Recurrent Neural networks
BACKGROUND

In the previous chapter, we looked at how CNNs improve upon the traditional neural network architecture for image classification.
While CNNs perform very well for image classification - where image translation and rotation are taken care of, they do not necessarily help in identifying temporal patterns. Essentially, one can think of CNN as identifying a static pattern.
RNNs are designed to solve the problem of identifying temporal patterns.

INTRODUCTION
RNN can be architected in multiple ways. Some of the possible ways are as follows:

[image: http://karpathy.github.io/assets/rnn/diags.jpeg]
One can visualize the above architectures as follows:

1. The boxes in the bottom are inputs
2. The boxes in the middle are hidden layers
3. The boxes at the top are outputs

INTUITION OF THE ARCHITECTURE
In order to understand the reason for a different architecture for RNN, let us go through the following example:
"Given a string of words, predict the next word"
An example of that could be predict the word that comes after "This is an _____". Let's say, in reality, the sentence is "This is an example"
Traditional text mining techniques would solve the problem in the following way:
1. Encode each word - leaving space for an extra word, if needed
This: {1,0,0,0}
is: {0,1,0,0}
an: {0,0,1,0}
2. Encode the sentence:
This is an: {1,1,1,0}
3. Create a training dataset:
Input --> {1,1,1,0}
Output --> {0,0,0,1}
4. Build a model with input & output

Drawbacks of the model presented above:
One of the major drawbacks of the model is that the input representation does not change is the input sentence is either "this is an" or "an is this" or "this an is"
However, intuitively, we know that each of the above sentences is different and cannot be represented by the same structure mathematically.
This calls for having a different architecture that looks as follows:
[image: ]
In the above architecture, each of the individual words in the sentence get into a separate box among the 3 input boxes.
Moreover, the structure of the sentence is preserved, as, "this" gets into the first box, "is" gets into the second box & "an" gets into the third box.
The output "example" is expected in the output box at the top.
INTERPRETING AN RNN
One can think of RNN as a mechanism to hold memory - where the memory is contained within the hidden layer. It can be visualized as follows:
[image: https://cdn-images-1.medium.com/max/1600/1*icP_8Q-I87k4Nyq0vdSl8A.png]
The network on the right is an unrolled version of the network on the left. It can be interpreted as follows:
The network on the left is a traditional with one change - that is, the hidden layer is connected to itself along with being connected to the input.
One can consider this phenomenon of hidden layer being connect back to itself as the mechanism through which memory is created within RNN.
The weight U represents the weights that connect the input layer to the hidden layer
The weight W represents the hidden layer to hidden layer connection
The weight V represents the hidden layer to output layer connection.
WHY STORE MEMORY
There is a need to store memory as, 
image1.jpeg
one to one one to many many to one many to many many to many





image2.png




image3.png
o o(t-1) o(t) O(t+1)

v v v v
= . h(t+1
h Q()W : h(t-1) h(t) (t+1)
Unfold w = w w
U u U U

X X(t-1) X(t) X(t+1)




