Convolutional Neural networks
BACKGROUND

In the previous chapter, we looked at traditional neural network. One of the limitations of a traditional NN is that, it is not translation invariant  i.e., an image on the upper right hand corner of an image would be treated differently to an image that has a cat in the centre of the image.
CNNs are used to deal with such issues. Given that a CNN is able to deal with such issues, it is considered to be a lot more useful and also among the state of the art in object classification/ detection. 

INTRODUCTION
In order to understand the need of CNN further, let us go through the following example.
Let's say we would like to classify, if the image has a vertical line or not (or maybe, if the image represents 1 or not). For simplicity, let's assume the image is a 5X5 image. Some of the multiple ways in which a vertical line (or a one) can be written are as follows:
[image: ][image: ][image: ]
For further intuition, we can check the different ways in which the digit 1 is written in MNIST dataset. An image of the same is as follows:
[image: ]
It is to be noted that, reddish the pixel, more often have people written on top of the pixel and less reddish (more bluish) the pixel, less often have people written on top of the pixel. Also, it is to be noted that the pixel in middle is the most red (quite likely, as most people would be writing over the pixel, irrespective of whether the whole digit is written in a vertical line, slanted towards the left/ right).
Problem with traditional NN:
In the scenario laid out above, we would notice that a traditional neural network would highlight the image as 1, only if the pixels around the middle are highlighted and the rest of the pixels in the image are not highlighted (as most people have highlighted the pixels in middle). 
In order to understand this problem, let us go through the code that we went through in neural networks section:
# Plot ad hoc mnist instances
from keras.datasets import mnist
import matplotlib.pyplot as plt
%matplotlib inline
# load (downloaded if needed) the MNIST dataset
(X_train, y_train), (X_test, y_test) = mnist.load_data()
import numpy
%matplotlib inline
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.utils import np_utils
seed = 7
numpy.random.seed(seed)
(X_train, y_train), (X_test, y_test) = mnist.load_data()
num_pixels = X_train.shape[1] * X_train.shape[2]
X_train = X_train.reshape(X_train.shape[0], num_pixels).astype('float32')
X_test = X_test.reshape(X_test.shape[0], num_pixels).astype('float32')
X_train = X_train / 255
X_test = X_test / 255
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)
num_classes = y_test.shape[1]
import numpy
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import Flatten
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.utils import np_utils
from keras import backend as K
model = Sequential()
model.add(Dense(1000, input_dim=num_pixels, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
# Compile model
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=5, batch_size=1024, verbose=1)

Scenario 1:
A new image is created, where the original image is translated by 1 pixel towards the left
import numpy as np
pic=np.zeros((28,28))
for i in range(X_train1.shape[0]):
    pic2=X_train1[i,:,:,0]
    pic=pic+pic2
pic=(pic/X_train1.shape[0])
#plt.imshow(pic)
for i in range(pic.shape[0]):
    if(i<20):
        pic[:,i]=pic[:,i+1]
plt.imshow(pic)
A plot of the above data points would be as follows:
[image: ]
The prediction of the  above image based on traditional neural network model would be as follows:
array([[  4.52862866e-03,   2.79745549e-01,   1.46918772e-02,
          2.56265351e-03,   1.12666632e-03,   1.23599907e-02,
          5.05378842e-02,   1.11956382e-03,   6.32923245e-01,
          4.03954793e-04]], dtype=float32)
Wrong prediction of "8" as output
Scenario 2: A new image is created, where the pixels are not translated from the original average 1 image
import numpy as np
pic=np.zeros((28,28))
for i in range(X_train1.shape[0]):
    pic2=X_train1[i,:,:,0]
    pic=pic+pic2
pic=(pic/X_train1.shape[0])
#plt.imshow(pic)
for i in range(pic.shape[0]):
    if(i<20):
        pic[:,i]=pic[:,i]
plt.imshow(pic)
A plot of the above data points would be as follows:
[image: ]
The prediction of the  above image would be as follows:
array([[  2.19366717e-04,   8.60968411e-01,   6.46155374e-03,
          5.59386937e-03,   6.16832403e-04,   8.71000462e-04,
          1.17062486e-03,   5.16332779e-03,   1.18203819e-01,
          7.31272565e-04]], dtype=float32)
Correct prediction of "1" as output
Scenario 3: A new image is created, where the pixels of the original average 1 image are shfted to the right
import numpy as np
pic=np.zeros((28,28))
for i in range(X_train1.shape[0]):
    pic2=X_train1[i,:,:,0]
    pic=pic+pic2
pic=(pic/X_train1.shape[0])
#plt.imshow(pic)
pic2=np.copy(pic)
for i in range(pic.shape[0]):
    #print(i)
    if((i>6) & (i<26)):
        #print(i)
        pic[:,i]=pic2[:,(i-1)]
plt.imshow(pic)
A plot of the above data points would be as follows:
[image: ]
The prediction of the  above image would be as follows:
array([[ 0.00096997,  0.20023996,  0.04373238,  0.31578591,  0.12058167,
         0.00062689,  0.00044393,  0.23371431,  0.04888567,  0.03501928]], dtype=float32)
Wrong prediction of "3" as output
From the above scenario, we see that traditional NN fails to produce good results the moment there is translation in data (translation refers to the movement of 1 from the middle of the image to the left or right of the image).
This scenario calls for a different way in which we deal with the network to address translation variance.
A convolutional neural network (CNN) comes in handy in such scenario.
UNDERSTANDING CONVOLUTION IN CNN
We are already aware of how a typical neural network works. In this section, let us understand the word "Convolutional" in CNN.
A convolution is a multiplication between 2 matrices - one matrix being big and the other smaller. 
In order to understand convolution, let us consider the following example:
Matrix A is as follows:
[image: ]
Matrix B is as follows:
[image: ]
While performing convolution, think of it as we are sliding the smaller matrix over the bigger matrix - i.e., we can potentially come up with 9 such multiplications as the smaller matrix is slided over the entire area of the bigger matrix. Note that it is not matrix multiplication.
Step 1: {1,2,5,6} of bigger matrix is multiplied with {1,2,3,4} of the smaller matrix.
1*1 + 2*2 + 5*3 + 6*4 = 44
Step 2: {2,3,6,7} of bigger matrix is multiplied with {1,2,3,4} of the smaller matrix.
2*1 + 3*2 + 6*3 + 7*4 = 54
Step 3: {3,4,7,8} of bigger matrix is multiplied with {1,2,3,4} of the smaller matrix.
3*1 + 4*2 + 7*3 + 8*4 = 64
Step 4: {5,6,9,10} of bigger matrix is multiplied with {1,2,3,4} of the smaller matrix.
5*1 + 6*2 + 9*3 + 10*4 = 84
Step 5: {6,7,10,11} of bigger matrix is multiplied with {1,2,3,4} of the smaller matrix.
6*1 + 7*2 + 10*3 + 11*4 = 94
Step 6: {7,8,11,12} of bigger matrix is multiplied with {1,2,3,4} of the smaller matrix.
7*1 + 8*2 + 11*3 + 12*4 = 104
Step 7: {9,10,13,14} of bigger matrix is multiplied with {1,2,3,4} of the smaller matrix.
9*1 + 10*2 + 13*3 + 14*4 = 124
Step 8: {10,11,14,15} of bigger matrix is multiplied with {1,2,3,4} of the smaller matrix.
10*1 + 11*2 + 14*3 + 15*4 = 134
Step 9: {11,12,15,16} of bigger matrix is multiplied with {1,2,3,4} of the smaller matrix.
11*1 + 12*2 + 15*3 + 16*4 = 144
The result of the above steps would be a matrix as follows:
[image: ]
Conventionally, the smaller matrix is called as "filter" or "kernel" and the smaller matrix values are arrived statistically through gradient descent (More on the gradient descent a little later). The values within the filter can be considered as the constituent weights.
FROM CONVOLUTION TO ACTIVATION
In a traditional NN, a hidden layer not only multiplies the input values by the weights, but also applies a non-linearity to the data - i.e., passes the values through an activation function.
A similar activity happens in a typical CNN too, where the convolution is passed through an activation function.
CNN supports the traditional activations functions we have seen so far - sigmoid, ReLU, Tanh & leaky ReLU.
For the output above, we would notice that, the output remains the same, when passed through a ReLU activation function, as all the numbers are positive.
FROM CONVOLUTION ACTIVATION TO POOLING
In the previous section, we have looked at how convolutions work. In this section, we will understand the typical next step after a convolution - pooling.
Let's say, the output of the convolution step is as follows (we are not considering the above example and this is a new example to illustrate pooling, the rationale will be explained in a later section):
[image: ]
In the above case, the output of a convolution step is a 2X2 matrix. 
MaxPooling considers the 2X2 block and gives the maximum value as output.
Similarly, if the output of convolution step is a bigger matrix as follows:
[image: ]
MaxPooling divides the big matrix into non-overlapping blocks of size 2X2 each as follows:
[image: ]
From each block, only the element that has the highest value is chosen. So the output of maxpooling operation on the above matrix would be:
[image: ]
In practice, it is not necessary to have a 2X2 filter always, but, it is used more often than not.
The other types of pooling involved are sum & average - again, in practice, we see a lot of max pooling when compared to other types of pooling.
HOW DO CONVOLUTION & POOLING HELP
One of the drawbacks of traditional neural network in the MNIST example that we looked at earlier, was that, each pixel is associated with a distinct weight.
Thus, if an adjacent pixel, other than the original pixel got highlighted, the output would not be very accurate (The example of scenario 1, where the ones were slightly to the left of the middle).
This scenario is now addressed, as, the pixels share weights that are constituted within each filter.
All the pixels get multiplied by all the weights that constitute a filter & in the pooling layer, only the values that are activated the highest are chosen.
This way, irrespective of whether the highlighted pixel is at the centre or is slightly away from the centre, the output would more often than not be the expected value.
However, the issue still remains the same when the highlighted pixels are far away from the centre.
INTUITION OF CNN THROUGH CODE
From the above traditional NN scenario, we saw that a NN does not work if the pixels are translated by 1 unit to the left.
Practically, we can consider convolution step as identifying the pattern & pooling step as the one that results in translation variance.
N pooling steps result in N units of translation invariance. Let us consider through the following example, where we apply one pooling step after convolution:
model = Sequential()
model.add(Conv2D(10, (3,3), input_shape=(28, 28,1), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(1000, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
We would notice that, for the above convolution, where it is one convolution followed by one pooling layer, the output prediction works out well if the pixels are translated by 1 unit to the left and again does not work when the pixels are translated by more than 1 unit (as we have used only one max pooling layer).
A similar pattern can be observed, where the number of pixel translations is more than 1 - where the output is per prediction, only if the amount of translation is equal to the number of convolution pooling layers and the predictions are incorrect the moment when the units of translation is more than the number of convolution pooling layers.
HOW DOES CNN WORK





STRUCTURE OF A NEURAL NETWORK
The typical structure of a neural network is as follows:
[image: ]
The input level/ layer in the picture above is typically the independent variables that are used  to predict the output (dependent variable) level/ layer.
Typically in a binary dependent variable - there is only one node in the output layer (which gives an output close to 1 or 0).
The hidden level/ layer is used to transform the input variables into a higher order function. The way in which hidden layer transforms the output is as follows:
[image: ]
In the above diagram x1,x2...xn are the independent variables and x0 is the bias term (similar to the way we have bias in linear/ logistic regression).
w1,w2...wn are the weights given to each of the input variables. If "a" is one of the neurons in hidden layer - it would be equal to: 
[image: eq1 - neuron]
The f( that we see in the above equation is the activation function that we are applying on top of the summation so that we attain non linearity (we need non linearity so that our model can now learn complex patterns).
Moreover, having more than 1 hidden layer helps in achieving high non linearity.
DEEPER INTO NEURAL NETWORK
A neural network is a collection of “neurons” with “synapses” connecting them. The collection is organized into three main parts: the input layer, the hidden layer, and the output layer. Note that you can have n hidden layers, with the term “deep” learning implying multiple hidden layers.
[image: ]
Hidden layers are necessary when the neural network has to make sense of something really complicated, contextual, or non obvious, like image recognition. The term “deep” learning came from having many hidden layers. These layers are known as “hidden”, since they are not visible as a network output.
The circles represent neurons and lines represent synapses. Synapses take the input and multiply it by a “weight” (the “strength” of the input in determining the output). Neurons add the outputs from all synapses and apply an activation function.
KEY STEPS IN NEURAL NETWORK
Training a neural network basically means calibrating all of the “weights” by repeating two key steps, forward propagation and back propagation.
In forward propagation, we apply a set of weights to the input data and calculate an output. For the first forward propagation, the set of weights is selected randomly.
In back propagation, we measure the margin of error of the output and adjust the weights accordingly to decrease the error.
Neural networks repeat both forward and back propagation until the weights are calibrated to accurately predict an output. 
FORWARD PROPAGATION
Let's go through a simple example of training a neural network to function as an “Exclusive or” (“XOR”) operation to illustrate each step in the training process.
The XOR function can be represented by the mapping of the below inputs and outputs, which we’ll use as training data. It should provide a correct output given any input acceptable by the XOR function.
[image: ]
Let’s use the last row from the above table, (1, 1) => 0, to demonstrate forward propagation:
[image: http://imgur.com/aTFz1Az.png]
We now assign weights to all of the synapses. Note that these weights are selected randomly (based on Gaussian distribution) since it is the first time we’re forward propagating. The initial weights will be between 0 and 1, but note that the final weights don’t need to be.
[image: http://imgur.com/Su6Y4UC.png]
We sum the product of the inputs with their corresponding set of weights to arrive at the first values for the hidden layer. You can think of the weights as measures of influence the input nodes have on the output.
[image: ]
[image: ]
APPLYING THE ACTIVATION FUNCTION
Activation functions are applied at the hidden layer of a neural network. The purpose of the activation function is to transform the input signal into an output signal and are necessary for neural networks to model complex non-linear patterns that simpler models might miss.
The different activation functions are as follows:
[image: https://cldup.com/hxmGABAI7Y.png]
For our example, let’s use the sigmoid function for activation. The sigmoid function looks like this, graphically:
[image: http://i.imgur.com/RVbqJsg.jpg]
And applying S(x) to the three hidden layer sums, we get:
[image: ]
[image: ]
Then, we sum the product of the hidden layer results with the second set of weights (also determined at random the first time around) to determine the output sum.
0.73 * 0.3 + 0.79 * 0.5 + 0.69 * 0.9 = 1.235
Finally we apply the activation function to get the final output result.
S(1.235) = 0.7746924929149283
[image: http://imgur.com/IDFRq5a.png]
Because we used a random set of initial weights, the value of the output neuron is off the mark; in this case by +0.77 (since the target is 0). If we stopped here, this set of weights would be a great neural network for inaccurately representing the XOR operation.
Let’s fix that by using back propagation to adjust the weights to improve the network

BACK PROPAGATION
To improve our model, we first have to quantify just how wrong our predictions are. Then, we adjust the weights accordingly so that the margin of errors are decreased.
Similar to forward propagation, back propagation calculations occur at each “layer”. We begin by changing the weights between the hidden layer and the output layer.
[image: http://imgur.com/kEyDCJ8.png]

Calculating the incremental change to these weights happens in two steps: 1) we find the margin of error of the output result (what we get after applying the activation function) to back out the necessary change in the output sum (we call this delta output sum) and 2) we extract the change in weights by multiplying delta output sum by the hidden layer results.
The output sum margin of error is the target output result minus the calculated output result:
[image: http://i.imgur.com/IAddjWL.png]
UPDATING THE RANDOMLY INITIALIZED WEIGHTS BETWEEN HIDDEN & OUTPUT LAYERS
To calculate the necessary change in the output sum, or delta output sum, we take the derivative of the activation function and apply it to the output sum. In our example, the activation function is the sigmoid function.
Delta output sum = S'(output sum) * (output sum margin of error)
Delta output sum = S'(1.235) * (-0.77)
Delta output sum = -0.13439890643886018
Let’s do the math:
hidden result 1 = 0.73105857863
hidden result 2 = 0.78583498304
hidden result 3 = 0.68997448112

Delta weights = delta output sum * hidden layer results
Delta weights = -0.1344 * [0.73105, 0.78583, 0.69997]
Delta weights = [-0.0983, -0.1056, -0.0941]

old w7 = 0.3
old w8 = 0.5
old w9 = 0.9

new w7 = 0.202
new w8 = 0.394
new w9 = 0.806
The new weights above are obtained by adding old weights with the delta weights.

UPDATING THE RANDOMLY INITIALIZED WEIGHTS BETWEEN INPUT & HIDDEN LAYERS
To determine the change in the weights between the input and hidden layers, we perform the similar set of calculations. Note that in the following calculations, we use the initial weights instead of the recently adjusted weights from the first part of the backward propagation. We can determine the delta hidden sum:
Delta hidden sum = delta output sum * hidden-to-outer weights * S'(hidden sum)
Delta hidden sum = -0.1344 * [0.3, 0.5, 0.9] * S'([1, 1.3, 0.8])
Delta hidden sum = [-0.0403, -0.0672, -0.1209] * [0.1966, 0.1683, 0.2139]
Delta hidden sum = [-0.0079, -0.0113, -0.0259]
Once we get the delta hidden sum, we calculate the change in weights between the input and hidden layer by multiplying it by the input data, (1, 1). The input data here is equivalent to the hidden results in the earlier back propagation process to determine the change in the hidden-to-output weights.
Let’s do the math:
input 1 = 1
input 2 = 1

Delta weights = delta hidden sum * input
Delta weights = [-0.0079, -0.0113, -0.0259] * [1, 1]
Delta weights = [-0.0079, -0.0113, -0.0259, -0.0079, -0.0113, -0.0259]

old w1 = 0.8
old w2 = 0.4
old w3 = 0.3
old w4 = 0.2
old w5 = 0.9
old w6 = 0.5

new w1 = 0.7921
new w2 = 0.3887
new w3 = 0.2741
new w4 = 0.1921
new w5 = 0.8887
new w6 = 0.4741
Here are the new weights, right next to the initial random starting weights as comparison:
old         new
-----------------
w1: 0.8     w1: 0.7921
w2: 0.4     w2: 0.3887
w3: 0.3     w3: 0.2741
w4: 0.2     w4: 0.1921
w5: 0.9     w5: 0.8887
w6: 0.5     w6: 0.4741
w7: 0.3     w7: 0.2020
w8: 0.5     w8: 0.3940
w9: 0.9     w9: 0.8060

STOCHASTIC GRADIENT DESCENT
Gradient descent is the way in which error is minimized in the above scenario. Stochastic stands for the number of samples based on which a decision is taken.

OTHER COMMON TERMINOLOGY
Typically one pass of forward propagation & one backward propagation constitutes an epoch
More the number of epochs, more is the times weights get adjusted.
The number of training examples considered per epoch is called as the Batch Size
The process in which backward propagation works is often referred as Chain Rule
The learning rate is a common parameter in many of the learning algorithms, and affects the speed at which the ANN arrives at the minimum solution. If the learning rate is too high, the system will either oscillate about the true solution, or it will diverge completely. If the learning rate is too low, the system will take a long time to converge on the final solution.

CONCLUSION
Through the steps above, we have noticed that:
1. Neural network can approximate complex functions (because of the activation in hidden layers)
2. A forward & a backward propagation constitute the building blocks of the functioning of a neural network
3. Forward prop  helps us in estimating the error, while backward prop helps in reducing the error
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