Recommender systems
INTRODUCTION

We see recommendations in numerous instances in our day to day life. Recommender systems are aimed at
1. Minimizing the effort of user to search for a product
2. Help user remind about a session that they closed earlier
3. Support user to discover more products
We see the above instances in numerous instances in our day to day life -
1. Recommender widgets in e-Commerce websites
2. Recommended items sent to email
3. More generally, recommendation from friends about certain aspects
Imagine a scenario, where an e-commerce customer does not have a product recommendation. The customer would not be able to:
1. Identify similar products to the product he/ she is viewing
2. Understand if the product is rightly priced
3. Understand the accessories/ complementary product for this product
The above is precisely the set of reasons why recommender systems often boost sales by anywhere between 15% - 40%
INTUITION BEHIND RECOMMENDER SYSTEMS

A recommender system is like a friend of the user, which infers the user's preferences and provides them with options that are personalized to the user.
There are multiple ways of building a recommender system, however the core of it remains to be - "a way of relating the user to a set of other users/ a way of relating the item to a set of other items or a combination of both".
Given that, recommending is more about relating one user/ item to another - it translates to a problem of k nearest neighbors - i.e., identifying the few that are very similar and then basing a prediction based on the preferences exhibited by the majority of neighbors.

UNDERSTANDING K-NEAREST NEIGHBORS

Let's understand what a nearest neighbor is - "A nearest neighbor is the entity (data point in case of a dataset) that is closest to the entity under consideration".
Two entities are close if the distance between them is very less. Consider three users with the following attributes:
	User
	Weight

	A
	60

	B
	62

	C
	90

From the above, we can intuitively conclude that users A & B are more similar to each other in terms of weight when compared to C.
In order to further understand this concept, let us add one more attribute of users, age:
	User
	Weight
	Age

	A
	60
	30

	B
	62
	35

	C
	90
	30

The "distance" between user A & B can be measured as:
square root of ((62 - 60)2 + (35 - 30)2)
Do note that the distance between users is similar to the way distance between two points is calculated.
However, one needs to be a little careful while calculating distance using multiple variable. Let's understand the pitfalls of distance calculation using the following example:
	Car model
	Max speed attainable
	# of gears

	A
	100
	4

	B
	110
	5

	C
	100
	5

In the above table, if we were measuring trying to understand the similarity between cars using the traditional "distance" metric, we would notice that model A & C are most similar to each other (even though their # of gears are different).
However, intuitively B & C are more similar to each other than C, as their max attainable speeds are similar, while they have identical number of gears.
The reason for this discrepancy is the issue of scale of variables - where one variable has a very high magnitude when compared to the other variable.
in order to get around this issue, typically we would normalize the variables before proceeding further with distance calculations. Normalizing variables is a process of bring all the variables to a uniform scale.
There are multiple ways normalizing a variable
1. Dividing each variable by the maximum value of the variable (brings all the values between -1 and 1)
2. Finding the Z score of each data point of the variable (Z score of a data point is the (value of data point - mean of variable)/ (standard deviation of the variable)
3. Dividing each variable by the (maximum - minimum) value of the variable (min max scaling)
Steps like the ones above help normalize variables and thus prevent the issues with scaling.
Once the distance of a data point to other data points is obtained - i.e., in the case of recommender systems - once the nearest items to a given item are identified, the system will recommend this item to user if it learns that the user has historically liked majority of the nearest neighborhood items.
"k" in k-nearest neighborhoods stands for the number of nearest neighbors to consider while taking a majority vote on whether the user likes the nearest neighbors or not. For example, if the user likes 9 out of 10 (k) nearest neighbors to an item, we'll recommend the item to user. Similarly if the user liked only3 out of 10 nearest neighbors of the item, we'll not recommend the item to user (as the liked items are in minority).
Neighborhood based analysis takes into account, the way in which multiple users can collaboratively help predict if a user might like something or not.
With this background, we'll move on to the evolution of recommender system algorithms.

USER BASED COLLABORATIVE FILTERING

In order to understand user based collaborative filtering, let us parse the words itself - "user based" referring to something based on users, "collaborative" referring to using some relation (similarity)between users, "filtering" referring to filtering out some users among all.
Let us understand user based collaborative filtering through the following example:
[image:]
For now, let's say we are interested in understanding the rating that user "Claudia Puig" would give to the movie "Lady in the water".
In order to understand that, let us go ahead and find out the most similar used to Claudia.
User similarity can be calculated in multiple ways:
1. Eucledian distance
2. Cosine similarity between users
Eucledian distance:
Let us calculate the eucledian distance of Claudia with every other user. It can be done as follows:
[image:]
We did not have the complete picture due to space and formatting constraints, but, essentially the same formula gets applied across columns.
The distance of every other user with Claudia for each movie is as follows:
[image:]
Note that, the overall distance value above is the average of all the distances where both users have rated a given movie.
Given that, Lisa Rose is the user who has the least overall distance with Claudia, We will consider the rating provided by Lisa as the rating that Claudia is likely to give to the movie - "Lady in the water".
One major issue to be considered in the calculation above is that - some users could be a soft critic and some users could be more harsh - i.e., user A and user B might have implicitly had a similar experience of watching a given movie - however, explicitly their ratings might be different.
Normalizing for a user:
Given that, users differ by the level of critic, we need to make sure that, we get around the problem.
Normalization for a user can be done as follows:
1. Take the average rating across all movies of a given user
2. Take the difference between each individual movie and the average rating of the user
By taking the difference between the individual movie and the average rating of the user, we now know, whether the individual liked a movie more than the average movie he/ she watched or whether the individual like less than the average movie watched or is equal to the average movie watched.
Let us look at how it is done:
[image:]
The formulae for the above are as follows:
[image:]
Now that we have normalized for a given user, let us calculate the user who is most similar to Claudia using the same way in which we calculated user similarity earlier.
However, the only difference in this instance is that, we will calculate distance based on normalized ratings than the original ratings.
[image:]
Even in this case, Lisa Rose is the least distant (or the most similar) user to Claudia Puig.
Given that Lisa rated 0.5 units less than her average of 3, it is ~8% less than the average rating of the user.
Moreover, given that Lisa is the most similar user to Claudia, we expect Claudia's rating to be 8% less than her average rating - which is:
3.5 * (1-0.5/3) = 2.91
Issue with considering a single user:
In the above scenario, we have considered the single user who is most similar to Claudia. However, in practice, more is always better - i.e., identifying the weighted average rating that "k" most similar users to a given user would give is better than the single most user.
However, we need to note that, not all "k" users are equally similar. Some are more similar, while others are less similar - i.e., some users' rating should be given more weightage, while other users' rating should be given less weightage.
However, using the distance based metric, there is no easy way to come up with a similarity metric.
"Cosine similarity" as a metric comes in handy to solve this problem.

Cosine similarity:
In order to understand cosine similarity, let us go through the following example:
	
	Movie1
	Movie2
	Movie3

	User1
	1
	2
	2

	User2
	2
	4
	4

In the above table, we see that, both user's ratings are highly correlated with each other. However, there is a difference in the magnitude of ratings.
If we were to compute eucledian distance between the 2 users, we would notice that the 2 users are very different from each other. However, intuitively, we know that the 2 users are similar in direction (trend) of ratings but not in magnitude of ratings.
The above problem, where the trend of users is similar but not magnitude can be solved by using cosine similarity between the users.
Cosine similarity between 2 users is defined as follows:
[image:]
A & B above are the vectors corresponding to user 1 & user 2 respectively.
Let us look how similarity is calculated for the above matrix:
Numerator of the above formula = (1*2 + 2*4 + 2*4) = 18
Denominator of the above formula = sqrt(1^2 + 2^2 + 2^2) * sqrt(2^2 + 4^2 + 4^2) = sqrt(9)* sqrt(26) = 3*6 = 18
Thus similarity = 18/18 = 1
Thus, based on the above formula, we can see that, on the basis of cosine similarity, we are in a position to assign high similarity to users that are directionally correlated but not necessarily in magnitude.
Cosine similarity on the rating matrix that we have originally calculated (in the eucledian distance calculation) section would be calculated in a similar way in which we calculated the formula above.
The steps for cosine similarity calculation remains the same:
1. Normalize users
2. Calculate the cosine similarity of rest of the users for a given user
[image:]
[image:]
Let us now understand the cosine similarity values of every other user with Claudia:
[image:]
From the above, we now have a value that is associated between -1 to +1 that gives a score of similarity for a given user.
Thus, we have now overcome the issue that we faced when we had to consider the ratings given by multiple users in predicting the rating that a given user is likely to give to a movie -
Users who are more similar to a given user can now be calculated.
Now, if we are looking at the above problem - i.e., what is the is the rating that Claudia is likely to give to "Lady in the water" movie, it can be solved in the following steps:
1. Normalize users
2. Calculate cosine similarity
3. Calculate the weighted average normalized rating
In the above case, let's say we are trying to predict the rating by using 2 most similar users, instead of 1, we would be following the below steps:
1. Identify the 2 most similar users, who have also given a rating to "Lady in the water" movie
2. Calculate the weighted average normalized rating that they would give to the movie
In the above case, Lisa & Mick are the 2 most similar users to Claudia that have given a rating to "Lady in the water" movie (Note that, even though Toby is the most similar user, he has not rated the movie "Lady in the water" and hence cannot be considered for rating prediction).
weighted average rating calculation:
Let us look at the normalized rating given and the similarity of the 2 most similar users:
	
	Similarity
	Normalized rating

	Lisa Rose
	0.47
	-0.5

	Mick LaSalle
	0.56
	0.17

The weighted average rating would now be:
(0.47 * -0.5 + 0.56 * 0.17)/(0.47+0.56) = -0.14
Potentially, Claudia's average rating would now be reduced by 0.14 to come up with the predicted rating of Claudia for the movie lady in the water.
Another way to come up with weighted average rating is based on the % over average rating as follows:
	
	Similarity
	Normalized rating
	Average rating
	% avg rating

	Lisa Rose
	0.47
	-0.5
	3
	-0.5/3 = -0.16

	Mick LaSalle
	0.56
	0.17
	2.83
	0.17/2.83 = 0.06

Weighted average normalized rating percentage would now be:
(0.47*-0.16 + 0.56*0.06)/(0.47+0.56) = -0.04
Thus, the average rating of Claudia can potentially be reduced by 4% to come up with the predicted rating for the movie Lady in the water.
Choosing the right approach:
In recommender systems, unlike other techniques, there is no fixed technique that is proven to always work.
This calls for a typical train, validation and test scenario to come up with the optimal parameter combination.
The parameter combination that can be tested is as follows:
1. Optimal number of similar users to be considered
2. Optimal number of common movies rated together by users before a user is eligible to be considered for similar user calculation
3. weighted average rating calculation approach (based on percentage or based on absolute value)
We can iterate through multiple scenario of various combinations of the above - calculate the test dataset accuracy and the combination that gives the least error rate is the optimal combination for the given dataset.
Calculating the error:
There are multiple ways in which errors can be calculated and the method varies by business application. Let us look at 2 cases:
1. Mean squared error of all predictions made on test dataset
2. # of recommended items that a user bought in the next purchase
Note that, while MSE helps in building the algorithm, in practice we might be measuring our model's performance as a business related outcome like the second scenario above.
ISSUES WITH UBCF

One of the issues with user based collaborative filtering is that every user has to be compared with every other used to identify the most similar user. Assuming there are 100 customers, it translates to the first user getting compared to 99 users, 2nd user getting compared to 98 users, 3rd to 97 and so on. So, the total comparisons here are 99+98+97+...+1+0 = 99*(99+1)/2 = 4950
However, if there are a million customers, the total number of comparisons is 999,999*1,000,000/2 = ~500 Billion comparisons
The above calculations show that, the number of comparisons to identify the most similar customer increase exponentially as the number of customers increase.
In production, the above becomes a problem as, if every user's similarity with every other user needs to be calculated every day (as user preferences/ ratings get updated every day based on the latest data of user) - one needs to perform ~500 billion comparisons every day.
In order to solve the problem, we shall consider item based collaborative filtering in place of user based collaborative filtering.

ITEM BASED COLLABORATIVE FILTERING

Given that the number of computations is an issue in user based collaborative filtering, we will modify the problem so that we observe the similarity between items & not users.
The intuition behind item based collaborative filtering IBCF is that, two items are similar if the ratings that they get from the same users are similar.
Given that IBCF is based on items & not on user similarity, it would not have the problem of performing billions of computations. The following illustrates the reason why.
Let's assume that there are a total of 10,000 movies in database & 1 million customers attracted to the site. In this case, had we been performing UBCF, we would have been performing ~500 Billion similarity calculations. However, had we been using IBCF, we would have been performing 9,999 * 5,000 = ~ 50 Million similarity calculations.
From the above, we can clearly observe that the number of similarity in calculations increases exponentially as the number of customers grow. However, given that the number of items (movie titles in our case) are not expected to have the same growth rate as the number of customers, in general IBCF is less computationally sensitive than UBCF.
The way in which UBCF is calculated and the techniques involved are very similar to UBCF. The only difference is that, we would be working on the transposed form of the original movie matrix that we have seen in the previous section. This way, the rows are not of users, but of movies.
While IBCF is better than UBCF in terms of computation, the number of computations is still very high.
MATRIX FACTORIZATION

While user-based or item-based collaborative filtering methods are simple and intuitive, matrix factorization techniques are usually more effective because they allow us to discover the latent features underlying the interactions between users and items.
Just as its name suggests, matrix factorization is to, obviously, factorize a matrix, i.e. to find out two (or more) matrices such that when you multiply them you will get back the original matrix.
The intuition behind using matrix factorization to solve this problem is that there should be some latent features that determine how a user rates an item. For example, two users would give high ratings to a certain movie if they both like the actors/actresses of the movie, or if the movie is an action movie, which is a genre preferred by both users. Hence, if we can discover these latent features, we should be able to predict a rating with respect to a certain user and a certain item, because the features associated with the user should match with the features associated with the item.
In trying to discover the different features, we also make the assumption that the number of features would be smaller than the number of users and the number of items. It should not be difficult to understand this assumption because clearly it would not be reasonable to assume that each user is associated with a unique feature (although this is not impossible).
Matrix factorization is an improvement over collaborative filtering as we have to store much smaller data when compared to CF. In a typical CF one needs to store the data for U users & D items - a total of U X D numbers. However, in matrix factorization one can abstract users into U X K matrix -- i.e., U users being described by K features (for example, user 1 preferring action movie etc.,) & similarly D items being abstracted to D X K features (A group of comedy movies etc.,).
Thus matrix factorization reduces the amount of data stored/ computations needed to UXK + DXK = (U + D) X K
In a typical scenario UXD is far higher than (U+D)XK

The Math of matrix factorization:
Having discussed the intuition behind matrix factorization, we can now go on to work on the mathematics. Firstly, we have a set [image: U] of users, and a set [image: D] of items. Let [image: \mathbf{R}] of size [image: |U| \times |D|] be the matrix that contains all the ratings that the users have assigned to the items. Also, we assume that we would like to discover K latent features. Our task, then, is to find two matrices matrices [image: \mathbf{P}] (a [image: |U| \times K] matrix) and [image: \mathbf{Q}] (a [image: |D| \times K] matrix) such that their product approximates [image: \mathbf{R}]:
 [image:]
In this way, each row of [image: \mathbf{P}] would represent the strength of the associations between a user and the features. Similarly, each row of [image: \mathbf{Q}] would represent the strength of the associations between an item and the features. To get the prediction of a rating of an item [image: d_j] by [image: u_i], we can calculate the dot product of the two vectors corresponding to [image: u_i] and [image: d_j]:
 [image: \hat{r}_{ij} = p_i^T q_j = \sum_{k=1}^k{p_{ik}q_{kj}}]
An example of the above scenario is as follows:
Let's assume that we have a matrix of users (U) & movies (D) as below:
[image:]
Our task is to predict the missing values in "Actual" column which indicates that the user has not rated the movie yet.
In this scenario, the math of matrix factorization works out as follows:
Step 1:
Initialize the values of P matrix randomly where P is a U X K matrix
Let's assume the value of k=2 for this instance.
A better way of randomly initializing the values is by limiting the values to be between 0 & 1.
In this scenario, the matrix of P will be a 5 X 2 matrix, as k=2 & there are 5 users
[image:]
Step 2:
Initialize the values of Q matrix randomly again where Q is a K X D matrix - i.e., 2 X 4 matrix, as there are 4 movies in the table above.
The Q matrix would be as follows:
[image:]
Step 3:
Calculate the value of the matrix multiplication of P X Q matrix. Note the column of "prediction" below is calculated by the matrix multiplication of P matrix & Q matrix (We will discuss "Constraint" column in the next step).
[image:]
Step 4:
Specify the optimization constraints. The predicted value (multiplication of each element of the 2 matrices) should ideally be equal to the ratings of the big matrix. The error calculation is based on the typical squared error calculation and is done as follows (Note that, the weight values in P & matrices have varied, as they are random numbers and are initialized using randbetween function - which changes values everytime "enter" is pressed in excel):
[image:]
Step 5:
Objective: Change the randomly initialized values of P & Q matrices to minimize overall error
Constraint: No prediction can be greater than 5 or less than 1
The above objective and constraints can be specified as an optimization scenario in solver as follows:

[image:]
Note that, once we optimize for the above objective and constraint, the optimal values of weights in P & Q matrices are arrived.
INTUITION OF P & Q MATRICES

Note that in P matrix, user 1 & user 2 have similar weightages for factor 1 & 2. Thus, they can potentially be considered as similar users.
Also note that, the way in which user 1 & 2 rated movies is very similar - the movies that user 1 gave a high rating have high rating from user 2 aswell. Similarly, the movies that user 1 rated low, also had low ratings from user 2.
Same is the interpretation for Q matrix (movie matrix) - Movie 1 & movie 4 have quite some distance from each other. We can also notice that, for a majority of the users - if the rating given for movie 1 is high, then movie 4 got a low rating and vice versa.
IMPLEMENTING MATRIX FACTORIZATION IN PYTHON

One way to do matrix factorization in python is as follows:

import numpy

def matrix_factorization(R, P, Q, K, steps=5000, alpha=0.0002, beta=0.02):
 Q = Q.T
 for step in xrange(steps):
 for i in xrange(len(R)):
 for j in xrange(len(R[i])):
 if R[i][j] > 0:
 eij = R[i][j] - numpy.dot(P[i,:],Q[:,j])
 for k in xrange(K):
 P[i][k] = P[i][k] + alpha * (2 * eij * Q[k][j] - beta * P[i][k])
 Q[k][j] = Q[k][j] + alpha * (2 * eij * P[i][k] - beta * Q[k][j])
 eR = numpy.dot(P,Q)
 e = 0
 for i in xrange(len(R)):
 for j in xrange(len(R[i])):
 if R[i][j] > 0:
 e = e + pow(R[i][j] - numpy.dot(P[i,:],Q[:,j]), 2)
 for k in xrange(K):
 e = e + (beta/2) * (pow(P[i][k],2) + pow(Q[k][j],2))
 if e < 0.001:
 break
 return P, Q.T

An example implementation of the same would be:
R = [
 [5,3,0,1],
 [4,0,0,1],
 [1,1,0,5],
 [1,0,0,4],
 [0,1,5,4],
]

R = numpy.array(R)

N = len(R)
M = len(R[0])
K = 2

P = numpy.random.rand(N,K)
Q = numpy.random.rand(M,K)

nP, nQ = matrix_factorization(R, P, Q, K)
nR = numpy.dot(nP, nQ.T)

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image1.emf
User/ MovieJust My LuckLady in the WaterSnakes on a PlaneSuperman ReturnsThe Night ListenerYou Me and Dupree

Claudia Puig 3 3.544.52.5

Gene Seymour 1.533.5533.5

Jack Matthews 34533.5

Lisa Rose 32.53.53.532.5

Mick LaSalle 234332

Toby 4.54 1

image2.png

image3.png

