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APPENDIX A

 Credit Derivatives
A credit derivative is a financial contract that aims at reducing credit risk—that is, the 

risk of default posed by contracts established with a business counterparty. These kinds 

of derivatives have become increasingly popular in the last decade, because they allow 

the hedging of complex financial positions even in industries that are not covered by 

mainstream markets.

As a financial software engineer, you are interested in modeling and analyzing 

such credit derivative contracts using programming code. Employing some of the 

methods developed in the previous chapters, it becomes possible to write applications 

that simplify the pricing and evaluation of such derivative instruments. In particular, 

credit derivatives can be modeled using some of the same tools that have already been 

discussed for the analysis of options.

In this chapter, you will learn how to create the C++ code that can be used in the 

quantitative analysis of credit derivative contracts. Here are some of the topics discussed:

• General concepts of credit derivatives: A general exposition of what 

credit derivatives are and the main types of derivatives commonly 

used in the marketplace.

• Modeling the problem: How to model the problems occurring in 

the area of credit derivatives. I’ll present examples of how such 

derivatives can be modeled using tools that have been previously 

used for standard options.

• Barrier options: You will learn about barrier options and how they can 

be used to compute prices for large classes of credit derivatives. You 

will also see coding examples of how to handle barrier options in C++.

• Using QuantLib for credit derivatives: You will find a complete example 

of how to use the financial classes contained in QuantLib to implement 

derivatives-related C++ code. I will present the CDSSolver class, which 

implements a pricing strategy for derivatives based on barrier options.
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 Introduction to Credit Derivatives
A credit derivative is a type of financial contract that protects participants from credit 

risk. Credit risk, in the large majority of the cases, refers to the risk of default (or lack of 

payment by other means) from a counterpart. For example, consider a company that 

creates a financial operation that is backed by an insurance contract. If this insurance 

contract is provided by a third party, this presents a risk of bankruptcy. The participants 

of this contract want to protect against the possibility of default, so companies can create 

a credit derivative that will pay a considerable amount of money if that the counterpart 

goes bankrupt. Such contracts are signed with another third party, which makes the 

payment if the bankruptcy occurs.

Credit derivatives can be classified according to several categories, which consider 

how the contract is structured and the participants in such a contract. Here are some of 

the most common types of credit derivatives that are traded in the market:

• CDO (collateralized debt obligations): A CDO is a type of credit 

derivative where the obligations paid are collateralized based on 

some underlying asset. This process of collateralization creates 

a tiered system, where the several payers are pooled and graded 

according to their credit risk. Thus, financial companies can sell 

different tiers, ranging from the highest credit (AAA) to lower level 

that represent higher default risk (B+ for example).

• CDS (credit default swap): A CDS allows companies to protect 

themselves against the default of a major market player. The buyer of 

a CDS makes one or more payments for a predefined period of time. 

If a default occurs on the covered asset, the CDS buyer is entitled to 

receive compensation for this credit event.

• Credit default option: A credit default option resembles an option 

contract, but the underlying corresponds to the credit default against 

which you are seeking protection.

• CDN (credit linked note): A CDN is a financial instrument that allows 

a particular type of credit risk to be transferred to other investors. 

Usually these notes are structured as bonds on lower risk assets, 

which are used to pay creditors if the target institution defaults.
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• CMCDS (constant maturity CDS): A CMCDS works just like a CDS, 

but it has different rules for the amount of the payoff received in 

the case of a default. With the CMCDS, payoffs change based on 

considerations that are determined between the participants of the 

contract. For example, the payoff may be determined according to a 

particular interest rate index.

• Total return swap: This category of derivative is used to transfer 

financial results between two institutions according to a predefined 

contract. The buyer makes one or more payments, while it expects 

to receive the total return of a particular investment as a payoff. This 

allows some institutions, such as hedge funds, to receive the return 

of complex financial investment with the help of a second entity that 

transfers the financial return at the end of the covered period.

 Modeling Credit Derivatives
As you saw in the previous section, credit derivatives encompass a large number of 

financial products that have in common the mitigation of credit risk from one entity to 

another. This makes it difficult to come up with general models for such a wide class of 

financial instruments. In this section, you will see a few examples of C++ models applied 

to a few common classes of credit derivatives.

The first step in creating effective code for credit derivatives is to have a computer 

model for this type of security. Given the diversity of CD contracts, having a proper 

model becomes even more important so that other algorithms can be applied to this 

type of security without the need to understand the internal complexities of each type of 

credit derivative.

As a first step, you can define a simple class that can be used to store and manipulate 

the data corresponding to a credit default swap. The fields in this class represent the 

characteristic values that define a CDS contract. These values are the following:

• Notional: This represents the total value of the position encompassed 

by the contract. The notional is usually larger than the payments due 

to leverage that is allowed on derivatives contracts.

• Spread: The value paid by the buyer of the CDS. It may be paid in a 

particular schedule, or in a single payment.
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• Time period: Defines the time period in which the CDS is valid.

• Pay at default: A Boolean value that determines if the payoff should 

be made at the time of credit default.

• Is long: A Boolean value that is true if the contract is being bought, 

and false if the contract is being sold.

In the next few sections, you will see how this information can be used to model CDS 

contracts with standard techniques employed in quantitative finance. In particular, I will 

discuss how to analyze such derivatives using the concept of barrier options. You will 

also see how to calculate the price for such barrier options.

 Using Barrier Options
This section I discusses how to use a technique that is frequently employed for the 

pricing of derivatives in general, including credit derivatives. To simplify the discussion, 

I use the most basic structure for a financial derivative so that you don’t need to worry 

about complex contractual issues. However, the barrier technique described in this 

section can be expanded to solve a large class of commonly traded derivatives.

The first step in understanding the solution method is to define a barrier option. A 

barrier option is a special type of derivative where payoff occurs when a particular price 

level, or barrier, is crossed. This makes it different from a normal option, because common 

options have a payoff that depends on how much the underlying is above or below some 

threshold. With a barrier option, however, the payoff is paid only as the barrier is crossed.

Barrier options work well as a simple model for credit derivatives, because the credit 

event is frequently defined as a particular barrier. For example, if the credit event is the 

bankruptcy of a company, the barrier to be crossed is given by the difference between 

assets and liabilities in the corporation. When that barrier is breached, the company 

becomes insolvent and the payoff needs to be made.

There are two main types of barrier options, depending on how the barrier is 

considered as part of the contract:

• Knock-in: This is a barrier option where the payoff is given only when 

the barrier is touched before expiration.

• Knock-out: This is a barrier option where the payoff is given only 

when the barrier is not touched before expiration.
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Thus, for example, a barrier option that pays when a company claims bankruptcy is a 

knock-in option, because the payment happens when the default barrier is reached. You 

can also classify barrier options according to the current value in relation to the barrier:

• Down-option: This is a barrier option where the barrier is below the 

current value of the underlying asset.

• Up-option: This is a barrier option where the barrier is above the 

current value of the underlying asset.

These two classifications can also be combined, so that you can have down-in 

options or up-out options. Finally, these options can be calls or puts, depending on 

whether you are buying the right to sell (put) or the right to buy (call) the underlying 

instrument.

 A Solver Class for Barrier Options
To solve the problem, a new class called CDSSolver is defined in this section. This class 

contains all the elements necessary to define a barrier option, along with the code that 

solves the pricing problem using functions and classes from the QuantLib repository. 

The definition of the class contains the member variables needed by the pricing 

algorithm:

class CDSSolver : boost::noncopyable {

public:

   // constructor

   CDSSolver(double val, double sigma, double divYield,

             double forwardIR, double strike, double barrier, double rebate);

   // solve the model

   std::pair<QuantLib::BarrierOption, QuantLib::BlackScholesMertonProcess>

   solve(QuantLib::Date maturity_date);

   // generate a grid

   void generateGrid(QuantLib::BarrierOption &option,

                     QuantLib::BlackScholesMertonProcess &process,

                     const std::vector<QuantLib::Size> &grid);
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private:

   double currentValue;

   double sigma;

   double divYield;

   double forwardIR;

   double strike;

   double barrier;

   double rebate;

};

The first thing to consider when reviewing this class is that the QuantLib code also uses 

boost libraries for basic functionality, such as smart pointers. In this case, the CDSSolver 

uses boost::noncopyable as a base class, which indicates that the class cannot be copied. 

Therefore, no copy constructor or assignment operators are declared in CDSSolver.

Note Observe that the CDSSolver class uses shared pointers declared in boost. 
this is necessary because QuantLib has boost as a direct dependency, and many 
of the internal smart pointers are declared in this way. remember, however, that 
C++11 also has its own version of shared_ptr, which is part of the standard 
namespace. it is important to avoid confusion between shared_ptr declared in 
boost and in the standard library.

There are two main member functions in the CDSSolver class. The solve function is 

responsible for performing the main tasks associated with the pricing of barrier options. 

The generateGrid evaluates the value of the barrier option at particular time points, as 

defined by the vector of times points passed as a parameter.

The member variables used by the CDSSolver class are the following:

• currentValue: Represents the current value of the underlying 

instrument.

• sigma: Represents the variance of the financial instrument.

• divYield: The dividend yield paid annually by the underlying.

• forwardIR: The forward interest rate, which is used to determine the 

return of cash that is not invested in the barrier option.
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• strike: The strike of the barrier option, that is, the price that 

determines the payoff value.

• barrier: The price barrier that needs to be crossed to trigger the 

payout of the option contract.

• rebate: Contractual rebate defined when the barrier option is created.

These variables are later used to solve the pricing problem, as you can see in 

the following description of the associated code. But first, I will provide a short 

introduction to the classes included in QuantLib that are used solve this kind of 

pricing problem.

 Barrier Option Classes in QuantLib
QuantLib offers support for pricing credit derivatives and related instruments. In 

particular, the library contains a set of classes that can be used to price barrier options as 

defined in the previous section. First, I will review some of these classes, which will later 

be used in a complete example of how to compute prices for barrier options.

The first class of importance is the Quote class. A quote is defined as one or more 

values that determine the current price of an instrument. The Quote class is just the  

base for several classes that represent quotes for different financial instruments. In  

this example, I will use a SimpleQuote to initialize the quote for the barrier option.  

The following code shows how this is done:

    Handle<Quote> quote(boost::shared_ptr<Quote>(new SimpleQuote(currentValue)));

This line of code uses a second class that is frequently used in QuantLib: the Handle 

class. A handle is a simple container that allows objects to be referenced and changed 

when necessary.

The next class used in the implementation of barrier options is YieldTermStructure. 

This class allows you to specify the yield curve currently used by the markets. The yield 

curve is a representation of the effective interest rates in a particular market, such as, 

for example, United States Treasury bonds. The curve is formed as you consider the 

different interest rates for each maturity period, usually measured in years. Figure 15-1 

shows an example of the yield term structure for Treasury bonds.
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Using the YieldTermStructure class in QuantLib, it is possible to store and use this 

information to compute barrier options. Depending on how the financial instrument 

is defined, such a yield term structure may be represented by several interest rates, one 

for each desired time horizon. The YieldTermStructure class is abstract and should be 

instantiated using one of their subclasses, which include:

• FlatForward: The simplest cases in which the curve is flat and no 

variation in interest rate is forecasted.

• ForwardCurve: A type of yield curve that can use different rates for 

each time period. This class can be used for the most common case 

where the interest rates for different time periods are known.

• PiecewiseYieldCurve: A yield curve in which the different segments 

of the curve are linearized.

• FittedBondDiscontCurve: A yield curve where interest rates are 

given indirectly and the yield can be fitted to represent a set of bonds.

In the example code of the next section, I use the FlatForward class as a way to 

represent a simple short-term yield structure, with no variation in interest rates. More 

complex yield term structures can be easily accommodated by using one of the previous 

classes.

A similar class provided by QuantLib is the BlackVolTermStructure. This class 

represents the volatility term structure, and allows you to determine a particular curve 

that represents the implied volatility (also known as Black volatility, which is used in 

the Black-Scholes equation) for the underlying instrument. Similarly to the yield term 

Figure 15-1. Example of yield structure for a U.S. Treasury bond
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structure, there are several options for the type of volatility term structure. They differ in 

the shape of the curve, as well as in the functions that can be used to represent each part 

of the curve. QuantLib also provides a number of classes that can be used to represent 

the different types of volatility term structure. Here are some of them:

• BlackConstantVol: Used to represent a volatility type that is constant 

over the whole period.

• BlackVarianceCurve: A type of volatility curve where different values 

of variance are used to determine the volatility.

• ImpliedVolTermStructure: A volatility term structure that is defined 

by the implied volatility associated with a particular instrument.

• BlackVarianceSurface: Defines a volatility curve based on a set 

of data points that define a variance surface. These values are 

interpolated to generate the desired variance surface.

Using the information stored in these classes, it is possible to describe the Black- 

Scholes model using the class BlackScholesMertonProcess, which is also part of 

QuantLib. This class receives as parameters the quote, a risk-free yield term structure, 

and a yield term representing the asset dividend. The class constructor also receives a 

volatility term structure as a parameter that describes the process.

The class StrikedTypePayoff is used to build complex payoffs. It also has a few 

useful derived classes, including the following:

• PlainVanillaPayoff: Represents the most common type of payoff, 

described by a single value and a strike.

• PercentageStrikePayoff: A type of payoff where the strike is given 

as a percentage of the underlying price, instead of as a fixed value.

• AssetOrNothingPayoff: A payoff that is structured as a binary 

decision. The results are either an asset or nothing.

• CashOrNothingPayoff: A payoff that is structured as a binary 

decision. The results are either cash or nothing.

The example code in the next section uses the PlainVanillaPayoff class. The 

constructor to this class uses as parameters the option type (put or call) and a strike.
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BarrierOption is the central class used by QuantLib to model barrier options. This 

class can be used to calculate the value of a particular barrier option, given a set of 

parameters that represent that option.

The first parameter to the constructor of BarrierOption is the type of barrier option. 

As previously described, barrier options can be of four types—UpIn, UpOut, DownIn, and 

DownOut—depending on the underlying price and the type of barrier used. The next 

parameters are values that correspond to the barrier, the rebate, the payoff, and the 

exercise.

Finally, this example also uses a barrier options engine called 

FdBlackScholesBarrierEngine. This class is used as an implementation for the 

pricing strategy.

 An Example Using QuantLib
Using the classes presented in the previous section, it is possible to explain the 

implementation of the class CDSSolver. First, consider the first member function, called 

CDSSolver::solve. This function receives as a parameter a Date object that represents 

the maturity date of the desired barrier option.

The first step is to create a quote for the option, instantiating the SimpleQuote class 

and using the current value of the underling as its single argument. Today’s date is also 

computed with the help of the Date::todaysDate member function.

Next, the code tries to instantiate the two term structure objects, one for the dividend 

yield and another for free cash interest rates. A volatility term structure object is also 

instantiated using the given volatility, which is estimated using the parameter sigma.

// solve the valuation problem using the barrier technique, from today to 

the maturity date pair<BarrierOption, BlackScholesMertonProcess>

CDSSolver::solve(Date maturity_date)

{

    Handle<Quote> quote(boost::shared_ptr<Quote>(new 

SimpleQuote(currentValue)));

   Date today = Date::todaysDate();

    shared_ptr<YieldTermStructure> ts1(new FlatForward(today, divYield, 

Thirty360()));
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    shared_ptr<YieldTermStructure> ts2(new FlatForward(today, forwardIR, 

Thirty360()));

    shared_ptr<BlackVolTermStructure> vs(new BlackConstantVol(today, 

NullCalendar(),sigma, Thirty360()));

The next part of the solve function is responsible for instantiating a process object, 

which uses QuantLib::BlackScholesMertonProcess. Such a process requires a quote 

object, yield term structures for interest rates and cash, and a volatility term structure 

that was previously created.

The function also creates two new objects: a payoff object of type 

PlainVanillaPayoff that represents the desired call option and a given strike. The 

exercise is established as a EuropeanExercise type, at the given maturity date.

auto process = BlackScholesMertonProcess(quote,

         Handle<YieldTermStructure>(ts1),

         Handle<YieldTermStructure>(ts2),

         Handle<BlackVolTermStructure>(vs));

    shared_ptr<StrikedTypePayoff> payoff(new PlainVanillaPayoff 

(Option::Type::Call, strike));

   shared_ptr<Exercise> exercise(new EuropeanExercise(maturity_date));

Finally, you’re ready to create a barrier option object, which is an instance of 

QuantLib::BarrierOption. It takes as parameters the type of barrier, the barrier value, a 

rebate (if it is available), and the two objects previously created: payoff and exercise.

The next two steps are to create a generalized Black-Scholes object using the existing 

process and to set the price engine of the barrier option. The price engine algorithm is 

responsible for price calculation, and this example uses AnalyticBarrierEngine, which is 

a common algorithm available from QuantLib. The member function CDSSolver::solve 

will finally return a pair that contains the option and process objects.

auto option = BarrierOption(Barrier::Type::UpIn, barrier, rebate, payoff, 

exercise);

   auto pproc = shared_ptr<GeneralizedBlackScholesProcess>(&process);
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    option.setPricingEngine(shared_ptr<PricingEngine>(new AnalyticBarrier 

Engine(pproc)));

   return std::make_pair(option, process);

}

The next member function implemented in the CDSSolver class is generateGrid. 

This function is conceptually simple, and it just prints a grid of prices calculated from 

the given barrier option, using the given BlackScholesMertonProcess and a set of points 

that determines the option price at a particular date.

Essentially, the function assumes that the grid points are sorted and selects the 

maximum value. Then, for each element of the grid, a new barrier engine is instantiated 

and used with the existing barrier option. The price is computed using the resulting 

combination of option and pricing engines. The code then prints the ratio of increase 

for that particular point. A backward computation is also performed for comparison 

purposes.

void CDSSolver::generateGrid(BarrierOption &option, 

BlackScholesMertonProcess &process, const vector<Size> &grid)

{

   double value = option.NPV();

   Size maxG = grid[grid.size()-1];   // find maximum grid value

   for (auto g : grid)

   {

       FdBlackScholesBarrierEngine be(shared_ptr<GeneralizedBlackScholes 

Process>(&process), maxG, g);

      option.setPricingEngine(shared_ptr<PricingEngine>(&be));

      cout << std::abs(option.NPV()/value -1);

       FdBlackScholesBarrierEngine be1(shared_ptr<GeneralizedBlackScholes 

Process>(&process), g, maxG);

      option.setPricingEngine(shared_ptr<PricingEngine>(&be1));

      cout << std::abs(option.NPV()/value -1);

   }

}
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 Complete Code
This section contains the complete listing of the CDSSolver class. It contains a header 

file (Listing 15-1), which defines the interface for the class, and an implementation file 

(Listing 15-2), where the methods solve and generateGrid are implemented.

Listing 15-1. Header File for the CDSSolver Class

//

//  CDS.hpp

//  CppOptions

#ifndef CDS_hpp

#define CDS_hpp

#include <stdio.h>

#include <utility>

#include <ql/instruments/barrieroption.hpp>

#include <ql/processes/blackscholesprocess.hpp>

//

// CDSSolver class, incorporates the solution to Credit Default

class CDSSolver : boost::noncopyable {

public:

   // constructor

   CDSSolver(double val, double sigma, double divYield,

             double forwardIR, double strike, double barrier, double rebate);

   // solve the model

   std::pair<QuantLib::BarrierOption, QuantLib::BlackScholesMertonProcess>

   solve(QuantLib::Date maturity_date);

   // generate a grid

   void generateGrid(QuantLib::BarrierOption &option,

                     QuantLib::BlackScholesMertonProcess &process,

                     const std::vector<QuantLib::Size> &grid);
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private:

   double currentValue;

   double sigma;

   double divYield;

   double forwardIR;

   double strike;

   double barrier;

   double rebate;

};

#endif /* CDS_hpp */

Listing 15-2 shows the implementation file for class CDSSolver. It also contains a 

simple test stub called test_CDSSolver, which creates a new instance of CDSSolver 

using a few test parameters.

Listing 15-2. Implementation File for Class CDSSolver

//

//  CDS.cpp

#include "CDS.h"

#include <iostream>

//include classes from QuantLib

#include <ql/instruments/creditdefaultswap.hpp>

#include <ql/instruments/barrieroption.hpp>

#include <ql/quotes/SimpleQuote.hpp>

#include <ql/time/daycounters/thirty360.hpp>

#include <ql/exercise.hpp>

#include <ql/termstructures/yield/flatforward.hpp>

#include <ql/termstructures/volatility/equityfx/blackconstantvol.hpp>

#include <ql/processes/blackscholesprocess.hpp>

#include <ql/pricingengines/barrier/analyticbarrierengine.hpp>

#include <ql/pricingengines/barrier/fdblackscholesbarrierengine.hpp>
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using namespace QuantLib;

using std::cout;

using std::vector;

using std::pair;

using boost::shared_ptr;

CDSSolver::CDSSolver(double val, double sigma, double divYield, double 

forwardIR, double strike, double barrier, double rebate)

:

   currentValue(val),

   sigma(sigma),

   divYield(divYield),

   forwardIR(forwardIR),

   strike(strike),

   barrier(barrier),

   rebate(rebate)

{

}

// solve the valuation problem using the barrier technique, from today to 

the maturity date

pair<BarrierOption, BlackScholesMertonProcess>

CDSSolver::solve(Date maturity_date)

{

    Handle<Quote> quote(boost::shared_ptr<Quote>(new SimpleQuote 

(currentValue)));

   Date today = Date::todaysDate();

    shared_ptr<YieldTermStructure> ts1(new FlatForward(today, divYield, 

Thirty360()));

    shared_ptr<YieldTermStructure> ts2(new FlatForward(today, forwardIR, 

Thirty360()));

    shared_ptr<BlackVolTermStructure> vs(new BlackConstantVol(today, 

NullCalendar(),sigma, Thirty360()));
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   auto process = BlackScholesMertonProcess(quote,

         Handle<YieldTermStructure>(ts1),

         Handle<YieldTermStructure>(ts2),

         Handle<BlackVolTermStructure>(vs));

    shared_ptr<StrikedTypePayoff> payoff(new PlainVanillaPayoff(Option::Type

::Call, strike));

   shared_ptr<Exercise> exercise(new EuropeanExercise(maturity_date));

    auto option = BarrierOption(Barrier::Type::UpIn, barrier, rebate, 

payoff, exercise);

   auto pproc = shared_ptr<GeneralizedBlackScholesProcess>(&process);

    option.setPricingEngine(shared_ptr<PricingEngine>(new AnalyticBarrier 

Engine(pproc)));

   return std::make_pair(option, process);

}

void CDSSolver::generateGrid(BarrierOption &option, 

BlackScholesMertonProcess &process, const vector<Size> &grid)

{

   double value = option.NPV();

   Size maxG = grid[grid.size()-1];   // find maximum grid value

   for (auto g : grid)

   {

       FdBlackScholesBarrierEngine be(shared_ptr<GeneralizedBlackScholes 

Process>(&process), maxG, g);

      option.setPricingEngine(shared_ptr<PricingEngine>(&be));

      cout << std::abs(option.NPV()/value -1);

       FdBlackScholesBarrierEngine be1(shared_ptr<GeneralizedBlackScholes 

Process>(&process), g, maxG);

      option.setPricingEngine(shared_ptr<PricingEngine>(&be1));

      cout << std::abs(option.NPV()/value -1);

   }

}
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void test_CDSSolver()

{

   // use a few test values

   double currentValue = 50.0;

   double sigma = 0.2;

   double divYield = 0.01;

   double forwardIR = 0.05;

   double strike = 104.0;

   double barrier = 85.0;

   double rebate = 0.0;

    CDSSolver solver(currentValue, sigma, divYield, forwardIR, strike, 

barrier, rebate);

   Date date(10, Month::August, 2016);

   auto result = solver.solve(date);

   std::vector<Size> grid = { 5, 10, 25, 50, 100, 1000, 2000 };

   solver.generateGrid(result.first, result.second, grid);

}

int main()

{

   test_CDSSolver();

   return 0;

}

 Conclusion
Credit derivatives are one of the most common types of derivatives traded in world 

markets. In this chapter, you learned a little more about such types of derivatives and 

how they can be modeled using C++.

I initially discussed the concept of credit derivatives and the different types of 

financial instruments that take part in this category of derivatives. You saw that such 

derivatives can be used to mitigate credit risks, such as the bankruptcy of a counterparty 

or the default of a loan, for example.
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You also learned about techniques to model such derivatives. In particular, you saw 

barrier options as a simplified model that can be used to analyze the behavior of such 

financial instruments.

This chapter presented a complete example of credit derivatives through the use 

of barrier options using QuantLib classes. The QuantLib repository contains a number 

of algorithms that are readily available to analyze credit derivatives. In particular, these 

classes can be used to determine the fair price of certain types of derivatives.

Another task that is frequently necessary when dealing with options and derivatives 

is the processing of input and output data in common formats. The most popular 

format for this type of application is based on XML. However, some other formats 

offer advantages as well. In the next chapter, you will learn about different strategies to 

process financial data and the common formats used to transfer such information across 

applications.
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