“I'doubt there’s:a more thorough, or thoughtful,

ES6 reference available.”
=ANGUS CROLL, Twitter Engineer; author of
If Hemingway Wrote JavaScript (No Starch)

KYLE SIMPSON

E£S6 &

BEYOND

www.itbook.store/books/9781491904244

https://itbook.store/books/9781491904244

You Don’t Know JS: ES6 & Beyond

by Kyle Simpson

Copyright © 2016 Getify Solutions, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Brian Proofreader: Christina Edwards

MacDonald Interior Designer: David Futato
Production Editor: Kristen Brown Cover Designer: Randy Comer
Copyeditor: Jasmine Kwityn lllustrator: Rebecca Demarest
January 2016: First Edition

Revision History for the First Edition
2015-12-11: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491904244 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. You Don’t Know
JS: ES6 & Beyond, the cover image, and related trade dress are trademarks of
O'Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi-
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi-
bility to ensure that your use thereof complies with such licenses and/or rights.

978-1-491-90424-4
[LSI]

www.itbook.store/books/9781491904244

https://itbook.store/books/9781491904244

Table of Contents

Foreword.ooovviiiiiiiiiiii vii
Preface. ..o ix
1. ES?Now & Future......ooooviiiiiiiiiiii i 1
Versioning 2
Transpiling 3
Review 6
) 117 7
Block-Scoped Declarations 7
Spread/Rest 15
Default Parameter Values 18
Destructuring 23
Object Literal Extensions 38
Template Literals 47
Arrow Functions 54
for..of Loops 61
Regular Expressions 64
Number Literal Extensions 72
Unicode 73
Symbols 80
Review 85
3. 0rganization........ovevviiiiiiniiiiiiiiiiiiiiiiieiienaas 87
Iterators 87
Generators 98

www.itbook.store/books/9781491904244

https://itbook.store/books/9781491904244

Modules 116

Classes 135
Review 146
4, AsyncFlow Control...........covvvviiiiiiiiiiiiiiiinnnne, 147
Promises 147
Generators + Promises 155
Review 158
5. Collections.ooovvviiiiiiiiiiiiiiiiiiii 159
TypedArrays 159
Maps 165
WeakMaps 169
Sets 170
WeakSets 173
Review 173
6. APIAdditions........oovvvviiiiiiiiiiiiiiiiiii 175
Array 175
Object 186
Math 190
Number 191
String 194
Review 197
7. MetaProgramming.........ccoovvvuiiiiiiniinieniennennnnns 199
Function Names 200
Meta Properties 202
Well-Known Symbols 203
Proxies 210
Reflect API 224
Feature Testing 228
Tail Call Optimization (TCO) 230
Review 238
8. BeyondES6.......c.vviiiiiiiiiii i 241
async functions 242
Object.observe(..) 245
Exponentiation Operator 249
Objects Properties and . . . 249
Array#includes(..) 250
iv | Table of Contents

www.itbook.store/books/9781491904244

https://itbook.store/books/9781491904244

SIMD 251

WebAssembly (WASM) 252

Review 254

A. Acknowledgments.........c.oviiiiiiniiiiiiiiiieiieiinns 257
Table of Contents | v

www.itbook.store/books/9781491904244

https://itbook.store/books/9781491904244

CHAPTER1

ES? Now & Future

Before you dive into this book, you should have a solid working pro-
ficiency over JavaScript up to the most recent standard (at the time
of this writing), which is commonly called ES5 (technically ES 5.1).
Here, we plan to talk squarely about the upcoming ES6, as well as
cast our vision beyond to understand how JS will evolve moving
forward.

If you are still looking for confidence with JavaScript, I highly rec-
ommend you read the other titles in this series first:

Up & Going: Are you new to programming and JS? This is the
roadmap you need to consult as you start your learning journey.

Scope & Closures: Did you know that JS lexical scope is based on
compiler (not interpreter!) semantics? Can you explain how clo-
sures are a direct result of lexical scope and functions as values?

this & Object Prototypes: Can you recite the four simple rules for
how this is bound? Have you been muddling through fake
“classes” in JS instead of adopting the simpler “behavior delega-
tion” design pattern? Ever heard of objects linked to other objects
(OLOO)?

Types & Grammar: Do you know the built-in types in JS, and
more importantly, do you know how to properly and safely use
coercion between types? How comfortable are you with the
nuances of JS grammar/syntax?

Async & Performance: Are you still using callbacks to manage
your asynchrony? Can you explain what a promise is and

www.itbook.store/books/9781491904244

https://itbook.store/books/9781491904244

why/how it solves “callback hell”? Do you know how to use gen-
erators to improve the legibility of async code? What exactly
constitutes mature optimization of JS programs and individual
operations?

If you've already read all those titles and you feel pretty comfortable
with the topics they cover, it’s time we dive into the evolution of JS
to explore all the changes coming not only soon but farther over the
horizon.

Unlike ES5, ES6 is not just a modest set of new APIs added to the
language. It incorporates a whole slew of new syntactic forms, some
of which may take quite a bit of getting used to. There’s also a variety
of new organization forms and new API helpers for various data

types.

ES6 is a radical jump forward for the language. Even if you think
you know JS in ES5, ES6 is full of new stuff you don’t know yet, so
get ready! This book explores all the major themes of ES6 that you
need to get up to speed on, and even gives you a glimpse of future
features coming down the track that you should be aware of.

All code in this book assumes an ES6+ environ-
ment. At the time of this writing, ES6 support
“ varies quite a bit in browsers and JS environ-
\ ments (like Node.js), so your mileage may vary.

Versioning

The JavaScript standard is referred to officially as “ECMAScript”
(abbreviated “ES”), and up until just recently has been versioned
entirely by ordinal number (i.e., “5” for “5th edition”).

The earliest versions, ES1 and ES2, were not widely known or
implemented. ES3 was the first widespread baseline for JavaScript,
and constitutes the JavaScript standard for browsers like IE6-8 and
older Android 2.x mobile browsers. For political reasons beyond
what we'll cover here, the ill-fated ES4 never came about.

In 2009, ES5 was officially finalized (later ES5.1 in 2011), and settled
as the widespread standard for JS for the modern revolution and
explosion of browsers, such as Firefox, Chrome, Opera, Safari, and
many others.

2 | Chapter 1:ES? Now & Future

www.itbook.store/books/9781491904244

https://itbook.store/books/9781491904244

Leading up to the expected next version of JS (slipped from 2013 to
2014 and then 2015), the obvious and common label in discourse
has been ES6.

However, late into the ES6 specification timeline, suggestions have
surfaced that versioning may in the future switch to a year-based
schema, such as ES2016 (aka ES7) to refer to whatever version of the
specification is finalized before the end of 2016. Some disagree, but
ES6 will likely maintain its dominant mindshare over the late-
change substitute ES2015. However, ES2016 may in fact signal the
new year-based schema.

It has also been observed that the pace of]S evolution is much faster
even than single-year versioning. As soon as an idea begins to pro-
gress through standards discussions, browsers start prototyping the
feature, and early adopters start experimenting with the code.

Usually well before there’s an official stamp of approval, a feature is
de facto standardized by virtue of this early engine/tooling prototyp-
ing. So it’s also valid to consider the future of JS versioning to be
per-feature rather than per-arbitrary-collection-of-major-features
(as it is now) or even per-year (as it may become).

The takeaway is that the version labels stop being as important, and
JavaScript starts to be seen more as an evergreen, living standard.
The best way to cope with this is to stop thinking about your code
base as being “ES6-based,” for instance, and instead consider it fea-
ture by feature for support.

Transpiling

Made even worse by the rapid evolution of features, a problem arises
for JS developers who at once may both strongly desire to use new
features while at the same time being slapped with the reality that
their sites/apps may need to support older browsers without such
support.

The way ES5 appears to have played out in the broader industry, the
typical mindset was that code bases waited to adopt ES5 until most
if not all pre-ES5 environments had fallen out of their support spec-
trum. As a result, many are just recently (at the time of this writing)
starting to adopt things like strict mode, which landed in ES5 over
five years ago.

Transpiling | 3

www.itbook.store/books/9781491904244

https://itbook.store/books/9781491904244

It’s widely considered to be a harmful approach for the future of the
JS ecosystem to wait around and trail the specification by so many
years. All those responsible for evolving the language desire for
developers to begin basing their code on the new features and pat-
terns as soon as they stabilize in specification form and browsers
have a chance to implement them.

So how do we resolve this seeming contradiction? The answer is
tooling, specifically a technique called transpiling (transformation +
compiling). Roughly, the idea is to use a special tool to transform
your ES6 code into equivalent (or close!) matches that work in ES5
environments.

For example, consider shorthand property definitions (see “Object
Literal Extensions” on page 38 in Chapter 2). Here’s the ES6 form:

var foo = [1,2,3];

var obj = {
foo // means ‘foo: foo'

1Y
obj.foo; // [1,2,3]
But (roughly) here’s how that transpiles:

var foo = [1,2,3];

var obj = {
foo: foo

b
obj.foo; // [1,2,3]

This is a minor but pleasant transformation that lets us shorten the
foo: foo in an object literal declaration to just foo, if the names are
the same.

Transpilers perform these transformations for you, usually in a build
workflow step similar to how you perform linting, minification, and
other similar operations.

Shims/Polyfills

Not all new ES6 features need a transpiler. Polyfills (aka shims) are a
pattern for defining equivalent behavior from a newer environment
into an older environment, when possible. Syntax cannot be polyfil-
led, but APIs often can be.

4 | Chapter1:ES? Now & Future

www.itbook.store/books/9781491904244

https://itbook.store/books/9781491904244

For example, Object.is(..) is a new utility for checking strict
equality of two values but without the nuanced exceptions that ===
has for NaN and -0 values. The polyfill for Object.is(..) is pretty
easy:
if (!Object.is) {
Object.is = function(vi, v2) {
// test for *-0°
if (vl === 0 8& v2 === 0) {
return 1 / vl === 1 / v2;
}
// test for ‘NaN®
if (vl !==v1) {
return v2 !== v2;

}
// everything else
return vl === v2;

};

Pay attention to the outer if statement guard
wrapped around the polyfill. This is an impor-
tant detail, which means the snippet only
defines its fallback behavior for older environ-
ments where the API in question isn't already
defined; it would be very rare that youd want to
overwrite an existing API.

There’s a great collection of ES6 shims called “ES6 Shim” that you
should definitely adopt as a standard part of any new JS project!

It is assumed that JS will continue to evolve constantly, with brows-
ers rolling out support for features continually rather than in large
chunks. So the best strategy for keeping updated as it evolves is to
just introduce polyfill shims into your code base, and a transpiler
step into your build workflow, right now and get used to that new
reality.

If you decide to keep the status quo and just wait around for all
browsers without a feature supported to go away before you start
using the feature, youre always going to be way behind. You’ll sadly
be missing out on all the innovations designed to make writing Java-
Script more effective, efficient, and robust.

Transpiling | 5

www.itbook.store/books/9781491904244

https://itbook.store/books/9781491904244

Review

ES6 (some may try to call it ES2015) is just landing as of the time of
this writing, and it has lots of new stuff you need to learn!

But it’s even more important to shift your mindset to align with the
new way that JavaScript is going to evolve. Its not just waiting
around for years for some official document to get a vote of appro-
val, as many have done in the past.

Now, JavaScript features land in browsers as they become ready, and
it’s up to you whether you’ll get on the train early or whether you'll
be playing costly catch-up games years from now.

Whatever labels that future JavaScript adopts, it's going to move a lot
quicker than it ever has before. Transpilers and shims/polyfills are
important tools to keep you on the forefront of where the language
is headed.

If there’s any narrative important to understand about the new real-
ity for JavaScript, it’s that all JS developers are strongly implored to
move from the trailing edge of the curve to the leading edge. And
learning ES6 is where that all starts!

6 | Chapter1:ES? Now & Future

www.itbook.store/books/9781491904244

https://itbook.store/books/9781491904244

	Copyright
	Table of Contents
	Foreword
	Preface
	Mission
	Review
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. ES? Now & Future
	Versioning
	Transpiling
	Shims/Polyfills

	Review

	Chapter 2. Syntax
	Block-Scoped Declarations
	let Declarations
	const Declarations
	Block-Scoped Functions

	Spread/Rest
	Default Parameter Values
	Default Value Expressions

	Destructuring
	Object Property Assignment Pattern
	Not Just Declarations
	Repeated Assignments
	Too Many, Too Few, Just Enough
	Default Value Assignment
	Nested Destructuring
	Destructuring Parameters

	Object Literal Extensions
	Concise Properties
	Concise Methods
	Computed Property Names
	Setting [[Prototype]]
	Object super

	Template Literals
	Interpolated Expressions
	Tagged Template Literals

	Arrow Functions
	Not Just Shorter Syntax, But this

	for..of Loops
	Regular Expressions
	Unicode Flag
	Sticky Flag
	Regular Expression flags

	Number Literal Extensions
	Unicode
	Unicode-Aware String Operations
	Character Positioning
	Unicode Identifier Names

	Symbols
	Symbol Registry
	Symbols as Object Properties

	Review

	Chapter 3. Organization
	Iterators
	Interfaces
	next() Iteration
	Optional: return(..) and throw(..)
	Iterator Loop
	Custom Iterators
	Iterator Consumption

	Generators
	Syntax
	Iterator Control
	Early Completion
	Error Handling
	Transpiling a Generator
	Generator Uses

	Modules
	The Old Way
	Moving Forward
	The New Way
	Circular Module Dependency
	Module Loading

	Classes
	class
	extends and super
	new.target
	static

	Review

	Chapter 4. Async Flow Control
	Promises
	Making and Using Promises
	Thenables
	Promise API

	Generators + Promises
	Review

	Chapter 5. Collections
	TypedArrays
	Endianness
	Multiple Views
	Typed Array Constructors

	Maps
	Map Values
	Map Keys

	WeakMaps
	Sets
	Set Iterators

	WeakSets
	Review

	Chapter 6. API Additions
	Array
	Array.of(..) Static Function
	Array.from(..) Static Function
	Creating Arrays and Subtypes
	copyWithin(..) Prototype Method
	fill(..) Prototype Method
	find(..) Prototype Method
	findIndex(..) Prototype Method
	entries(), values(), keys() Prototype Methods

	Object
	Object.is(..) Static Function
	Object.getOwnPropertySymbols(..) Static Function
	Object.setPrototypeOf(..) Static Function
	Object.assign(..) Static Function

	Math
	Number
	Static Properties
	Number.isNaN(..) Static Function
	Number.isFinite(..) Static Function
	Integer-Related Static Functions

	String
	Unicode Functions
	String.raw(..) Static Function
	repeat(..) Prototype Function
	String Inspection Functions

	Review

	Chapter 7. Meta Programming
	Function Names
	Inferences

	Meta Properties
	Well-Known Symbols
	Symbol.iterator
	Symbol.toStringTag and Symbol.hasInstance
	Symbol.species
	Symbol.toPrimitive
	Regular Expression Symbols
	Symbol.isConcatSpreadable
	Symbol.unscopables

	Proxies
	Proxy Limitations
	Revocable Proxies
	Using Proxies

	Reflect API
	Property Ordering

	Feature Testing
	FeatureTests.io

	Tail Call Optimization (TCO)
	Tail Call Rewrite
	Non-TCO Optimizations
	Meta?

	Review

	Chapter 8. Beyond ES6
	async functions
	Caveats

	Object.observe(..)
	Custom Change Events
	Ending Observation

	Exponentiation Operator
	Objects Properties and ...
	Array#includes(..)
	SIMD
	WebAssembly (WASM)
	Review

	Appendix A. Acknowledgments
	About the Author

