
WEB PROGR AMMING

Programming Google App Engine with Java

ISBN: 978-1-491-90020-8

US $44.99 CAN $51.99

“	The	first	edition	of
Dan's	book	was	a	crucial	
resource	for	years	when	
our	team	was	learning	
App	Engine.	This	latest	
edition	is	even	better	—	
it's	the	most	complete	
guide	available	for		
those	building	on	App	
Engine,	and	it'll	be	useful	
to	newcomers	and	old	
hats	alike.”

—Ben Kamens
lead dev at Khan Academy

“	Without	a	doubt,	the
most	comprehensive,	
well-written,	and	up-to-
date	book	written	about	
App	Engine.	I	think	it's	
fair	to	say	that	if	you've	
read	this	book	cover-
to-cover,	you're	now	an	
expert	on	App	Engine.”

—Kevin Gibbs
former tech lead and manager,

Google App Engine

Twitter: @oreillymedia
facebook.com/oreilly

This practical guide shows intermediate and advanced web and mobile
app developers how to build highly scalable Java applications in the cloud
with Google App Engine. The flagship of Google's Cloud Platform, App
Engine hosts your app on infrastructure that grows automatically with
your traffic, minimizing up-front costs and accommodating unexpected
visitors. You’ll learn hands-on how to perform common development tasks
with App Engine services and development tools, including deployment
and maintenance.

For Java applications, App Engine provides a J2EE standard servlet container
with a complete Java 7 JVM and standard library. Because App Engine
supports common Java API standards, your code stays clean and portable.

■ Get a hands-on introduction to App Engine's tools and
features, using an example application

■ Simulate App Engine on your development machine directly
from Eclipse

■ Structure your app into individually addressable modules, each
with its own scaling configuration

■ Exploit the power of the scalable Cloud Datastore, using
queries, transactions, and data modeling with JPA

■ Use Cloud SQL for standard relational databases with App
Engine applications

■ Learn how to deploy, manage, and inspect your application on
Google infrastructure

Dan Sanderson is a software engineer at Google Inc. He has worked in the web
industry for over fifteen years as a software engineer and technical writer for
Google, Amazon.com, and the Walt Disney Internet Group.

Program
m

ing G
oogle A

pp Engine
w

ith Java
Sanderson

Dan Sanderson

Programming
 Google
App Engine
with Java
BUILD & RUN SCALABLE JAVA APPS ON GOOGLE'S INFRASTRUCTURE

www.itbook.store/books/9781491900208

https://itbook.store/books/9781491900208

Dan Sanderson

Boston

Programming Google App Engine
with Java

www.itbook.store/books/9781491900208

https://itbook.store/books/9781491900208

978-1-491-90020-8

[LSI]

Programming Google App Engine with Java
by Dan Sanderson

Copyright © 2015 Dan Sanderson. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Meghan Blanchette and Brian Anderson
Acquisition Editor: Mike Loukides
Production Editors: Colleen Lobner and
Kara Ebrahim
Copyeditor: Jasmine Kwityn

Proofreader: Charles Roumeliotis
Indexer: Judy McConville
Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Rebecca Demarest

July 2015: First Edition

Revision History for the First Edition
2015-06-26: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491900208 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Programming Google App Engine with
Java, the cover image of a Comoro cuckoo roller, and related trade dress are trademarks of O’Reilly
Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.itbook.store/books/9781491900208

https://itbook.store/books/9781491900208

Table of Contents

Preface. xi

1. Introducing Google App Engine. 1
The Runtime Environment 2
The Static File Servers 4
Frontend Caches 5
Cloud Datastore 5

Entities and Properties 6
Queries and Indexes 7
Transactions 8

The Services 9
Google Accounts, OpenID, and OAuth 11
Google Cloud Endpoints 12
Task Queues and Cron Jobs 12
Namespaces 14
Developer Tools 14
The Cloud Console 15
Getting Started 16

2. Creating an Application. 17
Setting Up the Cloud SDK 17

Installing Java 18
Installing Python 19
Installing the Cloud SDK 19
Authenticating with the Cloud SDK 20
Installing the App Engine SDK 21
Installing the Java SDK with the Google Plugin for Eclipse 22

Developing the Application 25

iii

www.itbook.store/books/9781491900208

https://itbook.store/books/9781491900208

The User Preferences Pattern 25
A Simple App 26
Introducing JSPs, JSTL, and EL 32
Users and Google Accounts 37
Web Forms and the Datastore 39
Caching with Memcache 44
The Development Console 47

Registering the Application 48
Uploading the Application 48
Testing the App 50
Enabling Billing 51

3. Configuring an Application. 53
The App Engine Architecture 54
Configuring a Java App 56
App IDs and Versions 58
Multithreading 60
Request Handlers 60
Static Files and Resource Files 62
Domain Names 65
Google Apps 67
Configuring Secure Connections 70
Secure Connections with Custom Domains 72
Authorization with Google Accounts 74
Environment Variables 76
Inbound Services 76
Custom Error Responses 77
Java Servlet Sessions 78

4. Request Handlers and Instances. 81
The Runtime Environment 82

The Sandbox 83
Quotas and Limits 84
The Java Runtime Environment 89

The Request Handler Abstraction 90
Introducing Instances 93
Request Scheduling and Pending Latency 96
Warmup Requests 97
Resident Instances 98
Instance Classes and Utilization 99
Instance Hours and Billing 100
The Instances Console Panel 101

iv | Table of Contents

www.itbook.store/books/9781491900208

https://itbook.store/books/9781491900208

Traffic Splitting 102

5. Using Modules. 105
An Example Layout 106
Configuring Modules 107

The Enterprise Archive Layout 108
Making Modules with Eclipse 110

Manual and Basic Scaling 113
Manual Scaling and Versions 115

Startup Requests 115
Shutdown Hooks 116
Background Threads 117
Modules and the Development Server 118
Deploying Modules 119
Addressing Modules with URLs 120

Calling Modules from Other Modules 121
Module URLs and Secure Connections 123
Module URLs and Custom Domains 123

Dispatching Requests to Modules 124
Starting and Stopping Modules 125
Managing and Deleting Modules and Versions 126
The Modules API 127
An Always-On Example 128

6. Datastore Entities. 133
Entities, Keys, and Properties 134
Introducing the Java Datastore API 136
Property Values 139

Strings, Text, and Bytes 140
Unset Versus the Null Value 142
Multivalued Properties 142

Keys and Key Objects 143
Using Entities 145

Getting Entities Using Keys 145
Saving Entities 146
Deleting Entities 147

Allocating System IDs 148
The Development Server and the Datastore 149

7. Datastore Queries. 151
Queries and Kinds 152
Query Results and Keys 153

Table of Contents | v

www.itbook.store/books/9781491900208

https://itbook.store/books/9781491900208

The Query API 153
Building the Query 155
Fetching Results with PreparedQuery 157
Keys-Only Queries 158

Introducing Indexes 159
Automatic Indexes and Simple Queries 161

All Entities of a Kind 162
One Equality Filter 162
Greater-Than and Less-Than Filters 163
One Sort Order 164
Queries on Keys 166
Kindless Queries 167

Custom Indexes and Complex Queries 168
Multiple Sort Orders 168
Filters on Multiple Properties 169
Multiple Equality Filters 172

Not-Equal and IN Filters 175
Unset and Nonindexed Properties 176
Sort Orders and Value Types 177
Queries and Multivalued Properties 178

MVPs in Code 178
MVPs and Equality Filters 180
MVPs and Inequality Filters 182
MVPs and Sort Orders 184
Exploding Indexes 186

Query Cursors 186
Projection Queries 190
Configuring Indexes 193

8. Datastore Transactions. 197
Entities and Entity Groups 199

Keys, Paths, and Ancestors 201
Ancestor Queries 202

What Can Happen in a Transaction 204
Transactional Reads 204
Eventually Consistent Reads 205

Transactions in Java 206
How Entities Are Updated 210
How Entities Are Read 213
Batch Updates 213
How Indexes Are Updated 214
Cross-Group Transactions 216

vi | Table of Contents

www.itbook.store/books/9781491900208

https://itbook.store/books/9781491900208

9. Datastore Administration. 219
Inspecting the Datastore 219
Managing Indexes 221
Accessing Metadata from the App 223

Querying Statistics 224
Querying Metadata 226
Index Status and Queries 227
Entity Group Versions 228

Remote Controls 229
Setting Up the Remote API 229
Using the Remote API with the Java Client Library 230

10. The Java Persistence API. 233
Setting Up JPA 234
Entities and Keys 235
Entity Properties 238
Embedded Objects 240
Saving, Fetching, and Deleting Objects 240
Transactions in JPA 242
Queries and JPQL 244
Relationships 247
For More Information 252

11. Using Google Cloud SQL with App Engine. 253
Choosing a Cloud SQL Instance 254
Installing MySQL Locally 255
Creating a Cloud SQL Instance 256
Connecting to an Instance from Your Computer 258
Setting Up a Database 260
Setting Up JDBC 262
Connecting to the Database from App Engine 263
Backup and Restore 270
Exporting and Importing Data 270
The gcloud sql Commands 271

12. The Memory Cache. 275
Calling Memcache from Java 277
Keys and Values 278
Setting Values 278

Setting Values That Expire 278
Adding and Replacing Values 279

Getting Values 280

Table of Contents | vii

www.itbook.store/books/9781491900208

https://itbook.store/books/9781491900208

Deleting Values 280
Locking a Deleted Key 280

Atomic Increment and Decrement 281
Compare and Set 282
Batching Calls to Memcache 283
Memcache and the Datastore 284
Handling Memcache Errors 285
Memcache Administration 285

Cache Statistics 286
Flushing the Memcache 287

13. Fetching URLs and Web Resources. 289
Fetching URLs 291
Outgoing HTTP Requests 293

The URL 294
The HTTP Method and Payload 294
Request Headers 295

HTTP over SSL (HTTPS) 295
Request and Response Sizes 296
Request Deadlines 296
Handling Redirects 297
Response Objects 297

14. Sending and Receiving Email Messages. 299
Sending Email Messages 301

Logging Sent Mail in the Development Server 302
Sender Addresses 302
Recipients 304
Attachments 304
Sending Email 305

Receiving Email Messages 308

15. Sending and Receiving Instant Messages with XMPP. 311
Inviting a User to Chat 312
Sending Chat Messages 314
Receiving Chat Messages 316

Receiving Chat Messages in Java 317
Handling Error Messages 318
Managing Presence 319

Managing Subscriptions 320
Managing Presence Updates 322
Probing for Presence 326

viii | Table of Contents

www.itbook.store/books/9781491900208

https://itbook.store/books/9781491900208

16. Task Queues and Scheduled Tasks. 329
Configuring Task Queues 332
Enqueuing a Task 333
Task Parameters 335

Payloads 335
Task Names 336
Countdowns and ETAs 338

Push Queues 338
Task Requests 339
Processing Rates and Token Buckets 340
Retrying Push Tasks 342

Pull Queues 344
Enqueuing Tasks to Pull Queues 345
Leasing and Deleting Tasks 345
Retrying Pull Queue Tasks 346

Transactional Task Enqueueing 347
Task Chaining 350
Task Queue Administration 355
Deferring Work 356
Scheduled Tasks 357

Configuring Scheduled Tasks 358
Specifying Schedules 359

17. Optimizing Service Calls. 361
Calling Services Asynchronously 362

The Asynchronous Call API 365
Visualizing Calls with AppStats 367

Installing AppStats 369
Using the AppStats Console 370

18. Managing Request Logs. 375
Writing to the Log 376
Viewing Recent Logs 378
Downloading Logs 380
Logs Retention 381
Querying Logs from the App 382

19. Deploying and Managing Applications. 385
Uploading an Application 386
Using Versions 386
Managing Service Configuration 389
App Engine Settings 389

Table of Contents | ix

www.itbook.store/books/9781491900208

https://itbook.store/books/9781491900208

Managing Developers 390
Quotas and Billing 391
Getting Help 392

Index. 395

x | Table of Contents

www.itbook.store/books/9781491900208

https://itbook.store/books/9781491900208

CHAPTER 1

Introducing Google App Engine

Google App Engine is a web application hosting service. By “web application,” we
mean an application or service accessed over the Web, usually with a web browser:
storefronts with shopping carts, social networking sites, multiplayer games, mobile
applications, survey applications, project management, collaboration, publishing, and
all the other things we’re discovering are good uses for the Web. App Engine can
serve traditional website content too, such as documents and images, but the environ‐
ment is especially designed for real-time dynamic applications. Of course, a web
browser is merely one kind of client: web application infrastructure is well suited to
mobile applications, as well.

In particular, Google App Engine is designed to host applications with many simulta‐
neous users. When an application can serve many simultaneous users without
degrading performance, we say it scales. Applications written for App Engine scale
automatically. As more people use the application, App Engine allocates more resour‐
ces for the application and manages the use of those resources. The application itself
does not need to know anything about the resources it is using.

Unlike traditional web hosting or self-managed servers, with Google App Engine, you
only pay for the resources you use. Billed resources include CPU usage, storage per
month, incoming and outgoing bandwidth, and several resources specific to App
Engine services. To help you get started, every developer gets a certain amount of
resources for free, enough for small applications with low traffic.

App Engine is part of Google Cloud Platform, a suite of services for running scalable
applications, performing large amounts of computational work, and storing, using,
and analyzing large amounts of data. The features of the platform work together to
host applications efficiently and effectively, at minimal cost. App Engine’s specific role
on the platform is to host web applications and scale them automatically. App Engine
apps use the other services of the platform as needed, especially for data storage.

1

www.itbook.store/books/9781491900208

https://itbook.store/books/9781491900208

An App Engine web application can be described as having three major parts: appli‐
cation instances, scalable data storage, and scalable services. In this chapter, we look
at each of these parts at a high level. We also discuss features of App Engine for
deploying and managing web applications, and for building websites integrated with
other parts of Google Cloud Platform.

The Runtime Environment
An App Engine application responds to web requests. A web request begins when a
client, typically a user’s web browser, contacts the application with an HTTP request,
such as to fetch a web page at a URL. When App Engine receives the request, it iden‐
tifies the application from the domain name of the address, either a custom domain
name you have registered and configured for use with the app, or an .appspot.com
subdomain provided for free with every app. App Engine selects a server from many
possible servers to handle the request, making its selection based on which server is
most likely to provide a fast response. It then calls the application with the content of
the HTTP request, receives the response data from the application, and returns the
response to the client.

From the application’s perspective, the runtime environment springs into existence
when the request handler begins, and disappears when it ends. App Engine provides
several methods for storing data that persists between requests, but these mechanisms
live outside of the runtime environment. By not retaining state in the runtime envi‐
ronment between requests—or at least, by not expecting that state will be retained
between requests—App Engine can distribute traffic among as many servers as it
needs to give every request the same treatment, regardless of how much traffic it is
handling at one time.

In the complete picture, App Engine allows runtime environments to outlive request
handlers, and will reuse environments as much as possible to avoid unnecessary initi‐
alization. Each instance of your application has local memory for caching imported
code and initialized data structures. App Engine creates and destroys instances as
needed to accommodate your app’s traffic. If you enable the multithreading feature, a
single instance can handle multiple requests concurrently, further utilizing its
resources.

Application code cannot access the server on which it is running in the traditional
sense. An application can read its own files from the filesystem, but it cannot write to
files, and it cannot read files that belong to other applications. An application can see
environment variables set by App Engine, but manipulations of these variables do not
necessarily persist between requests. An application cannot access the networking
facilities of the server hardware, although it can perform networking operations by
using services.

2 | Chapter 1: Introducing Google App Engine

www.itbook.store/books/9781491900208

https://itbook.store/books/9781491900208

In short, each request lives in its own “sandbox.” This allows App Engine to handle a
request with the server that would, in its estimation, provide the fastest response. For
web requests to the app, there is no way to guarantee that the same app instance will
handle two requests, even if the requests come from the same client and arrive rela‐
tively quickly.

Sandboxing also allows App Engine to run multiple applications on the same server
without the behavior of one application affecting another. In addition to limiting
access to the operating system, the runtime environment also limits the amount of
clock time and memory a single request can take. App Engine keeps these limits flexi‐
ble, and applies stricter limits to applications that use up more resources to protect
shared resources from “runaway” applications.

A request handler has up to 60 seconds to return a response to the client. While that
may seem like a comfortably large amount for a web app, App Engine is optimized
for applications that respond in less than a second. Also, if an application uses many
CPU cycles, App Engine may slow it down so the app isn’t hogging the processor on a
machine serving multiple apps. A CPU-intensive request handler may take more
clock time to complete than it would if it had exclusive use of the processor, and
clock time may vary as App Engine detects patterns in CPU usage and allocates
accordingly.

Google App Engine provides four possible runtime environments for applications,
one for each of four programming languages: Java, Python, PHP, and Go. The envi‐
ronment you choose depends on the language and related technologies you want to
use for developing the application.

The Java environment runs applications built for the Java 7 Virtual Machine (JVM).
An app can be developed using the Java programming language, or most other lan‐
guages that compile to or otherwise run in the JVM, such as PHP (using Quercus),
Ruby (using JRuby), JavaScript (using the Rhino interpreter), Scala, Groovy, and Clo‐
jure. The app accesses the environment and services by using interfaces based on web
industry standards, including Java servlets and the Any Java technology that func‐
tions within the sandbox restrictions can run on App Engine, making it suitable for
many existing frameworks and libraries.

Similarly, the Python, PHP, and Go runtime environments offer standard execution
environments for those languages, with support for standard libraries and third-party
frameworks.

All four runtime environments use the same application server model: a request is
routed to an app server, an application instance is initialized (if necessary), applica‐
tion code is invoked to handle the request and produce a response, and the response
is returned to the client. Each environment runs application code within sandbox

The Runtime Environment | 3

www.itbook.store/books/9781491900208

https://itbook.store/books/9781491900208

restrictions, such that any attempt to use a feature of the language or a library that
would require access outside of the sandbox returns an error.

You can configure many aspects of how instances are created, destroyed, and initial‐
ized. How you configure your app depends on your need to balance monetary cost
against performance. If you prefer performance to cost, you can configure your app
to run many instances and start new ones aggressively to handle demand. If you have
a limited budget, you can adjust the limits that control how requests queue up to use
a minimum number of instances.

I haven’t said anything about which operating system or hardware configuration App
Engine uses. There are ways to figure this out with a little experimentation, but in the
end it doesn’t matter: the runtime environment is an abstraction above the operating
system that allows App Engine to manage resource allocation, computation, request
handling, scaling, and load distribution without the application’s involvement. Fea‐
tures that typically require knowledge of the operating system are either provided by
services outside of the runtime environment, provided or emulated using standard
library calls, or restricted in sensible ways within the definition of the sandbox.

Everything stated above describes how App Engine allocates application instances
dynamically to scale with your application’s traffic. In addition to a flexible bank of
instances serving your primary traffic, you can organize your app into multiple
“modules.” Each module is addressable individually using domain names, and can be
configured with its own code, performance characteristics, and scaling pattern—
including the option of running a fixed number of always-on instances, similar to tra‐
ditional servers. In practice, you usually use a bank of dynamically scaling instances
to handle your “frontend” traffic, then establish modules as “backends” to be accessed
by the frontends for various purposes.

The Static File Servers
Most websites have resources they deliver to browsers that do not change during the
regular operation of the site. The images and CSS files that describe the appearance of
the site, the JavaScript code that runs in the browser, and HTML files for pages
without dynamic components are examples of these resources, collectively known as
static files. Because the delivery of these files doesn’t involve application code, it’s
unnecessary and inefficient to serve them from the application servers.

Instead, App Engine provides a separate set of servers dedicated to delivering static
files. These servers are optimized for both internal architecture and network topology
to handle requests for static resources. To the client, static files look like any other
resource served by your app.

You upload the static files of your application right alongside the application code.
You can configure several aspects of how static files are served, including the URLs

4 | Chapter 1: Introducing Google App Engine

www.itbook.store/books/9781491900208

https://itbook.store/books/9781491900208

for static files, content types, and instructions for browsers to keep copies of the files
in a cache for a given amount of time to reduce traffic and speed up rendering of the
page.

Frontend Caches
All App Engine traffic goes through a set of machines that know how to cache
responses to requests. If a response generated by the app declares that another request
with the same parameters should return the same response, the frontend cache stores
the response for a period of time. If another matching request comes in, the cache
returns the stored response without invoking the application. The resources con‐
served by exploiting frontend caches can be significant.

App Engine recognizes standard HTTP controls for proxy caches. Do a web search
for “HTTP cache control” for more information (Cache-Control, Expires). By
default, responses from an app have Cache-Control set to no-cache.

The static file servers can also be configured to serve specific cache controls. These
are described by a configuration file. (More on that later.)

Cloud Datastore
Most useful web applications need to store information during the handling of a
request for retrieval during a later request. A typical arrangement for a small website
involves a single database server for the entire site, and one or more web servers that
connect to the database to store or retrieve data. Using a single central database server
makes it easy to have one canonical representation of the data, so multiple users
accessing multiple web servers all see the same and most recent information. But
a central server is difficult to scale once it reaches its capacity for simultaneous con‐
nections.

By far the most popular kind of data storage system for web applications in the past
two decades has been the relational database, with tables of rows and columns
arranged for space efficiency and concision, and with indexes and raw computing
power for performing queries, especially “join” queries that can treat multiple related
records as a queryable unit. Other kinds of data storage systems include hierarchical
datastores (filesystems, XML databases) and object databases. Each kind of database
has pros and cons, and which type is best suited for an application depends on the
nature of the application’s data and how it is accessed. And each kind of database has
its own techniques for growing past the first server.

Google Cloud Platform offers several kinds of data storage you can use with an App
Engine app, including a relational database (Google Cloud SQL). Most scalable apps
use Google Cloud Datastore, or as it is known to App Engine veterans, simply “the

Frontend Caches | 5

www.itbook.store/books/9781491900208

https://itbook.store/books/9781491900208

1 Historically, the datastore was a feature exclusive to App Engine. Today it is a full-fledged service of Google
Cloud Platform, and can be accessed from Compute Engine VMs and from apps outside of the platform using
a REST API. App Engine apps can access Cloud Datastore using the App Engine datastore APIs and libraries.

datastore.”1 The datastore most closely resembles an object database. It is not a join-
query relational database, and if you come from the world of relational database–
backed web applications (as I did), this will probably require changing the way you
think about your application’s data. As with the runtime environment, the design of
the App Engine datastore is an abstraction that allows App Engine to handle the
details of distributing and scaling the application, so your code can focus on other
things.

If it turns out the scalable datastore does not meet your needs for
complex queries, you can use Google Cloud SQL, a full-featured
relational database service based on MySQL. Cloud SQL is a feature
of Google Cloud Platform, and can be called directly from App
Engine using standard database APIs. The trade-off comes from
how you intend to scale your application. A Cloud SQL instance
behaves like a single MySQL database server, and can get bogged
down by traffic. Cloud Datastore scales automatically: with proper
data design, it can handle as many simultaneous users as App
Engine’s server instances can.

Entities and Properties
With Cloud Datastore, an application stores its data as one or more datastore entities.
An entity has one or more properties, each of which has a name, and a value that is of
one of several primitive value types. Each entity is of a named kind, which categorizes
the entity for the purpose of queries.

At first glance, this seems similar to a relational database: entities of a kind are like
rows in a table, and properties are like columns (fields). However, there are two major
differences between entities and rows. First, an entity of a given kind is not required
to have the same properties as other entities of the same kind. Second, an entity can
have a property of the same name as another entity, but with a different type of value.
In this way, datastore entities are “schemaless.” As you’ll soon see, this design provides
both powerful flexibility as well as some maintenance challenges.

Another difference between an entity and a table row is that an entity can have multi‐
ple values for a single property. This feature is a bit quirky, but can be quite useful
once understood.

Every datastore entity has a unique key that is either provided by the application or
generated by App Engine (your choice). Unlike a relational database, the key is not a

6 | Chapter 1: Introducing Google App Engine

www.itbook.store/books/9781491900208

https://itbook.store/books/9781491900208

“field” or property, but an independent aspect of the entity. You can fetch an entity
quickly if you know its key, and you can perform queries on key values.

An entity’s key cannot be changed after the entity has been created. The entity’s kind
is considered part of its key, so the kind cannot be changed either. App Engine uses
the entity’s key to help determine where the entity is stored in a large collection of
servers. (No part of the key guarantees that two entities are stored on the same server,
but you won’t need to worry about that anyway.)

Queries and Indexes
A datastore query returns zero or more entities of a single kind. It can also return just
the keys of entities that would be returned for a query. A query can filter based on
conditions that must be met by the values of an entity’s properties, and can return
entities ordered by property values. A query can also filter and sort using keys.

In a typical relational database, queries are planned and executed in real time against
the data tables, which are stored just as they were designed by the developer. The
developer can also tell the database to produce and maintain indexes on certain col‐
umns to speed up certain queries.

Cloud Datastore does something dramatically different. Every query has a corre‐
sponding index maintained by the datastore. When the application performs a query,
the datastore finds the index for that query, locates the first row that matches the
query, then returns the entity for each consecutive row in the index until the first row
that doesn’t match the query.

Of course, this requires that Cloud Datastore know ahead of time which queries the
application is going to perform. It doesn’t need to know the values of the filters in
advance, but it does need to know the kind of entity to query, the properties being
filtered or sorted, and the operators of the filters and the orders of the sorts.

Cloud Datastore provides a set of indexes for simple queries by default, based on
which properties exist on entities of a kind. For more complex queries, an app must
include index specifications in its configuration. The App Engine developer tools help
produce this configuration file by watching which queries are performed as you test
your application with the provided development web server on your computer. When
you upload your app, the datastore knows to make indexes for every query the app
performed during testing. You can also edit the index configuration manually.

When your application creates new entities and updates existing ones, the datastore
updates every corresponding index. This makes queries very fast (each query is a
simple table scan) at the expense of entity updates (possibly many tables may need
updating for a single change). In fact, the performance of an index-backed query is
not affected by the number of entities in the datastore, only the size of the result set.

Cloud Datastore | 7

www.itbook.store/books/9781491900208

https://itbook.store/books/9781491900208

It’s worth paying attention to indexes, as they take up space and increase the time it
takes to update entities. We discuss indexes in detail in Chapter 7.

Transactions
When an application has many clients attempting to read or write the same data
simultaneously, it is imperative that the data always be in a consistent state. One user
should never see half-written data or data that doesn’t make sense because another
user’s action hasn’t completed.

When an application updates the properties of a single entity, Cloud Datastore
ensures that either every update to the entity succeeds all at once, or the entire update
fails and the entity remains the way it was prior to the beginning of the update. Other
users do not see any effects of the change until the change succeeds.

In other words, an update of a single entity occurs in a transaction. Each transaction
is atomic: the transaction either succeeds completely or fails completely, and cannot
succeed or fail in smaller pieces.

An application can read or update multiple entities in a single transaction, but it must
tell Cloud Datastore which entities will be updated together when it creates the enti‐
ties. The application does this by creating entities in entity groups. Cloud Datastore
uses entity groups to control how entities are distributed across servers, so it can
guarantee a transaction on a group succeeds or fails completely. In database terms,
the datastore natively supports local transactions.

When an application calls the datastore API to update an entity, the call returns only
after the transaction succeeds or fails, and it returns with knowledge of success or
failure. For updates, this means the service waits for all entities to be updated before
returning a result. The application can call the datastore asynchronously, such that
the app code can continue executing while the datastore is preparing a result. But the
update itself does not return until it has confirmed the change.

If a user tries to update an entity while another user’s update of the entity is in pro‐
gress, the datastore returns immediately with a contention failure exception. Imagine
the two users “contending” for a single piece of data: the first user to commit an
update wins. The other user must try her operation again, possibly rereading values
and calculating the update from fresh data. Contention is expected, so retries are
common. In database terms, Cloud Datastore uses optimistic concurrency control:
each user is “optimistic” that her commit will succeed, so she does so without placing
a lock on the data.

Reading the entity never fails due to contention. The application just sees the entity in
its most recent stable state. You can also read multiple entities from the same entity
group by using a transaction to ensure that all the data in the group is current and
consistent with itself.

8 | Chapter 1: Introducing Google App Engine

www.itbook.store/books/9781491900208

https://itbook.store/books/9781491900208

In most cases, retrying a transaction on a contested entity will succeed. But if an
application is designed such that many users might update a single entity, the more
popular the application gets, the more likely users will get contention failures. It is
important to design entity groups to avoid a high rate of contention failures even with
a large number of users.

It is often important to read and write data in the same transaction. For example, the
application can start a transaction, read an entity, update a property value based on
the last read value, save the entity, and then commit the transaction. In this case, the
save action does not occur unless the entire transaction succeeds without conflict
with another transaction. If there is a conflict and the app wants to try again, the app
should retry the entire transaction: read the (possibly updated) entity again, use the
new value for the calculation, and attempt the update again. By including the read
operation in the transaction, the datastore can assume that related writes and reads
from multiple simultaneous requests do not interleave and produce inconsistent
results.

With indexes and optimistic concurrency control, Cloud Datastore is designed for
applications that need to read data quickly, ensure that the data it sees is in a consis‐
tent form, and scale the number of users and the size of the data automatically. While
these goals are somewhat different from those of a relational database, they are espe‐
cially well suited to web applications.

The Services
The datastore’s relationship with the runtime environment is that of a service: the
application uses an API to access a separate system that manages all its own scaling
needs separately from application instances. Google Cloud Platform and App Engine
include several other self-scaling services useful for web applications.

The memory cache (or memcache) service is a short-term key-value storage service.
Its main advantage over the datastore is that it is fast—much faster than the datastore
for simple storage and retrieval. The memcache stores values in memory instead of
on disk for faster access. It is distributed like the datastore, so every request sees the
same set of keys and values. However, it is not persistent like the datastore: if a server
goes down, such as during a power failure, memory is erased. It also has a more limi‐
ted sense of atomicity and transactionality than the datastore. As the name implies,
the memcache service is best used as a cache for the results of frequently performed
queries or calculations. The application checks for a cached value, and if the value
isn’t there, it performs the query or calculation and stores the value in the cache for
future use.

The Services | 9

www.itbook.store/books/9781491900208

https://itbook.store/books/9781491900208

2 An earlier version of this service was known as App Engine’s “Blobstore” service. Both Blobstore and Cloud
Storage are still available, with similar features. For new projects, prefer Cloud Storage. See the book’s website
for a free bonus chapter about the Blobstore service.

3 The Search service is currently exclusive to App Engine.

Google Cloud Platform provides another storage service specifically for very large
values, called Google Cloud Storage.2 Your app can use Cloud Storage to store, man‐
age, and serve large files, such as images, videos, or file downloads. Cloud Storage can
also accept large files uploaded by users and offline processes. This service is distinct
from Cloud Datastore to work around infrastructure limits on request and response
sizes between users, application servers, and services. Application code can read val‐
ues from Cloud Storage in chunks that fit within these limits. Code can also query for
metadata about Cloud Storage values.

For when you really need a relational database, Google Cloud SQL provides full-
featured MySQL database hosting. Unlike Cloud Datastore or Cloud Storage, Cloud
SQL does not scale automatically. Instead, you create SQL instances, virtual machines
running managed MySQL software. Instances are large, and you only pay for the
storage you use and the amount of time an instance is running. You can even config‐
ure instances to turn themselves off when idle, and reactivate when a client attempts
to connect. Cloud SQL can be the basis for an always-on web app, or a part of a larger
data processing solution.

Yet another storage service is dedicated to providing full-text search infrastructure,
known simply as the Search service.3 As Cloud Datastore stores entities with proper‐
ties, the Search service stores documents with fields. Your app adds documents to
indexes. Unlike the datastore, you can use the Search service to perform faceted text
searches over the fields of the documents in an index, including partial string
matches, range queries, and Boolean search expressions. The service also supports
stemming and tokenization.

App Engine applications can access other web resources using the URL Fetch service.
The service makes HTTP requests to other servers on the Internet, such as to retrieve
pages or interact with web services. Because remote servers can be slow to respond,
the URL Fetch API supports fetching URLs in the background while a request han‐
dler does other things, but in all cases the fetch must start and finish within the
request handler’s lifetime. The application can also set a deadline, after which the call
is canceled if the remote host hasn’t responded.

App Engine applications can send email messages using the Mail service. The app can
send email on behalf of the application itself or on behalf of the user who made the
request that is sending the email (if the message is from the user). Many web applica‐
tions use email to notify users, confirm user actions, and validate contact informa‐
tion.

10 | Chapter 1: Introducing Google App Engine

www.itbook.store/books/9781491900208

https://itbook.store/books/9781491900208

An application can also receive email messages. If an app is configured to receive
email, a message sent to the app’s address is routed to the Mail service, which delivers
the message to the app in the form of an HTTP request to a request handler.

App Engine applications can send and receive instant messages to and from chat
services that support the XMPP protocol. An app sends an XMPP chat message by
calling the XMPP service. As with incoming email, when someone sends a message to
the app’s address, the XMPP service delivers it to the app by calling a request handler.

You can accomplish real-time two-way communication directly with a web browser
using the Channel service, a clever implementation of the Comet model of browser
app communication. Channels allow browsers to keep a network connection open
with a remote host to receive real-time messages long after a web page has finished
loading. App Engine fits this into its request-based processing model by using a ser‐
vice: browsers do not connect directly to application servers, but instead connect to
“channels” via a service. When an application decides to send a message to a client (or
set of clients) during its normal processing, it calls the Channel service with the mes‐
sage. The service handles broadcasting the message to clients, and manages open
connections. Paired with web requests for messages from clients to apps, the Channel
service provides real-time browser messaging without expensive polling. App Engine
includes a JavaScript client so your code in the browser can connect to channels.

Google Accounts, OpenID, and OAuth
App Engine integrates with Google Accounts, the user account system used by
Google applications such as Google Mail, Google Docs, and Google Calendar. You
can use Google Accounts as your app’s user authentication system, so you don’t have
to build your own. And if your users already have Google accounts, they can sign in
to your app using their existing accounts, with no need to create new accounts just
for your app.

Google Accounts is especially useful for developing applications for your company or
organization using Google Apps for Work (or Google Apps for Education). With
Google Apps, your organization’s members can use the same account to access your
custom applications as well as their email, calendar, and documents. You can add
your App Engine application to a subdomain of your Apps domain from your Google
Apps dashboard, just like any other Google Apps feature.

Of course, there is no obligation to use Google Accounts. You can always build your
own account system, or use an OpenID provider. App Engine includes special sup‐
port for using OpenID providers in some of the same ways you can use Google
Accounts. This is useful when building applications for the Google Apps Marketplace,
which uses OpenID to integrate with enterprise single sign-on services.

Google Accounts, OpenID, and OAuth | 11

www.itbook.store/books/9781491900208

https://itbook.store/books/9781491900208

App Engine includes built-in support for OAuth, a protocol that makes it possible for
users to grant permission to third-party applications to access personal data in
another service, without having to share their account credentials with the third
party. For instance, a user might grant a mobile phone application access to her Goo‐
gle Calendar account, to read appointment data and create new appointments on her
behalf. App Engine’s OAuth support makes it straightforward to implement an OAuth
service for other apps to use. Note that the built-in OAuth feature only works when
using Google Accounts, not OpenID or a proprietary identity mechanism.

There is no special support for implementing an OAuth client in an App Engine app,
but most OAuth client libraries work fine with App Engine. For Google services and
APIs, the easiest way is to use the Google APIs Client Libraries, which are known to
run from App Engine and are available for many languages.

Google Cloud Endpoints
APIs are an essential part of the modern Web. It is increasingly common for browser-
based web applications to be implemented as rich JavaScript clients: the user’s first
visit downloads the client code to the browser, and all subsequent interactions with
the server are performed by structured web requests issued by the JavaScript code (as
XMLHttpRequests, or XHRs). Nonbrowser clients for web apps, especially native
mobile apps running on smartphones and tablets, are also increasingly important.
Both kinds of clients tend to use REST (Representational State Transfer) APIs pro‐
vided by the web app, and tend to need advanced features such as OAuth for authen‐
ticating calls.

To address this important need, Google Cloud Platform provides a service and a suite
of tools called Google Cloud Endpoints. Endpoints make it especially easy for a
mobile or rich web client to call methods on the server. Endpoints includes libraries
and tools for generating server functionality from a set of methods in Python and
Java, and generating client code for Android, iOS, and browser-based JavaScript. The
tools can also generate a “discovery document” that works with the Google APIs Cli‐
ent Libraries for many client languages. And OAuth support is built in, so you don’t
have to worry about authentication and can just focus on the application logic.

Task Queues and Cron Jobs
A web application must respond to web requests very quickly, usually in less than a
second and preferably in just a few dozen milliseconds, to provide a smooth experi‐
ence to the user sitting in front of the browser. This doesn’t give the application much
time to do work. Sometimes there is more work to do than there is time to do it. In
such cases, it’s usually OK if the work gets done within a few seconds, minutes, or

12 | Chapter 1: Introducing Google App Engine

www.itbook.store/books/9781491900208

https://itbook.store/books/9781491900208

hours, instead of right away, as the user is waiting for a response from the server. But
the user needs a guarantee that the work will get done.

For this kind of work, an App Engine app uses task queues. Task queues let you
describe work to be done at a later time, outside the scope of the web request. Queues
ensure that every task gets done eventually. If a task fails, the queue retries the task
until it succeeds.

There are two kinds of task queues: push queues and pull queues. With push queues,
each task record represents an HTTP request to a request handler. App Engine issues
these requests itself as it processes a push queue. You can configure the rate at which
push queues are processed to spread the workload throughout the day. With pull
queues, you provide the mechanism, such as a custom computational engine, that
takes task records off the queue and does the work. App Engine manages the queuing
aspect of pull queues.

A push queue performs a task by calling a request handler. It can include a data pay‐
load provided by the code that created the task, delivered to the task’s handler as an
HTTP request. The task’s handler is subject to the same limits as other request han‐
dlers, with one important exception: a single task handler can take as long as 10
minutes to perform a task, instead of the 60-second limit applied to user requests. It’s
still useful to divide work into small tasks to take advantage of parallelization and
queue throughput, but the higher time limit makes tasks easier to write in straightfor‐
ward cases.

An especially powerful feature of task queues is the ability to enqueue a task within a
Cloud Datastore transaction, when called via App Engine. This ensures that the task
will be enqueued only if the rest of the datastore transaction succeeds. You can use
transactional tasks to perform additional datastore operations that must be consistent
with the transaction eventually, but that do not need the strong consistency guaran‐
tees of the datastore’s local transactions. For example, when a user asks to delete a
bunch of records, you can store a receipt of this request in the datastore and enqueue
the corresponding task in a single transaction. If the transaction fails, you can report
this to the user, and rest assured that neither the receipt nor the task are in the
system.

App Engine has another service for executing tasks at specific times of the day: the
scheduled tasks service. Scheduled tasks are also known as “cron jobs,” a name bor‐
rowed from a similar feature of the Unix operating system. The scheduled tasks ser‐
vice can invoke a request handler at a specified time of the day, week, or month, based
on a schedule you provide when you upload your application. Scheduled tasks are
useful for doing regular maintenance or sending periodic notification messages.

We’ll look at task queues, scheduled tasks, and some powerful uses for them in Chap‐
ter 16.

Task Queues and Cron Jobs | 13

www.itbook.store/books/9781491900208

https://itbook.store/books/9781491900208

Namespaces
Cloud Datastore, Cloud Storage, memcache, Search, and task queues all store data for
an app. It’s often useful to partition an app’s data across all services. For example, an
app may be serving multiple companies, where each company sees its own isolated
instance of the application, and no company should see any data that belongs to any
other company. You could implement this partitioning in the application code, using
a company ID as the prefix to every key. But this is prone to error: a bug in the code
may expose or modify data from another partition.

To better serve this case, these storage services provide this partitioning feature at the
infrastructure level. An app can declare it is acting in a namespace by calling an API.
All subsequent uses of any of the data services will restrict themselves to the name‐
space automatically. The app does not need to keep track of which namespace it is in
after the initial declaration.

The default namespace has a name equal to the empty string. This namespace is dis‐
tinct from other namespaces. (There is no “global” namespace.) In the services that
support it, all data belongs to a namespace.

Developer Tools
Google provides a rich set of tools and libraries for developing for Cloud Platform
and App Engine. The main tool suite is the Cloud SDK, which, among other things,
includes a package installer and updater for the other tools. You will use this installer
to acquire the App Engine SDK for Java, and other components you might need.

One of the most useful parts of the SDK is the development web server. This tool
runs your application on your local computer and simulates the runtime environ‐
ment and services. The development server automatically detects changes in your
Java class files and reloads them as needed, so you can keep the server running while
you develop the application. This is well-suited to Java IDEs that automatically com‐
pile as you write, such as Eclipse.

If you’re using Eclipse, Google provides a plugin that adds App Engine development
features directly to the IDE. You can run the development server in the interactive
debugger, and set breakpoints in your application code.

The development server’s simulated datastore can automatically generate configura‐
tion for query indexes as the application performs queries, which App Engine will use
to prebuild indexes for those queries. You can turn this feature off to test that queries
have appropriate indexes in the configuration.

The development web server includes a built-in browser-based developer console for
inspecting and prodding your app. You use this console to inspect and modify the

14 | Chapter 1: Introducing Google App Engine

www.itbook.store/books/9781491900208

https://itbook.store/books/9781491900208

contents of the simulated data storage services, manage task queue interactions, and
simulate nonweb events such as incoming email messages.

You also use the toolkit to interact with App Engine directly, especially to deploy your
application and run it on Cloud Platform. You can download log data from your live
application, and manage the live application’s datastore indexes and service configu‐
ration.

With a provided library, you can add a feature to your application that lets you access
the running app’s environment programmatically. This is useful for building adminis‐
trative tools, uploading and downloading data, and even running a Python interactive
prompt that can operate on live data.

But wait, there’s more! The SDK also includes libraries for automated testing, and
gathering reports on application performance. We’ll cover one such tool, AppStats, in
Chapter 17.

The Cloud Console
When your application is ready for its public debut, you create a project, then deploy
your app’s code to the project using a tool in the Cloud SDK. The project contains
everything related to your app, including your App Engine code, data in all of Cloud
Platform’s data services, any Compute Engine VMs you might create with the app,
and project-related settings and permissions. All of this is managed in a browser-
based interface known as the Google Developers Console, or just “Cloud Console.”

You sign in to the Cloud Console using your Google account. You can use your cur‐
rent Google account if you have one. You may also want to create a Google account
just for your application, which you might use as the “from” address on email mes‐
sages. Once you have created a project in Cloud Console, you can add additional
Google accounts to the project. Each account has one of three possible roles: owners
can change settings and manage permissions for other accounts, editors can change
settings (but not permissions), and viewers can read (but not change) settings and
project information.

The Console gives you access to real-time performance data about how your applica‐
tion is being used, as well as access to log data emitted by your application. You can
query Cloud Datastore and other data services for the live application by using a web
interface, and check on the status of datastore indexes and other features.

When you upload new code for your application, the uploaded version is assigned a
version identifier, which you specify in the application’s configuration file. The ver‐
sion used for the live application is whichever major version is selected as the
“default.” You control which version is the “default” by using the Cloud Console. You
can access nondefault versions by using a special URL containing the version identi‐

The Cloud Console | 15

www.itbook.store/books/9781491900208

https://itbook.store/books/9781491900208

fier. This allows you to test a new version of an app running on App Engine before
making it official.

You use the Console to set up and manage the billing account for your application.
When you’re ready for your application to consume more resources beyond the free
amounts, you set up a billing account using a credit card and Google Accounts. The
owner of the billing account sets a budget, a maximum amount of money that can be
charged per calendar day. Your application can consume resources until your budget
is exhausted, and you are only charged for what the application actually uses beyond
the free amounts.

Getting Started
You can start developing applications for Google App Engine without creating an
account. All you need to get started is the Cloud SDK, which is a free download from
the Cloud Platform website:

https://cloud.google.com/sdk/

For a brief guided tour of creating an App Engine app with some sample code, see
this quick-start guide (sign-in required):

https://console.developers.google.com/start/appengine

And while you’re at it, be sure to bookmark the official App Engine documentation,
which includes tutorials, articles, and reference guides for all of App Engine’s features:

https://cloud.google.com/appengine/docs

In the next chapter, we’ll describe how to create a new project from start to finish,
including how to create an account, upload the application, and run it on App
Engine.

16 | Chapter 1: Introducing Google App Engine

www.itbook.store/books/9781491900208

https://itbook.store/books/9781491900208

	Copyright
	Table of Contents
	Preface
	A Brief History of App Engine
	Using This Book
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introducing Google App Engine
	The Runtime Environment
	The Static File Servers
	Frontend Caches
	Cloud Datastore
	Entities and Properties
	Queries and Indexes
	Transactions

	The Services
	Google Accounts, OpenID, and OAuth
	Google Cloud Endpoints
	Task Queues and Cron Jobs
	Namespaces
	Developer Tools
	The Cloud Console
	Getting Started

	Chapter 2. Creating an Application
	Setting Up the Cloud SDK
	Installing Java
	Installing Python
	Installing the Cloud SDK
	Authenticating with the Cloud SDK
	Installing the App Engine SDK
	Installing the Java SDK with the Google Plugin for Eclipse

	Developing the Application
	The User Preferences Pattern
	A Simple App
	Introducing JSPs, JSTL, and EL
	Users and Google Accounts
	Web Forms and the Datastore
	Caching with Memcache
	The Development Console

	Registering the Application
	Uploading the Application
	Testing the App
	Enabling Billing

	Chapter 3. Configuring an Application
	The App Engine Architecture
	Configuring a Java App
	App IDs and Versions
	Multithreading
	Request Handlers
	Static Files and Resource Files
	Domain Names
	Google Apps
	Configuring Secure Connections
	Secure Connections with Custom Domains
	Authorization with Google Accounts
	Environment Variables
	Inbound Services
	Custom Error Responses
	Java Servlet Sessions

	Chapter 4. Request Handlers and Instances
	The Runtime Environment
	The Sandbox
	Quotas and Limits
	The Java Runtime Environment

	The Request Handler Abstraction
	Introducing Instances
	Request Scheduling and Pending Latency
	Warmup Requests
	Resident Instances
	Instance Classes and Utilization
	Instance Hours and Billing
	The Instances Console Panel
	Traffic Splitting

	Chapter 5. Using Modules
	An Example Layout
	Configuring Modules
	The Enterprise Archive Layout
	Making Modules with Eclipse

	Manual and Basic Scaling
	Manual Scaling and Versions

	Startup Requests
	Shutdown Hooks
	Background Threads
	Modules and the Development Server
	Deploying Modules
	Addressing Modules with URLs
	Calling Modules from Other Modules
	Module URLs and Secure Connections
	Module URLs and Custom Domains

	Dispatching Requests to Modules
	Starting and Stopping Modules
	Managing and Deleting Modules and Versions
	The Modules API
	An Always-On Example

	Chapter 6. Datastore Entities
	Entities, Keys, and Properties
	Introducing the Java Datastore API
	Property Values
	Strings, Text, and Bytes
	Unset Versus the Null Value
	Multivalued Properties

	Keys and Key Objects
	Using Entities
	Getting Entities Using Keys
	Saving Entities
	Deleting Entities

	Allocating System IDs
	The Development Server and the Datastore

	Chapter 7. Datastore Queries
	Queries and Kinds
	Query Results and Keys
	The Query API
	Building the Query
	Fetching Results with PreparedQuery
	Keys-Only Queries

	Introducing Indexes
	Automatic Indexes and Simple Queries
	All Entities of a Kind
	One Equality Filter
	Greater-Than and Less-Than Filters
	One Sort Order
	Queries on Keys
	Kindless Queries

	Custom Indexes and Complex Queries
	Multiple Sort Orders
	Filters on Multiple Properties
	Multiple Equality Filters

	Not-Equal and IN Filters
	Unset and Nonindexed Properties
	Sort Orders and Value Types
	Queries and Multivalued Properties
	MVPs in Code
	MVPs and Equality Filters
	MVPs and Inequality Filters
	MVPs and Sort Orders
	Exploding Indexes

	Query Cursors
	Projection Queries
	Configuring Indexes

	Chapter 8. Datastore Transactions
	Entities and Entity Groups
	Keys, Paths, and Ancestors
	Ancestor Queries

	What Can Happen in a Transaction
	Transactional Reads
	Eventually Consistent Reads

	Transactions in Java
	How Entities Are Updated
	How Entities Are Read
	Batch Updates
	How Indexes Are Updated
	Cross-Group Transactions

	Chapter 9. Datastore Administration
	Inspecting the Datastore
	Managing Indexes
	Accessing Metadata from the App
	Querying Statistics
	Querying Metadata
	Index Status and Queries
	Entity Group Versions

	Remote Controls
	Setting Up the Remote API
	Using the Remote API with the Java Client Library

	Chapter 10. The Java Persistence API
	Setting Up JPA
	Entities and Keys
	Entity Properties
	Embedded Objects
	Saving, Fetching, and Deleting Objects
	Transactions in JPA
	Queries and JPQL
	Relationships
	For More Information

	Chapter 11. Using Google Cloud SQL with App Engine
	Choosing a Cloud SQL Instance
	Installing MySQL Locally
	Creating a Cloud SQL Instance
	Connecting to an Instance from Your Computer
	Setting Up a Database
	Setting Up JDBC
	Connecting to the Database from App Engine
	Backup and Restore
	Exporting and Importing Data
	The gcloud sql Commands

	Chapter 12. The Memory Cache
	Calling Memcache from Java
	Keys and Values
	Setting Values
	Setting Values That Expire
	Adding and Replacing Values

	Getting Values
	Deleting Values
	Locking a Deleted Key

	Atomic Increment and Decrement
	Compare and Set
	Batching Calls to Memcache
	Memcache and the Datastore
	Handling Memcache Errors
	Memcache Administration
	Cache Statistics
	Flushing the Memcache

	Chapter 13. Fetching URLs and Web Resources
	Fetching URLs
	Outgoing HTTP Requests
	The URL
	The HTTP Method and Payload
	Request Headers

	HTTP over SSL (HTTPS)
	Request and Response Sizes
	Request Deadlines
	Handling Redirects
	Response Objects

	Chapter 14. Sending and Receiving Email Messages
	Sending Email Messages
	Logging Sent Mail in the Development Server
	Sender Addresses
	Recipients
	Attachments
	Sending Email

	Receiving Email Messages

	Chapter 15. Sending and Receiving Instant Messages with XMPP
	Inviting a User to Chat
	Sending Chat Messages
	Receiving Chat Messages
	Receiving Chat Messages in Java

	Handling Error Messages
	Managing Presence
	Managing Subscriptions
	Managing Presence Updates
	Probing for Presence

	Chapter 16. Task Queues and Scheduled Tasks
	Configuring Task Queues
	Enqueuing a Task
	Task Parameters
	Payloads
	Task Names
	Countdowns and ETAs

	Push Queues
	Task Requests
	Processing Rates and Token Buckets
	Retrying Push Tasks

	Pull Queues
	Enqueuing Tasks to Pull Queues
	Leasing and Deleting Tasks
	Retrying Pull Queue Tasks

	Transactional Task Enqueueing
	Task Chaining
	Task Queue Administration
	Deferring Work
	Scheduled Tasks
	Configuring Scheduled Tasks
	Specifying Schedules

	Chapter 17. Optimizing Service Calls
	Calling Services Asynchronously
	The Asynchronous Call API

	Visualizing Calls with AppStats
	Installing AppStats
	Using the AppStats Console

	Chapter 18. Managing Request Logs
	Writing to the Log
	Viewing Recent Logs
	Downloading Logs
	Logs Retention
	Querying Logs from the App

	Chapter 19. Deploying and Managing Applications
	Uploading an Application
	Using Versions
	Managing Service Configuration
	App Engine Settings
	Managing Developers
	Quotas and Billing
	Getting Help

	Index
	About the Author

