Decision tree
BACKGROUND

In the previous sections, we've considered regression based algorithms that optimize for a certain metric by varying coefficients/ weights. Decision tree forms the basis of tree based algorithms that help identify the rules to classify/ forecast an event/ variable we are interested in. Moreover, unlike linear/ logistic regression which are optimized for either regression or classification - decision trees are able to perform both.
The primary advantage of decision trees comes from the fact that it is business user friendly - i.e., the output of decision tree is intuitive and is easily explainable to the business user.
This chapter gives an intuition on how decision trees work and the parameters that need to be tuned.

WHAT IS A DECISION TREE

Decision tree is an algorithm that helps in classifying an event or predicting a variable. One can visualize decision trees as a set of rules based on which a different outcome can expected. For example:
[image:]
In the above picture, we can see that a dataset (table on the left) used both continuous variable (taxable income) & categorical variables (Refund, Marital status) as independent variables to classify whether someone was cheating or not (categorical dependent variable).
The tree on the right has a few components - root node, decision nodes and leaf node (more on this in next section) to classify whether someone would cheat (Yes/ No).
From the tree above, user can derive the following rules:
1. Someone with Marital status of Yes is generally not a cheater
2. Someone who is divorced but also got a refund earlier, also does not cheat
3. Someone who is divorced, did not get a refund but has a taxable income <80K is also not a cheater
4. Those that do not belong to any of the above categories is a cheater
HOW TO USE A DECISION TREE

Similar to regression, where we derived an equation - for example, to predict credit default based on customer characteristics, decision tree too, works towards predicting or forecasting an event based on customer characteristics (for example, marital status, refund, taxable income in the above example).
In case new customer applies for a credit card, the rules engine (decision tree running in the back - end) would check whether the customer would fall in the risky bucket/ non-risky after passing through all the rules of decision tree.
Post passing through the rules, the system would approve/ deny based on the bucket a user falls into.
WHY TO USE A DECISION TREE

One of the obvious advantages of decision trees is the intuitive output/ visualization that helps a business user take decision. Also, decision trees are less sensitive to outliers in case of classification (unlike a typical regression technique)
Moreover, decision tree is one of the simpler algorithms, both in terms of building a model, interpreting the model or even in implementing the model.
COMPONENTS OF A DECISION TREE

All the components of a decision tree can be understood from the following diagram:
[image: https://www.analyticsvidhya.com/wp-content/uploads/2015/01/Decision_Tree_2.png]

1. Root Node: It represents entire population or sample and this further gets divided into two or more homogeneous sets
2. Splitting: It is a process of dividing a node into two or more sub-nodes based on a certain rule
3. Decision Node: When a sub-node splits into further sub-nodes, then it is called decision node
4. Leaf/ Terminal Node: The final nodes in a decision tree is a Leaf or Terminal node
5. Pruning: When we remove sub-nodes of a decision node, this process is called pruning. You can say it is the opposite process of splitting
6. Branch / Sub-Tree: A sub section of entire tree is called branch or sub-tree
7. Parent and Child Node: A node, which is divided into sub-nodes is called parent node of sub-nodes where as sub-nodes are the child of parent node

SPLITTING AT ROOT NODE
The criterion for splitting a root node varies by the type of variable we are predicting (whether the dependent variable is continuous or categorical).
In this section, we'll understand how the splitting happens from root node to decision nodes through an example. In this example, we are trying to predict emp_sal based on a few independent variables (education, marital status, race, sex).
The dataset looks as follows:
[image:]
In the above dataset, "Emp_sal" is the dependent variable and the rest of the variables are independent variables.
The first question to answer while splitting root node (original dataset) is to determine the variable based on which the first split has to be made- whether it is education or marital status or race or sex.
In order to come up with a way of shortlisting one independent variable over the rest, we use an algorithm named information gain.
Information Gain:
Information gain is best understood by relating it to uncertainty. Let's assume that there are two parties contesting in an election being conducted in two different states. In one state the chances of win are 50:50 for both parties, while in another state, the chances of win for party A is 90% while for party B in 10%
If we were to predict the outcome of elections, the latter state is much easier to predict than the former - as uncertainty is the least (as probability of win for party A is 90%) in latter state.
Thus, Information gain is a measure of uncertainty post splitting a node.
Calculating uncertainty:
Uncertainty is measured by the formula: -(plog2p+qlog2q) where p the probability of event 1 happening, while q is the probability of event 2 happening.
In order to gain an intuition of the above equation, lets consider the 2 party win scenario
	Scenario
	Party A uncertainty
	Party B uncertainty
	Overall uncertainty

	Equal chances of win
	-0.5log2(0.5) = 0.5
	-0.5log2(0.5) = 0.5
	0.5 + 0.5 =1

	90% chances of win for party A
	-0.9log2(0.9) = 0.1368
	-0.1log2(0.1) = 0.3321
	0.1368 + 0.3321 = 0.47

We see that based on the above equation, the second scenario has a lesser overall uncertainty than the first, as second scenario has 90% chances of party A's win.
Calculating information gain (relating to splitting in decision tree):
We can visualize the root node as the place where maximum uncertainty exists and as we intelligently split further - the uncertainty decreases.
Thus, the choice of split (variable based on which split should happen) is decided based on which variables decreases uncertainty, the most.
In order to understand, how the calculation happens, lets hand-build a decision tree based on our dataset.
Uncertainty in the original dataset:
In the original dataset, 9 observations have salary <=50K while 5 have salary >50K
[image:]
Let us calculate the values of p & q so that we calculate the overall uncertainty
[image:]
The formula for p & q are as follows:
[image:]
Thus overall uncertainty in the root node is:
	Uncertainty in <=50K
	Party B uncertainty
	Overall uncertainty

	-0.64*log2(0.64) = 0.41
	-0.53*log2(0.53) = 0.53
	0.41 + 0.53 = 0.94

The overall uncertainty in root node is 0.94
In order to understand the process of shortlisting variables to do the first step - we'll do the following:
Understand the amount by which overall uncertainty decreases, if we consider all the 4 independent variables for the first split - i.e., we will consider education for the first split (understand the improvement in uncertainty), next consider marital status & understand the improvement in uncertainty, then race & finally sex of employee to understand the improvement in uncertainty.
The variable that reduces uncertainty the most, will be the variable that will be considered for the first split.
Measuring the improvement in uncertainty:
In order to understand how the improvement in uncertainty is calculated - we'll consider the following example:
Let's consider that we want to split our variable by sex of employee
[image:]
We calculate the uncertainty -(plog2p+qlog2q) of each distinct value of each variable. The table for uncertainty calculation for one of the variables (sex) is as follows:
	Sex
	P
	Q
	-(plog2p)
	-(qlog2q)
	-(plog2p+qlog2q)
	Weighted uncertainty

	Female
	4/5
	1/5
	0.257
	0.46
	0.72
	0.72*5/14 = 0.257

	Male
	15128/21790
	6662/21,790
	0.471
	0.52
	0.99
	0.99*9/14 = 0.637

	Overall
	
	
	
	
	
	0.894

A similar calculation to measure the overall uncertainty of all the variables would be done.
The information gain if we split the root node by "Sex" variable is:
(original entropy - entropy if we split by the variable "Sex") = 0.94 - 0.894 = 0.046
Based on the overall uncertainty, the variable that maximizes the information gain (reduction in uncertainty) would be chosen for splitting the tree.
In our example, variable wise overall uncertainty is as follows:
	Variable
	Overall uncertainty
	Reduction in uncertainty from root node

	Education
	0.679
	0.94 - 0.679 = 0.261

	Marital status
	0.803
	0.94 - 0.803 = 0.137

	Race
	0.803
	0.94 - 0.803 = 0.137

	Sex
	0.894
	0.94 - 0.894 = 0.046

From the above, we can observe that, the splitting decision should be based on education & not any other variable, as it is the variable that reduces the overall uncertainty by maximum (from 0.94 to 0.679).
Once a decision of split has been made, the next step (in case of variables that have more than 2 distinct values - education in our example) would be to determine, which unique value should go to the right decision node & which unique value should go to the left decision node post the root node.
In order to calculate that, we compare the p value (in our case p = 9/14 and not to be confused with p-value you studied in statistics) for overall (root node) with the p value for each distinct value of the variable that reduces entropy the most. All the distinct values that have p-value less than overall p-value belong to one decision node, while the rest belong to the other decision node.
Let us look at all the distinct values of "Education", as that is the variable that reduces uncertainty the most:
	Distinct value
	% of obs. <=50K

	11th
	100%

	9th
	100%

	Assoc-acdm
	100%

	Bachelors
	67%

	HS-grad
	50%

	Masters
	50%

	Some-college
	0%

	Overall
	64%

WHICH DISTINCT VALUES GO TO THE LEFT & RIGHT NODE
In the above section, we concluded that "Education" is the variable on which the first split in the tree would be made. In such scenario, the next decision to be made is - "what distinct values of education go to the left node and which distinct values go to the right node".
Gini Impurity as a metric comes in handy in such scenario.
Gini Impurity:
Gini impurity refers to the extent of inequality within a node - ie., if a node has all values that belong to one class over the other - it is the purest possible node and a node that has 50% observations of one class and the rest of another class, it is the most impure form of a node.
Gini impurity is defined as 1-(p^2 + q^2) where p and q are the probabilities associated with each class.
Let us gain intuition into gini index through the following scenario:
	P
	Q
	Gini index value

	0
	1
	1 - 0^2 - 1^2 = 0

	1
	0
	1 - 1^2 - 0^2 =0

	0.5
	0.5
	1 - 0.5^2 - 0.5^2 = 0.5

Using Gini impurity for employee salary prediction problem:

HOW LONG FURTHER DOES THE SPLITTING PROCESS HAPPEN?
Theoretically, the process of splitting can happen until, all the terminal (leaf/ last) nodes of a decision tree are pure (i.e., they all belong to one class or the other).
However, the disadvantage of such process is that, it overfits the data and hence might not be generalizable. Thus, decision tree is a trade-off between the complexity of tree (number of terminal nodes in a tree) & it's accuracy.
Higher the number of terminal nodes, the accuracy might be high on training data - however, the accuracy on validation data might not be high.
This brings us to the concept of complexity parameter of tree & out of bag validation.
One obvious way to control overfitting is to construct shallower trees by stopping the algorithm at an appropriate point based on whether a split significantly improves the fit. Another is to grow a tree unrestricted and then prune it back using an appropriate criterion. The rpart algorithm takes the latter approach.

Here is how it works in brief:
Essentially one minimises the cost, [image: C_{\alpha}(T)], a quantity that is a linear combination of the error (essentially, the fraction of misclassified instances, or variance in the case of a continuous variable), [image: R(T)] and the number of leaf nodes in the tree, [image: |\tilde{T} |]:
[image: C_{\alpha}(T) = R(T) + \alpha |\tilde{T} |]
First, we note that when [image: \alpha = 0], this simply returns the original fully grown tree. As [image: \alpha] increases, we incur a penalty that is proportional to the number of leaf nodes. This tends to cause the minimum cost to occur for a tree that is a subtree of the original full blown one (since a subtree will have a smaller number of leaf nodes)
Analogy with linear regression:
In a typical linear regression, we assign cost to the regression, based on the magnitude of coefficients. Similar to that, lower the value of alpha, higher will be the number of trees for the same cost (complexity).
Decision tree figures the optimal alpha based on cross validation (i.e., certain portion of data is considered as validation data & a decision tree is built on the training dataset). Based on that, optimal number of trees (terminal nodes) will be decided that minimize out of bag error rate.

DECISION TREE FOR CONTINUOUS VARIABLES
In the previous example, we have considered, only categorical variables as independent variables. However, in practice we might be working on continuous variables too as independent variables. The following illustrates how to build a decision tree for a continuous variable. In order to do that, let's work on the example given in decision_tree continuous variable.xlsx
In the excel, column F has the independent variable that is continuous and column G has the dependent variable. In order to find the right split for the continuous variable (column F) we perform the following:
1. Order the dataset by the independent variable in an increasing order
2. Assume that the split happens at the 2nd point from lowest value of the variable
1. 3. Calculate the impurity in left node (column H) - where impurity is the gini impurity
3. Calculate the Gini impurity in right node (column I)
4. Calculate the overall weighted Gini impurity (column J)
5. Repeat the above steps by assuming that the split happens at the 3rd point and then at 4th point and so on till the last point
6. The point, where the overall gini impurity is the least is the value where the split should happen
7. All the points above this point belong to node, while all those below are in the other node
In our example dataset, the least value of overall gini impurity occurs when the independent variable is 0.106
Thus, the split of our dataset occurs when gini is <0.106
WHAT IF THE RESPONSE VARIABLE IS CONTINUOUS?
If the response variable is continuous - the steps remain the same, however, instead of calculating gini impurity or information gain we would be calculated the squared error (similar to regression techniques).
The steps of identifying the split are as follows (we'll use 'continuous response' tab to understand the calculations):
1. Similar to the previous method, we assume that the split happens at the second point post arranging independent variable in ascending order
2. Calculate the average response in left node as well as right node (Columns H & I)
3. Calculate the squared error in left node right node (columns J & K)
4. Calculate the overall squared error in both nodes (column L)
The point at which the overall error is least is the point where the node needs to be splitted.
SOME COMMON TECHNIQUES IN TREE BUILDING
We observed earlier that complexity parameter (# of terminal nodes) could be one parameter for us to optimize for while checking the out of bag validation. Other common techniques used are:
1. Restricting the number of observations in each terminal node to a minimum number (at least 20 observations in a node - for exampel)
2. Specifying the maximum depth of a tree manually
3. Specifying the minimum number of observations in a node for the algorithm to consider further splitting
CONCLUSION
Decision trees are simple to build & intuitive to understand. The prominent approaches used to build a decision tree are information gain & gini impurity in case of dependent variable being categorical & squared error, in case of dependent variable being continuous.
image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image1.png

image2.png

image3.png

