Logistic Regression
BACKGROUND

In the linear regression chapter, we have seen the ways in which a variable can be estimated based on an independent variable. However, the dependent variable that we were estimating was continuous (sales of ice cream, weight of baby). However, in a majority of cases, we need to be forecasting/ predicting for "Discrete" variables - i.e., whether a customer will churn or not, whether a match will be won or not. These are the events that do not have a lot of distinct values (only a 1 or a 0 - whether an event has happened or not).
While a linear regression helps in forecasting the value (magnitude) of a variable, it has limitations while predicting for variables that have limited distinct values.
Logistic regression helps solve such problems where there are a limited number of distinct values of a dependent variable.

WHY DOES LINEAR REGRESSION FAIL FOR DISCRETE VALUES

In order to understand this, let's take a hypothetical case - predicting the result of a chess game based on the difference between elo ratings of the players.
	Difference in rating between white & black players
	White won?

	200
	0

	-200
	1

	300
	0



In the above toy example, if we apply linear regression, we will get the following equation:
White won = 0.55 - 0.00214 * (Difference in rating between white & black)
If we use the above formula to extrapolate on the table above:
	Difference in rating between white & black
	White won?
	Prediction of linear regression

	200
	0
	0.11

	-200
	1
	0.97

	300
	0
	-0.1



As you can see above, the difference of 300 resulted in a prediction of less than 0. Similarly for a difference of -300 the prediction of linear regression will be beyond 1.
However, in this case, values beyond 0 or 1 do not make sense, as a win is a discrete value (0 or 1).
Hence the predictions should be bound between 0 to 1 - i.e., any prediction above 1 should be capped at 1 and any prediction below 0 should also be floored at 0.
This translates to a fitted line as follows:
[image: ]
The chart above shows the following major limitations of linear regression in predicting discrete (binary in this case) variables. They are as follows:
1. Linear regression assumes that the variables are linearly related
a. As player strength difference increases, chances of win vary exponentially
2. Linear regression does not give a chance of failure
a. In practice, even if there is a difference of 500 point, there is an outside chance (let's say 1% chance) that the inferior player might win. However, if capped using linear regression, there is no chance that the other player could win
b. In general, linear regression does not tell us the probability of an event happening after certain range

MOVING TOWARDS A MORE GENERAL SOLUTION

As discussed above, the major problem with linear regression is that it assumes that all relations are linear, while in practice very few are.
In order to solve for the limitations of linear regression, we will explore a curve called sigmoid curve. The curve looks as follows:
[image: ]	
The features of the curve are as follows:
1. It varies between the values 0 and 1
2. It plateaus after a certain threshold (after the value 3 or -3 in the above chart)
The above curve would help us solve the problems that we faced with linear regression.
FORMALIZING SIGMOID CURVE

In the above section, we have understood that sigmoid curve is in a better position to explain discrete phenomenon than linear regression.
A sigmoid curve can be represented in mathematical formula as follows:
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In the above equation, higher the value of t, lower is the value of exp(-t) and hence S(t) is close to 1, however, lower the value of t (let's say -100) higher is the value of exp(-t), higher the value of (1+exp(-t)) and hence S(t) is very close to 0


FROM SIGMOID CURVE TO LOGISTIC REGRESSION

Linear regression assumes linear relation between dependent & independent variables and it is written as Y = a + b*X
However, logistic regression moves away from the constraint that all relations are linear by applying a sigmoid curve.
Logistic regression is mathematically modeled as follows:
Y= 1/(1+exp(-(a+b*X)))
From the above, we can see that logistic regression uses independent variables in the same way as that of a linear regression but passes them through a sigmoid activation so that the outputs are bound between 0 and 1.
In case of the presence of multiple independent variables, the equation translates to a multivariate linear regression passes through a sigmoid activation.
INTERPRETING THE LOGISTIC REGRESSION

Linear regression can be interpreted in a straight forward way - as the value of independent variable increases by 1 unit, the out (dependent variable) increases by "b" units.
In order to understand how the output changes in a logistic regression, let's take an example/ Let's assume that the logistic regression curve that we built (we will understand how to build a logistic regression in the next sections) is as follows:
Y= 1/(1+exp(-(2+3*X)))
if X=0, the value of Y = 1/(1+exp(-(2))) =0.88
If X is increased by 1 unit, i.e., X=1, the value of Y is 
Y = 1/(1+exp(-(2+3*1))) = 1/(1+exp(-(5))) = 0.99
As you see above, the value of Y changed from 0.88 to 0.99 as X changed from 0 to 1
Similarly, if X was -1, Y would have been at 0.27 and Y would have been at 0.88 had X=0.
Thus, there was a drastic change in Y from 0.27 to 0.88 when X from -1 to 0 but not so drastic when X moved from 0 to 1.
Thus the impact on Y of a unit change in X depends on the equation.
The value of 0.88 when X=0 can be interpreted as the probability -- i.e., on an average in 88% of cases, the value of Y is 1 when X=0
BUILDING A LOGISTIC REGRESSION

In order to understand how a logistic regression works, we go through the same exercise we did to learn regression - build a logistic regression equation in excel. For this exercise, we'll use the 'iris.xlsx' dataset. The challenge is to be able to predict if species is "Setosa" or not, based on a few variables (sepal, petal length & width)
Step 1: initialize the weights of independent variables to random values (let's say 1 each - we'll discuss the drawbacks of random initialization in the next few sections)
Step 2: Once the weights (the slope terms - b) are initialized, we'll estimate the output value (probability of species being setosa) by applying sigmoid activation on the multivariate linear regression of independent variables.
 Step 3: Understand the overall error  
Process of estimating error:
In linear regression section, we have considered least squares (squared difference of forecast & actual) & absolute difference between actual & forecasted value to estimate error rate.
However, in logistic regression, we might want to use a different error metric: Maximum Entropy model
Entropy is defined as the information in a model - which is why the intuitive name - maximum entropy. In order to understand entropy let's consider an example: Two parties contest in an election & the chances of their wins are 0.5 each (i.e., little conclusion can be drawn/ the information is minimal). However, if party A has 80% chances of winning and party B has 20% chances of winning - a conclusion can be drawn about the outcome of election.
The formula of entropy is:
(ylogp + (1-y) log(1-p))
where y is the actual outcome of event
p is the predicted outcome of event
Let's plug the two scenarios discussed above in the above equation: 


Scenario 1: 
	Model prediction for party A
	Actual outcome for party A

	0.5
	1



In this scenario, the model predicted 0.5 probability of win for party A and the actual result of party A is 1 (historical predictions and hence the actual outcomes would be known - think of we are training our models to predict 2016 election results based on 2012 election voting behavior).
The entropy of this model is: 
(1*log(0.5) + (1-1) * log(1-0.5)) = 1*log(0.5) = -0.313
Scenario 2: 
	Model prediction for party A
	Actual outcome for party A

	0.8
	1


The entropy of this model is: 
1*log(0.8) + (1-1) * log(1-0.8) = 1*log(0.8) = -0.09
From the above two scenario, we see that scenario 2 maximizes entropy (-0.09 is great than -0.313)
Why not use Least squares method: 
Given that in the above scenario, as probability is 0.8, entropy is also higher, could we not have used least squares difference and proceed in a similar way as we did for linear regression?
No, the reason is 
1. magnitude of coefficients
2. the assumptions of linearity
Magnitude of coefficients:
As a demonstration, we have compared entropy method & OLS method on the iris dataset.
It is noteworthy that if we don't constrain the absolute value of coefficients of variables, the coefficients rise to the magnitude of 10^8. The reason for this is that the optimization function wants to be absolutely sure to minimize the error and hence fits the values perfectly by increasing the coefficients as much as possible. However, a drawback of this is that it becomes very difficult to interpret the result (a unit increase in sepal length, cannot result in an exponentially high change in outcome).
In order to minimize this effect, we have constrained the absolute values of coefficients to 10. 
Assumption of linearity:
A typical example of logistic regression is its application in predicting whether a cancer is benign or malignant based on certain attributes.
Let's compare the two cost functions (least squares method & entropy cost) in cases where the dependent variable (malignant cancer) is 1:
	Predicted malignant cancer
	Actual malignant cancer
	Root mean Squared error
	Entropy cost

	0.99
	1
	(0.01)^2 = 0.0001
	=log(0.99) = -0.00436

	0.9
	1
	(0.1)^2 = 0.01
	= log(0.9)  = -0.006



From the above table, as we vary the predicted from 1 (most accurate) to 0, least accurate, we would identify that RMSE increases gradually as the difference between actual & predicted values increase, however, entropy increases exponentially as the difference between actual & predicted values increase -- i.e., entropy penalizes heavily for high difference between actual outcome & predicted probability. Thereby eliminating the scenario that a malignant tumour might be predicted benign or vice versa.[image: ]
Thus, in the process of building a logistic regression, we will be sticking to entropy cost, in general.
Step 4: Variable selection methods
Akaike Information Criterion (AIC):
The two major factors to consider in a model are:
1. The complexity of model (the number of parameters that go into it)
2. The accuracy of model (Maximum entropy/ log likelihood model)
AIC combines both of the above using the formula
AIC = 2*k -2*Log likelihood
where k is the number of independent variables (complexity) of model & log likelihood is an estimate of the deviance of the model (accuracy).
Lower the AIC better is the model.
There are two main variations of selecting a model - forward & backward variable selection methods.
Forward variable selection
Forward Selection chooses a subset of the predictor variables for the final model. the steps adopted are as follows:
1. start with only the intercept value
2. If there are 4 independent variables in the model, select the variable that gives the least AIC for the model
3. Once the first variable is selected, try adding one of the 3 remaining variables and see if the resulting model has lower AIC
4. Continue the process till no further addition of variables results in a lower AIC
5. In general AIC decreases to an extent, as addition of new variables increases accuracy but addition of more variables results in AIC increase as the number of variables increase



Backward variable selection
Backward selection is the exact opposite of forward selection method. The algorithm is as follows:
1. Start with all the independent variables (let's say 4)
2. Discard the variable that results in least decrease in AIC
3. continue the process till least possible AIC is obtained
4. Similar to forward selection, model complexity & model accuracy play the role in determining the optimal number of variables in backward selection method

RUNNING  A LOGISTIC REGRESSION

Now that we have a background in logistic regression, we'll dive into the implementation details of the same in R.
 [image: ]
The first line above specifies that we will be using the "glm" (generalized linear models) in which binomial family is considered. 
summary of the logistic model gives a high level summary without helping us understand the variables that need to be retained/ eliminated.
In order to further fine tune to the variables that need to be eliminated, we use the step function, where one specifies whether the direction of step is either "forward" or "backward".
The above step helps us identify the few variables that minimize AIC
IS AIC THE OVER-ARCHING FACTOR IN DETERMINING THE FINAL MODEL?

No. Let's assume that you are building a model that predicts if a credit card swipe would result in a fraud or not. This phenomenon happens in <0.1% of total cases. In such cases, AIC would always be high, even if we assume that all transactions are non fraud (the few mis classifications would not have an affect on the overall AIC). However, in such cases being able to predict frauds is far more important than wrongly classifying some of the non fraud transactions as fraud. Hence, in such cases, AIC, in general, might not be a better way of selecting the model. 
A better way would be to select model based on its performance in "out of sample" data.
TESTING A MODEL ON "OUT OF SAMPLE" DATA

Let's assume that, we have built a model that predicts if a credit card transaction is a fraudulent transaction or not. Typically fraud transactions are ~0.1% of total transactions. Let's assume a million credit card transactions happen per month. 
In such cases (when there is huge amounts of data) it is a better strategy to not just look at AIC and conclude if one model is better over other, but, build logistic regression on 80% of all transactions and test its accuracy on the remaining 20% of transactions. The model that works well in the remaining 20% transactions is the best model.
IDENTIFYING THE MEASURE OF INTEREST

In cases of rare event modeling like above, accuracy of prediction is always low (because the event happens rarely). In order to model such events, practitioners typically adopt the following:
	
	Predicted fraud
	Predicted non fraud

	Actual fraud
	A
	B

	Actual non fraud
	C
	D



An ideal scenario would be that B=0 & C=0
However, in practice, when modeling rare events, there would always be false positives ( C) & false negatives (B). Depending on the use case minimizing C or B is a major constraint.
For example, in cases where an email has to be marked spam or not, marking a spam email as non spam (false negative) is not a major issue. However, marking a non spam email as spam ( C) is a major customer experience issue as they might miss out an opportunity of going through the email.
Similarly, in case of cancer diagnosis at a very early stage, diagnosing a potential malignant cancer as benign (B) is a major issue when compared to diagnosing a benign cancer as malignant ( C). In case of diagnosing malignant as benign, the patient might not take the necessary next steps and it could prove very costly in future when compared to a benign cancer patient being predicted as malignant and then going through further diagnosis/ validation to disprove the prior report.
CONCLUSION

1. Logistic regression is used in predicting binary (categorical) events, where linear regression is used to forecast continuous events
2. Logistic regression is an extension of linear regression, where the linear equation is passed through a sigmoid activation function
3. A sigmoid curve helps in bounding the output of a value between 0 to 1
4. AIC is a better estimate of error in logistic regression
5. Backward/ forward variable selection methods determine the variables that will remain in the model
6. In practice, out of sample accuracy determines the accuracy of model 
7. Further, whether to minimize false positives or false negatives has to be decided on a case to case basis
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