
C H A P T E R  12 

 

 

 

1  

SportsStore: Security 

In the previous chapter, I added support for administering the SportsStore application, and it 

probably did not escape your attention that anyone could modify the product catalog if I 

deploy the application as it is. All they would need to know is that the administration features 

are available using the /Admin/Index and /Order/List URLs. In this chapter, I am going to show 

you how to prevent random people from using the administration functions by password-

protecting them.  

Securing the Administration Features  
Authentication and authorization are provided by the ASP.NET Core Identity system, which 

integrates neatly into both the ASP.NET Core platform and MVC applications. In the sections 

that follow, I will create a basic security setup that allows one user, called Admin, to 

authenticate and access the administration features in the application. ASP.NET Core Identity 

provides many more features for authenticating users and authorizing access to application 

features and data, and you can find a more detailed information in Chapters 28–30, where I 

show you how to create and manage user accounts, how to use roles and policies, and how to 

support authentication from third parties, such as Microsoft, Google, Facebook, and Twitter. In 

this chapter, however, my goal is just to get enough functionality in place to prevent 

customers from being able to access the sensitive parts of the SportsStore application and, in 

doing so, give you a flavor of how authentication and authorization fit into an MVC application. 

Adding the Identity Package to the Project  

The first step is to add ASP.NET Identity to the SportsStore project, which requires some new 

NuGet packages. Listing 12-1 shows the additions to the SportsStore.csproj file in the 

SportsStore project. 

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989


CHAPTER 12 - SportsStore: Security 

 

2 

Listing 12-1. Adding ASP.NET Core Identity in the SportsStore.csproj File of the SportsStore Project  

<Project Sdk="Microsoft.NET.Sdk.Web"> 
 
  <PropertyGroup> 
    <TargetFramework>netcoreapp1.1</TargetFramework> 
  </PropertyGroup> 
 
  <ItemGroup> 
    <Folder Include="Views\Admin\" /> 
    <Folder Include="wwwroot\" /> 
  </ItemGroup> 
   
  <ItemGroup> 
    <PackageReference Include="Microsoft.ApplicationInsights.AspNetCore"  
        Version="2.0.0" /> 
    <PackageReference Include="Microsoft.AspNetCore" Version="1.1.1" /> 
    <PackageReference Include="Microsoft.AspNetCore.Mvc" Version="1.1.2" /> 
    <PackageReference Include="Microsoft.AspNetCore.StaticFiles" Version="1.1.1" /> 
    <PackageReference Include="Microsoft.VisualStudio.Web.BrowserLink"  
        Version="1.1.0" /> 
    <PackageReference Include="Microsoft.EntityFrameworkCore" Version="1.1.1" /> 
    <PackageReference Include="Microsoft.EntityFrameworkCore.Tools"  
        Version="1.1.0" /> 
    <PackageReference Include="Microsoft.EntityFrameworkCore.Design"  
        Version="1.1.1" /> 
    <PackageReference Include="Microsoft.EntityFrameworkCore.SqlServer"     
        Version="1.1.1" /> 
    <PackageReference Include="Microsoft.Extensions.Configuration.Json"  
        Version="1.1.1" /> 
    <PackageReference Include="Microsoft.AspNetCore.Session" Version="1.1.1" /> 
    <PackageReference Include="Microsoft.Extensions.Caching.Memory"  
        Version="1.1.1" /> 
    <PackageReference Include="Microsoft.AspNetCore.Http.Extensions"  
        Version="1.1.1" /> 
    <PackageReference Include="Microsoft.AspNetCore.Identity.EntityFrameworkCore"  
        Version="1.1.1" /> 
 
    <DotNetCliToolReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Tools" 
       Version="1.0.0" /> 
    <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet"  
       Version=" 1.0.0" /> 
  </ItemGroup> 
   
</Project> 

When the changes to the file are saved, Visual Studio will use NuGet to download and 

install the Identity package. 

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989


CHAPTER 12 - SportsStore - Security 

 

3 

Creating the Identity Database 

The ASP.NET Identity system is endlessly configurable and extensible and supports lots of 

options for how its user data is stored. I am going to use the most common, which is to store 

the data using Microsoft SQL Server accessed using Entity Framework Core.  

Creating the Context Class  

I need to create a database context file that will acts as the bridge between the database and 

the Identity model objects it provides access to. I added a class file called 

AppIdentityDbContext.cs to the Models folder and used it to define the class shown in Listing 

12-2.  

Listing 12-2. The Contents of the AppIdentityDbContext.cs File in the Models Folder 

using Microsoft.AspNetCore.Identity.EntityFrameworkCore; 
using Microsoft.EntityFrameworkCore; 
 
namespace SportsStore.Models { 
 
    public class AppIdentityDbContext : IdentityDbContext<IdentityUser> { 
 
        public AppIdentityDbContext(DbContextOptions<AppIdentityDbContext> options) 
            : base(options) { } 
    } 
} 

This class is derived from IdentityDbContext, which provides Identity-specific features for 

Entity Framework Core. For the type parameter, I used the IdentityUser class, which is the 

built-in class used to represent users. In Chapter 28, I demonstrate how to use a custom class 

that you can extend to add extra information about the users of your application. 

Defining the Connection String 

The next step is to define the connection string that will be for the database. In Listing 12-3, 

you can see the additions I made to the appsettings.json file of the SportsStore project, which 

follows the same format as the connection string that I defined for the product database in 

Chapter 8.  

Listing 12-3. Defining a Connection String in the appsettings.json File  

{ 

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989


CHAPTER 12 - SportsStore: Security 

 

4 

  "Data": { 
    "SportStoreProducts": { 
      "ConnectionString": 
"Server=(localdb)\\MSSQLLocalDB;Database=SportsStore;Trusted_Connection=True;Multiple
ActiveResultSets=true" 
    }, 
    "SportStoreIdentity": { 
      "ConnectionString": 
"Server=(localdb)\\MSSQLLocalDB;Database=Identity;Trusted_Connection=True;MultipleAct
iveResultSets=true" 
    } 
  } 
} 

Remember that the connection string has to be defined in a single unbroken line in the 

appsettings.json file and is shown across multiple lines in the listing only because of the fixed 

width of a book page. The addition in the listing defines a connection string called 

SportsStoreIdentity that specifies a LocalDB database called Identity. 

Configuring the Application  

Like other ASP.NET Core features, Identity is configured in the Start class. Listing 12-4 shows 

the additions I made to set up Identity in the SportsStore project, using the context class and 

connection string defined previously. 

Listing 12-4. Configuring Identity in the Startup.cs File  

using Microsoft.AspNetCore.Builder; 
using Microsoft.AspNetCore.Hosting; 
using Microsoft.AspNetCore.Http; 
using Microsoft.Extensions.DependencyInjection; 
using Microsoft.Extensions.Logging; 
using SportsStore.Models; 
using Microsoft.Extensions.Configuration; 
using Microsoft.EntityFrameworkCore; 
using Microsoft.AspNetCore.Identity.EntityFrameworkCore; 
 
namespace SportsStore { 
 
    public class Startup { 
        IConfigurationRoot Configuration; 
 
        public Startup(IHostingEnvironment env) { 
            Configuration = new ConfigurationBuilder() 
                .SetBasePath(env.ContentRootPath) 
                .AddJsonFile("appsettings.json").Build(); 

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989


CHAPTER 12 - SportsStore - Security 

 

5 

        } 
 
        public void ConfigureServices(IServiceCollection services) { 
            services.AddDbContext<ApplicationDbContext>(options => 
                options.UseSqlServer( 
                    Configuration["Data:SportStoreProducts:ConnectionString"])); 
 
            services.AddDbContext<AppIdentityDbContext>(options => 
                options.UseSqlServer( 
                    Configuration["Data:SportStoreIdentity:ConnectionString"])); 
 
            services.AddIdentity<IdentityUser, IdentityRole>() 
                .AddEntityFrameworkStores<AppIdentityDbContext>(); 
 
            services.AddTransient<IProductRepository, EFProductRepository>(); 
            services.AddScoped<Cart>(sp => SessionCart.GetCart(sp)); 
            services.AddSingleton<IHttpContextAccessor, HttpContextAccessor>(); 
            services.AddTransient<IOrderRepository, EFOrderRepository>(); 
            services.AddMvc(); 
            services.AddMemoryCache(); 
            services.AddSession(); 
        } 
 
        public void Configure(IApplicationBuilder app, 
                IHostingEnvironment env, ILoggerFactory loggerFactory) { 
 
            app.UseDeveloperExceptionPage(); 
            app.UseStatusCodePages(); 
            app.UseStaticFiles(); 
            app.UseSession(); 
            app.UseIdentity(); 
            app.UseMvc(routes => { 
 
                // ...routes omitted for brevity... 
 
            }); 
            SeedData.EnsurePopulated(app); 
            IdentitySeedData.EnsurePopulated(app); 
        } 
    } 
} 

In the ConfigureServices method, I extended the Entity Framework Core configuration to 

register the context class and used the AddIdentity method to set up the Identity services 

using the built-in classes to represent users and roles. In the Configure method, I called the 

UseIdentity method to set up the components that will intercept requests and responses to 

implement the security policy. I also added a call to an IdentitySeedData.EnsurePopulated 

method, which I will create in the next section to add the user data to the database. 

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989


CHAPTER 12 - SportsStore: Security 

 

6 

Defining the Seed Data  

I am going to explicitly create the Admin user by seeding the database when the application 

starts. I added a class file called IdentitySeedData.cs to the Models folder and defined the 

static class shown in Listing 12-5.  

Listing 12-5. The Contents of the IdentitySeedData.cs File in the Models Folder 

using Microsoft.AspNetCore.Builder; 
using Microsoft.AspNetCore.Identity; 
using Microsoft.AspNetCore.Identity.EntityFrameworkCore; 
using Microsoft.Extensions.DependencyInjection; 
 
namespace SportsStore.Models { 
 
    public static class IdentitySeedData { 
        private const string adminUser = "Admin"; 
        private const string adminPassword = "Secret123$"; 
 
        public static async void EnsurePopulated(IApplicationBuilder app) { 
 
            UserManager<IdentityUser> userManager = app.ApplicationServices 
                .GetRequiredService<UserManager<IdentityUser>>(); 
 
            IdentityUser user = await userManager.FindByIdAsync(adminUser); 
            if (user == null) { 
                user = new IdentityUser("Admin"); 
                await userManager.CreateAsync(user, adminPassword); 
            } 
        } 
    } 
} 

This code uses the UserManager<T> class, which is provided as a service by ASP.NET Core 

Identity for managing users, as described in Chapter 28. The database is searched for the Admin 

user account, which is created—with a password of Secret123$—if it is not present. Do not 

change the hard-coded password in this example because Identity has a validation policy that 

requires passwords to contain a number and range of characters. See Chapter 28 for details of 

how to change the validation settings. 

Caution Hard-coding the details of an administration account is often required so that you can 

log into an application once it has been deployed and start administering it. When you do this, 

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989


CHAPTER 12 - SportsStore - Security 

 

7 

you must remember to change the password for the account you have created. See Chapter 28 

for details of how to change passwords using Identity. 

Creating and Applying the Database Migration 

All of the components are in place, and it is time to use the Entity Framework Core migrations 

feature to define the schema and apply it to the database. Open the Package Manager Console 

and run the following command to create the migration:  

Add-Migration Initial -Context AppIdentityDbContext 

The important difference from previous database commands is that I have used the -

Context option to specify the name of the context class associated with the database that I 

want to work with, which is AppIdentityDbContext. When you have multiple databases in the 

application, it is important to ensure that you are working with the right one.  

Once Entity Framework Core has generated the initial migration, run the following 

command to create the database and run the migration commands:  

Update-Database -Context AppIdentityDbContext 

The result is a new LocalDB database called Identity that you can inspect using the Visual 

Studio SQL Server Object Explorer. 

Applying a Basic Authorization Policy  

Now that I have installed and configured ASP.NET Core Identity, I can apply an authorization 

policy to the parts of the application that I want to protect. I am going to use the most basic 

authorization policy possible, which is to allow access to any authenticated user. Although this 

can be a useful policy in real applications as well, there are also options for creating finer-

grained authorization controls (as described in Chapters 28–30), but since the SportsStore 

application has only one user, distinguishing between anonymous and authenticated requests 

is sufficient.  

The Authorize attribute is used to restrict access to action methods, and in Listing 12-6, 

you can see that I have used the attribute to protect access to the administration actions in the 

Order controller.  

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989


CHAPTER 12 - SportsStore: Security 

 

8 

Listing 12-6. Restricting Access in the OrderController.cs File  

using Microsoft.AspNetCore.Mvc; 
using SportsStore.Models; 
using System.Linq; 
using Microsoft.AspNetCore.Authorization; 
 
namespace SportsStore.Controllers { 
 
    public class OrderController : Controller { 
        private IOrderRepository repository; 
        private Cart cart; 
 
        public OrderController(IOrderRepository repoService, Cart cartService) { 
            repository = repoService; 
            cart = cartService; 
        } 
 
        [Authorize] 
        public ViewResult List() => 
            View(repository.Orders.Where(o => !o.Shipped)); 
 
        [HttpPost] 
        [Authorize] 
        public IActionResult MarkShipped(int orderID) { 
            Order order = repository.Orders 
                .FirstOrDefault(o => o.OrderID == orderID); 
            if (order != null) { 
                order.Shipped = true; 
                repository.SaveOrder(order); 
            } 
            return RedirectToAction(nameof(List)); 
        } 
 
        public ViewResult Checkout() => View(new Order()); 
 
        [HttpPost] 
        public IActionResult Checkout(Order order) { 
            if (cart.Lines.Count() == 0) { 
                ModelState.AddModelError("", "Sorry, your cart is empty!"); 
            } 
            if (ModelState.IsValid) { 
                order.Lines = cart.Lines.ToArray(); 
                repository.SaveOrder(order); 
                return RedirectToAction(nameof(Completed)); 
            } else { 
                return View(order); 
            } 
        } 

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989


CHAPTER 12 - SportsStore - Security 

 

9 

 
        public ViewResult Completed() { 
            cart.Clear(); 
            return View(); 
        } 
    } 
} 

I don’t want to stop unauthenticated users from accessing the other action methods in the 

Order controller, so I have applied the Authorize attribute only to the List and MarkShipped 

methods. I want to protect all of the action methods defined by the Admin controller, and I can 

do this by applying the Authorize attribute to the controller class, which then applies the 

authorization policy to all the action methods it contains, as shown in Listing 12-7. 

Listing 12-7. Restricting Access in the AdminController.cs File  

using Microsoft.AspNetCore.Mvc; 
using SportsStore.Models; 
using System.Linq; 
using Microsoft.AspNetCore.Authorization; 
 
namespace SportsStore.Controllers { 
 
    [Authorize] 
    public class AdminController : Controller { 
        private IProductRepository repository; 
 
        public AdminController(IProductRepository repo) { 
            repository = repo; 
        } 
 
        public ViewResult Index() => View(repository.Products); 
 
        public ViewResult Edit(int productId) => 
            View(repository.Products 
                .FirstOrDefault(p => p.ProductID == productId)); 
 
        [HttpPost] 
        public IActionResult Edit(Product product) { 
            if (ModelState.IsValid) { 
                repository.SaveProduct(product); 
                TempData["message"] = $"{product.Name} has been saved"; 
                return RedirectToAction("Index"); 
            } else { 
                // there is something wrong with the data values 
                return View(product); 
            } 
        } 

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989


CHAPTER 12 - SportsStore: Security 

 

10 

 
        public ViewResult Create() => View("Edit", new Product()); 
 
        [HttpPost] 
        public IActionResult Delete(int productId) { 
            Product deletedProduct = repository.DeleteProduct(productId); 
            if (deletedProduct != null) { 
                TempData["message"] = $"{deletedProduct.Name} was deleted"; 
            } 
            return RedirectToAction("Index"); 
        } 
    } 
} 

Creating the Account Controller and Views 

When an unauthenticated user sends a request that requires authorization, they are 

redirected to the /Account/Login URL, which the application can use to prompt the user for 

their credentials. In preparation, I added a view model to represent the user’s credentials by 

adding a class file called LoginModel.cs to the Models/ViewModels folder and using it to define 

the class shown in Listing 12-8. 

Listing 12-8. The Contents of the LoginModel.cs File in the Models/ViewModels Folder 

using System.ComponentModel.DataAnnotations; 
 
namespace SportsStore.Models.ViewModels { 
 
    public class LoginModel { 
 
        [Required] 
        public string Name { get; set; } 
 
        [Required] 
        [UIHint("password")] 
        public string Password { get; set; } 
 
        public string ReturnUrl { get; set; } = "/"; 
    } 
} 

The Name and Password properties have been decorated with the Required attribute, which 

uses model validation to ensure that values have been provided. The Password property has 

been decorated with the UIHint attribute so that when I use the asp-for attribute on the input 

element in the login Razor view, the tag helper will set the type attribute to password; that 

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989


CHAPTER 12 - SportsStore - Security 

 

11 

way, the text entered by the user isn’t visible onscreen. I describe the use of the UIHint 

attribute in Chapter 24. 

Next, I added a class file called AccountController.cs to the Controllers folder and used it 

to define the controller shown in Listing 12-9. This is the controller that will respond to 

requests to the /Account/Login URL. 

Listing 12-9. The Contents of the AccountController.cs File in the Controllers Folder 

using System.Threading.Tasks; 
using Microsoft.AspNetCore.Authorization; 
using Microsoft.AspNetCore.Identity; 
using Microsoft.AspNetCore.Identity.EntityFrameworkCore; 
using Microsoft.AspNetCore.Mvc; 
using SportsStore.Models.ViewModels; 
 
namespace SportsStore.Controllers { 
 
    [Authorize] 
    public class AccountController : Controller { 
        private UserManager<IdentityUser> userManager; 
        private SignInManager<IdentityUser> signInManager; 
 
        public AccountController(UserManager<IdentityUser> userMgr, 
                SignInManager<IdentityUser> signInMgr) { 
            userManager = userMgr; 
            signInManager = signInMgr; 
        } 
 
        [AllowAnonymous] 
        public ViewResult Login(string returnUrl) { 
            return View(new LoginModel { 
                ReturnUrl = returnUrl 
            }); 
        } 
 
        [HttpPost] 
        [AllowAnonymous] 
        [ValidateAntiForgeryToken] 
        public async Task<IActionResult> Login(LoginModel loginModel) { 
            if (ModelState.IsValid) { 
                IdentityUser user = 
                    await userManager.FindByNameAsync(loginModel.Name); 
                if (user != null) { 
                    await signInManager.SignOutAsync(); 
                    if ((await signInManager.PasswordSignInAsync(user, 
                            loginModel.Password, false, false)).Succeeded) { 
                        return Redirect(loginModel?.ReturnUrl ?? "/Admin/Index"); 

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989


CHAPTER 12 - SportsStore: Security 

 

12 

                    } 
                } 
            } 
            ModelState.AddModelError("", "Invalid name or password"); 
            return View(loginModel); 
        } 
 
        public async Task<RedirectResult> Logout(string returnUrl = "/") { 
            await signInManager.SignOutAsync(); 
            return Redirect(returnUrl); 
        } 
    } 
} 

When the user is redirected to the /Account/Login URL, the GET version of the Login 

action method renders the default view for the page, providing a view model object that 

includes the URL that the browser should be redirected to if the authentication request is 

successful. 

Authentication credentials are submitted to the POST version of the Login method, which 

uses the UserManager<IdentityUser> and SignInManager<IdentityUser> services that have 

been received through the controller’s constructor to authenticate the user and log them into 

the system. I explain how these classes work in Chapters 28–30, but for now it is enough to 

know that if there is an authentication failure, then I create a model validation error and 

render the default view; however, if authentication is successful, then I redirect the user to the 

URL that they want to access before they are prompted for their credentials. 

Caution In general, using client-side data validation is a good idea. It offloads some of the work 

from your server and gives users immediate feedback about the data they are providing. 

However, you should not be tempted to perform authentication at the client, as this would 

typically involve sending valid credentials to the client so they can be used to check the 

username and password that the user has entered, or at least trusting the client’s report of 

whether they have successfully authenticated. Authentication should always be done at the 

server. 

To provide the Login method with a view to render, I created the Views/Account folder and 

added a Razor view file called Login.cshtml with the contents shown in Listing 12-10. 

Listing 12-10. The Contents of the Login.cshtml File in the Views/Account Folder 

@model LoginModel 

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989


CHAPTER 12 - SportsStore - Security 

 

13 

@{ 
    ViewBag.Title = "Log In"; 
    Layout = "_AdminLayout"; 
} 
 
<div class="text-danger" asp-validation-summary="All"></div> 
 
<form asp-action="Login" asp-controller="Account" method="post"> 
    <input type="hidden" asp-for="ReturnUrl" /> 
    <div class="form-group"> 
        <label asp-for="Name"></label> 
        <div><span asp-validation-for="Name" class="text-danger"></span></div> 
        <input asp-for="Name" class="form-control" /> 
    </div> 
    <div class="form-group"> 
        <label asp-for="Password"></label> 
        <div><span asp-validation-for="Password" class="text-danger"></span></div> 
        <input asp-for="Password" class="form-control" /> 
    </div> 
    <button class="btn btn-primary" type="submit">Log In</button> 
</form> 

The final step is a change to the shared administration layout to add a button that will log 

the current user out by sending a request to the Logout action, as shown in Listing 12-11. This 

is a useful feature that makes it easier to test the application, without which you would need 

to clear the browser’s cookies in order to return to the unauthenticated state.  

Listing 12-11. Adding a Logout Button in the _AdminLayout.cshtml File  

<!DOCTYPE html> 
<html> 
<head> 
    <meta name="viewport" content="width=device-width" /> 
    <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 
    <title>@ViewBag.Title</title> 
    <style> 
        .input-validation-error { border-color: red; background-color: #fee ; } 
    </style> 
    <script asp-src-include="lib/jquery/**/jquery.min.js"></script>  
    <script asp-src-include="lib/jquery-validation/**/jquery.validate.min.js"> 
    </script> 
    <script asp-src-include="lib/jquery-validation-unobtrusive/**/*.min.js"></script> 
</head> 
<body class="panel panel-default"> 
    <div class="panel-heading"> 
        <h4> 
            @ViewBag.Title 
            <a class="btn btn-sm btn-primary pull-right"  

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989


CHAPTER 12 - SportsStore: Security 

 

14 

               asp-action="Logout" asp-controller="Account">Log Out</a> 
        </h4> 
    </div> 
    <div class="panel-body"> 
        @if (TempData["message"] != null) { 
            <div class="alert alert-success">@TempData["message"]</div> 
        } 
        @RenderBody() 
    </div> 
</body> 
</html> 

Testing the Security Policy  

Everything is in place and you can test the security policy by starting the application and 

requesting the /Admin/Index URL. Since you are presently unauthenticated and you are trying 

to target an action that requires authorization, your browser will be redirected to the 

/Account/Login URL. Enter Admin and Secret123$ as the name and password and submit the 

form. The Account controller will check the credentials you provided with the seed data added 

to the Identity database and—assuming you entered the right details—authenticate you and 

redirect you back to the /Account/Login URL, to which you now have access. Figure 12-1 

illustrates the process. 

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989


CHAPTER 12 - SportsStore - Security 

 

15 

 

Figure 12-1. The administration authentication/authorization process 

Summary 
In this and previous chapters, I demonstrated how the ASP.NET Core MVC can be used to 

create a realistic e-commerce application. This extended example introduced many key MVC 

features: controllers, action methods, routing, views, metadata, validation, layouts, 

authentication, and more. You also saw how some of the key technologies related to MVC can 

be used. These included the Entity Framework Core, dependency injection, and unit testing. 

The result is an application that has a clean, component-oriented architecture that separates 

the various concerns and a code base that will be easy to extend and maintain. And that’s the 

end of the SportsStore application. In the next chapter, I show you how to use Visual Studio 

Code to create ASP.NET Core MVC applications.  

www.itbook.store/books/9781484203989

https://itbook.store/books/9781484203989

