public final class Calculus
extends java.lang.Object
Modifier and Type | Field and Description |
---|---|
static int |
GENERAL_DERIVATIVE |
static int |
LEFT_DERIVATIVE
Derivative type specification
|
static int |
RIGHT_DERIVATIVE |
Constructor and Description |
---|
Calculus() |
Modifier and Type | Method and Description |
---|---|
static double |
backwardDifference(Expression f,
Argument x)
Backward difference(1) operator (at current value of argument x)
|
static double |
backwardDifference(Expression f,
Argument x,
double x0)
Backward difference(1) operator (at x = x0).
|
static double |
backwardDifference(Expression f,
double h,
Argument x)
Backward difference(h) operator (at the current value of the argument x)
|
static double |
backwardDifference(Expression f,
double h,
Argument x,
double x0)
Backward difference(h) operator (at x = x0)
|
static double |
derivative(Expression f,
Argument x,
double x0,
int derType,
double eps,
int maxSteps)
Numerical derivative at x = x0
|
static double |
derivativeNth(Expression f,
double n,
Argument x,
double x0,
int derType,
double eps,
int maxSteps)
Numerical n-th derivative at x = x0 (you should avoid calculation
of derivatives with order higher than 2).
|
static double |
forwardDifference(Expression f,
Argument x)
Forward difference(1) operator (at current value of argument x)
|
static double |
forwardDifference(Expression f,
Argument x,
double x0)
Forward difference(1) operator (at x = x0)
|
static double |
forwardDifference(Expression f,
double h,
Argument x)
Forward difference(h) operator (at the current value of the argument x)
|
static double |
forwardDifference(Expression f,
double h,
Argument x,
double x0)
Forward difference(h) operator (at x = x0)
|
static double |
integralTrapezoid(Expression f,
Argument x,
double a,
double b,
double eps,
int maxSteps)
Trapezoid numerical integration
|
static double |
solveBrent(Expression f,
Argument x,
double a,
double b,
double eps,
double maxSteps)
Brent solver (Brent root finder)
|
public static final int LEFT_DERIVATIVE
public static final int RIGHT_DERIVATIVE
public static final int GENERAL_DERIVATIVE
public static final double integralTrapezoid(Expression f, Argument x, double a, double b, double eps, int maxSteps)
f
- the expressionx
- the argumenta
- form a ...b
- ... to beps
- the epsilon (error)maxSteps
- the maximum number of stepsExpression
public static final double derivative(Expression f, Argument x, double x0, int derType, double eps, int maxSteps)
f
- the expressionx
- the argumentx0
- at point x = x0derType
- derivative type (LEFT_DERIVATIVE, RIGHT_DERIVATIVE,
GENERAL_DERIVATIVEeps
- the epsilon (error)maxSteps
- the maximum number of stepsExpression
public static final double derivativeNth(Expression f, double n, Argument x, double x0, int derType, double eps, int maxSteps)
f
- the expressionn
- the deriviative orderx
- the argumentx0
- at point x = x0derType
- derivative type (LEFT_DERIVATIVE, RIGHT_DERIVATIVE,
GENERAL_DERIVATIVEeps
- the epsilon (error)maxSteps
- the maximum number of stepsExpression
public static final double forwardDifference(Expression f, Argument x, double x0)
f
- the expressionx
- the argument namex0
- x = x0Expression
,
Argument
public static final double forwardDifference(Expression f, Argument x)
f
- the expressionx
- the argument nameExpression
,
Argument
public static final double backwardDifference(Expression f, Argument x, double x0)
f
- the expressionx
- the argument namex0
- x = x0Expression
,
Argument
public static final double backwardDifference(Expression f, Argument x)
f
- the expressionx
- the argument nameExpression
,
Argument
public static final double forwardDifference(Expression f, double h, Argument x, double x0)
f
- the expressionh
- the differencex
- the argument namex0
- x = x0Expression
,
Argument
public static final double forwardDifference(Expression f, double h, Argument x)
f
- the expressionh
- the differencex
- the argument nameExpression
,
Argument
public static final double backwardDifference(Expression f, double h, Argument x, double x0)
f
- the expressionh
- the differencex
- the argument namex0
- x = x0Expression
,
Argument
public static final double backwardDifference(Expression f, double h, Argument x)
f
- the expressionh
- the differencex
- the argument nameExpression
,
Argument
public static final double solveBrent(Expression f, Argument x, double a, double b, double eps, double maxSteps)
f
- Function given in the Expression formx
- Argumenta
- Left limitb
- Right limiteps
- Epsilon value (accuracy)maxSteps
- Maximum number of iterations