Convolutional Neural networks
BACKGROUND

In the previous chapter, we looked at traditional neural network. One of the limitations of a traditional NN is that, it is not translation invariant  i.e., an image on the upper right hand corner of an image would be treated differently to an image that has a cat in the centre of the image.
CNNs are used to deal with such issues. Given that a CNN is able to deal with such issues, it is considered to be a lot more useful and also among the state of the art in object classification/ detection. 

INTRODUCTION
In order to understand the need of CNN further, let us go through the following example.
Let's say we would like to classify, if the image has a vertical line or not (or maybe, if the image represents 1 or not). For simplicity, let's assume the image is a 5X5 image. Some of the multiple ways in which a vertical line (or a one) can be written are as follows:
[image: ][image: ][image: ]
For further intuition, we can check the different ways in which the digit 1 is written in MNIST dataset. An image of the same is as follows:
[image: ]
It is to be noted that, reddish the pixel, more often have people written on top of the pixel and less reddish (more bluish) the pixel, less often have people written on top of the pixel. Also, it is to be noted that the pixel in middle is the most red (quite likely, as most people would be writing over the pixel, irrespective of whether the whole digit is written in a vertical line, slanted towards the left/ right).
Problem with traditional NN:
In the scenario laid out above, we would notice that a traditional neural network would highlight the image as 1, only if the pixels around the middle are highlighted and the rest of the pixels in the image are not highlighted (as most people have highlighted the pixels in middle). 
In order to understand this problem, let us go through the code that we went through in neural networks section:
# Plot ad hoc mnist instances
from keras.datasets import mnist
import matplotlib.pyplot as plt
%matplotlib inline
# load (downloaded if needed) the MNIST dataset
(X_train, y_train), (X_test, y_test) = mnist.load_data()
import numpy
%matplotlib inline
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.utils import np_utils
seed = 7
numpy.random.seed(seed)
(X_train, y_train), (X_test, y_test) = mnist.load_data()
num_pixels = X_train.shape[1] * X_train.shape[2]
X_train = X_train.reshape(X_train.shape[0], num_pixels).astype('float32')
X_test = X_test.reshape(X_test.shape[0], num_pixels).astype('float32')
X_train = X_train / 255
X_test = X_test / 255
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)
num_classes = y_test.shape[1]
import numpy
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import Flatten
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.utils import np_utils
from keras import backend as K
model = Sequential()
model.add(Dense(1000, input_dim=num_pixels, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
# Compile model
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=5, batch_size=1024, verbose=1)

Scenario 1:
A new image is created, where the original image is translated by 1 pixel towards the left
import numpy as np
pic=np.zeros((28,28))
for i in range(X_train1.shape[0]):
    pic2=X_train1[i,:,:,0]
    pic=pic+pic2
pic=(pic/X_train1.shape[0])
#plt.imshow(pic)
for i in range(pic.shape[0]):
    if(i<20):
        pic[:,i]=pic[:,i+1]
plt.imshow(pic)
A plot of the above data points would be as follows:
[image: ]
The prediction of the  above image based on traditional neural network model would be as follows:
array([[  4.52862866e-03,   2.79745549e-01,   1.46918772e-02,
          2.56265351e-03,   1.12666632e-03,   1.23599907e-02,
          5.05378842e-02,   1.11956382e-03,   6.32923245e-01,
          4.03954793e-04]], dtype=float32)
Wrong prediction of "8" as output
Scenario 2: A new image is created, where the pixels are not translated from the original average 1 image
import numpy as np
pic=np.zeros((28,28))
for i in range(X_train1.shape[0]):
    pic2=X_train1[i,:,:,0]
    pic=pic+pic2
pic=(pic/X_train1.shape[0])
#plt.imshow(pic)
for i in range(pic.shape[0]):
    if(i<20):
        pic[:,i]=pic[:,i]
plt.imshow(pic)
A plot of the above data points would be as follows:
[image: ]
The prediction of the  above image would be as follows:
array([[  2.19366717e-04,   8.60968411e-01,   6.46155374e-03,
          5.59386937e-03,   6.16832403e-04,   8.71000462e-04,
          1.17062486e-03,   5.16332779e-03,   1.18203819e-01,
          7.31272565e-04]], dtype=float32)
Correct prediction of "1" as output
Scenario 3: A new image is created, where the pixels of the original average 1 image are shfted to the right
import numpy as np
pic=np.zeros((28,28))
for i in range(X_train1.shape[0]):
    pic2=X_train1[i,:,:,0]
    pic=pic+pic2
pic=(pic/X_train1.shape[0])
#plt.imshow(pic)
pic2=np.copy(pic)
for i in range(pic.shape[0]):
    #print(i)
    if((i>6) & (i<26)):
        #print(i)
        pic[:,i]=pic2[:,(i-1)]
plt.imshow(pic)
A plot of the above data points would be as follows:
[image: ]
The prediction of the  above image would be as follows:
array([[ 0.00096997,  0.20023996,  0.04373238,  0.31578591,  0.12058167,
         0.00062689,  0.00044393,  0.23371431,  0.04888567,  0.03501928]], dtype=float32)
Wrong prediction of "3" as output
From the above scenario, we see that traditional NN fails to produce good results the moment there is translation in data (translation refers to the movement of 1 from the middle of the image to the left or right of the image).
This scenario calls for a different way in which we deal with the network to address translation variance.
A convolutional neural network (CNN) comes in handy in such scenario.
UNDERSTANDING CONVOLUTION IN CNN
We are already aware of how a typical neural network works. In this section, let us understand the word "Convolutional" in CNN.
A convolution is a multiplication between 2 matrices - one matrix being big and the other smaller. 
In order to understand convolution, let us consider the following example:
Matrix A is as follows:
[image: ]
Matrix B is as follows:
[image: ]
While performing convolution, think of it as we are sliding the smaller matrix over the bigger matrix - i.e., we can potentially come up with 9 such multiplications as the smaller matrix is slided over the entire area of the bigger matrix. Note that it is not matrix multiplication.
Step 1: {1,2,5,6} of bigger matrix is multiplied with {1,2,3,4} of the smaller matrix.
1*1 + 2*2 + 5*3 + 6*4 = 44
Step 2: {2,3,6,7} of bigger matrix is multiplied with {1,2,3,4} of the smaller matrix.
2*1 + 3*2 + 6*3 + 7*4 = 54
Step 3: {3,4,7,8} of bigger matrix is multiplied with {1,2,3,4} of the smaller matrix.
3*1 + 4*2 + 7*3 + 8*4 = 64
Step 4: {5,6,9,10} of bigger matrix is multiplied with {1,2,3,4} of the smaller matrix.
5*1 + 6*2 + 9*3 + 10*4 = 84
Step 5: {6,7,10,11} of bigger matrix is multiplied with {1,2,3,4} of the smaller matrix.
6*1 + 7*2 + 10*3 + 11*4 = 94
Step 6: {7,8,11,12} of bigger matrix is multiplied with {1,2,3,4} of the smaller matrix.
7*1 + 8*2 + 11*3 + 12*4 = 104
Step 7: {9,10,13,14} of bigger matrix is multiplied with {1,2,3,4} of the smaller matrix.
9*1 + 10*2 + 13*3 + 14*4 = 124
Step 8: {10,11,14,15} of bigger matrix is multiplied with {1,2,3,4} of the smaller matrix.
10*1 + 11*2 + 14*3 + 15*4 = 134
Step 9: {11,12,15,16} of bigger matrix is multiplied with {1,2,3,4} of the smaller matrix.
11*1 + 12*2 + 15*3 + 16*4 = 144
The result of the above steps would be a matrix as follows:
[image: ]
Conventionally, the smaller matrix is called as "filter" or "kernel" and the smaller matrix values are arrived statistically through gradient descent (More on the gradient descent a little later). The values within the filter can be considered as the constituent weights.
FROM CONVOLUTION TO ACTIVATION
In a traditional NN, a hidden layer not only multiplies the input values by the weights, but also applies a non-linearity to the data - i.e., passes the values through an activation function.
A similar activity happens in a typical CNN too, where the convolution is passed through an activation function.
CNN supports the traditional activations functions we have seen so far - sigmoid, ReLU, Tanh & leaky ReLU.
For the output above, we would notice that, the output remains the same, when passed through a ReLU activation function, as all the numbers are positive.
FROM CONVOLUTION ACTIVATION TO POOLING
In the previous section, we have looked at how convolutions work. In this section, we will understand the typical next step after a convolution - pooling.
Let's say, the output of the convolution step is as follows (we are not considering the above example and this is a new example to illustrate pooling, the rationale will be explained in a later section):
[image: ]
In the above case, the output of a convolution step is a 2X2 matrix. 
MaxPooling considers the 2X2 block and gives the maximum value as output.
Similarly, if the output of convolution step is a bigger matrix as follows:
[image: ]
MaxPooling divides the big matrix into non-overlapping blocks of size 2X2 each as follows:
[image: ]
From each block, only the element that has the highest value is chosen. So the output of maxpooling operation on the above matrix would be:
[image: ]
In practice, it is not necessary to have a 2X2 filter always, but, it is used more often than not.
The other types of pooling involved are sum & average - again, in practice, we see a lot of max pooling when compared to other types of pooling.
HOW DO CONVOLUTION & POOLING HELP
One of the drawbacks of traditional neural network in the MNIST example that we looked at earlier, was that, each pixel is associated with a distinct weight.
Thus, if an adjacent pixel, other than the original pixel got highlighted, the output would not be very accurate (The example of scenario 1, where the ones were slightly to the left of the middle).
This scenario is now addressed, as, the pixels share weights that are constituted within each filter.
All the pixels get multiplied by all the weights that constitute a filter & in the pooling layer, only the values that are activated the highest are chosen.
This way, irrespective of whether the highlighted pixel is at the centre or is slightly away from the centre, the output would more often than not be the expected value.
However, the issue still remains the same when the highlighted pixels are far away from the centre.
INTUITION OF CNN THROUGH CODE
From the above traditional NN scenario, we saw that a NN does not work if the pixels are translated by 1 unit to the left.
Practically, we can consider convolution step as identifying the pattern & pooling step as the one that results in translation variance.
N pooling steps result in N units of translation invariance. Let us consider through the following example, where we apply one pooling step after convolution:
model = Sequential()
model.add(Conv2D(10, (3,3), input_shape=(28, 28,1), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(1000, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
We would notice that, for the above convolution, where it is one convolution followed by one pooling layer, the output prediction works out well if the pixels are translated by 1 unit to the left and again does not work when the pixels are translated by more than 1 unit (as we have used only one max pooling layer).
A similar pattern can be observed, where the number of pixel translations is more than 1 - where the output is per prediction, only if the amount of translation is equal to the number of convolution pooling layers and the predictions are incorrect the moment when the units of translation is more than the number of convolution pooling layers.
PROOF OF CONVOLUTIONS REPRESENTING STRUCTURE OF INTEREST
In order to understand how convolutions (kernels/ filters) help, let us go through the following scenario:
From the MNIST dataset, let us modify the objective in such a way that, we are only interested in predicting if an image is a 1 or "not a 1".
(X_train, y_train), (X_test, y_test) = mnist.load_data()

num_pixels = X_train.shape[1] * X_train.shape[2]
X_train = X_train.reshape(X_train.shape[0],X_train.shape[1],X_train.shape[1],1 ).astype('float32')
X_test = X_test.reshape(X_test.shape[0],X_test.shape[1],X_test.shape[1],1).astype('float32')

X_train = X_train / 255
X_test = X_test / 255
y_train=np.where(y_train==1,1,0)
y_test=np.where(y_test==1,1,0)
We will come up with a simple CNN where there are only 2 convolution filters and one max pooling layer.
model = Sequential()
model.add(Conv2D(2, (3,3), input_shape=(28, 28,1), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(1000, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
# Compile model
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()

We can extract the weights corresponding to the filters in the following way:
model.layers[0].get_weights()
Let us manually convolve and apply the activation by using the weights derived using the above step:
from scipy import signal
from scipy import misc
import numpy as np
import pylab
for j in range(2):
    gradd=np.zeros((30,30))
    for i in range(6000):
        grad = signal.convolve2d(X_train1[i,:,:,0], model.layers[0].get_weights()[0].T[j][0])+model.layers[0].get_weights()[1][j]
        grad = np.where(grad<0,0,grad)
        gradd=grad+gradd
    grad2=np.where(gradd<0,0,gradd) 
    pylab.imshow(grad2/600)
    pylab.gray()
    pylab.show()
[image: ][image: ]
From the above, we notice that, the filter on the left activates 1 image a lot more than the filter on the right. 
Similarly, if we pass the filters through the entire dataset, instead of just the independent variables corresponding to 1, then, the output looks as follows:
[image: ][image: ]
We can see that, only the pixels that are more relevant for 1 are highlighted in the first kernel.
FROM CONVOLUTION & POOLING TO FLATTENING - FULLY CONNECTED LAYER
The outputs we have seen above are images. In traditional neural network, we would consider each pixel as an independent variable. This is precisely what we are going to perform in flattening process.
Each pixel of the image is unrolled and thus the process is called "Flattening". For example, if the output image after convolution & pooling looks as follows:
[image: ]
The output of flattening looks as follows:
[image: ]
FROM ONE FULLY CONNECTED LAYER TO ANOTHER
In a typical neural network, input layer is connected to the hidden layer. In a similar manner, in a CNN the fully connected layer is connected to another fully connected layer that typically has more number of units.
FROM FULLY CONNECTED LAYER TO THE OUTPUT LAYER
Similar to the traditional neural network architecture, hidden layer s connected to the output layer and is passed through a sigmoid activation to get the output as a probability. Appropriate loss function is also chosen, depending on the problem being solved. 
CONNECTING THE DOTS - FEED FORWARD NETWORK
Below is a recap of all the steps we have performed so far:
1. Convolution
2. Pooling
3. Flatten
4. Hidden layer 
5. Output probability calculation
A typicall CNN looks as follows (We will take the most famous - the one developed by the inventor himself - LeNet as an example):
[image: https://www.pyimagesearch.com/wp-content/uploads/2016/06/lenet_architecture.png]
The subsample written in the above image is equivalent to the maxpooling step we saw earlier.
OTHER DETAILS OF CNN
In the above picture, we see that the conv1 step has 6 "channels"/ convolutions of the original image. Let us understand it in detail:
Step 1: Let's say we have a greyscale image that is 28 X 28 in dimensions. 6 filters that are 3X3 in size would generate images that are 26X26 in size. Thus, we are left with 6 images of size 26 X 26
Step 2: A typical color image would have 3 channels (RGB). For simplicity, we can assume that the output image we had in step 1 as an image that has 6 channels (though we can't name them as RGB like the 3 channel version). In this step, we would perform maxpooling on each of the 6 channels separately. This would result in 6 images (channels) that are 13 X 13 in dimension.
Step 3: In the next convolution step, we multiply the 6 channels of 13X13 images with weights of dimensions 3X3X6 - i.e., a 3 dimensional weight matrix convolving over a 3 dimensional image (where the image has dimensions - 13X13X6). This would result in an image of 11X11 in dimension for each filter.
Let's say we have considered 10 different weight matrices (cubes to be precise) - this would result in an image that is 11X11X10 in dimensions.
Step 4: Max pooling on each of the 11X11 images (that are 10 in number) would result in a 5X5 image. Note that, when the max pooling is performed on an image that has odd number of dimension, pooling gives us the rounded down image - i.e., 11/2 is rounded down to 5.
Stride: A stride is the amount by which the filter that convolves over the original image moves from one step to the next step. For example, if the stride value is 2, the distance between 2 consecutive convolutions is 2 pixels. For example, when the stride value is 2, the multiplication would happen as follows where A is the bigger matrix & B is the filter:
[image: ] [image: ]
The first convolution would be between:
[image: ] [image: ]
Second convolution would be between:
[image: ][image: ]
Third convolution would be between:
[image: ][image: ]
Final convolution would be between:
[image: ][image: ]
Note that, the output of the convolution is a 2X2 matrix when the stride is 2 for the matrices of the given dimensions above.
Padding: 
Note that the size of resulting image gets reduced when a convolution is performed on top of it. One way to get rid of the size reduction issue is by padding the original image with zeros on the 4 borders. This way, a 28X28 image would get translated into a 30X30 image. Thus, when the 30X30 image is convolved by a 3X3 filter, the resulting image would be a 28X28 image.


BACKWARD PROPAGATION IN CNN
Backward propagation in CNN is done in a similar way, as that of a typical neural network, where the impact of changing a weight by a small amount on the overall weight is calculated. 
However, in place of weights, like in NN, we would have filters/ matrices of weights that need to be updated to minimize the overall loss.
Sometimes, given that there are typically millions of parameters in a CNN, having regularization could be helpful.
Regularization in CNN can be done using dropout method.
Dropout is done by not choosing to update some weights (typically a randomly chosen 20% of total weights) and training the entire network over the whole number of epochs.
PUTTING IT ALL TOGETHER
The following code implements a 3 convolution pooling layer followed by flattening and a fully connected layer:
model = Sequential()
model.add(Conv2D(32, (3,3), input_shape=(28, 28,1), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Conv2D(64, (3,3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(1000, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
# Compile model
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
Note that the accuracy of the model trained using the above code is 98.69%
However, one should note that, while this model works best on the test dataset, an image that is translated or rotated from the test MNIST dataset would not be classified correctly (CNN could only help when the image is translated by the number of convolution pooling layers).
Technically, a translated image is the same as a new image that is generated from the original image.
New data can be generated by using ImageDataGenerator function in Keras
from keras.preprocessing.image import ImageDataGenerator
shift = 0.2
datagen = ImageDataGenerator(width_shift_range=shift)
datagen.fit(X_train)
i=0
for X_batch, y_batch in datagen.flow(X_train, y_train, batch_size=100):
    i=i+1
    print(i)
    if(i>500):
        break
    X_train=np.append(X_train,X_batch,axis=0)
    y_train=np.append(y_train,y_batch,axis=0)
X_train.shape
From the above code, we have generated 50,000 random shufflings from our original data - where the pixels are shuffled by 20%
As we plot the image of 1 now, we would notice that there is a wider spread for the image.
[image: ]
Similarly if we augment the image by making sure that the spread is on both sides, the image would look as follows:
[image: ]
Now, we should notice that the predictions will work even when we don't do convolution pooling for the few pixels that are to the left or right of centre.
Thus, data augmentation helps in generalizing for variation of the image across the image boundaries when using CNN model, but it does not necessarily work, while using the traditional neural network model.
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