Recommender systems
INTRODUCTION

We see recommendations in numerous instances in our day to day life. Recommender systems are aimed at
1. Minimizing the effort of user to search for a product
2. Help user remind about a session that they closed earlier
3. Support user to discover more products
We see the above instances in numerous instances in our day to day life -
1. Recommender widgets in e-Commerce websites
2. Recommended items sent to email
3. More generally, recommendation from friends about certain aspects
Imagine a scenario, where an e-commerce customer does not have a product recommendation. The customer would not be able to:
1. Identify similar products to the product he/ she is viewing
2. Understand if the product is rightly priced
3. Understand the accessories/ complementary product for this product
The above is precisely the set of reasons why recommender systems often boost sales by anywhere between 15% - 40%
INTUITION BEHIND RECOMMENDER SYSTEMS

A recommender system is like a friend of the user, which infers the user's preferences and provides them with options that are personalized to the user.
There are multiple ways of building a recommender system, however the core of it remains to be - "a way of relating the user to a set of other users/ a way of relating the item to a set of other items or a combination of both".
Given that, recommending is more about relating one user/ item to another - it translates to a problem of k nearest neighbors - i.e., identifying the few that are very similar and then basing a prediction based on the preferences exhibited by the majority of neighbors.

UNDERSTANDING K-NEAREST NEIGHBORS

Let's understand what a nearest neighbor is - "A nearest neighbor is the entity (data point in case of a dataset) that is closest to the entity under consideration".
Two entities are close if the distance between them is very less. Consider three users with the following attributes:
	User
	Weight

	A
	60

	B
	62

	C
	90

From the above, we can intuitively conclude that users A & B are more similar to each other in terms of weight when compared to C.
In order to further understand this concept, let us add one more attribute of users, age:
	User
	Weight
	Age

	A
	60
	30

	B
	62
	35

	C
	90
	30

The "distance" between user A & B can be measured as:
square root of ((62 - 60)2 + (35 - 30)2)
Do note that the distance between users is similar to the way distance between two points is calculated.
However, one needs to be a little careful while calculating distance using multiple variable. Let's understand the pitfalls of distance calculation using the following example:
	Car model
	Max speed attainable
	# of gears

	A
	100
	4

	B
	110
	5

	C
	100
	5

In the above table, if we were measuring trying to understand the similarity between cars using the traditional "distance" metric, we would notice that model A & C are most similar to each other (even though their # of gears are different).
However, intuitively B & C are more similar to each other than C, as their max attainable speeds are similar, while they have identical number of gears.
The reason for this discrepancy is the issue of scale of variables - where one variable has a very high magnitude when compared to the other variable.
in order to get around this issue, typically we would normalize the variables before proceeding further with distance calculations. Normalizing variables is a process of bring all the variables to a uniform scale.
There are multiple ways normalizing a variable
1. Dividing each variable by the maximum value of the variable (brings all the values between -1 and 1)
2. Finding the Z score of each data point of the variable (Z score of a data point is the (value of data point - mean of variable)/ (standard deviation of the variable)
3. Dividing each variable by the (maximum - minimum) value of the variable (min max scaling)
Steps like the ones above help normalize variables and thus prevent the issues with scaling.
Once the distance of a data point to other data points is obtained - i.e., in the case of recommender systems - once the nearest items to a given item are identified, the system will recommend this item to user if it learns that the user has historically liked majority of the nearest neighborhood items.
"k" in k-nearest neighborhoods stands for the number of nearest neighbors to consider while taking a majority vote on whether the user likes the nearest neighbors or not. For example, if the user likes 9 out of 10 (k) nearest neighbors to an item, we'll recommend the item to user. Similarly if the user liked only3 out of 10 nearest neighbors of the item, we'll not recommend the item to user (as the liked items are in minority).
Neighborhood based analysis takes into account, the way in which multiple users can collaboratively help predict if a user might like something or not.
With this background, we'll move on to the evolution of recommender system algorithms.

USER BASED COLLABORATIVE FILTERING

In order to understand user based collaborative filtering, let us parse the words itself - "user based" referring to something based on users, "collaborative" referring to using some relation (similarity)between users, "filtering" referring to filtering out some users among all.
Let us understand user based collaborative filtering through the following example:
[image:]
For now, let's say we are interested in understanding the rating that user "Claudia Puig" would give to the movie "Lady in the water".
In order to understand that, let us go ahead and find out the most similar used to Claudia.
User similarity can be calculated in multiple ways:
1. Eucledian distance
2. Cosine similarity between users
Eucledian distance:
Let us calculate the eucledian distance of Claudia with every other user. It can be done as follows:
[image:]
We did not have the complete picture due to space and formatting constraints, but, essentially the same formula gets applied across columns.
The distance of every other user with Claudia for each movie is as follows:
[image:]
Note that, the overall distance value above is the average of all the distances where both users have rated a given movie.
Given that, Lisa Rose is the user who has the least overall distance with Claudia, We will consider the rating provided by Lisa as the rating that Claudia is likely to give to the movie - "Lady in the water".
One major issue to be considered in the calculation above is that - some users could be a soft critic and some users could be more harsh - i.e., user A and user B might

ITEM BASED COLLABORATIVE FILTERING

Given that the number of computations is an issue in user based collaborative filtering, we will modify the problem so that we observe the similarity between items & not users.
The intuition behind item based collaborative filtering IBCF is that, two items are similar if the ratings that they get from the same users are similar.
Given that IBCF is based on items & not on user similarity, it would not have the problem of performing billions of computations. The following illustrates the reason why.
Let's assume that there are a total of 10,000 movies in database & 1 million customers attracted to the site. In this case, had we been performing UBCF, we would have been performing ~500 Billion similarity calculations. However, had we been using IBCF, we would have been performing 9,999 * 5,000 = ~ 50 Million similarity calculations.
From the above, we can clearly observe that the number of similarity in calculations increases exponentially as the number of customers grow. However, given that the number of items (movie titles in our case) are not expected to have the same growth rate as the number of customers, in general IBCF is less computationally sensitive than UBCF.

MATRIX FACTORIZATION

While user-based or item-based collaborative filtering methods are simple and intuitive, matrix factorization techniques are usually more effective because they allow us to discover the latent features underlying the interactions between users and items.
Just as its name suggests, matrix factorization is to, obviously, factorize a matrix, i.e. to find out two (or more) matrices such that when you multiply them you will get back the original matrix.
In a recommendation system such as Netflix or MovieLens, there is a group of users and a set of items (movies for the above two systems). Given that each users have rated some items in the system, we would like to predict how the users would rate the items that they have not yet rated, such that we can make recommendations to the users. In this case, all the information we have about the existing ratings can be represented in a matrix where the rows are users & columns are movie names.
The intuition behind using matrix factorization to solve this problem is that there should be some latent features that determine how a user rates an item. For example, two users would give high ratings to a certain movie if they both like the actors/actresses of the movie, or if the movie is an action movie, which is a genre preferred by both users. Hence, if we can discover these latent features, we should be able to predict a rating with respect to a certain user and a certain item, because the features associated with the user should match with the features associated with the item.
In trying to discover the different features, we also make the assumption that the number of features would be smaller than the number of users and the number of items. It should not be difficult to understand this assumption because clearly it would not be reasonable to assume that each user is associated with a unique feature (although this is not impossible).
Matrix factorization is an improvement over collaborative filtering as we have to store muh smaller data when compared to CF. In a typical CF one needs to store the data for U users & D items - a total of U X D numbers. However, in matrix factorization one can abstract users into U X K matrix -- i.e., U users being described by K features (for example, user 1 preferring action movie etc.,) & similarly D items being abstracted to D X K features (A group of comedy movies etc.,).
Thus matrix factorization reduces the amount of data stored/ computations needed to UXK + DXK = (U + D) X K
In a typical scenario UXD is far higher than (U+D)XK
The Math of matrix factorization:
Having discussed the intuition behind matrix factorization, we can now go on to work on the mathematics. Firstly, we have a set [image: U] of users, and a set [image: D] of items. Let [image: \mathbf{R}] of size [image: |U| \times |D|] be the matrix that contains all the ratings that the users have assigned to the items. Also, we assume that we would like to discover K latent features. Our task, then, is to find two matrics matrices [image: \mathbf{P}] (a [image: |U| \times K] matrix) and [image: \mathbf{Q}] (a [image: |D| \times K] matrix) such that their product approximates [image: \mathbf{R}]:
 [image:]
In this way, each row of [image: \mathbf{P}] would represent the strength of the associations between a user and the features. Similarly, each row of [image: \mathbf{Q}] would represent the strength of the associations between an item and the features. To get the prediction of a rating of an item [image: d_j] by [image: u_i], we can calculate the dot product of the two vectors corresponding to [image: u_i] and [image: d_j]:
 [image: \hat{r}_{ij} = p_i^T q_j = \sum_{k=1}^k{p_{ik}q_{kj}}]
An example of the above scenario is as follows:
Let's assume that we have a matrix of users (U) & movies (D) as below:
[image:]
Our task is to predict the hyphen ("-") which indicates that the user has not rated the movie yet.
In this scenario, the math of matrix factorization works out as follows:
Step 1:
Initialize the values of P matrix randomly where P is a U X K matrix
Let's assume the value of k=2 for this instance.
A better way of randomly initializing the values is by limiting the values to be between 0 & 1.
In this scenario, the matrix of P will be a 5 X 2 matrix, as k=2 & there are 5 users
You can observe the above in columns C & D as "P matrix" in the excel named "Matrix factorization example"
Step 2:
Initialize the values of Q matrix randomly again where Q is a K X D matrix - i.e., 2 X 4 matrix, as there are 4 movies in the table above.
You can observe the above in columns F & I as "Q matrix" in the excel

Step 3:
Calculate the value of the matrix multiplication of P X Q matrix.
Here is the step where the optimization happens as, P X Q translates to (U X K) X (K X D) which from matrix theory translates to U X D matrix.
Thus, this is the step where we are approximating 2 different matrices (P & Q) to be equivalent to the dot product of one big matrix (U X D)
You can observe the above in column F as "Prediction" in the excel
Step 4:
Specify the optimization constraints. The predicted value (multiplication of each element of the 2 matrices) should be equal to the ratings of the big matrix.
This step can be visualized in column I (error) of the excel. Moreover, one additional constraint that we need to have is that no predicted value should have value greater than 5 which is in constraint (column E).
With this, we need to specify the overall objective, which is to minimize the overall error as much as possible (cell K13) while keep the constraint of n predicted rating should be greater than 5 (cell K16).
While calculating the overall error, we should also note that, for certain movies for which we do not have historical ratings (cell g13 for example), we should not be including the error there in our overall error calculation (and hence the sumif condition on cell k13).
With the above step, we obtain the P & Q matrices that minimize the overall error. Thus, with the two matrices, we are in a position to estimate for the missing ratings / the ratings to be predicted for.

image4.png

image5.png

image6.png

image7.png
\U| x |D|

image8.png

image9.png
Ul x K

image10.png

image11.png
Dl x K

image12.png
R~PxQ'=R

image13.png

image14.png

image15.png
g =3 piraj

image16.png
UL
U2
U3
Us

Us

D1

D2

D3

Dy

image1.emf
User/ Movie Just My Luck Lady in the Water Snakes on a Plane Superman Returns The Night Listener You Me and Dupree

Claudia Puig 3 3.5 4 4.5 2.5

Gene Seymour 1.5 3 3.5 5 3 3.5

Jack Matthews 3 4 5 3 3.5

Lisa Rose 3 2.5 3.5 3.5 3 2.5

Mick LaSalle 2 3 4 3 3 2

Toby 4.5 4 1

image2.png
[c [o T e R

1
2

3 User/ Movie JustMyLuck Lady in the Water snakes on a Plane

4 [Claudiapuig 3 35

5 |Gene seymour 15 3 35

6 |Jack Matthews 3 a

7 |LisaRose 3 25 35

& Micklasalle 2 3 a

9 [Toby 45

10

1

12 Gene Seymour =IF(OR(ESA="" ", (ES$4-E5)22) FS4-75)n2)
13 Jack Matthews " E6=""),"(ES4-E6)"2) F$4-76)~2)
14 |LisaRose X (ES4-€7)82) F$4-F7)82)
15 | Mick Lasalle (OR(ESA="", " (ES4-68)°2) F$4-78)~2)
16 Toby (OR(ES4="" E9=""),"(ES4-E9)"2) F$4-F9)22)

image3.png
1
2
3 User/Movie JustMyLuck the Water Snakes ona Plane Superman Returns The Night Listener You Me and Dupree.
4| Claudia Puig 3 35 4 as 25
5 |Gene seymour 15 3 35 s 3 35
6 |Jack Matthews 3 4 s 3 35
7 |LisaRose 3 25 35 35 3 25
8 |Mick Lasalle 2 3 4 3 3 2
9 Toby as 4 1
10
11 pistance Overall distance
12 Gene seymour 225 o 1 225 1 130
13 Jack Matthews 025 1 225 1 113
14 LisaRose o o 025 225 o 0.50
15 Mick Lasalle 1 025 1 225 025 095
16 Toby 1 0 225 108

