
1
© Carlos Oliveira 2020
C. Oliveira, Options and Derivatives Programming in C++20, https://doi.org/10.1007/978-1-4842-6315-0

APPENDIX A

 Credit Derivatives
A credit derivative is a financial contract that aims at reducing credit risk—that is, the

risk of default posed by contracts established with a business counterparty. These kinds

of derivatives have become increasingly popular in the last decade, because they allow

the hedging of complex financial positions even in industries that are not covered by

mainstream markets.

As a financial software engineer, you are interested in modeling and analyzing

such credit derivative contracts using programming code. Employing some of the

methods developed in the previous chapters, it becomes possible to write applications

that simplify the pricing and evaluation of such derivative instruments. In particular,

credit derivatives can be modeled using some of the same tools that have already been

discussed for the analysis of options.

In this chapter, you will learn how to create the C++ code that can be used in the

quantitative analysis of credit derivative contracts. Here are some of the topics discussed:

• General concepts of credit derivatives: A general exposition of what

credit derivatives are and the main types of derivatives commonly

used in the marketplace.

• Modeling the problem: How to model the problems occurring in

the area of credit derivatives. I’ll present examples of how such

derivatives can be modeled using tools that have been previously

used for standard options.

• Barrier options: You will learn about barrier options and how they can

be used to compute prices for large classes of credit derivatives. You

will also see coding examples of how to handle barrier options in C++.

• Using QuantLib for credit derivatives: You will find a complete example

of how to use the financial classes contained in QuantLib to implement

derivatives-related C++ code. I will present the CDSSolver class, which

implements a pricing strategy for derivatives based on barrier options.

www.itbook.store

https://doi.org/10.1007/978-1-4842-6315-0#DOI
https://itbook.store

2

 Introduction to Credit Derivatives
A credit derivative is a type of financial contract that protects participants from credit

risk. Credit risk, in the large majority of the cases, refers to the risk of default (or lack of

payment by other means) from a counterpart. For example, consider a company that

creates a financial operation that is backed by an insurance contract. If this insurance

contract is provided by a third party, this presents a risk of bankruptcy. The participants

of this contract want to protect against the possibility of default, so companies can create

a credit derivative that will pay a considerable amount of money if that the counterpart

goes bankrupt. Such contracts are signed with another third party, which makes the

payment if the bankruptcy occurs.

Credit derivatives can be classified according to several categories, which consider

how the contract is structured and the participants in such a contract. Here are some of

the most common types of credit derivatives that are traded in the market:

• CDO (collateralized debt obligations): A CDO is a type of credit

derivative where the obligations paid are collateralized based on

some underlying asset. This process of collateralization creates

a tiered system, where the several payers are pooled and graded

according to their credit risk. Thus, financial companies can sell

different tiers, ranging from the highest credit (AAA) to lower level

that represent higher default risk (B+ for example).

• CDS (credit default swap): A CDS allows companies to protect

themselves against the default of a major market player. The buyer of

a CDS makes one or more payments for a predefined period of time.

If a default occurs on the covered asset, the CDS buyer is entitled to

receive compensation for this credit event.

• Credit default option: A credit default option resembles an option

contract, but the underlying corresponds to the credit default against

which you are seeking protection.

• CDN (credit linked note): A CDN is a financial instrument that allows

a particular type of credit risk to be transferred to other investors.

Usually these notes are structured as bonds on lower risk assets,

which are used to pay creditors if the target institution defaults.

Appendix A Credit derivAtives

www.itbook.store

https://itbook.store

3

• CMCDS (constant maturity CDS): A CMCDS works just like a CDS,

but it has different rules for the amount of the payoff received in

the case of a default. With the CMCDS, payoffs change based on

considerations that are determined between the participants of the

contract. For example, the payoff may be determined according to a

particular interest rate index.

• Total return swap: This category of derivative is used to transfer

financial results between two institutions according to a predefined

contract. The buyer makes one or more payments, while it expects

to receive the total return of a particular investment as a payoff. This

allows some institutions, such as hedge funds, to receive the return

of complex financial investment with the help of a second entity that

transfers the financial return at the end of the covered period.

 Modeling Credit Derivatives
As you saw in the previous section, credit derivatives encompass a large number of

financial products that have in common the mitigation of credit risk from one entity to

another. This makes it difficult to come up with general models for such a wide class of

financial instruments. In this section, you will see a few examples of C++ models applied

to a few common classes of credit derivatives.

The first step in creating effective code for credit derivatives is to have a computer

model for this type of security. Given the diversity of CD contracts, having a proper

model becomes even more important so that other algorithms can be applied to this

type of security without the need to understand the internal complexities of each type of

credit derivative.

As a first step, you can define a simple class that can be used to store and manipulate

the data corresponding to a credit default swap. The fields in this class represent the

characteristic values that define a CDS contract. These values are the following:

• Notional: This represents the total value of the position encompassed

by the contract. The notional is usually larger than the payments due

to leverage that is allowed on derivatives contracts.

• Spread: The value paid by the buyer of the CDS. It may be paid in a

particular schedule, or in a single payment.

Appendix A Credit derivAtives

www.itbook.store

https://itbook.store

4

• Time period: Defines the time period in which the CDS is valid.

• Pay at default: A Boolean value that determines if the payoff should

be made at the time of credit default.

• Is long: A Boolean value that is true if the contract is being bought,

and false if the contract is being sold.

In the next few sections, you will see how this information can be used to model CDS

contracts with standard techniques employed in quantitative finance. In particular, I will

discuss how to analyze such derivatives using the concept of barrier options. You will

also see how to calculate the price for such barrier options.

 Using Barrier Options
This section I discusses how to use a technique that is frequently employed for the

pricing of derivatives in general, including credit derivatives. To simplify the discussion,

I use the most basic structure for a financial derivative so that you don’t need to worry

about complex contractual issues. However, the barrier technique described in this

section can be expanded to solve a large class of commonly traded derivatives.

The first step in understanding the solution method is to define a barrier option. A

barrier option is a special type of derivative where payoff occurs when a particular price

level, or barrier, is crossed. This makes it different from a normal option, because common

options have a payoff that depends on how much the underlying is above or below some

threshold. With a barrier option, however, the payoff is paid only as the barrier is crossed.

Barrier options work well as a simple model for credit derivatives, because the credit

event is frequently defined as a particular barrier. For example, if the credit event is the

bankruptcy of a company, the barrier to be crossed is given by the difference between

assets and liabilities in the corporation. When that barrier is breached, the company

becomes insolvent and the payoff needs to be made.

There are two main types of barrier options, depending on how the barrier is

considered as part of the contract:

• Knock-in: This is a barrier option where the payoff is given only when

the barrier is touched before expiration.

• Knock-out: This is a barrier option where the payoff is given only

when the barrier is not touched before expiration.

Appendix A Credit derivAtives

www.itbook.store

https://itbook.store

5

Thus, for example, a barrier option that pays when a company claims bankruptcy is a

knock-in option, because the payment happens when the default barrier is reached. You

can also classify barrier options according to the current value in relation to the barrier:

• Down-option: This is a barrier option where the barrier is below the

current value of the underlying asset.

• Up-option: This is a barrier option where the barrier is above the

current value of the underlying asset.

These two classifications can also be combined, so that you can have down-in

options or up-out options. Finally, these options can be calls or puts, depending on

whether you are buying the right to sell (put) or the right to buy (call) the underlying

instrument.

 A Solver Class for Barrier Options
To solve the problem, a new class called CDSSolver is defined in this section. This class

contains all the elements necessary to define a barrier option, along with the code that

solves the pricing problem using functions and classes from the QuantLib repository.

The definition of the class contains the member variables needed by the pricing

algorithm:

class CDSSolver : boost::noncopyable {

public:

 // constructor

 CDSSolver(double val, double sigma, double divYield,

 double forwardIR, double strike, double barrier, double rebate);

 // solve the model

 std::pair<QuantLib::BarrierOption, QuantLib::BlackScholesMertonProcess>

 solve(QuantLib::Date maturity_date);

 // generate a grid

 void generateGrid(QuantLib::BarrierOption &option,

 QuantLib::BlackScholesMertonProcess &process,

 const std::vector<QuantLib::Size> &grid);

Appendix A Credit derivAtives

www.itbook.store

https://itbook.store

6

private:

 double currentValue;

 double sigma;

 double divYield;

 double forwardIR;

 double strike;

 double barrier;

 double rebate;

};

The first thing to consider when reviewing this class is that the QuantLib code also uses

boost libraries for basic functionality, such as smart pointers. In this case, the CDSSolver

uses boost::noncopyable as a base class, which indicates that the class cannot be copied.

Therefore, no copy constructor or assignment operators are declared in CDSSolver.

Note Observe that the CDSSolver class uses shared pointers declared in boost.
this is necessary because QuantLib has boost as a direct dependency, and many
of the internal smart pointers are declared in this way. remember, however, that
C++11 also has its own version of shared_ptr, which is part of the standard
namespace. it is important to avoid confusion between shared_ptr declared in
boost and in the standard library.

There are two main member functions in the CDSSolver class. The solve function is

responsible for performing the main tasks associated with the pricing of barrier options.

The generateGrid evaluates the value of the barrier option at particular time points, as

defined by the vector of times points passed as a parameter.

The member variables used by the CDSSolver class are the following:

• currentValue: Represents the current value of the underlying

instrument.

• sigma: Represents the variance of the financial instrument.

• divYield: The dividend yield paid annually by the underlying.

• forwardIR: The forward interest rate, which is used to determine the

return of cash that is not invested in the barrier option.

Appendix A Credit derivAtives

www.itbook.store

https://itbook.store

7

• strike: The strike of the barrier option, that is, the price that

determines the payoff value.

• barrier: The price barrier that needs to be crossed to trigger the

payout of the option contract.

• rebate: Contractual rebate defined when the barrier option is created.

These variables are later used to solve the pricing problem, as you can see in

the following description of the associated code. But first, I will provide a short

introduction to the classes included in QuantLib that are used solve this kind of

pricing problem.

 Barrier Option Classes in QuantLib
QuantLib offers support for pricing credit derivatives and related instruments. In

particular, the library contains a set of classes that can be used to price barrier options as

defined in the previous section. First, I will review some of these classes, which will later

be used in a complete example of how to compute prices for barrier options.

The first class of importance is the Quote class. A quote is defined as one or more

values that determine the current price of an instrument. The Quote class is just the

base for several classes that represent quotes for different financial instruments. In

this example, I will use a SimpleQuote to initialize the quote for the barrier option.

The following code shows how this is done:

 Handle<Quote> quote(boost::shared_ptr<Quote>(new SimpleQuote(currentValue)));

This line of code uses a second class that is frequently used in QuantLib: the Handle

class. A handle is a simple container that allows objects to be referenced and changed

when necessary.

The next class used in the implementation of barrier options is YieldTermStructure.

This class allows you to specify the yield curve currently used by the markets. The yield

curve is a representation of the effective interest rates in a particular market, such as,

for example, United States Treasury bonds. The curve is formed as you consider the

different interest rates for each maturity period, usually measured in years. Figure 15-1

shows an example of the yield term structure for Treasury bonds.

Appendix A Credit derivAtives

www.itbook.store

https://itbook.store

8

Using the YieldTermStructure class in QuantLib, it is possible to store and use this

information to compute barrier options. Depending on how the financial instrument

is defined, such a yield term structure may be represented by several interest rates, one

for each desired time horizon. The YieldTermStructure class is abstract and should be

instantiated using one of their subclasses, which include:

• FlatForward: The simplest cases in which the curve is flat and no

variation in interest rate is forecasted.

• ForwardCurve: A type of yield curve that can use different rates for

each time period. This class can be used for the most common case

where the interest rates for different time periods are known.

• PiecewiseYieldCurve: A yield curve in which the different segments

of the curve are linearized.

• FittedBondDiscontCurve: A yield curve where interest rates are

given indirectly and the yield can be fitted to represent a set of bonds.

In the example code of the next section, I use the FlatForward class as a way to

represent a simple short-term yield structure, with no variation in interest rates. More

complex yield term structures can be easily accommodated by using one of the previous

classes.

A similar class provided by QuantLib is the BlackVolTermStructure. This class

represents the volatility term structure, and allows you to determine a particular curve

that represents the implied volatility (also known as Black volatility, which is used in

the Black-Scholes equation) for the underlying instrument. Similarly to the yield term

Figure 15-1. Example of yield structure for a U.S. Treasury bond

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Appendix A Credit derivAtives

www.itbook.store

https://itbook.store

9

structure, there are several options for the type of volatility term structure. They differ in

the shape of the curve, as well as in the functions that can be used to represent each part

of the curve. QuantLib also provides a number of classes that can be used to represent

the different types of volatility term structure. Here are some of them:

• BlackConstantVol: Used to represent a volatility type that is constant

over the whole period.

• BlackVarianceCurve: A type of volatility curve where different values

of variance are used to determine the volatility.

• ImpliedVolTermStructure: A volatility term structure that is defined

by the implied volatility associated with a particular instrument.

• BlackVarianceSurface: Defines a volatility curve based on a set

of data points that define a variance surface. These values are

interpolated to generate the desired variance surface.

Using the information stored in these classes, it is possible to describe the Black-

Scholes model using the class BlackScholesMertonProcess, which is also part of

QuantLib. This class receives as parameters the quote, a risk-free yield term structure,

and a yield term representing the asset dividend. The class constructor also receives a

volatility term structure as a parameter that describes the process.

The class StrikedTypePayoff is used to build complex payoffs. It also has a few

useful derived classes, including the following:

• PlainVanillaPayoff: Represents the most common type of payoff,

described by a single value and a strike.

• PercentageStrikePayoff: A type of payoff where the strike is given

as a percentage of the underlying price, instead of as a fixed value.

• AssetOrNothingPayoff: A payoff that is structured as a binary

decision. The results are either an asset or nothing.

• CashOrNothingPayoff: A payoff that is structured as a binary

decision. The results are either cash or nothing.

The example code in the next section uses the PlainVanillaPayoff class. The

constructor to this class uses as parameters the option type (put or call) and a strike.

Appendix A Credit derivAtives

www.itbook.store

https://itbook.store

10

BarrierOption is the central class used by QuantLib to model barrier options. This

class can be used to calculate the value of a particular barrier option, given a set of

parameters that represent that option.

The first parameter to the constructor of BarrierOption is the type of barrier option.

As previously described, barrier options can be of four types—UpIn, UpOut, DownIn, and

DownOut—depending on the underlying price and the type of barrier used. The next

parameters are values that correspond to the barrier, the rebate, the payoff, and the

exercise.

Finally, this example also uses a barrier options engine called

FdBlackScholesBarrierEngine. This class is used as an implementation for the

pricing strategy.

 An Example Using QuantLib
Using the classes presented in the previous section, it is possible to explain the

implementation of the class CDSSolver. First, consider the first member function, called

CDSSolver::solve. This function receives as a parameter a Date object that represents

the maturity date of the desired barrier option.

The first step is to create a quote for the option, instantiating the SimpleQuote class

and using the current value of the underling as its single argument. Today’s date is also

computed with the help of the Date::todaysDate member function.

Next, the code tries to instantiate the two term structure objects, one for the dividend

yield and another for free cash interest rates. A volatility term structure object is also

instantiated using the given volatility, which is estimated using the parameter sigma.

// solve the valuation problem using the barrier technique, from today to

the maturity date pair<BarrierOption, BlackScholesMertonProcess>

CDSSolver::solve(Date maturity_date)

{

 Handle<Quote> quote(boost::shared_ptr<Quote>(new

SimpleQuote(currentValue)));

 Date today = Date::todaysDate();

 shared_ptr<YieldTermStructure> ts1(new FlatForward(today, divYield,

Thirty360()));

Appendix A Credit derivAtives

www.itbook.store

https://itbook.store

11

 shared_ptr<YieldTermStructure> ts2(new FlatForward(today, forwardIR,

Thirty360()));

 shared_ptr<BlackVolTermStructure> vs(new BlackConstantVol(today,

NullCalendar(),sigma, Thirty360()));

The next part of the solve function is responsible for instantiating a process object,

which uses QuantLib::BlackScholesMertonProcess. Such a process requires a quote

object, yield term structures for interest rates and cash, and a volatility term structure

that was previously created.

The function also creates two new objects: a payoff object of type

PlainVanillaPayoff that represents the desired call option and a given strike. The

exercise is established as a EuropeanExercise type, at the given maturity date.

auto process = BlackScholesMertonProcess(quote,

 Handle<YieldTermStructure>(ts1),

 Handle<YieldTermStructure>(ts2),

 Handle<BlackVolTermStructure>(vs));

 shared_ptr<StrikedTypePayoff> payoff(new PlainVanillaPayoff

(Option::Type::Call, strike));

 shared_ptr<Exercise> exercise(new EuropeanExercise(maturity_date));

Finally, you’re ready to create a barrier option object, which is an instance of

QuantLib::BarrierOption. It takes as parameters the type of barrier, the barrier value, a

rebate (if it is available), and the two objects previously created: payoff and exercise.

The next two steps are to create a generalized Black-Scholes object using the existing

process and to set the price engine of the barrier option. The price engine algorithm is

responsible for price calculation, and this example uses AnalyticBarrierEngine, which is

a common algorithm available from QuantLib. The member function CDSSolver::solve

will finally return a pair that contains the option and process objects.

auto option = BarrierOption(Barrier::Type::UpIn, barrier, rebate, payoff,

exercise);

 auto pproc = shared_ptr<GeneralizedBlackScholesProcess>(&process);

Appendix A Credit derivAtives

www.itbook.store

https://itbook.store

12

 option.setPricingEngine(shared_ptr<PricingEngine>(new AnalyticBarrier

Engine(pproc)));

 return std::make_pair(option, process);

}

The next member function implemented in the CDSSolver class is generateGrid.

This function is conceptually simple, and it just prints a grid of prices calculated from

the given barrier option, using the given BlackScholesMertonProcess and a set of points

that determines the option price at a particular date.

Essentially, the function assumes that the grid points are sorted and selects the

maximum value. Then, for each element of the grid, a new barrier engine is instantiated

and used with the existing barrier option. The price is computed using the resulting

combination of option and pricing engines. The code then prints the ratio of increase

for that particular point. A backward computation is also performed for comparison

purposes.

void CDSSolver::generateGrid(BarrierOption &option,

BlackScholesMertonProcess &process, const vector<Size> &grid)

{

 double value = option.NPV();

 Size maxG = grid[grid.size()-1]; // find maximum grid value

 for (auto g : grid)

 {

 FdBlackScholesBarrierEngine be(shared_ptr<GeneralizedBlackScholes

Process>(&process), maxG, g);

 option.setPricingEngine(shared_ptr<PricingEngine>(&be));

 cout << std::abs(option.NPV()/value -1);

 FdBlackScholesBarrierEngine be1(shared_ptr<GeneralizedBlackScholes

Process>(&process), g, maxG);

 option.setPricingEngine(shared_ptr<PricingEngine>(&be1));

 cout << std::abs(option.NPV()/value -1);

 }

}

Appendix A Credit derivAtives

www.itbook.store

https://itbook.store

13

 Complete Code
This section contains the complete listing of the CDSSolver class. It contains a header

file (Listing 15-1), which defines the interface for the class, and an implementation file

(Listing 15-2), where the methods solve and generateGrid are implemented.

Listing 15-1. Header File for the CDSSolver Class

//

// CDS.hpp

// CppOptions

#ifndef CDS_hpp

#define CDS_hpp

#include <stdio.h>

#include <utility>

#include <ql/instruments/barrieroption.hpp>

#include <ql/processes/blackscholesprocess.hpp>

//

// CDSSolver class, incorporates the solution to Credit Default

class CDSSolver : boost::noncopyable {

public:

 // constructor

 CDSSolver(double val, double sigma, double divYield,

 double forwardIR, double strike, double barrier, double rebate);

 // solve the model

 std::pair<QuantLib::BarrierOption, QuantLib::BlackScholesMertonProcess>

 solve(QuantLib::Date maturity_date);

 // generate a grid

 void generateGrid(QuantLib::BarrierOption &option,

 QuantLib::BlackScholesMertonProcess &process,

 const std::vector<QuantLib::Size> &grid);

Appendix A Credit derivAtives

www.itbook.store

https://itbook.store

14

private:

 double currentValue;

 double sigma;

 double divYield;

 double forwardIR;

 double strike;

 double barrier;

 double rebate;

};

#endif /* CDS_hpp */

Listing 15-2 shows the implementation file for class CDSSolver. It also contains a

simple test stub called test_CDSSolver, which creates a new instance of CDSSolver

using a few test parameters.

Listing 15-2. Implementation File for Class CDSSolver

//

// CDS.cpp

#include "CDS.h"

#include <iostream>

//include classes from QuantLib

#include <ql/instruments/creditdefaultswap.hpp>

#include <ql/instruments/barrieroption.hpp>

#include <ql/quotes/SimpleQuote.hpp>

#include <ql/time/daycounters/thirty360.hpp>

#include <ql/exercise.hpp>

#include <ql/termstructures/yield/flatforward.hpp>

#include <ql/termstructures/volatility/equityfx/blackconstantvol.hpp>

#include <ql/processes/blackscholesprocess.hpp>

#include <ql/pricingengines/barrier/analyticbarrierengine.hpp>

#include <ql/pricingengines/barrier/fdblackscholesbarrierengine.hpp>

Appendix A Credit derivAtives

www.itbook.store

https://itbook.store

15

using namespace QuantLib;

using std::cout;

using std::vector;

using std::pair;

using boost::shared_ptr;

CDSSolver::CDSSolver(double val, double sigma, double divYield, double

forwardIR, double strike, double barrier, double rebate)

:

 currentValue(val),

 sigma(sigma),

 divYield(divYield),

 forwardIR(forwardIR),

 strike(strike),

 barrier(barrier),

 rebate(rebate)

{

}

// solve the valuation problem using the barrier technique, from today to

the maturity date

pair<BarrierOption, BlackScholesMertonProcess>

CDSSolver::solve(Date maturity_date)

{

 Handle<Quote> quote(boost::shared_ptr<Quote>(new SimpleQuote

(currentValue)));

 Date today = Date::todaysDate();

 shared_ptr<YieldTermStructure> ts1(new FlatForward(today, divYield,

Thirty360()));

 shared_ptr<YieldTermStructure> ts2(new FlatForward(today, forwardIR,

Thirty360()));

 shared_ptr<BlackVolTermStructure> vs(new BlackConstantVol(today,

NullCalendar(),sigma, Thirty360()));

Appendix A Credit derivAtives

www.itbook.store

https://itbook.store

16

 auto process = BlackScholesMertonProcess(quote,

 Handle<YieldTermStructure>(ts1),

 Handle<YieldTermStructure>(ts2),

 Handle<BlackVolTermStructure>(vs));

 shared_ptr<StrikedTypePayoff> payoff(new PlainVanillaPayoff(Option::Type

::Call, strike));

 shared_ptr<Exercise> exercise(new EuropeanExercise(maturity_date));

 auto option = BarrierOption(Barrier::Type::UpIn, barrier, rebate,

payoff, exercise);

 auto pproc = shared_ptr<GeneralizedBlackScholesProcess>(&process);

 option.setPricingEngine(shared_ptr<PricingEngine>(new AnalyticBarrier

Engine(pproc)));

 return std::make_pair(option, process);

}

void CDSSolver::generateGrid(BarrierOption &option,

BlackScholesMertonProcess &process, const vector<Size> &grid)

{

 double value = option.NPV();

 Size maxG = grid[grid.size()-1]; // find maximum grid value

 for (auto g : grid)

 {

 FdBlackScholesBarrierEngine be(shared_ptr<GeneralizedBlackScholes

Process>(&process), maxG, g);

 option.setPricingEngine(shared_ptr<PricingEngine>(&be));

 cout << std::abs(option.NPV()/value -1);

 FdBlackScholesBarrierEngine be1(shared_ptr<GeneralizedBlackScholes

Process>(&process), g, maxG);

 option.setPricingEngine(shared_ptr<PricingEngine>(&be1));

 cout << std::abs(option.NPV()/value -1);

 }

}

Appendix A Credit derivAtives

www.itbook.store

https://itbook.store

17

void test_CDSSolver()

{

 // use a few test values

 double currentValue = 50.0;

 double sigma = 0.2;

 double divYield = 0.01;

 double forwardIR = 0.05;

 double strike = 104.0;

 double barrier = 85.0;

 double rebate = 0.0;

 CDSSolver solver(currentValue, sigma, divYield, forwardIR, strike,

barrier, rebate);

 Date date(10, Month::August, 2016);

 auto result = solver.solve(date);

 std::vector<Size> grid = { 5, 10, 25, 50, 100, 1000, 2000 };

 solver.generateGrid(result.first, result.second, grid);

}

int main()

{

 test_CDSSolver();

 return 0;

}

 Conclusion
Credit derivatives are one of the most common types of derivatives traded in world

markets. In this chapter, you learned a little more about such types of derivatives and

how they can be modeled using C++.

I initially discussed the concept of credit derivatives and the different types of

financial instruments that take part in this category of derivatives. You saw that such

derivatives can be used to mitigate credit risks, such as the bankruptcy of a counterparty

or the default of a loan, for example.

Appendix A Credit derivAtives

www.itbook.store

https://itbook.store

18

You also learned about techniques to model such derivatives. In particular, you saw

barrier options as a simplified model that can be used to analyze the behavior of such

financial instruments.

This chapter presented a complete example of credit derivatives through the use

of barrier options using QuantLib classes. The QuantLib repository contains a number

of algorithms that are readily available to analyze credit derivatives. In particular, these

classes can be used to determine the fair price of certain types of derivatives.

Another task that is frequently necessary when dealing with options and derivatives

is the processing of input and output data in common formats. The most popular

format for this type of application is based on XML. However, some other formats

offer advantages as well. In the next chapter, you will learn about different strategies to

process financial data and the common formats used to transfer such information across

applications.

Appendix A Credit derivAtives

www.itbook.store

https://itbook.store

	Appendix A
 Credit Derivatives
	Introduction to Credit Derivatives
	Modeling Credit Derivatives
	Using Barrier Options
	A Solver Class for Barrier Options
	Barrier Option Classes in QuantLib
	An Example Using QuantLib

	Complete Code
	Conclusion

