Recurrent Neural networks
BACKGROUND

In the previous chapter, we looked at how CNNs improve upon the traditional neural network architecture for image classification.
While CNNs perform very well for image classification - where image translation and rotation are taken care of, they do not necessarily help in identifying temporal patterns. Essentially, one can think of CNN as identifying a static pattern.
RNNs are designed to solve the problem of identifying temporal patterns.

INTRODUCTION
RNN can be architected in multiple ways. Some of the possible ways are as follows:

[image: http://karpathy.github.io/assets/rnn/diags.jpeg]
One can visualize the above architectures as follows:

1. The boxes in the bottom are inputs
2. The boxes in the middle are hidden layers
3. The boxes at the top are outputs

INTUITION OF THE ARCHITECTURE
In order to understand the reason for a different architecture for RNN, let us go through the following example:
"Given a string of words, predict the next word"
An example of that could be predict the word that comes after "This is an _____". Let's say, in reality, the sentence is "This is an example"
Traditional text mining techniques would solve the problem in the following way:
1. Encode each word - leaving space for an extra word, if needed
This: {1,0,0,0}
is: {0,1,0,0}
an: {0,0,1,0}
2. Encode the sentence:
This is an: {1,1,1,0}
3. Create a training dataset:
Input --> {1,1,1,0}
Output --> {0,0,0,1}
4. Build a model with input & output

Drawbacks of the model presented above:
One of the major drawbacks of the model is that the input representation does not change is the input sentence is either "this is an" or "an is this" or "this an is"
However, intuitively, we know that each of the above sentences is different and cannot be represented by the same structure mathematically.
This calls for having a different architecture that looks as follows:
[image:]
In the above architecture, each of the individual words in the sentence get into a separate box among the 3 input boxes.
Moreover, the structure of the sentence is preserved, as, "this" gets into the first box, "is" gets into the second box & "an" gets into the third box.
The output "example" is expected in the output box at the top.
INTERPRETING AN RNN
One can think of RNN as a mechanism to hold memory - where the memory is contained within the hidden layer. It can be visualized as follows:
[image: https://cdn-images-1.medium.com/max/1600/1*icP_8Q-I87k4Nyq0vdSl8A.png]
The network on the right is an unrolled version of the network on the left. It can be interpreted as follows:
The network on the left is a traditional with one change - that is, the hidden layer is connected to itself along with being connected to the input (Hidden layer is the circle in the picture above).
One can consider this phenomenon of hidden layer being connect back to itself as the mechanism through which memory is created within RNN.
The weight U represents the weights that connect the input layer to the hidden layer
The weight W represents the hidden layer to hidden layer connection
The weight V represents the hidden layer to output layer connection.
WHY STORE MEMORY
There is a need to store memory as, in the example we looked at above, or even in text generation in general, the next word does not necessarily remember only on the preceding word, but the context of the few words preceding the word to predict.
Given that we are looking at the preceding words, there should be a way to keep them in memory, so that, we can predict the next word more accurately.
Moreover, we should also have the memory in order - i.e., more often than not, the recent words are more useful in predicting the next word than the words that are far away from the word to predict.
WORKING DETAILS OF RNN
Note that a typical NN has an input layer, followed by an activation in hidden layer & then a softmax activation at the output layer.
Similar working details are done in RNN. Let us explore using the following example:
"This is an example"
Given an input "This is an" we are expected to predict "example" as the output.
The encoded words are as follows:
[image:]
Note the RNN structure which would look as follows:
[image:]
Let us deconstruct the dimensions of each weight matrix associated:
[image:]
Each input is 1X4 in dimension
Wxh is 4X3 in dimension
Thus, hidden layer - which is a matrix multiplication between input & wxh is 1X3 in dimension.
We have seen earlier, that a hidden layer is connected to another hidden layer that is unrolled.
Given that a hidden layer is connected to the next hidden layer - the weight associated with it would be 3X3 in dimension, as a 1X3 matrix multiplied with 3X3 matrix would give out a 1X3 matrix.
[image:]
Note that, Wxh & Whh are random initializations, while hidden layer & final hidden layer are calculated.
The calculation for hidden layer is performed as follows:
[image:]

Similarly, the calculation of final hidden layer is done as follows:
[image:]
[image:]
[image:]
[image:]
Now that we have our hidden layer calculated, we pass it through an activation, just llike the way we did it in traditional NN:
[image:]
Given that the output from hidden layer activation is 1X3 in size of each input, in order to get an output of 1X4 in size, the hidden layer Why should be 3X4 in dimension.
[image:]
From the intermediate output, we perform the softmax activation as follows:
[image:]
The second step of softmax would be to normalize each cell value to obtain a probability value
[image:]

Once the probabilities are obtained, the loss is calculated by taking the cross entropy loss between the prediction & actual.
Finally, we would be minimizing the loss through the combination of forward & backward propagation epochs in a similar manner as that of NN.

IMPLEMENTING RNN
Now that we understand how a typical RNN works, let us look into how to generate text using APIs provided by keras for RNN.
For this example, we will be working on the alice dataset.
#import relevant packages
from keras.layers import Dense, Activation
from keras.layers.recurrent import SimpleRNN
from keras.models import Sequential
import numpy as np
Import the file of interest
fin = open("/home/akishore/test_data.txt", 'rb')
lines = []
for line in fin:
 line = line.strip().lower()
 line = line.decode("ascii", "ignore")
 if len(line) == 0:
 continue
 lines.append(line)
fin.close()
text = " ".join(lines)

#Calculate the number of unique characters in the dataset
chars = set([c for c in text])
nb_chars = len(chars)
Convert the character into an index & an index into character
char2index = dict((c, i) for i, c in enumerate(chars))
index2char = dict((i, c) for i, c in enumerate(chars))
Create the input and output datasets
SEQLEN = 10
STEP = 1

input_chars = []
label_chars = []
for i in range(0, len(text) - SEQLEN, STEP):
 input_chars.append(text[i:i + SEQLEN])
 label_chars.append(text[i + SEQLEN])
#Create empty arrays
X = np.zeros((len(input_chars), SEQLEN, nb_chars), dtype=np.bool)
y = np.zeros((len(input_chars), nb_chars), dtype=np.bool)
Create encoded vectors for the input and output values
for i, input_char in enumerate(input_chars):
 for j, ch in enumerate(input_char):
 X[i, j, char2index[ch]] = 1
 y[i, char2index[label_chars[i]]] = 1
Initialize parameters
HIDDEN_SIZE = 128
BATCH_SIZE = 128
NUM_ITERATIONS = 25
NUM_EPOCHS_PER_ITERATION = 1
NUM_PREDS_PER_EPOCH = 100
Run the model
model = Sequential()
model.add(SimpleRNN(HIDDEN_SIZE, return_sequences=False,
 input_shape=(SEQLEN, nb_chars),
 unroll=True))
model.add(Dense(nb_chars))
model.add(Activation("softmax"))

model.compile(loss="categorical_crossentropy", optimizer="rmsprop")
Print out the results
for iteration in range(NUM_ITERATIONS):
 print("=" * 50)
 print("Iteration #: %d" % (iteration))
 model.fit(X, y, batch_size=BATCH_SIZE, epochs=NUM_EPOCHS_PER_ITERATION)

 test_idx = np.random.randint(len(input_chars))
 test_chars = input_chars[test_idx]
 print("Generating from seed: %s" % (test_chars))
 print(test_chars, end="")
 for i in range(NUM_PREDS_PER_EPOCH):
 Xtest = np.zeros((1, SEQLEN, nb_chars))
 for i, ch in enumerate(test_chars):
 Xtest[0, i, char2index[ch]] = 1
 pred = model.predict(Xtest, verbose=0)[0]
 ypred = index2char[np.argmax(pred)]
 print(ypred, end="")
 # move forward with test_chars + ypred
 test_chars = test_chars[1:] + ypred
print()

From the above code, you would notice that, only after quite a few iterations do the output make sense in terms of predictions.
ISSUES WITH TRADITIONAL RNN
A traditional RNN, that takes multiple time steps into account for giving prediction can be visualized as follows:
[image:]
Notice that, as time step increases the impact of input at a much earlier layer would be very less, as:
h1 = Wx1
h2 = Wx2 + Uh1 = Wx2 + UWx1
h3 = Wx3 + Uh2 = Wx3 + UWx2 + U^2Wx1
h4 = Wx4 + Uh3 = Wx4 + UWX3 + U^2WX2 + U^3WX1
h5 = Wx5 + Uh4 = Wx5 + UWX4 + U^2WX3 + U^3WX2 + U^4WX1
One would notice that, as the time stamp increases, the value of hidden layer is:
1. highly dependent on X1 if U>1
2. Little dependent on X1 if U<1
The problem of vanishing gradient:
The gradient of U^4 with respect to U is 4*U^3
In such case, one would notice that, if U<1 the gradient is very small and hence arriving at the ideal weights takes a very long time.
The problem of exploding gradients:
In the above scenario, if U>1 then gradients increase by a much larger amount.
Hence, depending on the value of U (weights of hidden layer) the weights get updated very quickly or take very long time.
This results in an issue when there is a dependency on a word that occurred much earlier in time step in some sentences. For example, "I am from India. I speak fluent ____"
In this specific case, if we did not take the first sentence into account - the output of the sentence "I speak fluent ____" could be any language. Because we mentioned the country in the first sentence, we should be able to narrow down to languages specific to India.
Given that traditional RNN has issues with inputs that occurred in long term - we should deal with RNNs in a slightly different way.
LONG SHORT TERM MEMORY (LSTM)
LSTM is an architecture that helps overcome the vanishing or exploding gradient problem that we have seen in the previous section. In this section, we will understand the architecture of LSTM and have an intuition of how LSTM helps in overcoming the issue with traditional RNN.
LSTM looks as follows:
[image:]

One can notice that while the input X & output of hidden layer (h) remain the same - the activations that happen within a hidden layer is different.
Unlike the traditional RNN, which has tanh activation, there are different activations that happen within LSTM. Let us go through each of them in the section below:
[image: http://www.stratio.com/wp-content/uploads/2017/10/6-1.jpg]
In the above diagram, X & h represent the input & hidden layer as we have seen earlier.
C represents the cell state - essentially, one can think of cell state as a way in which long term dependencies are captured.
f represents the forget gate
[image:]
Note that, the sigmoid gives us a mechanism to specify what needs to be forgotten. This way, some historical sentences are selectively forgotten.
This gets updated in the cell state:
[image:]
In the next step, the input that needs to update the cell state is achieved through the sigmoid & the magnitude of update (either positive or negative) is obtained through the tanh activation.
The modulation can be specified as:
[image:]
The cell state thus finally gets updated as:
[image:]
In the final gate, we need to specify what part of the combination of input & cell state need to be outputted.
[image:]
The final hidden layer is represented as:
[image:]
Given that, the cell state has the capability of memorizing the values that are needed at a later point in time, LSTM provides better results than traditional RNN in predicting the next word or typically in sentiment classification.

image4.emf
This 1 0 0 0

is 0 1 0 0

an 0 0 1 0

example 0 0 0 1

image5.png
[This
is
nput [an
example

coor
coro

oroo

rooo

wxh

Hidden layer

0.033 0.021
0.052 -0.08
0.048 0.04
0.056 -0.03

0.033
0.052
0.048
0.056

0.021
-0.08

0.04
-0.03

0.065)
-0.04f
-0.08|
-0.06]

image6.png
0.033 0.021 0.069] 003 0043 003
wxh whh |-005 0048 0.024f
008 0032 0047

Hidden layer 0.033 0.021 0.069] Final hidden 003 002 007
0.052 -0.08 -0.04 layer 005 (0.08) (0.09)

0.048 0.04 -0.08 005 005 (0.08)

0.056_-0.03 -0.0] 006 (0.03) (0.06)

image7.png
Input

1
14| idden layer
5
16
17
18

image8.png
®

10
1n
2
1
14| idden layer
5
16
17
18

0.033 0.021
0.052 -0.08
0.048 0.04
0.056_-0.03

0.065)
-0.04f
-0.08|

-0.06]

Final hidden
layer

whh

N)
0043 003
0048 0.024)
0032 0047

sl 002 o07

005 (0.08) (0.09)

005 005 (0.08)

006 (0.03) (0.06)

image9.png
D E Ele [n | J K N o [Qa R
7
s 0,033 0.021 0.065] 0043 0.037]
9 wxh -0.04f -0.048 0.024f
10 -0.08 0032 0.047]
1n -0.05
2
1
14 Hidden layer Final hidden 0.03 0.02 0.07
15 layer 15+SUMPRODUCT(SMS14:50$14, TRANSPOSE(MS$8:M$10))
16 005 005 (0.08)
17 0.06 __ (0.03) _ (0.06)]
18

19

image10.png
7
s 0,033 0.021 0.065] 003 0043 003

9 wxh 0.052 -0.08 -0.04| whh -0.048| 0.024f

10 0,048 0.04 -0.05] 008 0032 0.047]

1n

2

1

14 Hidden layer Final hidden 0.03 0.02 0.07

15 layer 05 [=H15+SUMPRODUCT(M14:50$14, TRANSPOSE(NS8:N$10))
16 0.05 005 (0.08)

17 006 (0.03) _ (0.06)]

18

image11.png
2] E F G| H 1 J K N o P a R
7
s 0,033 0.021 0.065] 0043 0.037]
9 wxh 0.052 -0.08 -0.04| -0.048 0.024f
10 0,048 0.04 -0.05] 0032 0.047]
1n 0.056_-0.03 -0.06]
2
1
14 Hidden layer Final hidden 0.03 0.02 0.07
15 layer 005 (0.08) _ (0.04)]
16] =G16+SUMPRODUCT($MIS15:50315, TRANSPOSE(MS8:M$10))
17 006 (0.03) _(0.06)
18

19

image12.png
Final hidden layer ReLu Activation

003 002 007 003 002 00
005 (0.08) (0.09) 005 000 000
005 005 (0.0) 005 005 000
006 (0.03) (0.06) 006 000 000

image13.png
ReLu Activation

003 002 007
005 000 0.0
oos 005 0.0
006 000 000

Why
0058 0048 0008 0.0
0007 0053 0092 -0.03
0076 0072 0066 -0.004

Intermediate

output

000 o001 001 000
000 000 000 000
000 000 000 000
000 000 000 o000

image14.png
2
27

2
30
31

33
34
35
e

P

Mony R S v

Intermediate

output
0o 001 001 o.0q
000 000 000 0.0
000 000 000 0.0
000 000 000 00q

Softmax step 1

=£XP(Q26)] 099 100
100 100 100 100
100 100 100 100

100 100 100 100

image15.png
31
32
33
34
35
36
37

39

2

P

Lo r [s 1

Softmax step 1
100] 099 0% 100
100 100 100 100
100 100 100 100
100 100 100 100

Softmax step 2

2/SuM(32:5722] 0.251]
0.250523 0.249325 0.249776 0.250376|
0250897 0.250024 0.248852 0.250227]
0.250676_0.249127 0249711 0.250486]

image16.png

image17.png
A

image18.jpeg

image19.png
(Why—y + Upay)

image20.png
= (1@ f)

image21.png
q g1 + Ugzy)

image22.png
= (1@ f)D(gei)

image23.png
0= o(Wohi_1 + U,

image24.png
he = tanh(ct) ® 0

image1.jpeg
one to one one to many many to one many to many many to many

image2.png

image3.png
o o(t-1) o(t) O(t+1)

v v v v
= . h(t+1
h Q()W : h(t-1) h(t) (t+1)
Unfold w = w w
U u U U

X X(t-1) X(t) X(t+1)

