Recurrent Neural networks
BACKGROUND

In the previous chapter, we looked at how CNNs improve upon the traditional neural network architecture for image classification.
While CNNs perform very well for image classification - where image translation and rotation are taken care of, they do not necessarily help in identifying temporal patterns. Essentially, one can think of CNN as identifying a static pattern.
RNNs are designed to solve the problem of identifying temporal patterns.

INTRODUCTION
RNN can be architected in multiple ways. Some of the possible ways are as follows:

[image: http://karpathy.github.io/assets/rnn/diags.jpeg]
One can visualize the above architectures as follows:

1. The boxes in the bottom are inputs
2. The boxes in the middle are hidden layers
3. The boxes at the top are outputs

INTUITION OF THE ARCHITECTURE
In order to understand the reason for a different architecture for RNN, let us go through the following example:
"Given a string of words, predict the next word"
An example of that could be predict the word that comes after "This is an _____". Let's say, in reality, the sentence is "This is an example"
Traditional text mining techniques would solve the problem in the following way:
1. Encode each word - leaving space for an extra word, if needed
This: {1,0,0,0}
is: {0,1,0,0}
an: {0,0,1,0}
2. Encode the sentence:
This is an: {1,1,1,0}
3. Create a training dataset:
Input --> {1,1,1,0}
Output --> {0,0,0,1}
4. Build a model with input & output

Drawbacks of the model presented above:
One of the major drawbacks of the model is that the input representation does not change is the input sentence is either "this is an" or "an is this" or "this an is"
However, intuitively, we know that each of the above sentences is different and cannot be represented by the same structure mathematically.
This calls for having a different architecture that looks as follows:
[image: ]
In the above architecture, each of the individual words in the sentence get into a separate box among the 3 input boxes.
Moreover, the structure of the sentence is preserved, as, "this" gets into the first box, "is" gets into the second box & "an" gets into the third box.
The output "example" is expected in the output box at the top.
INTERPRETING AN RNN
One can think of RNN as a mechanism to hold memory - where the memory is contained within the hidden layer. It can be visualized as follows:
[image: https://cdn-images-1.medium.com/max/1600/1*icP_8Q-I87k4Nyq0vdSl8A.png]
The network on the right is an unrolled version of the network on the left. It can be interpreted as follows:
The network on the left is a traditional with one change - that is, the hidden layer is connected to itself along with being connected to the input.
One can consider this phenomenon of hidden layer being connect back to itself as the mechanism through which memory is created within RNN.
The weight U represents the weights that connect the input layer to the hidden layer
The weight W represents the hidden layer to hidden layer connection
The weight V represents the hidden layer to output layer connection.
WHY STORE MEMORY
There is a need to store memory as, in the example we looked at above, or even in text generation in general, the next word does not necessarily remember only on the preceding word, but the context of the few words preceding the word to predict.
Given that we are looking at the preceding words, there should be a way to keep them in memory, so that, we can predict the next word more accurately.
Moreover, we should also have the memory in order - i.e., more often than not, the recent words are more useful in predicting the next word than the words that are far away from the word to predict.
WORKING DETAILS OF RNN
Note that a typical NN has an input layer, followed by an activation in hidden layer & then a softmax activation at the output layer.
Similar working details are done in RNN. Let us explore using the following example:
"This is an example"
Given an input "This is an" we are expected to predict "example" as the output.
The encoded words are as follows:
[image: ]
Note the RNN structure which would look as follows:
[image: ]
Let us deconstruct the dimensions of each weight matrix associated:
[image: ]
Each input is 1X4 in dimension
Wxh is 4X3 in dimension
Thus, hidden layer - which is a matrix multiplication between input & wxh is 1X3 in dimension.
We have seen earlier, that a hidden layer is connected to another hidden layer that is unrolled.
Given that a hidden layer is connected to the next hidden layer - the weight associated with it would be 3X3 in dimension, as a 1X3 matrix multiplied with 3X3 matrix would give out a 1X3 matrix.
[image: ]
Note that, Wxh & Whh are random initializations, while hidden layer & final hidden layer are calculated.
The calculation for hidden layer is performed as follows:
[image: ]

Similarly, the calculation of final hidden layer is done as follows:
[image: ]
[image: ]
[image: ]
[image: ]
Now that we have our hidden layer calculated, we pass it through an activation, just llike the way we did it in traditional NN:
[image: ]
Given that the output from hidden layer activation is 1X3 in size of each input, in order to get an output of 1X4 in size, the hidden layer Why should be 3X4 in dimension.
[image: ]
From the intermediate output, we perform the softmax activation as follows:
[image: ]
The second step of softmax would be to normalize each cell value to obtain a probability value
[image: ]

Once the probabilities are obtained, the loss is calculated by taking the cross entropy loss between the prediction & actual.
Finally, we would be minimizing the loss through the combination of forward & backward propagation epochs in a similar manner as that of NN.

WORKING DETAILS OF RNN

image4.emf
This1000

is0100

an0010

example0001


image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image1.jpeg

image2.png

image3.png

