Recurrent Neural networks
BACKGROUND

In the previous chapter, we looked at how CNNs improve upon the traditional neural network architecture for image classification.
While CNNs perform very well for image classification - where image translation and rotation are taken care of, they do not necessarily help in identifying temporal patterns. Essentially, one can think of CNN as identifying a static pattern.
RNNs are designed to solve the problem of identifying temporal patterns.

INTRODUCTION
RNN can be architected in multiple ways. Some of the possible ways are as follows:

[image: http://karpathy.github.io/assets/rnn/diags.jpeg]
One can visualize the above architectures as follows:

1. The boxes in the bottom are inputs
2. The boxes in the middle are hidden layers
3. The boxes at the top are outputs
The one to one architecture shown above is the typical neural network with a hidden layer between input and output layer.
An example of one to many RNN architecture would be to input an image and the output would be the caption of image.
An example of many to one RNN architecture would be a movie review as input and the movie sentiment as output.
Finally, an example of many to many RNN architecture would be machine translation from one language to another language.

INTUITION OF THE ARCHITECTURE
In order to understand the reason for a different architecture for RNN, let us go through the following example:
"Given a string of words, predict the next word"
An example of that could be predict the word that comes after "This is an _____". Let's say, in reality, the sentence is "This is an example"
Traditional text mining techniques would solve the problem in the following way:
1. Encode each word - leaving space for an extra word, if needed
This: {1,0,0,0}
is: {0,1,0,0}
an: {0,0,1,0}
2. Encode the sentence:
"This is an": {1,1,1,0}
3. Create a training dataset:
Input --> {1,1,1,0}
Output --> {0,0,0,1}
4. Build a model with input & output

Drawbacks of the model presented above:
One of the major drawbacks of the model is that the input representation does not change is the input sentence is either "this is an" or "an is this" or "this an is"
However, intuitively, we know that each of the above sentences is different and cannot be represented by the same structure mathematically.
This calls for having a different architecture that looks as follows:
[image:]
In the above architecture, each of the individual words in the sentence get into a separate box among the 3 input boxes.
Moreover, the structure of the sentence is preserved, as, "this" gets into the first box, "is" gets into the second box & "an" gets into the third box.
The output "example" is expected in the output box at the top.
INTERPRETING AN RNN
One can think of RNN as a mechanism to hold memory - where the memory is contained within the hidden layer. It can be visualized as follows:
[image: https://cdn-images-1.medium.com/max/1600/1*icP_8Q-I87k4Nyq0vdSl8A.png]
The network on the right is an unrolled version of the network on the left. It can be interpreted as follows:
The network on the left is a traditional with one change - that is, the hidden layer is connected to itself along with being connected to the input (Hidden layer is the circle in the picture above).
Note that, when a hidden layer is connected to itself along with input layer - it is connected to "previous version" of hidden layer & the current input layer.
One can consider this phenomenon of hidden layer being connect back to itself as the mechanism through which memory is created within RNN.
The weight U represents the weights that connect the input layer to the hidden layer
The weight W represents the hidden layer to hidden layer connection
The weight V represents the hidden layer to output layer connection.
WHY STORE MEMORY
There is a need to store memory as, in the example we looked at above, or even in text generation in general, the next word does not necessarily remember only on the preceding word, but the context of the few words preceding the word to predict.
Given that we are looking at the preceding words, there should be a way to keep them in memory, so that, we can predict the next word more accurately.
Moreover, we should also have the memory in order - i.e., more often than not, the recent words are more useful in predicting the next word than the words that are far away from the word to predict.
WORKING DETAILS OF RNN
Note that a typical NN has an input layer, followed by an activation in hidden layer & then a softmax activation at the output layer.
Similar working details are done in RNN. Let us explore using the following example:
"This is an example"
Given an input "This is an" we are expected to predict "example" as the output.
The encoded words are as follows:
[image:]
Note the RNN structure which would look as follows:
[image:]
Let us deconstruct the dimensions of each weight matrix associated:
[image:]
Note that wxh above is randomly initialized.
Each input is 1X4 in dimension
Wxh is 4X3 in dimension
Thus, hidden layer - which is a matrix multiplication between input & wxh is 1X3 in dimension.
We have seen earlier, that a hidden layer is connected to another hidden layer that is unrolled.
Given that a hidden layer is connected to the next hidden layer - the weight associated (whh) with the connection between previous hidden layer and the current hidden layer would be 3X3 in dimension, as a 1X3 matrix multiplied with 3X3 matrix would give out a 1X3 matrix.
[image:]
Note that, Wxh & Whh are random initializations, while hidden layer & final hidden layer are calculated.
The calculation for hidden layer at various time steps is performed as follows:
[image:]
where [image:] is an activation that is performed (tanh activation in general).
Calculation from input layer to hidden layer constitutes of 2 components:
1. Matrix multiplication of input layer & wxh
2. matrix multiplication of hidden layer & whh
Final calculation of hidden layer value at a given time step would be the summation of the above 2 matrix multiplications and then passing the result through a tanh activation function.
Matrix multiplication of input layer & wxh:
[image:]
Calculation of hidden layer value at a time step:
Time step 1:
The hidden layer value at the first time step would be the value of matrix multiplication between input layer & wxh (as there is no hidden layer value in the previous time step).
[image:]
Time step 2:
However, starting the second input, hidden layer consists of hidden layer component of current time step and the hidden layer component coming from the previous time step.

[image:]
[image:]
Time step 3:
[image:]
Similarly, at the third time step, the inputs would be - input at the current time step and the hidden unit values coming from the previous time step (Note that, the hidden unit in the previous time step (t-1) is influenced by the hidden values coming from (t-2)).
Similarly, the hidden layer values are calculated at the 4th time step.
Now that we have our hidden layer calculated, we pass it through an activation, just like the way we did it in traditional NN:
[image:]
Given that the output from hidden layer activation is 1X3 in size for each input, in order to get an output of 1X4 in size (as the one hot encoded version of the expected output - "example" is 4 columns in size), the hidden layer Why should be 3X4 in dimension.
[image:]
From the intermediate output, we perform the softmax activation as follows:
[image:]
The second step of softmax would be to normalize each cell value to obtain a probability value
[image:]

Once the probabilities are obtained, the loss is calculated by taking the cross entropy loss between the prediction & actual.
Finally, we would be minimizing the loss through the combination of forward & backward propagation epochs in a similar manner as that of NN.

IMPLEMENTING RNN
Now that we understand how a typical RNN works, let us look into how to generate text using APIs provided by keras for RNN.
For this example, we will be working on the alice dataset - https://www.gutenberg.org/ebooks/11
[image:]
Read the dataset:
[image:]
Normalize the file to have only small case and remove punctuations, if any:
[image:]
[image:]
[image:]
[image:]
[image:]
Note that, the shape of X indicates that we have a total 3067 rows that have
[image:]
[image:]

The outputs in the initial iterations look as follows:
[image:]
The output is just the single word "the" - always!
The output at the end of 100 iterations is as follows:
[image:]
The output above has very little loss. Also, if you look at the outputs carefully, it is reproducing the exact text that is present in the dataset - potential overfitting issue. Also, notice that the shape of our input - 3067 inputs where there are 3077 columns. Given the low ratio of rows to columns there is a chance of over fitting - let us re-do this whole exercise on a slightly bigger dataset:

ISSUES WITH TRADITIONAL RNN
A traditional RNN, that takes multiple time steps into account for giving prediction can be visualized as follows:
[image:]
Notice that, as time step increases the impact of input at a much earlier layer would be very less, as:
h1 = Wx1
h2 = Wx2 + Uh1 = Wx2 + UWx1
h3 = Wx3 + Uh2 = Wx3 + UWx2 + U^2Wx1
h4 = Wx4 + Uh3 = Wx4 + UWX3 + U^2WX2 + U^3WX1
h5 = Wx5 + Uh4 = Wx5 + UWX4 + U^2WX3 + U^3WX2 + U^4WX1
One would notice that, as the time stamp increases, the value of hidden layer is:
1. highly dependent on X1 if U>1
2. Little dependent on X1 if U<1
The problem of vanishing gradient:
The gradient of U^4 with respect to U is 4*U^3
In such case, one would notice that, if U<1 the gradient is very small and hence arriving at the ideal weights takes a very long time.
The problem of exploding gradients:
In the above scenario, if U>1 then gradients increase by a much larger amount.
Hence, depending on the value of U (weights of hidden layer) the weights get updated very quickly or take very long time.
This results in an issue when there is a dependency on a word that occurred much earlier in time step in some sentences. For example, "I am from India. I speak fluent ____"
In this specific case, if we did not take the first sentence into account - the output of the sentence "I speak fluent ____" could be any language. Because we mentioned the country in the first sentence, we should be able to narrow down to languages specific to India.
Given that traditional RNN has issues with inputs that occurred in long term - we should deal with RNNs in a slightly different way.
LONG SHORT TERM MEMORY (LSTM)
LSTM is an architecture that helps overcome the vanishing or exploding gradient problem that we have seen in the previous section. In this section, we will understand the architecture of LSTM and have an intuition of how LSTM helps in overcoming the issue with traditional RNN.
LSTM looks as follows:
[image:]

One can notice that while the input X & output of hidden layer (h) remain the same - the activations that happen within a hidden layer is different.
Unlike the traditional RNN, which has tanh activation, there are different activations that happen within LSTM. Let us go through each of them in the section below:
[image: http://www.stratio.com/wp-content/uploads/2017/10/6-1.jpg]
In the above diagram, X & h represent the input & hidden layer as we have seen earlier.
C represents the cell state - essentially, one can think of cell state as a way in which long term dependencies are captured.
f represents the forget gate
[image:]
Note that, the sigmoid gives us a mechanism to specify what needs to be forgotten. This way, some historical sentences are selectively forgotten.
This gets updated in the cell state:
[image:]
In the next step, the input that needs to update the cell state is achieved through the sigmoid & the magnitude of update (either positive or negative) is obtained through the tanh activation.
The modulation can be specified as:
[image:]
The cell state thus finally gets updated as:
[image:]
In the final gate, we need to specify what part of the combination of input & cell state need to be outputted.
[image:]
The final hidden layer is represented as:
[image:]
Given that, the cell state has the capability of memorizing the values that are needed at a later point in time, LSTM provides better results than traditional RNN in predicting the next word or typically in sentiment classification.

image4.emf
This1000

is0100

an0010

example0001

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.jpeg

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image1.jpeg

image2.png

image3.png

