Zoom
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	Chapter 6. Graphical User Interface
	6.1 Understanding and Following User Interface Guidelines
	Problem
	Solution
	Discussion

	6.2 Looking Good with Material Design
	Problem
	Solution
	Discussion
	See Also

	6.3 Choosing a Layout Manager (a.k.a. ViewGroup) and Arranging Components
	Problem
	Solution
	Discussion

	6.4 Handling Configuration Changes by Decoupling the View from the Model
	Problem
	Solution
	Discussion

	6.5 Controlling the Action Bar
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	6.6 Adding a Share Action to Your Action Bar
	Problem
	Solution
	Discussion

	6.7 Building Modern UIs with the Fragment API
	Problem
	Solution
	Discussion
	Source Download URL

	6.8 Creating a Button and Its Click Event Listener
	Problem
	Solution
	Discussion

	6.9 Enhancing UI Design Using Image Buttons
	Problem
	Solution
	Discussion
	Source Download URL

	6.10 Using a FloatingActionButton
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	6.11 Wiring Up an Event Listener in Many Different Ways
	Problem
	Solution
	Discussion

	6.12 Using CheckBoxes and RadioButtons
	Problem
	Solution
	Discussion

	6.13 Using Card Widgets
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	6.14 Offering a Drop-Down Chooser via the Spinner Class
	Problem
	Solution
	Discussion
	Source Download URL

	6.15 Handling Long-Press/Long-Click Events
	Problem
	Solution
	Discussion

	6.16 Displaying Text Fields with TextView and EditText
	Problem
	Solution
	Discussion

	6.17 Constraining EditText Values with Attributes and the TextWatcher Interface
	Problem
	Solution
	Discussion
	See Also

	6.18 Implementing AutoCompleteTextView
	Problem
	Solution
	Discussion
	Source Download URL

	6.19 Feeding AutoCompleteTextView Using a SQLite Database Query
	Problem
	Solution
	Discussion

	6.20 Turning Edit Fields into Password Fields
	Problem
	Solution
	Discussion

	6.21 Changing the Enter Key to “Next” on the Soft Keyboard
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	6.22 Processing Key-Press Events in an Activity
	Problem
	Solution
	Discussion
	Source Download URL

	6.23 Let Them See Stars: Using RatingBar
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	6.24 Making a View Shake
	Problem
	Solution
	Discussion

	6.25 Providing Haptic Feedback
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	6.26 Navigating Different Activities Within a TabView
	Problem
	Solution
	Discussion

	6.27 Creating a Loading Screen that Will Appear Between Two Activities
	Problem
	Solution
	Discussion

	6.28 Adding a Border with Rounded Corners to a Layout
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	6.29 Detecting Gestures in Android
	Problem
	Solution
	Discussion
	See Also

	6.30 Creating a Simple App Widget
	Problem
	Solution
	Discussion
	Source Download URL

	Chapter 7. GUI Alerts: Menus, Dialogs, Toasts, Snackbars, and Notifications
	7.1 Alerting the User with Toast and Snackbar
	Problem
	Solution
	Discussion

	7.2 Customizing the Appearance of a Toast
	Problem
	Solution
	Discussion
	Source Download URL

	7.3 Creating and Displaying a Menu
	Problem
	Solution
	Discussion

	7.4 Handling Choice Selection in a Menu
	Problem
	Solution
	Discussion
	Source Download URL

	7.5 Creating a Submenu
	Problem
	Solution
	Discussion
	Source Download URL

	7.6 Creating a Pop-up/Alert Dialog
	Problem
	Solution
	Discussion

	7.7 Using a Timepicker Widget
	Problem
	Solution
	Discussion

	7.8 Creating an iPhone-like WheelPicker for Selection
	Problem
	Solution
	Discussion
	Source Download URL

	7.9 Creating a Tabbed Dialog
	Problem
	Solution
	Discussion
	Source Download URL

	7.10 Creating a ProgressDialog
	Problem
	Solution
	Discussion
	Source Download URL

	7.11 Creating a Custom Dialog with Buttons, Images, and Text
	Problem
	Solution
	Discussion

	7.12 Creating a Reusable “About Box” Class
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	7.13 Creating a Notification in the Status Bar
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	Chapter 8. Other GUI Elements: Lists and Views
	8.1 Building List-Based Applications with RecyclerView
	Problem
	Solution
	Discussion
	See Also

	8.2 Building List-Based Applications with ListView
	Problem
	Solution
	Discussion

	8.3 Creating a “No Data” View for ListViews
	Problem
	Solution
	Discussion

	8.4 Creating an Advanced ListView with Images and Text
	Problem
	Solution
	Discussion
	Source Download URL

	8.5 Using Section Headers in ListViews
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	8.6 Keeping the ListView with the User’s Focus
	Problem
	Solution
	Discussion

	8.7 Writing a Custom List Adapter
	Problem
	Solution
	Discussion

	8.8 Using a SearchView to Search Through Data in a ListView
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	8.9 Handling Orientation Changes: From ListView Data Values to Landscape Charting
	Problem
	Solution
	Discussion
	Source Download URL

	Chapter 9. Multimedia
	9.1 Playing a YouTube Video
	Problem
	Solution
	Discussion

	9.2 Capturing Video Using MediaRecorder
	Problem
	Solution
	Discussion
	Source Download URL

	9.3 Using Android’s Face Detection Capability
	Problem
	Solution
	Discussion
	Source Download URL

	9.4 Playing Audio from a File
	Problem
	Solution
	Discussion
	Source Download URL

	9.5 Playing Audio Without Interaction
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	9.6 Using Speech to Text
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	9.7 Making the Device Speak with Text-to-Speech
	Problem
	Solution
	Discussion
	Source Download URL

	Chapter 10. Data Persistence
	10.1 Reading and Writing Files in Internal and External Storage
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	10.2 Getting File and Directory Information
	Problem
	Solution
	Discussion
	See Also

	10.3 Reading a File Shipped with the App Rather than in the Filesystem
	Problem
	Solution
	Discussion
	Source Download URL

	10.4 Getting Space Information About the SD Card
	Problem
	Solution
	Discussion

	10.5 Providing a Preference Activity
	Problem
	Solution
	Discussion

	10.6 Checking the Consistency of Default Shared Preferences
	Problem
	Solution
	Discussion

	10.7 Using a SQLite Database in an Android Application
	Problem
	Solution
	Discussion

	10.8 Performing Advanced Text Searches on a SQLite Database
	Problem
	Solution
	Discussion
	See Also

	10.9 Working with Dates in SQLite
	Problem
	Solution
	Discussion
	See Also

	10.10 Exposing Non-SQL Data as a SQL Cursor
	Problem
	Solution
	Discussion

	10.11 Displaying Data with a CursorLoader
	Problem
	Solution
	Discussion
	Source Download URL

	10.12 Parsing JSON Using JSONObject
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	10.13 Parsing an XML Document Using the DOM API
	Problem
	Solution
	Discussion
	See Also

	10.14 Storing and Retrieving Data via a Content Provider
	Problem
	Solution
	Discussion

	10.15 Writing a Content Provider
	Problem
	Solution
	Discussion
	Source Download URL

	10.16 Adding a Contact Through the Contacts Content Provider
	Problem
	Solution
	Discussion
	Source Download URL

	10.17 Reading Contact Data Using a Content Provider
	Problem
	Solution
	Discussion
	Source Download URL

	10.18 Implementing Drag and Drop
	Problem
	Solution
	Discussion

	10.19 Sharing Files via a FileProvider
	Problem
	Solution
	Discussion
	See Also

	10.20 Backing Up Your SQLite Data to the Cloud with a SyncAdapter
	Problem
	Solution
	Discussion
	See Also
	Sample Code

	10.21 Storing Data in the Cloud with Google Firebase
	Problem
	Solution
	Discussion
	See Also

	Chapter 11. Telephone Applications
	11.1 Doing Something When the Phone Rings
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	11.2 Processing Outgoing Phone Calls
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	11.3 Dialing the Phone
	Problem
	Solution
	Discussion
	Source Download URL

	11.4 Sending Single-part or Multipart SMS Messages
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	11.5 Receiving an SMS Message
	Problem
	Solution
	Discussion
	Source Download URL

	11.6 Using Emulator Controls to Send SMS Messages to the Emulator
	Problem
	Solution
	Discussion

	11.7 Using Android’s TelephonyManager to Obtain Device Information
	Problem
	Solution
	Discussion
	Source Download URL

	Chapter 12. Networked Applications
	12.1 Consuming a RESTful Web Service Using a URLConnection
	Problem
	Solution
	Discussion
	See Also

	12.2 Consuming a RESTful Web Service with Volley
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	12.3 Notifying Your App with Google Cloud Messaging “Push Messaging”
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	12.4 Extracting Information from Unstructured Text Using Regular Expressions
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	12.5 Parsing RSS/Atom Feeds Using ROME
	Problem
	Solution
	Discussion
	Source Download URL

	12.6 Using MD5 to Digest Clear Text
	Problem
	Solution
	Discussion

	12.7 Converting Text into Hyperlinks
	Problem
	Solution
	Discussion

	12.8 Accessing a Web Page Using a WebView
	Problem
	Solution
	Discussion
	Source Download URL

	12.9 Customizing a WebView
	Problem
	Solution
	Discussion

	12.10 Writing an Inter-Process Communication Service
	Problem
	Solution
	Discussion
	Source Download URL

	Chapter 13. Gaming and Animation
	13.1 Building an Android Game Using flixel-gdx
	Problem
	Solution
	Discussion
	Source Download URL

	13.2 Building an Android Game Using AndEngine
	Problem
	Solution
	Discussion
	Source Download URL

	13.3 Processing Timed Keyboard Input
	Problem
	Solution
	Discussion

	Chapter 14. Social Networking
	14.1 Authenticating Users with OAUTH2
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	14.2 Integrating Social Networking Using HTTP
	Problem
	Solution
	Discussion

	14.3 Loading a User’s Twitter Timeline Using HTML or JSON
	Problem
	Solution
	Discussion

	Chapter 15. Location and Map Applications
	15.1 Getting Location Information
	Problem
	Solution
	Discussion
	Source Download URL

	15.2 Accessing GPS Information in Your Application
	Problem
	Solution
	Discussion

	15.3 Mocking GPS Coordinates on a Device
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	15.4 Using Geocoding and Reverse Geocoding
	Problem
	Solution
	Discussion

	15.5 Getting Ready for Google Maps API V2 Development
	Problem
	Solution
	Discussion
	Source Download URL

	15.6 Using the Google Maps API V2
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	15.7 Displaying Map Data Using OpenStreetMap
	Problem
	Solution
	Discussion
	Source Download URL

	15.8 Creating Overlays in OpenStreetMap Maps
	Problem
	Solution
	Discussion
	Source Download URL

	15.9 Using a Scale on an OpenStreetMap Map
	Problem
	Solution
	Discussion

	15.10 Handling Touch Events on an OpenStreetMap Overlay
	Problem
	Solution
	Discussion
	Source Download URL

	15.11 Getting Location Updates with OpenStreetMap Maps
	Problem
	Solution
	Discussion
	Source Download URL

	Chapter 16. Accelerometer
	16.1 Checking for the Presence or Absence of a Sensor
	Problem
	Solution
	Discussion

	16.2 Using the Accelerometer to Detect Shaking
	Problem
	Solution
	Discussion
	Source Download URL

	16.3 Checking Whether a Device Is Facing Up or Down
	Problem
	Solution
	Discussion
	Source Download URL

	16.4 Reading the Temperature Sensor
	Problem
	Solution
	Discussion
	See Also

	Chapter 17. Bluetooth
	17.1 Enabling Bluetooth and Making the Device Discoverable
	Problem
	Solution
	Discussion

	17.2 Connecting to a Bluetooth-Enabled Device
	Problem
	Solution
	Discussion
	See Also

	17.3 Accepting Connections from a Bluetooth Device
	Problem
	Solution
	Discussion

	17.4 Implementing Bluetooth Device Discovery
	Problem
	Solution
	Discussion
	Source Download URL

	Chapter 18. System and Device Control
	18.1 Accessing Phone Network/Connectivity Information
	Problem
	Solution
	Discussion
	See Also

	18.2 Obtaining Information from the Manifest File
	Problem
	Solution
	Discussion

	18.3 Changing Incoming Call Notification to Silent, Vibrate, or Normal
	Problem
	Solution
	Discussion

	18.4 Copying Text and Getting Text from the Clipboard
	Problem
	Solution
	Discussion

	18.5 Using LED-Based Notifications
	Problem
	Solution
	Discussion

	18.6 Making the Device Vibrate
	Problem
	Solution
	Discussion
	Source Download URL

	18.7 Determining Whether a Given Application Is Running
	Problem
	Solution
	Discussion

	Chapter 19. All the World’s Not Java: Other Programming Languages and Frameworks
	19.1 Learning About Cross-Platform Solutions
	Problem
	Discussion

	19.2 Running Shell Commands from Your Application
	Problem
	Solution
	Discussion
	Source Download URL

	19.3 Running Native C/C++ Code with JNI on the NDK
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	19.4 Getting Started with SL4A, the Scripting Layer for Android
	Problem
	Solution
	Discussion

	19.5 Creating Alerts in SL4A
	Problem
	Solution
	Discussion

	19.6 Fetching Your Google Documents and Displaying Them in a ListView Using SL4A
	Problem
	Solution
	Discussion

	19.7 Sharing SL4A Scripts in QR Codes
	Problem
	Solution
	Discussion

	19.8 Using Native Handset Functionality from a WebView via JavaScript
	Problem
	Solution
	Discussion

	19.9 Building a Cross-Platform App with Xamarin
	Problem
	Solution
	Discussion

	19.10 Creating a Cross-Platform App Using PhoneGap/Cordova
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	Chapter 20. All the World’s Not English: Strings and Internationalization
	20.1 Internationalizing Application Text
	Problem
	Solution
	Discussion
	See Also

	20.2 Finding and Translating Strings
	Problem
	Solution
	Discussion

	20.3 Handling the Nuances of strings.xml
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	Chapter 21. Packaging, Deploying, and Distributing/Selling Your App
	21.1 Creating a Signing Certificate and Using It to Sign Your Application
	Problem
	Solution
	Discussion
	See Also

	21.2 Distributing Your Application via the Google Play Store
	Problem
	Solution
	Discussion

	21.3 Distributing Your Application via Other App Stores
	Problem
	Discussion
	See Also

	21.4 Monetizing Your App with AdMob
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	21.5 Obfuscating and Optimizing with ProGuard
	Problem
	Solution
	Discussion
	See Also

	21.6 Hosting Your App on Your Own Server
	Problem
	Solution
	Discussion

	21.7 Creating a “Self-Updating” App
	Problem
	Solution
	Discussion
	See Also

	21.8 Providing a Link to Other Published Apps in the Google Play Store
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	Index
	About the Author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

