Neural networks
BACKGROUND

Neural network is a supervised learning algorithm that is loosely inspired by the way brain functions. Similar to the way neurons are connected to each other in brain, a neural network takes an input, passes it through a function based on which certain neurons get excited - further based on which certain output is produced.
This document gives a detail of how neural networks work.

INTRODUCTION
The origin of neural networks, comes from the fact that:
Everything cannot be approximated by a linear/ logistic regression - there can be potentially complex shapes within data that can only be approximated by complex functions.
Complex the function (with some way to take care of overfitting) - better is the accuracy of predictions.
The following explains the way in which neural networks work towards fitting data into a model.
STRUCTURE OF A NEURAL NETWORK
The typical structure of a neural network is as follows:
[image:]
The input level/ layer in the picture above is typically the independent variables that are used to predict the output (dependent variable) level/ layer.
Typically in a binary dependent variable - there is only one node in the output layer (which gives an output close to 1 or 0).
The hidden level/ layer is used to transform the input variables into a higher order function. The way in which hidden layer transforms the output is as follows:
[image:]
In the above diagram x1,x2...xn are the independent variables and x0 is the bias term (similar to the way we have bias in linear/ logistic regression).
w1,w2...wn are the weights given to each of the input variables. If "a" is one of the neurons in hidden layer - it would be equal to:
[image: eq1 - neuron]
The f(that we see in the above equation is the activation function that we are applying on top of the summation so that we attain non linearity (we need non linearity so that our model can now learn complex patterns).
Moreover, having more than 1 hidden layer helps in achieving high non linearity.
DEEPER INTO NEURAL NETWORK
A neural network is a collection of “neurons” with “synapses” connecting them. The collection is organized into three main parts: the input layer, the hidden layer, and the output layer. Note that you can have n hidden layers, with the term “deep” learning implying multiple hidden layers.
[image:]
Hidden layers are necessary when the neural network has to make sense of something really complicated, contextual, or non obvious, like image recognition. The term “deep” learning came from having many hidden layers. These layers are known as “hidden”, since they are not visible as a network output.
The circles represent neurons and lines represent synapses. Synapses take the input and multiply it by a “weight” (the “strength” of the input in determining the output). Neurons add the outputs from all synapses and apply an activation function.
KEY STEPS IN NEURAL NETWORK
Training a neural network basically means calibrating all of the “weights” by repeating two key steps, forward propagation and back propagation.
In forward propagation, we apply a set of weights to the input data and calculate an output. For the first forward propagation, the set of weights' values are initialized randomly.
In back propagation, we measure the margin of error of the output and adjust the weights accordingly to decrease the error.
Neural networks repeat both forward and back propagation until the weights are calibrated to accurately predict an output.
FORWARD PROPAGATION
Let's go through a simple example of training a neural network to function as an “Exclusive or” (“XOR”) operation to illustrate each step in the training process.
The XOR function can be represented by the mapping of the below inputs and outputs, which we’ll use as training data. It should provide a correct output given any input acceptable by the XOR function.
[image:]
Let’s use the last row from the above table, (1, 1) => 0, to demonstrate forward propagation:
[image: http://imgur.com/aTFz1Az.png]
We now assign weights to all of the synapses. Note that these weights are selected randomly (based on Gaussian distribution) since it is the first time we’re forward propagating. The initial weights will be between 0 and 1, but note that the final weights don’t need to be.
[image: http://imgur.com/Su6Y4UC.png]
We sum the product of the inputs with their corresponding set of weights to arrive at the first values for the hidden layer. You can think of the weights as measures of influence the input nodes have on the output.
[image:]
[image:]
APPLYING THE ACTIVATION FUNCTION
Activation functions are applied at the hidden layer of a neural network. The purpose of the activation function is to transform the input signal into an output signal and are necessary for neural networks to model complex non-linear patterns that simpler models might miss.
The different activation functions are as follows:
[image: https://cldup.com/hxmGABAI7Y.png]
For our example, let’s use the sigmoid function for activation. The sigmoid function looks like this, graphically:
[image: http://i.imgur.com/RVbqJsg.jpg]
And applying S(x) to the three hidden layer sums, we get:
[image:]
[image:]
Then, we sum the product of the hidden layer results with the second set of weights (also determined at random the first time around) to determine the output sum.
0.73 * 0.3 + 0.79 * 0.5 + 0.69 * 0.9 = 1.235
Finally we apply the activation function to get the final output result as a probability number between 0 to 1.
S(1.235) = 0.7746924929149283
[image: http://imgur.com/IDFRq5a.png]
Because we used a random set of initial weights, the value of the output neuron is off the mark; in this case by +0.77 (since the target is 0).
Let’s fix that by using back propagation to adjust the weights to improve the network

BACK PROPAGATION
To improve our model, we first have to quantify just how wrong our predictions are. Then, we adjust the weights accordingly so that the margin of errors are decreased.
Similar to forward propagation, back propagation calculations occur at each “layer”. We begin by changing the weights between the hidden layer and the output layer.
[image: http://imgur.com/kEyDCJ8.png]
Calculating the incremental change to these weights happens in two steps:
1) we find the margin of error of the output result (what we get after applying the activation function) to back out the necessary change in the output sum (we call this delta output sum) and 2) we extract the change in weights by multiplying delta output sum by the hidden layer results.
The output sum margin of error is the target output result minus the calculated output result:
[image: http://i.imgur.com/IAddjWL.png]
UPDATING THE RANDOMLY INITIALIZED WEIGHTS BETWEEN HIDDEN & OUTPUT LAYERS
To calculate the necessary change in the output sum, or delta output sum, we take the derivative of the activation function and apply it to the output sum. In our example, the activation function is the sigmoid function.
Delta output sum = S'(output sum) * (output sum margin of error)
Delta output sum = S'(1.235) * (-0.77)
Delta output sum = -0.13439890643886018
Let’s do the math:
hidden result 1 = 0.73105857863
hidden result 2 = 0.78583498304
hidden result 3 = 0.68997448112

Delta weights = delta output sum * hidden layer results
Delta weights = -0.1344 * [0.73105, 0.78583, 0.69997]
Delta weights = [-0.0983, -0.1056, -0.0941]

old w7 = 0.3
old w8 = 0.5
old w9 = 0.9

new w7 = 0.202
new w8 = 0.394
new w9 = 0.806
The new weights above are obtained by adding old weights with the delta weights.

UPDATING THE RANDOMLY INITIALIZED WEIGHTS BETWEEN INPUT & HIDDEN LAYERS
To determine the change in the weights between the input and hidden layers, we perform the similar set of calculations. Note that in the following calculations, we use the initial weights instead of the recently adjusted weights from the first part of the backward propagation. We can determine the delta hidden sum:
Delta hidden sum = delta output sum * hidden-to-outer weights * S'(hidden sum)
Delta hidden sum = -0.1344 * [0.3, 0.5, 0.9] * S'([1, 1.3, 0.8])
Delta hidden sum = [-0.0403, -0.0672, -0.1209] * [0.1966, 0.1683, 0.2139]
Delta hidden sum = [-0.0079, -0.0113, -0.0259]
Once we get the delta hidden sum, we calculate the change in weights between the input and hidden layer by multiplying it by the input data, (1, 1). The input data here is equivalent to the hidden results in the earlier back propagation process to determine the change in the hidden-to-output weights.
Let’s do the math:
input 1 = 1
input 2 = 1

Delta weights = delta hidden sum * input
Delta weights = [-0.0079, -0.0113, -0.0259] * [1, 1]
Delta weights = [-0.0079, -0.0113, -0.0259, -0.0079, -0.0113, -0.0259]

old w1 = 0.8
old w2 = 0.4
old w3 = 0.3
old w4 = 0.2
old w5 = 0.9
old w6 = 0.5

new w1 = 0.7921
new w2 = 0.3887
new w3 = 0.2741
new w4 = 0.1921
new w5 = 0.8887
new w6 = 0.4741
Here are the new weights, right next to the initial random starting weights as comparison:
old new

w1: 0.8 w1: 0.7921
w2: 0.4 w2: 0.3887
w3: 0.3 w3: 0.2741
w4: 0.2 w4: 0.1921
w5: 0.9 w5: 0.8887
w6: 0.5 w6: 0.4741
w7: 0.3 w7: 0.2020
w8: 0.5 w8: 0.3940
w9: 0.9 w9: 0.8060

STOCHASTIC GRADIENT DESCENT
Gradient descent is the way in which error is minimized in the above scenario. Stochastic stands for the number of samples based on which a decision is taken.

OTHER COMMON TERMINOLOGY
Typically one pass of forward propagation & one backward propagation constitutes an epoch
More the number of epochs, more is the times weights get adjusted.
The number of training examples considered per epoch is called as the Batch Size
The process in which backward propagation works is often referred as Chain Rule
The learning rate is a common parameter in many of the learning algorithms, and affects the speed at which the ANN arrives at the minimum solution. If the learning rate is too high, the system will either oscillate about the true solution, or it will diverge completely. If the learning rate is too low, the system will take a long time to converge on the final solution.

CONCLUSION
Through the steps above, we have noticed that:
1. Neural network can approximate complex functions (because of the activation in hidden layers)
2. A forward & a backward propagation constitute the building blocks of the functioning of a neural network
3. Forward prop helps us in estimating the error, while backward prop helps in reducing the error

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.jpeg

image12.png

image13.png

image14.png

image15.png

image16.png

image1.png

image2.png

image3.png

image4.png

