
1
© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6

 Appendix
JDK 11 was released on September 25, 2018. Aside all novelties already covered in

this book, there was also the news that developers had been suspecting since the

introduction of modules. Java is still free, but the Oracle JDK isn’t. Developers can use

the Oracle JDK to learn, but applications that are deployed in production will require a

license. The work-around is to use the an OpenJDK build (https://jdk.java.net/11/),

but this does not come with Oracle support. Still JDK 11 is a major release that will

benefit from long term support and if you are curious about the Oracle terms of use, you

can read them at www.oracle.com/technetwork/java/javase/terms/license/javase-

license.html.

The Java world has changed, but Oracle restrictions will only cause the market

to provide more options. Companies like Zulu and IBM will probably develop their

own JDKs and provide support for JDKs that Oracle won’t. Probably more companies

will emerge to provide cheaper support and open source JDKs. Now that access to an

important resource has been restricted, humanity will do what it does best—become

creative to get access to it or develop similar resources. Either way, diversity will be

blooming in the following years for the Java Open Source Community, and I can barely

wait to see what is coming.

The purpose of this appendix is to gracefully end the book and to cover more advanced

details regarding Java modules that might not be suitable for a Java beginner developer

right at the start of the book. It contains an extended version of Chapter 3 covering

configuration of Java modules in a complex project; good, bad, and recommended

practices working with modules; and the multimodule Gradle structure of the project and

a section about nested classes, that completes Chapter 4. The code snippets mentioned in

this appendix are already part of the project associated with the book. Enjoy!

www.itbook.store/books/9781484237779

https://doi.org/10.1007/978-1-4842-3778-6
https://jdk.java.net/11/
https://www.oracle.com/technetwork/java/javase/terms/license/javase-license.html
https://www.oracle.com/technetwork/java/javase/terms/license/javase-license.html
https://doi.org/10.1007/978-1-4842-3778-6_3
https://doi.org/10.1007/978-1-4842-3778-6_4
https://itbook.store/books/9781484237779

2

 A.1 Chapter 3: Introducing Modules
(Advanced Version)
Starting with Java 9, a new concept was introduced: modules. It groups and encapsulates

packages. Implementation of this new concept took more than 10 years. The discussion

about modules started in 2005 and it was proposed to be implemented for Java 7. Under

the name Project Jigsaw an exploratory phase started in 2008. Java developers hoped a

modular JDK would be available with Java 8, but only in Java 9 it was made possible, after

three years of work (and almost seven of analysis). Apparently, this is why the official

release date for Java 9 was postponed to September 2017.1

Modules represent a new way to aggregate packages. A module is a way to group

them together and configure more granulated access to package contents.

A module is a uniquely named, reusable group of packages and resources (XML

files) described by a file named module-info.java. This file contains the following

information.

• the module’s name

• the module’s dependencies (that is, other modules this module

depends on)

• the packages it explicitly makes available to other modules (all other

packages in the module are implicitly unavailable to other modules)

• the services it offers

• the services it consumes

• to what other modules it allows reflection

• native code

• resources

• configuration data

In theory, module naming resembles package naming and follows the reversed-

domain- name convention. In practice, make sure the module name does not contain

any numbers and that it reveals clearly what its purpose is.

1 The full history of the Jigsaw project can be found here: http://openjdk.java.net/projects/
jigsaw/

Appendix

www.itbook.store/books/9781484237779

https://doi.org/10.1007/978-1-4842-3778-6_3
http://openjdk.java.net/projects/jigsaw/
http://openjdk.java.net/projects/jigsaw/
https://itbook.store/books/9781484237779

3

The module-info.java file is compiled into a module descriptor, which is a file

named module-info.class that is packed together with classes into a plain old JAR

file. The location of the file is in the root sources directory, outside of any package. For

the example introduced earlier, a module-info.java was added and the new project

structure is depicted in Figure A-1.

Figure A-1. Structure of a Java 9 project

Like any file with a *.java extension, the module-info.java gets compiled into a

*.class file. As the module declaration is not a part of Java object types declaration,

module is not a Java keyword, so it can still be used when writing code for Java object

types. For package the situation is different, as every Java object type declaration must

start with a package declaration. Just take a look at the SimpleReader class declared next.

package com.apress.bgn.ch3;

public class SimpleReader {

 private String source;

 ...

}

So what does this actually mean? Where is the module, and what is it? Well, in

simple projects that are made of one root directory with sources, modules do not have

to physically delimit or organize sources somehow.2 They are defined by the contents of

the module-info.java file. So, starting with Java 9, Figure 3-4 (from the short version of

Chapter 3) evolves into Figure A-2.

2 Unless you rename directories containing sources for a module to the module name that is.
Having actual directories for modules is unavoidable, when the sources in the root directory
of a project must be split into different modules.

Appendix

www.itbook.store/books/9781484237779

https://doi.org/10.1007/978-1-4842-3778-6_3#Fig4
https://doi.org/10.1007/978-1-4842-3778-6_3
https://itbook.store/books/9781484237779

4

In Figure A-2, there is no need to create a directory for the modules for JAR1 and

JAR2. For JAR3, we have the case of two modules being archived in the same JAR, and in

this case we need to explicitly separate their sources, and the reason for this is the need

to have two module-info.java. An example of such a project is covered later.

The introduction of modules allows for the JDK to be divided into modules. This

means that the Java platform is no longer a monolith, consisting of a massive number

of packages, making it challenging to develop, maintain and evolve. The platform is

now split into 95 modules that can be viewed by executing java --list-modules (the

number might vary in Java later versions).

Figure A-2. Java building blocks, starting with Java 9

Appendix

www.itbook.store/books/9781484237779

https://itbook.store/books/9781484237779

5

 $ java --list-modules

java.base@11

java.compiler@11

java.datatransfer@11

java.desktop@11

...

Each module name is followed by a version string @11, in the listing, which means

that the module belongs to Java 11.

So, if a Java application does not require all modules, a runtime can be created only

with the modules that it needs, which reduces the runtime’s size. The tool to build a

smaller runtime customized to an application needs is called jlink and is part of the

JDK executables. This allows for bigger levels of scalability and increased performance.3

Another benefit of introducing modules is stronger encapsulation which in turns

leads to better integrity. Before Java 9, a lot of platform classes could be used and code

could be tied to them, which lead to dependencies on legacy code and difficulty to

migrate to another Java version. When writing Java code, you notice that most Java

object types that you use come from packages such as java.*... or javax.*.... Those

packages represent the core of the Java Platform and contain classes intended for

public use. But the JDK also contains other packages that contain classes that were not

intended for external use, and that are used to implement JDK internal behavior, like the

sun.* packages. Until Java 9, they could be imported and the classes within them used,

just like any other package. Starting with JDK 9, the internal APIs are encapsulated and

are made inaccessible by default to prevent a developer from tying an implementation to

a specific JDK version.

Let’s skip ahead and define a module, and let’s go through all the configurations we

might need for one. But before that, let’s add one more package to the chapter03 project

so we have enough material to play with, so the project structure now is depicted in

Figure A-3.

3 How to use jlink is not an object of this book. The focus of the book is learning the Java
programming language, thus the technical details of the Java platform will be kept to a minimum,
just enough to start writing and executing code confidently.

Appendix

www.itbook.store/books/9781484237779

https://itbook.store/books/9781484237779

6

The contents of the module-info.java can be as simple as the name of the module

and two brackets.

module chapter.three {

}

 How to Configure Modules
Within those brackets, different module directives may be declared, using one of the

following keywords.

• requires

• exports

• module

• open

• opens... to

• provides ... with

• transitive

We’ll go over all of them in this section and give examples, so that when you start

writing java code, you know how to declare your modules correctly.

Modules can have dependencies. For our example classes inside the module

chapter.three need access to packages and classes in module chapter.zero. Declaring

a module dependency is done my using the requires keyword.

Figure A-3. Java 9 project with two packages and one module

Appendix

www.itbook.store/books/9781484237779

https://itbook.store/books/9781484237779

7

module chapter.three {

 requires chapter.zero;

}

The dependency is an explicit one. But there are also implicit dependencies.

For example, any module declared by a developer implicitly requires the java.base

module. This module defines the foundational APIs of the Java SE Platform, and no Java

application could be written without it.

Declaring a module as required, means that the module is required at compile time

and runtime. If a module is required only at runtime, the requires static keywords are

used to declare the dependency. Just keep that in mind for now, it will make sense when

we talk about web applications.

But is it enough to declare our module as dependent of another? Does this mean

that the dependent module can access all public types(and their nested public and

protected types) ? If you are thinking not, you are right. This is of course, because the

module it depends on, must be configured to expose its contents. How can that be done?

In our case, we need to make sure module chapter.zero gives access to the required

packages. This is done by customizing the module-info.java for this module by adding

the exports directive, followed by the necessary package names.

module chapter.zero {

 exports com.apress.bgn.ch0;

}

By doing this, we have given access to the com.apress.bgn.ch0 package to any

module that requires this module as a dependency. What if we do not want that?

! if you were curious and read the recommended Jar Hell article, you noticed
that one of the concerns of working with Java sources packed in Jars, was
security. Because, even without access to Java sources, by adding a Jar as
a dependency to an application, objects could be accessed, extended and
instantiated. So, aside from providing a reliable configuration, better scaling,
integrity for the platform and improved performance, the goal for introduction of
modules was better security as well.

Appendix

www.itbook.store/books/9781484237779

https://itbook.store/books/9781484237779

8

What if we want to limit the access to module contents only to the chapter.three

module? This can be done by adding the to keyword followed by the module name to

the exports directive.

module chapter.zero {

 exports com.apress.bgn.ch0 to chapter.three;

}

More than one module can be specified to have access by listing the desired modules

separated by comma.

module chapter.zero {

 exports com.apress.bgn.ch0 to chapter.three, chapter.two;

}

All good and well, but we can go even one step further. What if module chapter.

three requires access to a class defined in a module that is a dependency of chapter.

zero? In technical language this is called a transitive dependency, because it is more

practical to use a dependency that is already there, instead of declaring it again. Modules

support this, and the term to declare such a dependency is (as you probably suspected):

transitive.

For this scenario, we’ll make our module chapter.zero depend on external

module of the LOG4J (Apache Log4j 2), that is a simple library for logging of application

behavior.4 But we also want any module depending on chapter.zero to use classes in

the org.apache.logging.log4j module. In this case, the contents of the module-info.

java for module chapter.zero becomes

module chapter.zero {

 requires transitive org.apache.logging.log4j;

 exports com.apress.bgn.ch0 to chapter.three;

}

4 More details here https://logging.apache.org/log4j/2.x/

Appendix

www.itbook.store/books/9781484237779

https://logging.apache.org/log4j/2.x/
https://itbook.store/books/9781484237779

9

By using requires transitive we have given read access to module org.apache.

logging.log4j to our chapter.three. This means that object types in chapter.three

can de declared by making use of object types defined in packages exported by module

org.apache.logging.log4j.

And this is where simple, and sort-of understandable things end. There are a few more

module directives to cover, which are a little more difficult to grasp, but you can return to

this chapter when you have a little more understanding of Java. So, here it goes...

In Java, there is a feature named reflection. Reflection is the process of inspecting

a package and access information of all its contents including private members. You can

imagine that maybe this is not such a good thing, especially in a productive application

that requires higher levels of security. Plus, such a feature makes it useless to have so

many types of accessors, right? Up to Java 9, this is how things were in Java, and using

reflection lead to problems included in the Jar Hell category. By introducing modules,

reflection can be restricted. This means that reflection is no longer possible unless the

module is configured to allow it. There are three forms of the same directive that can

configure access using reflection.

• open is used at module declaration level and allows reflective access

to all packages within it.

open module chapter.zero {

 requires transitive org.apache.logging.log4j;

 exports com.apress.bgn.ch0 to chapter.three;

}

• opens is used inside the module declaration to selectively configure

access through reflection only to certain packages.

module chapter.three {

 requires chapter.zero;

 opens com.apress.bgn.ch3.helloworld;

}

Appendix

www.itbook.store/books/9781484237779

https://itbook.store/books/9781484237779

10

• opens ... to is used inside the module declaration to selectively

configure access through reflection only to certain packages and to

a specific module. It’s a little difficult to give an example here, but

let’s imagine this project uses Spring Boot,5 which uses reflection to

instantiate objects of types defined in our chapter.three module.

module chapter.three {

 requires chapter.zero;

 requires spring.boot;

 requires spring.web;

 requires spring.context;

 requires spring.boot.autoconfigure;

 opens com.apress.bgn.ch3.helloworld to spring.core;

}

Aside from opening a package or a module for reflection the directives also provide

access to the package’s (respectively all packages in the module) public types (and their

nested public and protected types) at runtime only.

There are two directives left to cover: uses and provides that are difficult to explain

here, since they make more sense after you have dug into Java a little. But let’s give it a

try, and you can return to this chapter later. Module declarations that contain directives

provides or provides... with are named service providers because these modules
provide a service implementation.

Java has a class named java.util.ServiceLoader that can modularize an

application and load implementations of a service. What is a service in this case? A java

object type that defines only a contract and that service providers need to provide a

concrete implementation for.

! A service is modeled in Java using an object type. it is called an interface,
and is covered in Chapter 4. An interface can be compared with the earliest
specification version for a car before being built, it covers what it should do, but not
how. When the car is being built, it is the implementation part; that is when the
how is decided. And cars do the same things, but in different ways depending on

5 A very popular framework written in Java is Spring, Spring Boot is used to build production-ready
Spring applications. More about it here: https://projects.spring.io/spring-boot/

Appendix

www.itbook.store/books/9781484237779

https://doi.org/10.1007/978-1-4842-3778-6_4
https://projects.spring.io/spring-boot/
https://itbook.store/books/9781484237779

11

their type of engine, for example. So an electric car has a different implementation
(under the hood) for the braking function(during braking electric cars also recharge
their battery) than a diesel based car.

Assuming the service needed to be implemented is named NakedService, a module

with a class that provides an implementation for it is declared as follows.

module chapter.one {

 requires chapter.zero;

 provides com.apress.bgn.ch0.service.NakedService

 with com.apress.bgn.ch1.service.Provider;

}

By using the provides declarative like that, this module just became a service

provider.

The module that uses the service with the java.util.ServiceLoader class is

called a service consumer and to declare the fact that a service consumer uses

an implementation of that service contains the following directive in its module

configuration file.

module chapter.three {

 requires chapter.zero;

 uses com.apress.bgn.ch0.service.NakedService;

}

You would ask now, but what is the difference from normally accessing module

contents? Well, if you noticed, there is no requires chapter.one directive in the

module configuration file depicted previously. Why? Because when using services it is

only needed to have the module that provides the service type as a dependency in the

classpath. So, this way module chapter.three does not really care who provides the

implementation, and as long as it is there is retrieved by the java.util.ServiceLoader.

Why is this important? Because it decouples an application and removes explicit

dependencies on concrete implementation(the module-info.java for module chapter.

three does not need to explicitly declare a dependency on module chapter.one). This is

the Java simple way to support Inversion of Control.

Appendix

www.itbook.store/books/9781484237779

https://itbook.store/books/9781484237779

12

! This book introduces you into the core components of programming, which
are data structures, algorithms, design patterns, and the most common coding
principles. They are explained as they come up in the book, so there is no
predefined order or sequence that you should expect.

To explain inversion of control, dependency injection must be explained.
The action performed by any program (not only Java) is the result of interaction
between its interdependent components, usually named objects. dependency
injection is a concept that describes how dependent objects are connected at
runtime by an external party. Take a look at Figure A-4. it describes two types of
relationships between objects, and how those objects “meet” each other.

Figure A-4. Object relationships and how they meet

So, object A that needs an object of type B to perform its functions, thus A depends
on B. Object A can directly create the object B - case (1), composition or
retrieves a reference to an existing object itself - case (2), aggregation, but this
ties them up together.

dependency injection allows severing that tie by using an external party to provide
an object of type B to the object of type A - case (3), still aggregation, but with no
direct ties and a twist.

Appendix

www.itbook.store/books/9781484237779

https://itbook.store/books/9781484237779

13

Inversion of control is a design principle in which generic reusable components
are used to control the execution of problem-specific code, as in retrieving
dependencies. Thus, you can say that the java.util.ServiceLoader is
an dependency handler used to perform dependency injection and thus it was
designed following the inversion of control principle.6

This is where the under the hood section ends. I hope it has given you enough

understanding of Java’s organization of code and the reasons behind it, and that you

continue reading the book and experimenting with code confidently.

 A.2 Java Typical Application Design
Let’s consider a banking web application. It is probably complex, right? A lot of code has to

be written to handle user requests, process banking transactions, and saving and retrieving

data. Can you imagine how this code is organized? Most applications have three basic

layers: presentation, services, and data access. Figure A-5 depicts this common structure.

6 also known as the Hollywood Principle: “Don’t call us, we’ll call you”.

Figure A-5. The three most common layers of a Java application

Appendix

www.itbook.store/books/9781484237779

https://itbook.store/books/9781484237779

14

In the most simple applications, each layer is represented by a subproject or module,

that contains all the code used to perform a group of related operations. For example: all

code in the presentation layer implements functionalities for interaction with the user,

processing user requests and transforming them into calls for layers under it. So before

there were Java modules, java projects were themselves organized as multimodule

projects. And that is why in IntelliJ IDEA there is a tab called Modules.

 The HelloWorld! Project Compiled and Executed
Manually
You’ve probably noticed the Terminal button in your IntelliJ IDEA. If you click that

button, inside the editor a terminal opens. For Windows, it is a Command Prompt

instance, for Linux and macOS is the default shell. And IntelliJ opens your terminal right

into your project root. The following describes what you have to do.

 1. Enter the src directory by executing the following command.

cd src

cd is a command that works under Windows and Unix systems; it is short for change

directory.

 2. Compile the HelloWorld.java file by executing

javac HelloWorld.java

javac is a JDK executable used to compile Java files that IntelliJ IDEA calls in the

background.

 3. Run the resulting bytecode from the HelloWorld.class file by

executing

java HelloWorld

Figure A-6 depicts the execution of those commands, in a terminal in IntelliJ IDEA.

Appendix

www.itbook.store/books/9781484237779

https://itbook.store/books/9781484237779

15

Looks simple, right? And it is simple, because no packages or Java modules were

defined. But wait, is that possible? Well, yes. If you did not define a package, the class

is still part of an unnamed default package, which is provided by default by the JSE

platform for development of small, temporary, educational applications, like the one

you are building. So let’s make our project a little bit more complicated and add a named

package for our class to be in.

 Putting Class HelloWorld in a Package
In the creation menu, there is a Package option. So, right-click the src directory and

select it. A dialog window appears where you have to enter the package name. Enter com.

sandbox. In Figure A-7, the dialog windows is depicted, and even if the package is already

created, we introduced the same name again to show you how the IDE warns you that

you are trying to create a package with the same name.

Figure A-6. Manually compile and run the HelloWorld class in a terminal inside
IntelliJ IDEA

Appendix

www.itbook.store/books/9781484237779

https://itbook.store/books/9781484237779

16

So, we created the package, but the class is not in it. Well, the way to get it there is to

select it and drag it into it. A dialog window for moving the class will appear, because the

editor has to modify the class to make it to belong to the package by adding a package

statement. And it requires your approval for the operation. Figure A-8 depicts this dialog

window.

Figure A-7. Create package in IntelliJ IDEA

Appendix

www.itbook.store/books/9781484237779

https://itbook.store/books/9781484237779

17

Click the Refactor button and look at what happens to the class. The class should

now start with a package com.sandbox; declaration. If you rebuild your project, and

then look at the directory structure, you see something similar to what is depicted in

Figure A-9.

Figure A-8. Moving a class into a package in IntelliJ IDEA

Figure A-9. New directory structure after adding the com.sandbox package

Appendix

www.itbook.store/books/9781484237779

https://itbook.store/books/9781484237779

18

If you compile and execute the class manually, you have to consider the package

now, so your commands will change to

~/sandbox/src - $ javac com/sandbox/HelloWorld.java

~/sandbox/src - $ java com/sandbox/HelloWorld

Hello World!

But things do not end here, because we still have Java modules. So, what about

that? How is our code running without a module-info.java file? Well, there is a

default unnamed module, and all JARs, modular or not, and classes on the classpath

are contained in it. This default and unnamed module exports all packages and reads

all other modules. Because it does not have a name it cannot be required and read by

named application modules. Thus, even if your small project seems to work with JDKs

with versions bigger or equal to 9, it cannot be accessed by other modules, but it works

because it can access others. (This ensures backward compatibility with older versions of

the JDK.) This being said, let’s add a module to our project.

 Configuring the com.sandbox Module
Configuring a module is as easy as adding a module-info.java under the src directory.

In Figure A-6, in the menu listed there is a module-info.java option and if you select

that, the IDE generates the file for you. All is well and fine, and if you do not like the

module name that was generated, you can change it. I changed it to com.sandbox to

respect the module naming convention mentioned in the modules section.

/**

 * Created on 3/3/18.

*/

module com.sandbox {

}

What happens now that we have a module? Not much from the IDEs point of view.

But if you want to compile a module manually you have to know a few things. I compiled

our module using the following command.

Appendix

www.itbook.store/books/9781484237779

https://itbook.store/books/9781484237779

19

~/sandbox/src/ - $ javac -d ../out/com.sandbox \

 module-info.java \

 com/sandbox/HelloWorld.java

! "\" is a macOS/Linux separator. On Windows, write the whole command on a
single line or replace "\" with "^".

Let me explain what I did there. The following is the syntax to compile a module.

javac -d [destination location]/[module name] \

 [source location]/module-info.java \

 [java files...]

The result of executing that command is that under the out directory, a directory

named com.sandbox is created—the module name. Under this directory, we’ll have the

normal structure of the com.sandbox package. The contents of the out directory are

depicted in Figure A-10.

Figure A-10. Java module com.sandbox compiled manually

As you have noticed in this example, the module does not really exist until we compile

the sources, because a Java module is more of a logical mode of encapsulating packages

described by the module-info.class descriptor. The only reason the com.sandbox

directory was created is that we specified it as argument in the javac -d command.

Appendix

www.itbook.store/books/9781484237779

https://itbook.store/books/9781484237779

20

We have a compiled module, what do we do with it? We try to run the application.

sandbox/ - $ java --module-path out \

 --module com.sandbox/com.sandbox.HelloWorld

Hello World!

The following is the syntax to execute a modular application.

java --module-path [destination location] \

 --module [module name] /[package name].HelloWorld

Hello World!

Regarding the module name, doesn’t it seem a little redundant? To me, it sure

looks like it, which is why I prefer not to create directories for modules unless I have

more of them under src directory. And we also have to talk about the standard naming

conventions for modules. That is also another thing that might give developer headaches

if they want to create directories for modules. In multiple blog articles, and even in the

Oracle Magazine from September 2017, this is recommended.7 But do not worry about

it for now, the sources of the book contain modules with simple names and the module

configuration is already in place for you.

Let’s give it a try. Let’s create two modules, one named com.sandbox.one and one

named com.sandbox.two, create directories for their sources too. Figure A-11 shows how

the project structure looks in this case. You can see that even the IDE is puzzled about it,

because the project view has changed into something that does not resemble what was

depicted in the previous figures.

7 Oracle Magazine edition from September 2017 can be accessed here: http://www.
javamagazine.mozaicreader.com/SeptOct2017#&pageSet=29&page=0

Appendix

www.itbook.store/books/9781484237779

http://www.javamagazine.mozaicreader.com/SeptOct2017#&pageSet=29&page=0
http://www.javamagazine.mozaicreader.com/SeptOct2017#&pageSet=29&page=0
https://itbook.store/books/9781484237779

21

I cannot recommend which approach to use, because there might be developers out

there for whom this makes sense. I consider it redundant and I will try to avoid having

more than one java module in the same project module.

Compiling and executing Java applications manually is no walk in the park. That

is why this function can be fulfilled by smart Java editors, like IntelliJ IDEA, Eclipse,

or Apache NetBeans and with build tools. Build tools were introduced to generate

those kind of statements for you, to automatically add dependencies to the classpath/

modulepath and overall make development quicker and easier. We did not cover

compiling and executing applications that depend on external JARs/modules because

Figure A-11. Java modules with matching directory names

Appendix

www.itbook.store/books/9781484237779

https://itbook.store/books/9781484237779

22

that is not the scope of this book. But if you are really interested in this, the Internet is

great and helpful. And now that we made it clear that manual compiling and execution

of Java applications is a pretty much a no-go (it’s possible, but not worth the effort), let’s

start talking about Java build tools.

 Java Projects Using Build Tools, Mostly Gradle
Maven is a build automation tool used primarily for Java projects. Although Gradle is

gaining ground, Maven is still one of the most used build tools. Tools like Gradle and

Maven are used to organize the source code of an application in interdependent project

modules and configure a way to compile, validate, generate sources, test and generate

artifacts automatically. An artifact is a file—usually a JAR—that is deployed to a Maven

repository. A Maven repository is a location on a HDD where JARs get saved in a special

directory structure.

The discussion about build tools must start with Maven,8 because this build tool

standardized a lot of the terms we used in development today. For example, for big

projects that can be split into multiple parts—sub-projects—that can be compiled and

archived in separate JARs, we call a subproject a module, because the XML element to

declare a subproject as a child of a project is called <module .../>.

A Maven build produces one or more artifacts, such as a compiled JAR, a “sources”

JAR and even “test” jar if the module has test classes in it. Maven introduced a way to

uniquely identify artifacts. Each artifact has a group ID (usually a reversed domain

name, like com.sandbox), an artifact ID (just a name), and a version string. Maven

projects are configured using one or more pom.xml files, one for the parent project and

one or each of its modules (subprojects/children/modules). In the following code

snippet, you can see a simplified version of a parent project pom.xml file.

<?xml version="1.0" encoding="UTF-8"?>

<project ...>

 <groupId>com.sample</groupId>

 <artifactId>parent-maven</artifactId>

 <version>1.0-SNAPSHOT</version>

8 We won’t mention Ant, which is the first Java build tool that is still hanging around because of
legacy code. More about it at https: //ant.apache.org/

Appendix

www.itbook.store/books/9781484237779

https://ant.apache.org/
https://ant.apache.org/
https://itbook.store/books/9781484237779

23

 <packaging>pom</packaging>

 <modules>

 <module>child-01</module>

 <module>child-02</module>

 </modules>

 ...

</project>

This file has the minimum elements needed to understand how the project

is organized. You can see that the project is identified uniquely by the values of

elements: <groupId> , <artifactId> and <version>. And under them, you can see its

subprojects (modules). Look at Figure A-12. Is that the same structure you imagined

after seeing that file?

Figure A-12. Maven multimodule project structure

Maven also requires the project structure to look a certain way; it introduced a

standard for this that has taken over the Java development world. Figure A-13 shows the

structure of the parent-maven project and one of its modules child-01.

Appendix

www.itbook.store/books/9781484237779

https://itbook.store/books/9781484237779

24

Figure A-13. Maven module structure

Now, let’s explain! Project parent-maven is called a multimodule project because it

is made up of more than one module (child-01 and child-02 here). The modules are in

fact subprojects that are compiled and archived into JARs. Each module is represented

by a directory containing the sources, resources, tests, and a Maven configuration file.

The directories are located under the parent-maven directory. It’s not a must for them to

be there, but it definitely makes it clear that they are parts of a bigger project.

Subproject child-01 is a module of project parent-maven. The content of this

directory gets built into an artifact, thus it definitely contains Java code in there. Its

internal structure can be explained as follows.

• The src directory contains the sources of this module that are

grouped in two categories stored under two directories: main and test

Appendix

www.itbook.store/books/9781484237779

https://itbook.store/books/9781484237779

25

• the main directory contains source and resource files that get built

into the artifact

 – The java directory contains packages declarations, with their classes and

module-info.java files

 – The resources directory contains any type of text files (*.properties,

*.XML, *.JSON, etc.) that are read by classes declared into the java

directory(configuration and data).

• The test directory has an identical internal structure as main, only

the classes in its java directory are Java test classes, used to test the

classes defined in main\java and the resources directory contains

files on any text type filled with test data and test configurations. This

module can be built into an artifact and its name will have *-tests

as a suffix. Such artifacts are used as dependencies by other modules

that contain tests that use the API defined in their test dependency.

The Maven way to identify artifacts and the internal structure of projects and

multimodule projects have become the standard for Java applications. Gradle, the next

best thing when it comes build tools for Java applications, has embraced them both.

Gradle is preferred nowadays for a number of reasons, but the one you hear mentioned

the most is that configuration files are written in Groovy and the configuration for big

projects can be reduced a lot. (Maven uses XML with strict rules for configuration, and

for big projects the configuration files tend to become complex and unreadable).9

For example, to declare a parent project with two modules, like the one listed for

Maven, with Gradle, you just need a settings.gradle file containing the following.

rootProject.name = 'parent-gradle'

include 'child-01'

include 'child-02'

9 The Maven project was presented as a case-study; it is a real and working project that can be
found on GitHub at https://github. com/iuliana/gradle-vs-maven. If you are curious, you
can take a look.

Appendix

www.itbook.store/books/9781484237779

https://github.com/iuliana/gradle-vs-maven
https://github.com/iuliana/gradle-vs-maven
https://itbook.store/books/9781484237779

26

And a build.gradle file containing

allprojects {

 version = '1.0-SNAPSHOT'

}

The settings.gradle and the build.gradle file are both Groovy scripts. Only one

settings.gradle script is executed in each build (in comparison to the build.gradle

script in multiproject builds), which is why this is the proper place in which the project

structure is defined. You can see that even with two configuration files, the syntax is still

greatly reduced and easier to read.

Gradle was chosen as the go-to build tool for the sources attached to this book.

A multimodule project can be downloaded from GitHub, and build in the command line

or imported into IntelliJ. This approach makes sure that you get quality sources, which

can be compiled in one go. It is also practical, because I imagine you do not want to

load a new project in IntelliJ every time you start reading a new chapter. Also, it makes

it easier for me to maintain the sources and adapt them to a new JDK, and with Oracle

releasing so often, I need to do this quickly.

The project that you use to test the code written in this book (and write your own

code if you want to) is called java-bgn.10 It is a multimodule Gradle project. The first

level of the project is the java-bgn project, that has a configuration file named build.

gradle. In this file, all dependencies and their versions are listed. The child projects, the

ones on the second level, are the modules of this project. And we call them child projects

because they inherit those dependencies and modules from the parent project. In their

configuration files, we can specify what dependencies are needed, from the list defined

in the parent. And these modules are a method of wrapping up together sources for each

chapter and that is why these modules are named chapter00, chapter01, and so forth.

If a project is big and needs a lot of code to be written, the code is split again in another

level of modules. Module chapter05 is such a case, and is configured as a parent for the

projects underneath it. Figure A-14 shows how this project looks like loaded in IntelliJ

IDEA, and module chapter05 is expanded so you can see the third level of modules.

Each level is marked with the corresponding number.

10 The project will be renamed to “java-for-absolute-beginners” when the book is officially
released, to help with search engines indexing.

Appendix

www.itbook.store/books/9781484237779

https://itbook.store/books/9781484237779

27

Figure A-14. Gradle multimodule-level structure

Appendix

www.itbook.store/books/9781484237779

https://itbook.store/books/9781484237779

28

If you have loaded it into IntelliJ IDEA like you were taught in Chapter 2, you can

make sure everything is working correctly by building it. Here’s how you do it.

You can do it by using the IntelliJ IDEA editor, in the upper right side you should

have a tab called Gradle projects. If the projects are loaded like they are depicted in

Figure A-15, the project loaded correctly. If the Gradle projects tab is not visible, look

for a label like the one marked with (1) and click it. Expand the java-bgn(root) node

until you find the build task, marked with (2). If you double-click it and in the view at the

bottom of the editor, you do not see any error; all of your projects were built successfully.

Figure A-15. Gradle multimodule level structure

The second way to make sure the Gradle project is working as expected is to build it

from the command line. Open an IntelliJ IDEA terminal, and if you installed Gradle on

Appendix

www.itbook.store/books/9781484237779

https://doi.org/10.1007/978-1-4842-3778-6_2
https://itbook.store/books/9781484237779

29

the system path as explained in Chapter 2 just type gradle clean build and hit Enter.

In the command line, you might see some warnings, if the Gradle plugin for supporting

Java modules is still unstable when this book reaches you, but as long as the execution

ends with BUILD SUCCESSFUL everything is all-right.

Aside from the sandbox project, all the classes, modules, and packages mentioned in

this section are part of this project. The chapter00 and chapter01 do not contain classes

specific to those chapters. I just needed them to construct the Java module examples.

IntelliJ IDEA sorts modules in alphabetical order, so the naming for the chapter modules

was chosen this way so they are listed in the normal order that you should work with them.

 Nested classes (advanced version)
Nested classes are a special type of class that are declared in the body of other classes.

Nesting classes is a practice of writing code used to group together classes that logically

are linked because they share the same purpose. It also increases encapsulation, hiding

from the outside world classes that are used in a limited context. Also, if done properly,

nesting classes leads to more readable and maintainable code.

As you’ve already learned, top-level classes are classes defined in files named after

them. A top-level class’s body can contain two types of nested classes declarations.

The non-static nested class is declared inside the body of a top-level class,
outside any method body – these types of classes are named inner classes, and they

can only be instantiated by using an instance of the top-level class. In the following code

snippet, class NotStaticNested is declared inside the body of class TopWithNested. If the

class is public it can be accessed from any package; if there is no accessor defined, it is

limited to the package its top-level class is declared in. In other words, the accessibility

settings are inherited from the class in which it is declared.

package com.apress.bgn.ch0;

public class TopWithNested {

 public class NotStaticNested {

 NotStaticNested() {

 System.out.println("I am non-static nested!");

 }

 }

}

Appendix

www.itbook.store/books/9781484237779

https://doi.org/10.1007/978-1-4842-3778-6_2
https://itbook.store/books/9781484237779

30

As instantiation of the inner class can only be done using an existing instance of the

top-level class, the syntax is quite ... strange. In the next code snippet you can see the twn

instance being created first, and then the NotStaticNested constructor being called on

it, in a manner similar to the way methods are usually called.

package com.apress.bgn.ch0;

public class NestedDemo {

 public static void main(String... args) {

 TopWithNested twn = new TopWithNested();

 TopWithNested.NotStaticNested nsn = twn.new NotStaticNested();

 }

}

The full class name includes the top-level class name when the class is instantiated

outside of the top-level class. Another interesting thing about inner classes is that they

cannot have nested members. This is because static members are instantiated when the

program starts, but an inner class cannot be created until an instance of the enclosing

class is created.

Inner classes have access to other members of the enclosing class, even if they are

declared private; thus its methods can use fields of the enclosing class to do its own

processing. To see this in action, a field of type StringBuilder will be added to the

TopWithNested class. Both classes will add texts to it when their constructors are called.

package com.apress.bgn.ch0;

public class TopWithNested {

 private StringBuilder topLevelSb = new StringBuilder();

 public class NotStaticNested {

 NotStaticNested() {

 topLevelSb.append("calling NotStaticNested()\n");

 }

 }

 public TopWithNested() {

 topLevelSb.append("calling TopWithNested()\n");

 }

Appendix

www.itbook.store/books/9781484237779

https://itbook.store/books/9781484237779

31

 public String getStringContents() {

 return topLevelSb.toString();

 }

}

In the next code snippet, the statements to test the previous implementation are

depicted.

...

TopWithNested twn = new TopWithNested();

TopWithNested.NotStaticNested nsn = twn.new NotStaticNested();

System.out.println(twn.getStringContents());

...

And because of what I’ve explained so far, when running the previous statements,

the following output is expected:

calling TopWithNested()

calling NotStaticNested()

Let’s get creative here: what do you think will happen if we declare an inner class

inside an interface? Is it even possible? Yes it is, but under the hood, the compiler

modifies the inner class by adding the static modifier—because anything that is not

a method skeleton or a default method, or private method in an interface, is by default

public and static. So a nested class declared in an interface is not actually an inner

class, but an static nested class. This can be easily checked by opening the class file

generated by the Java compiler. In the next snippet, you can see the declaration of the

NotStaticNested inside the InterfaceWithNested class.

package com.apress.bgn.ch0;

public interface InterfaceWithNested {

 class NotStaticNested {

 NotStaticNested() {

 System.out.println("I am non-static nested!");

 }

 }

}

Appendix

www.itbook.store/books/9781484237779

https://itbook.store/books/9781484237779

32

And here are, the contents of the InterfaceWithNested.class:

package com.apress.bgn.ch0;

public interface InterfaceWithNested {

 public static class NotStaticNested {

 NotStaticNested() {

 System.out.println("I am non-static nested!");

 }

 }

}

The static nested class is declared inside the body of a top-level class, or
interface, outside any method body. These types of classes are associated with the

enclosing class in the same way static methods and variables are. A static nested class

interacts with other static methods and fields of the enclosing class. Its behavior is the

same as the class enclosing its declaration, and declaring static nested classes is usually

done because of packaging convenience. The following code snippet contains a static

nested class declaration and a sample of the syntax to instantiate that class.

package com.apress.bgn.ch0;

public class StaticNestedDemo {

 static class NestedClass {

 public NestedClass(){

 System.out.println("calling NestedClass()!");

 }

 }

 public static void main(String... args) {

 new StaticNestedDemo.NestedClass();

 }

}

When used outside of the enclosing class, the name of the class must be prefixed

with the name of the enclosing class. As for where this class can be accessed from, the

normal rules for accessors on top-level classes apply.

Appendix

www.itbook.store/books/9781484237779

https://itbook.store/books/9781484237779

33

Similar to nested classes, local classes are declared inside the bodies of methods

of a top-level class. They are limited to the context of the block they are declared in,

and that is the only place they can be instantiated and used. When necessary, although

discouraged because of the possible complexity of the resulting code, a full-blown class

can be declared inside a method body (static or non-static). Local classes are non-static

and cannot define or declare any static members. When a local class is declared in a

static method, it can access other static members of the enclosing class. In addition, a

local class has access to all variables declared within the same block.

package com.apress.bgn.ch0;

public class LocalClassDemo {

 private static int i = 10;

 public static void main(String... args) {

 int j = 5;

 class Local {

 public Local() {

 System.out.println("calling Local();");

 System.out.println(" and I can access i = " + i);

 System.out.println(" and I can access j = " + j);

 }

 }

 new Local();

 }

}

When declared by implementing an interface on the spot, they are named

anonymous classes because they have no name. The statement to declare such a class is

both an implementation on the spot of an interface and an instantiation. In the following

code snippet an anonymous class is created in the body of the constructor for the

TopWithNested class by implementing the java.langRunnable interface; the resulting

instance is used to create a thread object.

Appendix

www.itbook.store/books/9781484237779

https://itbook.store/books/9781484237779

34

package com.apress.bgn.ch0;

public class TopWithNested {

 public TopWithNested() {

 Runnable anon = new Runnable() {

 @Override

 public void run() {

 System.out.println(Thread.currentThread().getId() +

 ": I am an anonymous instance! ");

 }

 };

 Thread t = new Thread(anon);

 t.run();

 }

 public static void main(String... args) {

 new TopWithNested();

 }

}

Lambda expressions can compact the previous code, but for a better understanding

of nested classes, the expanded code was necessary. The entire body of the constructor

can be reduced to the following inline statement, and the underlined part of it represents

the declaration and instantiation of the anonymous class.

...

new Thread(() -> System.out.println(Thread.currentThread().getId()

 + ": I am anonymous instance! ")).run();

...

Local classes should be used when their implementation does not affect the

readability, maintainability and testability of the enclosing class. In additoon, access to

variables of the enclosing method and to static fields of the enclosing class might lead

to problems like shadowing when these classes declare fields and methods that share

a name. I recommend this article https://docs.oracle.com/javase/tutorial/java/

javaOO/localclasses.html from the official Oracle documentation to learn more about

the problems that might emerge when using local classes.

Appendix

www.itbook.store/books/9781484237779

https://docs.oracle.com/javase/tutorial/java/javaOO/localclasses.html
https://docs.oracle.com/javase/tutorial/java/javaOO/localclasses.html
https://itbook.store/books/9781484237779

	Appendix
	A.1 Chapter 3: Introducing Modules (Advanced Version)
	How to Configure Modules

	A.2 Java Typical Application Design
	The HelloWorld! Project Compiled and Executed Manually
	Putting Class HelloWorld in a Package
	Configuring the com.sandbox Module
	Java Projects Using Build Tools, Mostly Gradle

	Nested classes (advanced version)

