
C H A P T E R 10

1

SportsStore: Completing the Cart

In this chapter, I continue to build the SportsStore example app. In the previous chapter, I

added the basic support for a shopping cart, and now I am going to improve on and complete

that functionality.

Refining the Cart Model with a Service
I defined a Cart model class in the previous chapter and demonstrated how it can be stored

using the session feature, allowing the user to build up a set of products for purchase. The

responsibility for managing the persistence of the Cart class fell to the Cart controller, which

explicitly defines methods for getting and storing Cart objects.

The problem with this approach is that I will have to duplicate the code that obtains and

stores Cart objects in any component that uses them. In this section, I am going to use the

services feature that sits at the heart of ASP.NET Core to simplify the way that Cart objects are

managed, freeing individual components such as the Cart controller from needing to deal with

the details directly.

Services are most commonly used to hide details of how interfaces are implemented from

the components that depend on them. You have seen an example of this when I created a

service for the IProductRepository interface, which allowed me to seamlessly replace the fake

repository class with the Entity Framework Core repository. But services can be used to solve

lots of other problems as well and can be used to shape and reshape an application, even

when you are working with concrete classes such as Cart.

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 10 - SportsStore: Completing the Cart

2

Creating a Storage-Aware Cart Class

The first step in tidying up the way that the Cart class is used will be to create a subclass that is

aware of how to store itself using session state. I added a class file called SessionCart.cs to

the Models folder and used it to define the class shown in Listing 10-1.

Listing 10-1. The Contents of the SessionCart.cs File in the Models Folder

using System;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Newtonsoft.Json;
using SportsStore.Infrastructure;

namespace SportsStore.Models {

 public class SessionCart : Cart {

 public static Cart GetCart(IServiceProvider services) {
 ISession session = services.GetRequiredService<IHttpContextAccessor>()?
 .HttpContext.Session;
 SessionCart cart = session?.GetJson<SessionCart>("Cart")
 ?? new SessionCart();
 cart.Session = session;
 return cart;
 }

 [JsonIgnore]
 public ISession Session { get; set; }

 public override void AddItem(Product product, int quantity) {
 base.AddItem(product, quantity);
 Session.SetJson("Cart", this);
 }

 public override void RemoveLine(Product product) {
 base.RemoveLine(product);
 Session.SetJson("Cart", this);
 }

 public override void Clear() {
 base.Clear();
 Session.Remove("Cart");
 }
 }
}

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 10 - SportsStore: Completing the Cart

3

The SessionCart class subclasses the Cart class and overrides the AddItem, RemoveLine, and

Clear methods so they call the base implementations and then store the updated state in the

session using the extension methods on the ISession interface I defined in Chapter 9. The

static GetCart method is a factory for creating SessionCart objects and providing them with an

ISession object so they can store themselves.

Getting hold of the ISession object is a little complicated. I have to obtain an instance of

the IHttpContextAccessor service, which provides me with access to an HttpContext object

that, in turn, provides me with the ISession. This around-about approach is required because

the session isn’t provided as a regular service.

Registering the Service

The next step is to create a service for the Cart class. My goal is to satisfy requests for Cart

objects with SessionCart objects that will seamlessly store themselves. You can see how I

created the service in Listing 10-2.

Listing 10-2. Creating the Cart Service in the Startup.cs File

...
public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(
 Configuration["Data:SportStoreProducts:ConnectionString"]));
 services.AddTransient<IProductRepository, EFProductRepository>();
 services.AddScoped<Cart>(sp => SessionCart.GetCart(sp));
 services.AddSingleton<IHttpContextAccessor, HttpContextAccessor>();
 services.AddMvc();
 services.AddMemoryCache();
 services.AddSession();
}
...

The AddScoped method specifies that the same object should be used to satisfy related

requests for Cart instances. How requests are related can be configured, but by default it

means that any Cart required by components handling the same HTTP request will receive the

same object.

Rather than provide the AddScoped method with a type mapping, as I did for the repository,

I have specified a lambda expression that will be invoked to satisfy Cart requests. The

expression receives the collection of services that have been registered and passes the

collection to the GetCart method of the SessionCart class. The result is that requests for the

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 10 - SportsStore: Completing the Cart

4

Cart service will be handled by creating SessionCart objects, which will serialize themselves as

session data when they are modified.

I also added a service using the AddSingleton method, which specifies that the same object

should always be used. The service I created tells MVC to use the HttpContextAccessor class

when implementations of the IHttpContextAccessor interface are required. This service is

required so I can access the current session in the SessionCart class in Listing 10-1.

Simplifying the Cart Controller

The benefit of creating this kind of service is that it allows me to simplify the controllers where

Cart objects are used. In Listing 10-3, I have reworked the CartController class to take

advantage of the new service.

Listing 10-3. Using the Cart Service in the CartController.cs File

using System.Linq;
using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using SportsStore.Models.ViewModels;

namespace SportsStore.Controllers {

 public class CartController : Controller {
 private IProductRepository repository;
 private Cart cart;

 public CartController(IProductRepository repo, Cart cartService) {
 repository = repo;
 cart = cartService;
 }

 public ViewResult Index(string returnUrl) {
 return View(new CartIndexViewModel {
 Cart = cart,
 ReturnUrl = returnUrl
 });
 }

 public RedirectToActionResult AddToCart(int productId, string returnUrl) {
 Product product = repository.Products
 .FirstOrDefault(p => p.ProductID == productId);
 if (product != null) {
 cart.AddItem(product, 1);
 }
 return RedirectToAction("Index", new { returnUrl });

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 10 - SportsStore: Completing the Cart

5

 }

 public RedirectToActionResult RemoveFromCart(int productId,
 string returnUrl) {
 Product product = repository.Products
 .FirstOrDefault(p => p.ProductID == productId);

 if (product != null) {
 cart.RemoveLine(product);
 }
 return RedirectToAction("Index", new { returnUrl });
 }
 }
}

The CartController class indicates that it needs a Cart object by declaring a constructor

argument, which has allowed me to remove the methods that read and write data from the

session and the steps required to write updates. The result is a controller that is simpler and

remains focused on its role in the application without having to worry about how Cart objects

are created or persisted. And, since services are available throughout the application, any

component can get hold of the user’s cart using the same technique.

Completing the Cart Functionality
Now that I have introduced the Cart service, it is time to complete the cart functionality by

adding two new features. The first will allow the customer to remove an item from the cart.

The second feature will display a summary of the cart at the top of the page.

Removing Items from the Cart

I already defined and tested the RemoveFromCart action method in the controller, so letting the

customer remove items is just a matter of exposing this method in a view, which I are going to

do by adding a Remove button in each row of the cart summary. Listing 10-4 shows the changes

to Views/Cart/Index.cshtml.

Listing 10-4. Introducing a Remove Button to the Index.cshtml File in the Views/Cart Folder

@model CartIndexViewModel

<h2>Your cart</h2>
<table class="table table-bordered table-striped">
 <thead>
 <tr>

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 10 - SportsStore: Completing the Cart

6

 <th>Quantity</th>
 <th>Item</th>
 <th class="text-right">Price</th>
 <th class="text-right">Subtotal</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var line in Model.Cart.Lines) {
 <tr>
 <td class="text-center">@line.Quantity</td>
 <td class="text-left">@line.Product.Name</td>
 <td class="text-right">@line.Product.Price.ToString("c")</td>
 <td class="text-right">
 @((line.Quantity * line.Product.Price).ToString("c"))
 </td>
 <td>
 <form asp-action="RemoveFromCart" method="post">
 <input type="hidden" name="ProductID"
 value="@line.Product.ProductID" />
 <input type="hidden" name="returnUrl"
 value="@Model.ReturnUrl" />
 <button type="submit" class="btn btn-sm btn-danger ">
 Remove
 </button>
 </form>
 </td>
 </tr>
 }
 </tbody>
 <tfoot>
 <tr>
 <td colspan="3" class="text-right">Total:</td>
 <td class="text-right">
 @Model.Cart.ComputeTotalValue().ToString("c")
 </td>
 </tr>
 </tfoot>
</table>

<div class="text-center">
 Continue shopping
</div>

I added a new column to each row of the table that contains a form with hidden input

elements that specify the product to be removed and the return URL, along with a button that

submits the form.

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 10 - SportsStore: Completing the Cart

7

You can see the Remove buttons at work by running the application and adding items to the

shopping cart. Remember that the cart already contains the functionality to remove it, which

you can test by clicking one of the new buttons, as shown in Figure 10-1.

Figure 10-1. Removing an item from the shopping cart

Adding the Cart Summary Widget

I may have a functioning cart, but there is an issue with the way it is integrated into the

interface. Customers can tell what is in their cart only by viewing the cart summary screen.

And they can view the cart summary screen only by adding a new a new item to the cart.

To solve this problem, I am going to add a widget that summarizes the contents of the cart

and that can be clicked to display the cart contents throughout the application. I will do this in

much the same way that I added the navigation widget—as a view component whose output I

can include in the Razor shared layout.

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 10 - SportsStore: Completing the Cart

8

Adding the Font Awesome Package

As part of the cart summary, I am going to display a button that allows the user to check out.

Rather than display the word checkout in the button, I want to use a cart symbol. Since I have

no artistic skills, I am going to use the Font Awesome package, which is an excellent set of

open source icons that are integrated into applications as fonts, where each character in the

font is a different image. You can learn more about Font Awesome, including inspecting the

icons it contains, at http://fortawesome.github.io/Font-Awesome.

I selected the SportsStore project and clicked the Show All Items button at the top of the

Solution Explorer to reveal the bower.json file. I then added the Font Awesome package to the

dependencies section, as shown in Listing 10-5.

Listing 10-5. Adding the Font Awesome Package in the bower.json File

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "3.3.6",
 "fontawesome": "4.6.3"
 }
}

When the bower.json file is saved, Visual Studio uses Bower to download and install the

Font Awesome package in the www/lib/fontawesome folder.

Creating the View Component Class and View

I added a class file called CartSummaryViewComponent.cs in the Components folder and used it to

define the view component shown in Listing 10-6.

Listing 10-6. The Contents of the CartSummaryViewComponent.cs File in the Components Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;

namespace SportsStore.Components {

 public class CartSummaryViewComponent : ViewComponent {
 private Cart cart;

 public CartSummaryViewComponent(Cart cartService) {
 cart = cartService;
 }

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 10 - SportsStore: Completing the Cart

9

 public IViewComponentResult Invoke() {
 return View(cart);
 }
 }
}

This view component is able to take advantage of the service that I created earlier in the

chapter in order to receive a Cart object as a constructor argument. The result is a simple view

component class that passes on the Cart to the View method in order to generate the

fragment of HTML that will be included in the layout. To create the layout, I created the

Views/Shared/Components/CartSummary folder, added to it a Razor view file called

Default.cshtml, and added the markup shown in Listing 10-7.

Listing 10-7. The Default.cshtml File in the Views/Shared/Components/CartSummary Folder

@model Cart

<div class="">
 @if (Model.Lines.Count() > 0) {
 <small class="navbar-text">
 Your cart:
 @Model.Lines.Sum(x => x.Quantity) item(s)
 @Model.ComputeTotalValue().ToString("c")
 </small>
 }
 <a class="btn btn-sm btn-default navbar-btn"
 asp-controller="Cart" asp-action="Index"
 asp-route-returnurl="@ViewContext.HttpContext.Request.PathAndQuery()">
 <i class="fa fa-shopping-cart"></i>

</div>

The view displays a button with the Font Awesome cart icon and, if there are items in the

cart, provides a snapshot that details the number of items and their total value. Now that I

have a view component and a view, I can modify the shared layout so that the cart summary is

included in the responses generated by the application’s controllers, as shown in Listing 10-8.

Listing 10-8. Adding the Cart Summary in the _Layout.cshtml File

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
 <link rel="stylesheet" asp-href-include="/lib/fontawesome/css/*.css" />

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 10 - SportsStore: Completing the Cart

10

 <title>SportsStore</title>
</head>
<body>
 <div class="navbar navbar-inverse" role="navigation">
 SPORTS STORE
 <div class="pull-right">
 @await Component.InvokeAsync("CartSummary")
 </div>
 </div>
 <div class="row panel">
 <div id="categories" class="col-xs-3">
 @await Component.InvokeAsync("NavigationMenu")
 </div>
 <div class="col-xs-8">
 @RenderBody()
 </div>
 </div>
</body>
</html>

You can see the cart summary by starting the application. When the cart is empty, only the

checkout button is shown. If you add items to the cart, then the number of items and their

combined cost are shown, as illustrated by Figure 10-2. With this addition, customers know

what is in their cart and have an obvious way to check out from the store.

Figure 10-2. Displaying a summary of the cart

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 10 - SportsStore: Completing the Cart

11

Submitting Orders
I have now reached the final customer feature in SportsStore: the ability to check out and

complete an order. In the following sections, I will extend the domain model to provide

support for capturing the shipping details from a user and add the application support to

process those details.

Creating the Model Class

I added a class file called Order.cs to the Models folder and edited it to match the contents

shown in Listing 10-9. This is the class I will use to represent the shipping details for a

customer.

Listing 10-9. The Contents of the Order.cs File in the Models Folder

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using Microsoft.AspNetCore.Mvc.ModelBinding;

namespace SportsStore.Models {

 public class Order {

 [BindNever]
 public int OrderID { get; set; }
 [BindNever]
 public ICollection<CartLine> Lines { get; set; }

 [Required(ErrorMessage = "Please enter a name")]
 public string Name { get; set; }

 [Required(ErrorMessage = "Please enter the first address line")]
 public string Line1 { get; set; }
 public string Line2 { get; set; }
 public string Line3 { get; set; }

 [Required(ErrorMessage = "Please enter a city name")]
 public string City { get; set; }

 [Required(ErrorMessage = "Please enter a state name")]
 public string State { get; set; }

 public string Zip { get; set; }

 [Required(ErrorMessage = "Please enter a country name")]

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 10 - SportsStore: Completing the Cart

12

 public string Country { get; set; }

 public bool GiftWrap { get; set; }
 }
}

I am using the validation attributes from the System.ComponentModel.DataAnnotations

namespace, just as I did in Chapter 2. I describe validation further in Chapter 27.

I also use the BindNever attribute, which prevents the user supplying values for these

properties in an HTTP request. This is a feature of the model binding system, which I describe

in Chapter 26.

Adding the Checkout Process

The goal is to reach the point where users are able to enter their shipping details and submit

their order. To start, I need to add a Checkout button to the cart summary view. Listing 10-10

shows the change I applied to the Views/Cart/Index.cshtml file.

Listing 10-10. Adding the Checkout Now Button to the Index.cshtml File in the Views/Cart Folder

...
<div class="text-center">
 Continue shopping

 Checkout

</div>
...

This change generates a link that I have styled as a button and that, when clicked, calls the

Checkout action method of the Order controller, which I create in the following section. You

can see how this button appears in Figure 10-3.

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 10 - SportsStore: Completing the Cart

13

Figure 10-3. The Checkout button

I now need to define the Order controller. I added a class file called OrderController.cs to

the Controllers folder and used it to define the class shown in Listing 10-11.

Listing 10-11. The Contents of the OrderController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;

namespace SportsStore.Controllers {

 public class OrderController : Controller {

 public ViewResult Checkout() => View(new Order());
 }
}

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 10 - SportsStore: Completing the Cart

14

The Checkout method returns the default view and passes a new ShippingDetails object as

the view model. To create the view, I created the Views/Order folder and added a Razor view

file called Checkout.cshtml with the markup shown in Listing 10-12.

Listing 10-12. The Contents of the Checkout.cshtml File in the Views/Order Folder

@model Order

<h2>Check out now</h2>
<p>Please enter your details, and we'll ship your goods right away!</p>

<form asp-action="Checkout" method="post">
 <h3>Ship to</h3>
 <div class="form-group">
 <label>Name:</label><input asp-for="Name" class="form-control" />
 </div>
 <h3>Address</h3>
 <div class="form-group">
 <label>Line 1:</label><input asp-for="Line1" class="form-control" />
 </div>
 <div class="form-group">
 <label>Line 2:</label><input asp-for="Line2" class="form-control" />
 </div>
 <div class="form-group">
 <label>Line 3:</label><input asp-for="Line3" class="form-control" />
 </div>
 <div class="form-group">
 <label>City:</label><input asp-for="City" class="form-control" />
 </div>
 <div class="form-group">
 <label>State:</label><input asp-for="State" class="form-control" />
 </div>
 <div class="form-group">
 <label>Zip:</label><input asp-for="Zip" class="form-control" />
 </div>
 <div class="form-group">
 <label>Country:</label><input asp-for="Country" class="form-control" />
 </div>
 <h3>Options</h3>
 <div class="checkbox">
 <label>
 <input asp-for="GiftWrap" /> Gift wrap these items
 </label>
 </div>
 <div class="text-center">
 <input class="btn btn-primary" type="submit" value="Complete Order" />
 </div>
</form>

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 10 - SportsStore: Completing the Cart

15

For each of the properties in the model, I have created a label and input element to

capture the user input, formatted with Bootstrap. The asp-for attribute on the input elements

is handled by a built-in tag helper that generates the type, id, name, and value attributes based

on the specified model property, as described in Chapter 24.

You can see the effect of the new action method and view by starting the application,

clicking the cart button at the top of the page, and then clicking the Checkout button, as

shown in Figure 10-4. You can also reach this point by requesting the /Cart/Checkout URL.

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 10 - SportsStore: Completing the Cart

16

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 10 - SportsStore: Completing the Cart

17

Figure 10-4. The shipping details form

Implementing Order Processing

I will process orders by writing them to the database. Most e-commerce sites would not simply

stop there, of course, and I have not provided support for processing credit cards or other

forms of payment. But I want to keep things focused on MVC, so a simple database entry will

do.

Extending the Database

Adding a new kind of model to the database is simple once the basic plumbing that I created in

Chapter 8 is in place. First, I added a new property to the database context class, as shown in

Listing 10-13.

Listing 10-13. Adding a Property in the ApplicationDbContext.cs File

using Microsoft.EntityFrameworkCore;

namespace SportsStore.Models {

 public class ApplicationDbContext : DbContext {

 public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options)
 : base(options) { }

 public DbSet<Product> Products { get; set; }
 public DbSet<Order> Orders { get; set; }
 }
}

This change is enough of a foundation for Entity Framework Core to create a database

migration that will allow Order objects to be stored in the database. To create the migration,

open the Package Manger Console from the Tools > NuGet Package Manage menu and run the

following command:

Add-Migration Orders

This command tells EF Core to take a new snapshot of the application, work out how it

differs from the previous database version, and generate a new migration called Orders. To

update the database schema, run the following command:

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 10 - SportsStore: Completing the Cart

18

Update-Database

RESETTING THE DATABASE

When you are making frequent changes to the model, there will come a point when your
migrations and your database schema get out of sync. The easiest thing to do is delete the
database and start over. However, this applies only during development, of course, because you
will lose any data you have stored.

Select the SQL Server Object Explorer item from the Visual Studio View menu and click the Add
Sql Server button. Enter (localdb)\mssqllocaldb into the Server Name field and click the
Connect button. A new item will appear in the SQL Server Object Explorer window, which you
can expand to see the LocalDB databases that have been created. Right-click the database you
want to remove and select Delete from the pop-up menu. Check the option to close the existing
connections and then click the OK button to delete the database.

Once the database has been removed, run the following command from the Package Manager
Console to create the database and apply the migrations you have created by running the
following command:

Update-Database

This will reset the database so that it accurately reflects your model and allow you to return to
developing your application.

Creating the Order Repository

I am going to follow the same pattern I used for the product repository to provide access to

the Order objects. I added a class file called IOrderRepository.cs to the Models folder and used

it to define the interface shown in Listing 10-14.

Listing 10-14. The Contents of the IOrderRepository.cs File in the Models Folder

using System.Collections.Generic;

namespace SportsStore.Models {

 public interface IOrderRepository {

 IEnumerable<Order> Orders { get; }
 void SaveOrder(Order order);
 }
}

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 10 - SportsStore: Completing the Cart

19

To implement the order repository interface, I added a class file called

EFOrderRepository.cs to the Models folder and defined the class shown in Listing 10-15.

Listing 10-15. The Contents of the EFOrderRepository.cs File in the Models Folder

using System.Collections.Generic;
using Microsoft.EntityFrameworkCore;
using System.Linq;

namespace SportsStore.Models {

 public class EFOrderRepository : IOrderRepository {
 private ApplicationDbContext context;

 public EFOrderRepository(ApplicationDbContext ctx) {
 context = ctx;
 }

 public IEnumerable<Order> Orders => context.Orders
 .Include(o => o.Lines)
 .ThenInclude(l => l.Product);

 public void SaveOrder(Order order) {
 context.AttachRange(order.Lines.Select(l => l.Product));
 if (order.OrderID == 0) {
 context.Orders.Add(order);
 }
 context.SaveChanges();
 }
 }
}

This class implements the IOrderRepository using Entity Framework Core, allowing the set

of Order objects that have been stored to be retrieved and for orders to be created or

changed.

UNDERSTANDING THE ORDER REPOSITORY

There is a little extra work required to implement the repository for the orders in Listing 10-15.
Entity Framework Core requires instruction to load related data if it spans multiple tables. In the
listing, I used the Include and ThenInclude methods to specify that when an Order object is
read from the database, the collection associated with the Lines property should also be loaded
along with each Product object associated each collection object:

...
public IEnumerable<Order> Orders => context.Orders

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 10 - SportsStore: Completing the Cart

20

 .Include(o => o.Lines)
 .ThenInclude(l => l.Product);
...

This ensures that I receive all of the data objects that I need without having to perform the
queries and assemble the data directly.

An additional step is also required when I store an Order object in the database. When the user’s
cart data is de-serialized from the session store, the JSON package creates new objects that are
created that are not known to Entity Framework Core, which then tries to write all of the objects
into the database. For the Product objects, this means that EF Core tries to write objects that
have already been stored, which causes an error. To avoid this problem, I notify Entity
Framework Core that the objects exist and shouldn’t be stored in the database unless they are
modified, as follows:

...
context.AttachRange(order.Lines.Select(l => l.Product));
...

This ensures that EF Core won’t try to write the de-serialized Product objects that are associated
with the Order object.

In Listing 10-16, I have registered the order repository as a service in the

ConfigureServices method of the Startup class.

Listing 10-16. Registering the Order Repository Service in the Startup.cs File

...
public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(
 Configuration["Data:SportStoreProducts:ConnectionString"]));
 services.AddTransient<IProductRepository, EFProductRepository>();
 services.AddScoped<Cart>(sp => SessionCart.GetCart(sp));
 services.AddSingleton<IHttpContextAccessor, HttpContextAccessor>();
 services.AddTransient<IOrderRepository, EFOrderRepository>();
 services.AddMvc();
 services.AddMemoryCache();
 services.AddSession();
}
...

Completing the Order Controller

To complete the OrderController class, I need to modify the constructor so that it receives the

services it requires to process an order and add a new action method that will handle the HTTP

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 10 - SportsStore: Completing the Cart

21

form POST request when the user clicks the Complete Order button. Listing 10-17 shows both

changes.

Listing 10-17. Completing the Controller in the OrderController.cs File

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using System.Linq;

namespace SportsStore.Controllers {

 public class OrderController : Controller {
 private IOrderRepository repository;
 private Cart cart;

 public OrderController(IOrderRepository repoService, Cart cartService) {
 repository = repoService;
 cart = cartService;
 }

 public ViewResult Checkout() => View(new Order());

 [HttpPost]
 public IActionResult Checkout(Order order) {
 if (cart.Lines.Count() == 0) {
 ModelState.AddModelError("", "Sorry, your cart is empty!");
 }
 if (ModelState.IsValid) {
 order.Lines = cart.Lines.ToArray();
 repository.SaveOrder(order);
 return RedirectToAction(nameof(Completed));
 } else {
 return View(order);
 }
 }

 public ViewResult Completed() {
 cart.Clear();
 return View();
 }
 }
}

The Checkout action method is decorated with the HttpPost attribute, which means that it

will be invoked for a POST request—in this case, when the user submits the form. Once again, I

am relying on the model binder system so that I can receive the Order object, which I then

complete using data from the Cart and store in the repository.

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 10 - SportsStore: Completing the Cart

22

MVC checks the validation constraints that I applied to the Order class using the data

annotation attributes, and any validation problems violations are passed to the action method

through the ModelState property. I can see whether there are any problems by checking the

ModelState.IsValid property. I call the ModelState.AddModelError method to register an error

message if there are no items in the cart. I will explain how to display such errors shortly, and I

have much more to say about model binding and validation in Chapters 27 and 28.

UNIT TEST: ORDER PROCESSING

To perform unit testing for the OrderController class, I need to test the behavior of the POST
version of the Checkout method. Although the method looks short and simple, the use of MVC
model binding means that there is a lot going on behind the scenes that needs to be tested.

I want to process an order only if there are items in the cart and the customer has provided valid
shipping details. Under all other circumstances, the customer should be shown an error. Here is
the first test method, which I defined in a class file called OrderControllerTests.cs in the
SportsStore.Tests project:

using Microsoft.AspNetCore.Mvc;
using Moq;
using SportsStore.Controllers;
using SportsStore.Models;
using Xunit;

namespace SportsStore.Tests {

 public class OrderControllerTests {

 [Fact]
 public void Cannot_Checkout_Empty_Cart() {
 // Arrange - create a mock repository
 Mock<IOrderRepository> mock = new Mock<IOrderRepository>();
 // Arrange - create an empty cart
 Cart cart = new Cart();
 // Arrange - create the order
 Order order = new Order();
 // Arrange - create an instance of the controller
 OrderController target = new OrderController(mock.Object, cart);

 // Act
 ViewResult result = target.Checkout(order) as ViewResult;

 // Assert - check that the order hasn't been stored
 mock.Verify(m => m.SaveOrder(It.IsAny<Order>()), Times.Never);
 // Assert - check that the method is returning the default view

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 10 - SportsStore: Completing the Cart

23

 Assert.True(string.IsNullOrEmpty(result.ViewName));
 // Assert - check that I am passing an invalid model to the view
 Assert.False(result.ViewData.ModelState.IsValid);
 }
 }
}

This test ensures that I cannot check out with an empty cart. I check this by ensuring that the
SaveOrder of the mock IOrderRepository implementation is never called, that the view the
method returns is the default view (which will redisplay the data entered by customers and give
them a chance to correct it), and that the model state being passed to the view has been marked
as invalid. This may seem like a belt-and-braces set of assertions, but I need all three to be sure
that I have the right behavior. The next test method works in much the same way but injects an
error into the view model to simulate a problem reported by the model binder (which would
happen in production when the customer enters invalid shipping data):

...
[Fact]
public void Cannot_Checkout_Invalid_ShippingDetails() {

 // Arrange - create a mock order repository
 Mock<IOrderRepository> mock = new Mock<IOrderRepository>();
 // Arrange - create a cart with one item
 Cart cart = new Cart();
 cart.AddItem(new Product(), 1);
 // Arrange - create an instance of the controller
 OrderController target = new OrderController(mock.Object, cart);
 // Arrange - add an error to the model
 target.ModelState.AddModelError("error", "error");

 // Act - try to checkout
 ViewResult result = target.Checkout(new Order()) as ViewResult;

 // Assert - check that the order hasn't been passed stored
 mock.Verify(m => m.SaveOrder(It.IsAny<Order>()), Times.Never);
 // Assert - check that the method is returning the default view
 Assert.True(string.IsNullOrEmpty(result.ViewName));
 // Assert - check that I am passing an invalid model to the view
 Assert.False(result.ViewData.ModelState.IsValid);
}
...

Having established that an empty cart or invalid details will prevent an order from being
processed, I need to ensure that I process orders when appropriate. Here is the test:

...
[Fact]
public void Can_Checkout_And_Submit_Order() {
 // Arrange - create a mock order repository

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 10 - SportsStore: Completing the Cart

24

 Mock<IOrderRepository> mock = new Mock<IOrderRepository>();
 // Arrange - create a cart with one item
 Cart cart = new Cart();
 cart.AddItem(new Product(), 1);
 // Arrange - create an instance of the controller
 OrderController target = new OrderController(mock.Object, cart);

 // Act - try to checkout
 RedirectToActionResult result =
 target.Checkout(new Order()) as RedirectToActionResult;

 // Assert - check that the order has been stored
 mock.Verify(m => m.SaveOrder(It.IsAny<Order>()), Times.Once);
 // Assert - check that the method is redirecting to the Completed action
 Assert.Equal("Completed", result.ActionName);
}
...

I did not need to test that I can identify valid shipping details. This is handled for me
automatically by the model binder using the attributes applied to the properties of the Order
class.

Displaying Validation Errors

MVC will use the validation attributes applied to the Order class to validate user data.

However, I need to make a simple change to display any problems. This relies on another built-

in tag helper that inspects the validation state of the data provided by the user and adds

warning messages for each problem that has been discovered. Listing 10-18 shows the

addition of an HTML element that will be processed by the tag helper to the Checkout.cshtml

file.

Listing 10-18. Adding a Validation Summary to the Checkout.cshtml File

@model Order

<h2>Check out now</h2>
<p>Please enter your details, and we'll ship your goods right away!</p>

<div asp-validation-summary="All" class="text-danger"></div>

<form asp-action="Checkout" method="post">
 <h3>Ship to</h3>
...

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 10 - SportsStore: Completing the Cart

25

With this simple change, validation errors are reported to the user. To see the effect, go to

the /Order/Checkout URL and try to check out without selecting any products or filling any

shipping details, as shown in Figure 10-5. The tag helper that generates these messages is part

of the model validation system, which I describe in detail in Chapter 27.

Figure 10-5. Displaying validation messages

Tip The data submitted by the user is sent to the server before it is validated, which is

known as server-side validation and for which MVC has excellent support. The problem with

server-side validation is that the user isn’t told about errors until after the data has been sent

to the server and processed and the result page has been generated—something that can take

a few seconds on a busy server. For this reason, server-side validation is usually

complemented by client-side validation, where JavaScript is used to check the values that the

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 10 - SportsStore: Completing the Cart

26

user has entered before the form data is sent to the server. I describe client-side validation in

Chapter 27.

Displaying a Summary Page

To complete the checkout process, I need to create the view that will be shown when the

browser is redirected to the Completed action on the Order controller. I added a Razor view file

called Completed.cshtml to the Views/Order folder and added the markup shown in Listing 10-

19.

Listing 10-19. The Contents of the Completed.cshtml File in the Views/Order Folder

<h2>Thanks!</h2>
<p>Thanks for placing your order.</p>
<p>We'll ship your goods as soon as possible.</p>

I don’t need to make any code changes to integrate this view into the application because I

already added the required statements when I defined the Completed action method in Listing

10-17. Now customers can go through the entire process, from selecting products to checking

out. If they provide valid shipping details (and have items in their cart), they will see the

summary page when they click the Complete Order button, as shown in Figure 10-6.

Figure 10-6. The completed order summary view

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

CHAPTER 10 - SportsStore: Completing the Cart

27

Summary
I have completed all the major parts of the customer-facing portion of SportsStore. It might

not be enough to worry Amazon, but I have a product catalog that can be browsed by category

and page, a neat shopping cart, and a simple checkout process.

The well-separated architecture means I can easily change the behavior of any piece of the

application without worrying about causing problems or inconsistencies elsewhere. For

example, I could change the way that orders are stored and it would not have any impact on

the shopping cart, the product catalog, or any other area of the application. In the next

chapter, I add the features required to administer the SportsStore application.

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

