
C H A P T E R 1

1

Using Visual Studio 2017

In this chapter, I explain the process for installing Visual Studio 2017 and recreate the Party

Invites project from Chapter 2 of Pro ASP.NET Core MVC. As you will see, there are few

differences from earlier versions of Visual Studio when working on simple projects. Working

with Visual Studio 2017 does require changes for more complex projects, which you can see in

later chapters in this update.

Installing Visual Studio 2017
Visual Studio 2017 is available in Community, Professional and Enterprise editions. I use the

Community edition for the examples in this update, which is available for free and which has

all of the features required for day-to-day development.

Download and run the installer from www.visualstudio.com. During setup make sure that

you select the .NET Core Cross-Platform Development workload, as shown in Figure 1. Click

the Install button to begin the installation process.

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 1 Using Visual Studio 2017

2

Figure 1. Installing Visual Studio 2017

Adding the Visual Studio Extensions

There are two Visual Studio extensions that are essential for working on ASP.NET Core MVC

projects. The first is called Razor Language Service and it provides IntelliSense support for tag

helpers when editing Razor views. The seconds is called Project File Tools and it provides

automatic completion for editing csproj files, which have replaced project.json as the file

that describes a project.

Select Extensions and Updates from the Visual Studio Tools menu, select the Online

section and use the search box to locate the extensions. Click the Download button, as shown in

Figure 2, to download the extension files.

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 1 Using Visual Studio 2017

3

Figure 2. Downloading Visual Studio extensions

Click the Close button to dismiss the list of extensions and then close Visual Studio, which

will trigger the installation process for the extensions you downloaded. You will be prompted

to accept the changes that will be made and the license terms, as shown in Figure 3. Click the

Modify button to install the extensions. Once the process has completed, you can start Visual

Studio and begin development.

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 1 Using Visual Studio 2017

4

Figure 3. Installing Visual Studio extensions

Recreating the Party Invites Application
Once you have Visual Studio 2017 installed, the development process is largely unchanged

from earlier releases. There are some important changes for more complex projects, which I

explain in the next chapter of this update, but working on simple projects requires no

substantial changes. As a demonstration, I am going recreate the Party Invites application from

Chapter 2 of Pro ASP.NET Core MVC. I recreate the project without explaining the individual

steps; see the original book chapter if you want the step-by-step instructions.

Creating the Project

To create the project, select New > Project from the Visual Studio File menu and select the

Templates > Visual C# > .NET Core section of the New Project dialog window. Select the

ASP.NET Core Web Application (.NET Core) item, as shown in Figure 4, and enter PartyInvites

into the Name field.

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 1 Using Visual Studio 2017

5

Figure 4. Creating the new project

Click the OK button. The next step is to configure the project and select its initial content.

Ensure that ASP.NET Core 1.1 is selected from the drop-down list, as shown in Figure 5, click

the Web Application item and ensure that the No Authentication option is selected.

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 1 Using Visual Studio 2017

6

Figure 5. Configuring the ASP.NET Core MVC project

Click the OK button and Visual Studio will create the project, add the initial content and

install the NuGet packages that the project requires.

Creating the Model

Right-click on the PartyInvites project item in the Solution Explorer window and select Add >

New Folder from the popup list and set the name of the folder to Models. Right click on the

Models folder, select Add > Class and create a new class file called GuestResponse.cs. Replace

the contents of the class file with the code shown in Listing 1.

Listing 1. The Contents of the GuestResponse.cs File in the Models Folder

using System.ComponentModel.DataAnnotations;

namespace PartyInvites.Models {

 public class GuestResponse {

 [Required(ErrorMessage = "Please enter your name")]

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 1 Using Visual Studio 2017

7

 public string Name { get; set; }

 [Required(ErrorMessage = "Please enter your email address")]
 [RegularExpression(".+\\@.+\\..+",
 ErrorMessage = "Please enter a valid email address")]
 public string Email { get; set; }

 [Required(ErrorMessage = "Please enter your phone number")]
 public string Phone { get; set; }

 [Required(ErrorMessage = "Please specify whether you'll attend")]
 public bool? WillAttend { get; set; }
 }
}

This project includes a simple in-memory repository to store the responses from users.

Add a new class file called Repository.cs in the Models folder and replace its contents with the

code shown in Listing 2.

Listing 2. The Contents of the Repository.cs File in the Models Folder

using System.Collections.Generic;

namespace PartyInvites.Models {
 public static class Repository {
 private static List<GuestResponse> responses = new List<GuestResponse>();

 public static IEnumerable<GuestResponse> Responses {
 get {
 return responses;
 }
 }

 public static void AddResponse(GuestResponse response) {
 responses.Add(response);
 }
 }
}

Creating the Controller and Views

This project uses a single controller to select the views displayed to users and to receive form

data. Edit the HomeController.cs file in the Controllers folder to replace the placeholder code

provided by Visual Studio with the statements shown in Listing 3.

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 1 Using Visual Studio 2017

8

Listing 3. The Contents of the HomeController.cs File in the Controllers Folder

using System;
using Microsoft.AspNetCore.Mvc;
using PartyInvites.Models;
using System.Linq;

namespace PartyInvites.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() {
 int hour = DateTime.Now.Hour;
 ViewBag.Greeting = hour < 12 ? "Good Morning" : "Good Afternoon";
 return View("MyView");
 }

 [HttpGet]
 public ViewResult RsvpForm() {
 return View();
 }

 [HttpPost]
 public ViewResult RsvpForm(GuestResponse guestResponse) {
 if (ModelState.IsValid) {
 Repository.AddResponse(guestResponse);
 return View("Thanks", guestResponse);
 } else {
 // there is a validation error
 return View();
 }
 }

 public ViewResult ListResponses() {
 return View(Repository.Responses.Where(r => r.WillAttend == true));
 }
 }
}

To create the view that is presented to users when they start using the application, add a

Razor file called MyView.cshtml to the Views/Home folder and add the markup shown in Listing

4.

Listing 4. The Contents of the MyView.cshtml File in the Views/Home Folder

@{
 Layout = null;
}

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 1 Using Visual Studio 2017

9

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Index</title>
 <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.css" />
</head>
<body>
 <div class="text-center">
 <h3>We're going to have an exciting party!</h3>
 <h4>And you are invited</h4>
 RSVP Now
 </div>
</body>
</html>

Next, add a Razor file called RsvpForm.cshtml to the Views/Home folder and add the content

shown in Listing 5. This is the form that is used to gather a response from the user.

Listing 5. The Contents of the RsvpForm.cshtml File in the Views/Home Folder

@model PartyInvites.Models.GuestResponse

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>RsvpForm</title>
 <link rel="stylesheet" href="/css/styles.css" />
 <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.css" />
</head>
<body>
 <div class="panel panel-success">
 <div class="panel-heading text-center"><h4>RSVP</h4></div>
 <div class="panel-body">
 <form class="p-a-1" asp-action="RsvpForm" method="post">
 <div asp-validation-summary="All"></div>
 <div class="form-group">
 <label asp-for="Name">Your name:</label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label asp-for="Email">Your email:</label>

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 1 Using Visual Studio 2017

10

 <input class="form-control" asp-for="Email" />
 </div>
 <div class="form-group">
 <label asp-for="Phone">Your phone:</label>
 <input class="form-control" asp-for="Phone" />
 </div>
 <div class="form-group">
 <label>Will you attend?</label>
 <select class="form-control" asp-for="WillAttend">
 <option value="">Choose an option</option>
 <option value="true">Yes, I'll be there</option>
 <option value="false">No, I can't come</option>
 </select>
 </div>
 <div class="text-center">
 <button class="btn btn-primary" type="submit">
 Submit RSVP
 </button>
 </div>
 </form>
 </div>
 </div>
</body>
</html>

To create the view that is presented to the user at the end of the response process, add a

Razor file called Thanks.cshtml to the Views/Home folder and add the content shown in Listing

6.

Listing 6. The Contents of the Thanks.cshtml File in the Views/Home Folder

@model PartyInvites.Models.GuestResponse

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Thanks</title>
 <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.css" />
</head>
<body class="text-center">
 <p>
 <h1>Thank you, @Model.Name!</h1>
 @if (Model.WillAttend == true) {

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 1 Using Visual Studio 2017

11

 @:It's great that you're coming. The drinks are already in the fridge!
 } else {
 @:Sorry to hear that you can't make it, but thanks for letting us know.
 }
 </p>
 Click here
 to see who is coming.
</body>
</html>

The final view provides the list of responses that have been made. Add a Razor file called

ListResponses.cshtml in the Views/Home folder and add the content shown in Listing 7.

Listing 7. The Contents of the ListResponses.cshtml File in the Views/Home Folder

@model IEnumerable<PartyInvites.Models.GuestResponse>

@{
 Layout = null;
}

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.css" />
 <title>Responses</title>
</head>
<body>
 <div class="panel-body">
 <h2>Here is the list of people attending the party</h2>
 <table class="table table-sm table-striped table-bordered">
 <thead>
 <tr><th>Name</th><th>Email</th><th>Phone</th></tr>
 </thead>
 <tbody>
 @foreach (PartyInvites.Models.GuestResponse r in Model) {
 <tr><td>@r.Name</td><td>@r.Email</td><td>@r.Phone</td></tr>
 }
 </tbody>
 </table>
 </div>
</body>
</html>

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 1 Using Visual Studio 2017

12

Running the Example Project

To test the application, select Start without Debugging from the Visual Studio Debug menu.

Visual Studio will build and start the project and open a new browser tab that displays the

application, as shown in Figure 6.

Figure 6. Running the example project

Summary
In this chapter, I explained how to install Visual Studio 2017 and demonstrated that the

development process is largely unchanged for simple projects. In the next chapter, I use the

SportsStore example to highlight some important differences for more complex projects.

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

