
Peter Prinz & Tony Crawford

C
in a Nutshell

THE DEFINITIVE REFERENCE

2nd Edition

Covers C11 standard

www.itbook.store/books/9781491904756

https://itbook.store/books/9781491904756

978-1-491-90475-6

[M]

C in a Nutshell, Second Edition
by Peter Prinz and Tony Crawford

Copyright © 2016 Peter Prinz and Tony Crawford. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://safaribooksonline.com). For more information,
contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Rachel Roumeliotis and
Katie Schooling
Production Editor: Kristen Brown
Copyeditor: Gillian McGarvey
Proofreader: Jasmine Kwityn

Indexer: Angela Howard
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

December 2005: First Edition
December 2015: Second Edition

Revision History for the Second Edition
2015-12-07: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491904756 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. C in a Nutshell, Second
Edition, the cover image of a cow, and related trade dress are trademarks of O’Reilly Media,
Inc.

While the publisher and the authors have used good faith efforts to ensure that the informa‐
tion and instructions contained in this work are accurate, the publisher and the authors dis‐
claim all responsibility for errors or omissions, including without limitation responsibility for
damages resulting from the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any code samples or other technol‐
ogy this work contains or describes is subject to open source licenses or the intellectual prop‐
erty rights of others, it is your responsibility to ensure that your use thereof complies with
such licenses and/or rights.

www.itbook.store/books/9781491904756

https://itbook.store/books/9781491904756

Table of Contents

Preface. ix

Part I. Language

1. Language Basics. 3
Characteristics of C 3
The Structure of C Programs 4
Source Files 6
Comments 7
Character Sets 8
Identifiers 14
How the C Compiler Works 19

2. Types. 23
Typology 23
Integer Types 24
Floating-Point Types 30
Complex Floating-Point Types 32
Enumerated Types 33
The Type void 34
The Alignment of Objects in Memory 36

3. Literals. 39
Integer Constants 39
Floating-Point Constants 40
Character Constants 42
String Literals 45

4. Type Conversions. 49
Conversion of Arithmetic Types 50
Conversion of Nonarithmetic Types 58

iii

www.itbook.store/books/9781491904756

https://itbook.store/books/9781491904756

5. Expressions and Operators. 67
How Expressions Are Evaluated 68
Operators in Detail 73
Constant Expressions 97

6. Statements. 99
Expression Statements 99
Block Statements 100
Loops 101
Selection Statements 105
Unconditional Jumps 108

7. Functions. 113
Function Definitions 113
Function Declarations 120
How Functions Are Executed 122
Pointers as Arguments and Return Values 122
Inline Functions 123
Non-Returning Functions 125
Recursive Functions 126
Variable Numbers of Arguments 127

8. Arrays. 129
Defining Arrays 129
Accessing Array Elements 131
Initializing Arrays 132
Strings 134
Multidimensional Arrays 136
Arrays as Arguments of Functions 138

9. Pointers. 141
Declaring Pointers 141
Operations with Pointers 144
Pointers and Type Qualifiers 148
Pointers to Arrays and Arrays of Pointers 152
Pointers to Functions 156

10. Structures, Unions, and Bit-Fields. 159
Structures 159
Unions 169
Anonymous Structures and Unions 171
Bit-Fields 172

iv | Table of Contents

www.itbook.store/books/9781491904756

https://itbook.store/books/9781491904756

11. Declarations. 175
Object and Function Declarations 176
Type Names 184
typedef Declarations 185
_Static_assert Declarations 186
Linkage of Identifiers 187
Storage Duration of Objects 189
Initialization 190

12. Dynamic Memory Management. 193
Allocating Memory Dynamically 194
Characteristics of Allocated Memory 195
Resizing and Releasing Memory 196
An All-Purpose Binary Tree 198
Characteristics 198
Implementation 199

13. Input and Output. 209
Streams 209
Files 211
Opening and Closing Files 213
Reading and Writing 216
Random File Access 235

14. Multithreading. 239
Threads 240
Accessing Shared Data 244
Communication Between Threads: Condition Variables 251
Thread-Local Objects and Thread-Specific Storage 256

15. Preprocessing Directives. 261
Inserting the Contents of Header Files 262
Defining and Using Macros 264
Type-generic Macros 272
Conditional Compiling 272
Defining Line Numbers 274
Generating Error Messages 275
The #pragma Directive 275
The _Pragma Operator 276
Predefined Macros 277

Table of Contents | v

www.itbook.store/books/9781491904756

https://itbook.store/books/9781491904756

Part II. Standard Library

16. The Standard Headers. 283
Using the Standard Headers 284
Functions with Bounds-Checking 287
Contents of the Standard Headers 289

17. Functions at a Glance. 321
Input and Output 321
Mathematical Functions 323
Character Classification and Conversion 330
String Processing 332
Multibyte Characters 333
Converting Between Numbers and Strings 335
Searching and Sorting 336
Memory Block Handling 336
Dynamic Memory Management 337
Date and Time 337
Process Control 339
Internationalization 340
Nonlocal Jumps 341
Multithreading (C11) 341
Debugging 345
Error Messages 346

18. Standard Library Functions. 349

Part III. Basic Tools

19. Compiling with GCC. 669
The GNU Compiler Collection 669
Obtaining and Installing GCC 670
Compiling C Programs with GCC 671
C Dialects 681
Compiler Warnings 683
Optimization 684
Debugging 688
Profiling 688
Option and Environment Variable Summary 689

vi | Table of Contents

www.itbook.store/books/9781491904756

https://itbook.store/books/9781491904756

20. Using make to Build C Programs. 695
Targets, Prerequisites, and Commands 695
The Makefile 696
Rules 696
Comments 703
Variables 704
Phony Targets 711
Other Target Attributes 712
Macros 714
Functions 715
Directives 719
Running make 722

21. Debugging C Programs with GDB. 731
Installing GDB 732
A Sample Debugging Session 732
Starting GDB 736
Using GDB Commands 741
Analyzing Core Files in GDB 763

22. Using an IDE with C. 767
IDEs for C 767
The Eclipse IDE for C/C++ 768
Developing a C Program with Eclipse 770
Debugging a C Program in Eclipse 773
Further Information on Eclipse 776

Index. 777

Table of Contents | vii

www.itbook.store/books/9781491904756

https://itbook.store/books/9781491904756

1
Language Basics

This chapter describes the basic characteristics and elements of the C programming
language.

Characteristics of C
C is a general-purpose, procedural programming language. Dennis Ritchie first
devised C in the 1970s at AT&T Bell Laboratories in Murray Hill, New Jersey, for
the purpose of implementing the Unix operating system and utilities with the great‐
est possible degree of independence from specific hardware platforms. The key
characteristics of the C language are the qualities that made it suitable for that
purpose:

• Source code portability
• The ability to operate “close to the machine”
• Efficiency

As a result, the developers of Unix were able to write most of the operating system
in C, leaving only a minimum of system-specific hardware manipulation to be
coded in assembler.

C’s ancestors are the typeless programming languages BCPL (the Basic Combined
Programming Language), developed by Martin Richards; and B, a descendant of
BCPL, developed by Ken Thompson. A new feature of C was its variety of data
types: characters, numeric types, arrays, structures, and so on. Brian Kernighan and
Dennis Ritchie published an official description of the C programming language in
1978. As the first de facto standard, their description is commonly referred to sim‐

3

www.itbook.store/books/9781491904756

https://itbook.store/books/9781491904756

1 The second edition, revised to reflect the first ANSI C standard, is available as The C Program‐
ming Language, 2nd ed., by Brian W. Kernighan and Dennis M. Ritchie (Englewood Cliffs, NJ:
Prentice Hall, 1988).

ply as K&R.1 C owes its high degree of portability to a compact core language that
contains few hardware-dependent elements. For example, the C language proper
has no file access or dynamic memory management statements. In fact, there aren’t
even any statements for console input and output. Instead, the extensive C standard
library provides the functions for all of these purposes.

This language design makes the C compiler relatively compact and easy to port to
new systems. Furthermore, once the compiler is running on a new system, you can
compile most of the functions in the standard library with no further modification,
because they are in turn written in portable C. As a result, C compilers are available
for practically every computer system.

Because C was expressly designed for system programming, it is hardly surprising
that one of its major uses today is in programming embedded systems. At the same
time, however, many developers use C as a portable, structured high-level language
to write programs such as powerful word processor, database, and graphics
applications.

The Structure of C Programs
The procedural building blocks of a C program are functions, which can invoke one
another. Every function in a well-designed program serves a specific purpose. The
functions contain statements for the program to execute sequentially, and statements
can also be grouped to form block statements, or blocks. As the programmer, you can
use the ready-made functions in the standard library, or write your own when no
standard function fulfills your intended purpose. In addition to the C standard
library, there are many specialized libraries available, such as libraries of graphics
functions. However, by using such nonstandard libraries, you limit the portability of
your program to those systems to which the libraries themselves have been ported.

Every C program must define at least one function of its own, with the special name
main(), which is the first function invoked when the program starts. The main()
function is the program’s top level of control, and can call other functions as sub‐
routines.

Example 1-1 shows the structure of a simple, complete C program. We will discuss
the details of declarations, function calls, output streams, and more elsewhere in
this book. For now, we are simply concerned with the general structure of the C
source code. The program in Example 1-1 defines two functions, main() and
circularArea(). The main() function calls circularArea() to obtain the area of a
circle with a given radius, and then calls the standard library function printf() to
output the results in formatted strings on the console.

4 | Chapter 1: Language Basics

www.itbook.store/books/9781491904756

https://itbook.store/books/9781491904756

Example 1-1. A simple C program

// circle.c: Calculate and print the areas of circles

#include <stdio.h> // Preprocessor directive

double circularArea(double r); // Function declaration (prototype form)

int main() // Definition of main() begins
{
 double radius = 1.0, area = 0.0;

 printf(" Areas of Circles\n\n");
 printf(" Radius Area\n"
 "-------------------------\n");

 area = circularArea(radius);
 printf("%10.1f %10.2f\n", radius, area);

 radius = 5.0;
 area = circularArea(radius);
 printf("%10.1f %10.2f\n", radius, area);

 return 0;
}

// The function circularArea() calculates the area of a circle
// Parameter: The radius of the circle
// Return value: The area of the circle

double circularArea(double r) // Definition of circularArea() begins
{
 const double pi = 3.1415926536; // Pi is a constant
 return pi * r * r;
}

Output:

 Areas of Circles

 Radius Area

 1.0 3.14
 5.0 78.54

Note that the compiler requires a prior declaration of each function called. The
prototype of circularArea() in the third line of Example 1-1 provides the informa‐
tion needed to compile a statement that calls this function. The prototypes of stan‐
dard library functions are found in standard header files. Because the header file
stdio.h contains the prototype of the printf() function, the preprocessor directive
#include <stdio.h> declares the function indirectly by directing the compiler’s

Lang
uag

e
B

asics

The Structure of C Programs | 5

www.itbook.store/books/9781491904756

https://itbook.store/books/9781491904756

preprocessor to insert the contents of that file. (See also “How the C Compiler
Works” on page 19.)

You may arrange the functions defined in a program in any order. In Example 1-1,
we could just as well have placed the function circularArea() before the function
main(). If we had, then the prototype declaration of circularArea() would be
superfluous, because the definition of the function is also a declaration.

Function definitions cannot be nested inside one another: you can define a local
variable within a function block, but not a local function.

Source Files
The function definitions, global declarations, and preprocessing directives make up
the source code of a C program. For small programs, the source code is written in a
single source file. Larger C programs consist of several source files. Because the
function definitions generally depend on preprocessor directives and global decla‐
rations, source files usually have the following internal structure:

1. Preprocessor directives
2. Global declarations
3. Function definitions

C supports modular programming by allowing you to organize a program in as
many source and header files as desired, and to edit and compile them separately.
Each source file generally contains functions that are logically related, such as the
program’s user interface functions. It is customary to label C source files with the
filename suffix .c.

Examples 1-2 and 1-3 show the same program as Example 1-1, but divided into two
source files.

Example 1-2. The first source file, containing the main() function

// circle.c: Prints the areas of circles.
// Uses circulararea.c for the math

#include <stdio.h>
double circularArea(double r);

int main()
{
 /* ... As in Example 1-1... */
}

6 | Chapter 1: Language Basics

www.itbook.store/books/9781491904756

https://itbook.store/books/9781491904756

Example 1-3. The second source file, containing the circularArea() function

// circulararea.c: Calculates the areas of circles.
// Called by main() in circle.c

double circularArea(double r)
{
 /* ... As in Example 1-1... */
}

When a program consists of several source files, you need to declare the same func‐
tions and global variables, and define the same macros and constants, in many of
the files. These declarations and definitions thus form a sort of file header that is
more or less constant throughout a program. For the sake of simplicity and consis‐
tency, you can write this information just once in a separate header file, and then
reference the header file using an #include directive in each source code file.
Header files are customarily identified by the filename suffix .h. A header file explic‐
itly included in a C source file may in turn include other files.

Each C source file, together with all the header files included in it, makes up a trans‐
lation unit. The compiler processes the contents of the translation unit sequentially,
parsing the source code into tokens, its smallest semantic units, such as variable
names and operators. See “Tokens” on page 21 for more detail.

Any number of whitespace characters can occur between two successive tokens,
allowing you a great deal of freedom in formatting the source code. There are no
rules for line breaks or indenting, and you may use spaces, tabs, and blank lines lib‐
erally to create “human-readable” source code. The preprocessor directives are
slightly less flexible: a preprocessor directive must always appear on a line by itself,
and no characters except spaces or tabs may precede the hash mark (#) that begins
the line.

There are many different conventions and “house styles” for source code format‐
ting. Most of them include the following common rules:

• Start a new line for each new declaration and statement.
• Use indentation to reflect the nested structure of block statements.

Comments
You should use comments generously in the source code to document your C pro‐
grams. There are two ways to insert a comment in C: block comments begin with /*
and end with */, and line comments begin with // and end with the next newline
character.

You can use the /* and */ delimiters to begin and end comments within a line, and
to enclose comments of several lines. For example, in the following function proto‐

Lang
uag

e
B

asics

Comments | 7

www.itbook.store/books/9781491904756

https://itbook.store/books/9781491904756

type, the ellipsis (…) signifies that the open() function has a third, optional parame‐
ter. The comment explains the usage of the optional parameter:

int open(const char *name, int mode, ... /* int permissions */);

You can use // to insert comments that fill an entire line, or to write source code in
a two-column format, with program code on the left and comments on the right:

const double pi = 3.1415926536; // pi is constant

These line comments were officially added to the C language by the C99 standard,
but most compilers already supported them even before C99. They are sometimes
called “C++-style” comments, although they originated in C’s forerunner, BCPL.

Inside the quotation marks that delimit a character constant or a string literal, the
characters /* and // do not start a comment. For example, the following statement
contains no comments:

printf("Comments in C begin with /* or //.\n");

The only thing that the preprocessor looks for in examining the characters in a
comment is the end of the comment; thus it is not possible to nest block comments.
However, you can insert /* and */ to comment out part of a program that contains
line comments:

/* Temporarily removing two lines:
 const double pi = 3.1415926536; // pi is constant
 area = pi * r * r // Calculate the area
 Temporarily removed up to here */

If you want to comment out part of a program that contains block comments, you
can use a conditional preprocessor directive (described in Chapter 15):

#if 0
 const double pi = 3.1415926536; /* pi is constant */
 area = pi * r * r /* Calculate the area */
#endif

The preprocessor replaces each comment with a space. The character sequence
min/*max*/Value thus becomes the two tokens min Value.

Character Sets
C makes a distinction between the environment in which the compiler translates the
source files of a program (the translation environment) and the environment in
which the compiled program is executed (the execution environment). Accordingly,
C defines two character sets: the source character set is the set of characters that may
be used in C source code, and the execution character set is the set of characters that
can be interpreted by the running program. In many C implementations, the two
character sets are identical. If they are not, then the compiler converts the characters
in character constants and string literals in the source code into the corresponding
elements of the execution character set.

8 | Chapter 1: Language Basics

www.itbook.store/books/9781491904756

https://itbook.store/books/9781491904756

Each of the two character sets includes both a basic character set and extended char‐
acters. The C language does not specify the extended characters, which are usually
dependent on the local language. The extended characters together with the basic
character set make up the extended character set.

The basic source and execution character sets both contain the following types of
characters:

The letters of the Latin alphabet
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z

The decimal digits
0 1 2 3 4 5 6 7 8 9

The following 29 graphic characters
! " # % & ' () * + , − . / : ; < = > ? [\] ^ _ { | } ~

The five whitespace characters
Space, horizontal tab, vertical tab, newline, and form feed

The basic execution character set also includes four nonprintable characters: the
null character (which acts as the termination mark in a character string), alert, back‐
space, and carriage return. To represent these characters in character and string lit‐
erals, type the corresponding escape sequences beginning with a backslash: \0 for the
null character, \a for alert, \b for backspace, and \r for carriage return. See Chap‐
ter 3 for more details.

The actual numeric values of characters—the character codes—may vary from one
C implementation to another. The language itself imposes only these conditions:

• Each character in the basic character set must be representable in one byte.
• The null character is a byte in which all bits are 0.
• The value of each decimal digit after 0 is greater by one than that of the preced‐

ing digit.

Wide Characters and Multibyte Characters
C was originally developed in an English-speaking environment where the domi‐
nant character set was the 7-bit ASCII code. Since then, the 8-bit byte has become
the most common unit of character encoding, but software for international use
generally has to be able to represent more different characters than can be coded in
one byte. Furthermore, a variety of multibyte character encoding schemes have long
been in use internationally to represent non-Latin alphabets and the nonalphabetic
Chinese, Japanese, and Korean writing systems. In 1994, with the adoption of “Nor‐
mative Addendum 1,” ISO C standardized two ways of representing larger character
sets:

Lang
uag

e
B

asics

Character Sets | 9

www.itbook.store/books/9781491904756

https://itbook.store/books/9781491904756

• Wide characters, in which the same bit width is used for every character in a
character set

• Multibyte characters, in which a given character can be represented by one or
several bytes, and the character value of a given byte sequence can depend on
its context in a string or stream

Although C now provides abstract mechanisms to manipulate
and convert the different kinds of encoding schemes, the lan‐
guage itself doesn’t define or specify any encoding scheme, or
any character set except the basic source and execution char‐
acter sets described in the previous section. In other words, it
is left up to individual implementations to specify how to
encode wide characters, and what multibyte encoding
schemes to support.

Wide characters
Since the 1994 addendum, C has provided not only the type char but also wchar_t,
the wide character type. This type, defined in the header file stddef.h, is large enough
to represent any element of the given implementation’s extended character sets.

Although the C standard does not require support for Unicode character sets, many
implementations use the Unicode transformation formats UTF-16 and UTF-32 (see
http://www.unicode.org/) for wide characters. The Unicode standard is largely iden‐
tical with the ISO/IEC 10646 standard, and is a superset of many previously existing
character sets, including the 7-bit ASCII code. When the Unicode standard is
implemented, the type wchar_t is at least 16 or 32 bits wide, and a value of type
wchar_t represents one Unicode character. For example, the following definition
initializes the variable wc with the Greek letter α:

wchar_t wc = '\x3b1';

The escape sequence beginning with \x indicates a character code in hexadecimal
notation to be stored in the variable—in this case, the code for a lowercase alpha.

For better Unicode support, C11 introduced the additional wide-character types
char16_t and char32_t, which are defined as unsigned integer types in the header
file uchar.h. Characters of the type char16_t are encoded in UTF-16 in C imple‐
mentations that define the macro __STDC_UTF_16__. Similarly, in implementations
that define the macro __STDC_UTF_32__, characters of the type char32_t are enco‐
ded in UTF-32.

Multibyte characters
In multibyte character sets, each character is coded as a sequence of one or more
bytes. Both the source and execution character sets may contain multibyte charac‐
ters. If they do, then each character in the basic character set occupies only one byte,

10 | Chapter 1: Language Basics

www.itbook.store/books/9781491904756

https://itbook.store/books/9781491904756

and no multibyte character except the null character may contain any byte in which
all bits are 0. Multibyte characters can be used in character constants, string literals,
identifiers, comments, and header filenames. Many multibyte character sets are
designed to support a certain language, such as the Japanese Industrial Standard
character set (JIS). The multibyte UTF-8 character set, defined by the Unicode Con‐
sortium, is capable of representing all Unicode characters. UTF-8 uses from one to
four bytes to represent a character.

The key difference between multibyte characters and wide characters (that is, char‐
acters of the type wchar_t, char16_t, or char32_t) is that wide characters are all the
same size, and multibyte characters are represented by varying numbers of bytes.
This representation makes multibyte strings more complicated to process than
strings of wide characters. For example, even though the character A can be repre‐
sented in a single byte, finding it in a multibyte string requires more than a simple
byte-by-byte comparison, because the same byte value in certain locations could be
part of a different character. Multibyte characters are well suited for saving text in
files, however (see Chapter 13). Furthermore, the encoding of multibyte characters
is independent of the system architecture, while encoding of wide characters is
dependent on the given system’s byte order: that is, the bytes of a wide character
may be in big-endian or little-endian order, depending on the system.

Conversion
C provides standard functions to obtain the wchar_t value of any multibyte charac‐
ter, and to convert any wide character to its multibyte representation. For example,
if the C compiler uses the Unicode standards UTF-16 and UTF-8, then the follow‐
ing call to the function wctomb() (read: “wide character to multibyte”) obtains the
multibyte representation of the character α:

wchar_t wc = L'\x3B1'; // Greek lowercase alpha, α
char mbStr[10] = "";
int nBytes = 0;
nBytes = wctomb(mbStr, wc);
if(nBytes < 0)
 puts("Not a valid multibyte character in your locale.");

After a successful function call, the array mbStr contains the multibyte character,
which in this example is the sequence "\xCE\xB1". The wctomb() function’s return
value, assigned here to the variable nBytes, is the number of bytes required to repre‐
sent the multibyte character—namely, 2.

The standard library also provides conversion functions for char16_t and
char32_t, the new wide-character types introduced in C11, such as the function
c16rtomb(), which returns the multibyte character that corresponds to a given wide
character of the type char16_t (see “Multibyte Characters” on page 333).

Lang
uag

e
B

asics

Character Sets | 11

www.itbook.store/books/9781491904756

https://itbook.store/books/9781491904756

Universal Character Names
C also supports universal character names as a way to use the extended character set
regardless of the implementation’s encoding. You can specify any extended character
by its universal character name, which is its Unicode value in the form:

\uXXXX

or:

\UXXXXXXXX

where XXXX or XXXXXXXX is a Unicode code point in hexadecimal notation. Use the
lowercase u prefix followed by four hexadecimal digits, or the uppercase U followed
by exactly eight hex digits. If the first four hexadecimal digits are zero, then the
same universal character name can be written either as \uXXXX or as\U0000XXXX.

Universal character names are permissible in identifiers, character constants, and
string literals. However, they must not be used to represent characters in the basic
character set.

When you specify a character by its universal character name, the compiler stores it
in the character set used by the implementation. For example, if the execution char‐
acter set in a localized program is ISO 8859-7 (8-bit Greek), then the following defi‐
nition initializes the variable alpha with the code\xE1:

char alpha = '\u03B1';

However, if the execution character set is UTF-16, then you need to define the vari‐
able as a wide character:

wchar_t alpha = '\u03B1'; // or char16_t alpha = u'\u03B1';

In this case, the character code value assigned to alpha is hexadecimal 3B1, the
same as the universal character name.

Not all compilers support universal character names.

Digraphs and Trigraphs
C provides alternative representations for a number of punctuation marks that are
not available on all keyboards. Six of these are the digraphs, or two-character tokens,
which represent the characters shown in Table 1-1.

12 | Chapter 1: Language Basics

www.itbook.store/books/9781491904756

https://itbook.store/books/9781491904756

Table 1-1. Digraphs

Digraph Equivalent

<: [

:>]

<% {

%> }

%: #

%:%: ##

These sequences are not interpreted as digraphs if they occur within character con‐
stants or string literals. In all other positions, they behave exactly like the single-
character tokens they represent. For example, the following code fragments are per‐
fectly equivalent, and produce the same output. With digraphs:

int arr<::> = <% 10, 20, 30 %>;
printf("The second array element is <%d>.\n", arr<:1:>);

Without digraphs:

int arr[] = { 10, 20, 30 };
printf("The second array element is <%d>.\n", arr[1]);

Output:

The second array element is <20>.

C also provides trigraphs, three-character representations, all of them beginning
with two question marks. The third character determines which punctuation mark
a trigraph represents, as shown in Table 1-2.

Table 1-2. Trigraphs

Trigraph Equivalent

??([

??)]

??< {

??> }

??= #

??∕ \

??! |

??' ^

??- ~

Lang
uag

e
B

asics

Character Sets | 13

www.itbook.store/books/9781491904756

https://itbook.store/books/9781491904756

Trigraphs allow you to write any C program using only the characters defined in
ISO/IEC 646, the 1991 standard corresponding to 7-bit ASCII. The compiler’s pre‐
processor replaces the trigraphs with their single-character equivalents in the first
phase of compilation. This means that the trigraphs, unlike digraphs, are translated
into their single-character equivalents no matter where they occur, even in character
constants, string literals, comments, and preprocessing directives. For example, the
preprocessor interprets the following statement’s second and third question marks
as the beginning of a trigraph:

printf("Cancel???(y/n) ");

Thus, the line produces the following unintended preprocessor output:

printf("Cancel?[y/n) ");

If you need to use one of these three-character sequences and do not want it to be
interpreted as a trigraph, you can write the question marks as escape sequences:

printf("Cancel\?\?\?(y/n) ");

If the character following any two question marks is not one of those shown in
Table 1-2, then the sequence is not a trigraph, and remains unchanged.

As another substitute for punctuation characters in addition
to the digraphs and trigraphs, the header file iso646.h contains
macros that define alternative representations of C’s logical
operators and bitwise operators, such as and for && and xor
for ^. For details, see Chapter 16.

Identifiers
The term identifier refers to the names of variables, functions, macros, structures,
and other objects defined in a C program. Identifiers can contain the following
characters:

• The letters in the basic character set, a–z and A–Z (identifiers are case-sensitive)

• The underscore character, _

• The decimal digits 0–9, although the first character of an identifier must not be
a digit

• Universal character names that represent the letters and digits of other lan‐
guages

The permissible universal characters are defined in Annex D of the C standard, and
correspond to the characters defined in the ISO/IEC TR 10176 standard, minus the
basic character set.

Multibyte characters may also be permissible in identifiers. However, it is up to the
given C implementation to determine exactly which multibyte characters are per‐
mitted and what universal character names they correspond to.

14 | Chapter 1: Language Basics

www.itbook.store/books/9781491904756

https://itbook.store/books/9781491904756

The following 44 keywords are reserved in C, each having a specific meaning to the
compiler, and must not be used as identifiers:

auto extern short while

break float signed _Alignas

case for sizeof _Alignof

char goto static _Atomic

const if struct _Bool

continue inline switch _Complex

default int typedef _Generic

do long union _Imaginary

double register unsigned _Noreturn

else restrict void _Static_assert

enum return volatile _Thread_local

The following examples are valid identifiers:

x dollar Break error_handler scale64

The following are not valid identifiers:

1st_rank switch y/n x-ray

If the compiler supports universal character names, then α is also an example of a
valid identifier, and you can define a variable by that name:

double α = 0.5;

Your source code editor might save the character α in the source file as the universal
character \u03B1.

When choosing identifiers in your programs, remember that many identifiers are
already used by the C standard library. These include the names of standard library
functions, which you cannot use for functions you define or for global variables. See
Chapter 16 for details.

The C compiler provides the predefined identifier __func__ (note that there are
four underscore characters), which you can use in any function to access a string
constant containing the name of the function. This is useful for logging or for
debugging output; for example:

#include <stdio.h>
int test_func(char *s)
{
 if(s == NULL) {
 fprintf(stderr,
 "%s: received null pointer argument\n", __func__);
 return -1;

Lang
uag

e
B

asics

Identifiers | 15

www.itbook.store/books/9781491904756

https://itbook.store/books/9781491904756

 }
 /* ... */
}

In this example, passing a null pointer to the function test_func() generates the
following error message:

test_func: received null pointer argument

There is no limit on the length of identifiers. However, most compilers consider
only a limited number of characters in identifiers to be significant. In other words, a
compiler might fail to distinguish between two identifiers that start with a long
identical sequence of characters. To conform to the C standard, a compiler must
treat at least the first 31 characters as significant in the names of functions and
global variables (that is, identifiers with external linkage), and at least the first 63
characters in all other identifiers.

Identifier Name Spaces
All identifiers fall into exactly one of the following four categories, which constitute
separate name spaces:

• Label names
• Tags, which identify structure, union, and enumeration types
• Names of structure or union members (each structure or union constitutes a

separate name space for its members)
• All other identifiers, which are called ordinary identifiers

Identifiers that belong to different name spaces may be the same without causing
conflicts. In other words, you can use the same name to refer to different objects, if
they are of different kinds. For example, the compiler is capable of distinguishing
between a variable and a label with the same name. Similarly, you can give the same
name to a structure type, an element in the structure, and a variable, as the follow‐
ing example shows:

struct pin { char pin[16]; /* ... */ };
_Bool check_pin(struct pin *pin)
{
 int len = strlen(pin->pin);
 /* ... */
}

The first line of the example defines a structure type identified by the tag pin, con‐
taining a character array named pin as one of its members. In the second line, the
function parameter pin is a pointer to a structure of the type just defined. The
expression pin->pin in the fourth line designates the member of the structure that
the function’s parameter points to. The context in which an identifier appears always
determines its name space with no ambiguity. Nonetheless, it is generally a good

16 | Chapter 1: Language Basics

www.itbook.store/books/9781491904756

https://itbook.store/books/9781491904756

idea to make all identifiers in a program distinct, in order to spare human readers
unnecessary confusion.

Identifier Scope
The scope of an identifier refers to that part of the translation unit in which the
identifier is meaningful. Or to put it another way, the identifier’s scope is that part of
the program that can “see” that identifier. The type of scope is always determined by
the location at which you declare the identifier (except for labels, which always have
function scope). Four kinds of scope are possible:

File scope
If you declare an identifier outside all blocks and parameter lists, then it has file
scope. You can then use the identifier anywhere after the declaration and up to
the end of the translation unit.

Block scope
Except for labels, identifiers declared within a block have block scope. You can
use such an identifier only from its declaration to the end of the smallest block
containing that declaration. The smallest containing block is often, but not nec‐
essarily, the body of a function definition. Starting with C99, declarations do
not have to be placed before all statements in a function block. The parameter
names in the head of a function definition also have block scope, and are valid
within the corresponding function block.

Function prototype scope
The parameter names in a function prototype have function prototype scope.
Because these parameter names are not significant outside the prototype itself,
they are meaningful only as comments, and can also be omitted. See Chapter 7
for further information.

Function scope
The scope of a label is always the function block in which the label occurs, even
if it is placed within nested blocks. In other words, you can use a goto state‐
ment to jump to a label from any point within the same function that contains
the label. (Jumping into nested blocks is not a good idea, though; see Chapter 6
for details.)

The scope of an identifier generally begins after its declaration. However, the type
names—or tags—of structure, union, and enumeration types and the names of enu‐
meration constants are an exception to this rule: their scope begins immediately
after their appearance in the declaration so that they can be referenced again in the
declaration itself. (Structures and unions are discussed in detail in Chapter 10; enu‐
meration types are described in Chapter 2.) For example, in the following declara‐
tion of a structure type, the last member of the structure, next, is a pointer to the
very structure type that is being declared:

Lang
uag

e
B

asics

Identifiers | 17

www.itbook.store/books/9781491904756

https://itbook.store/books/9781491904756

struct Node { /* ... */
 struct Node *next; }; // Define a structure type
void printNode(const struct Node *ptrNode); // Declare a function

int printList(const struct Node *first) // Begin a function
{ // definition
 struct Node *ptr = first;

 while(ptr != NULL) {
 printNode(ptr);
 ptr = ptr->next;
 }
}

In this code snippet, the identifiers Node, next, printNode, and printList all have
file scope. The parameter ptrNode has function prototype scope, and the variables
first and ptr have block scope.

It is possible to use an identifier again in a new declaration nested within its existing
scope, even if the new identifier does not have a different name space. If you do so,
then the new declaration must have block or function prototype scope, and the
block or function prototype must be a true subset of the outer scope. In such cases,
the new declaration of the same identifier hides the outer declaration so that the
variable or function declared in the outer block is not visible in the inner scope. For
example, the following declarations are permissible:

double x; // Declare a variable x with file scope
long calc(double x); // Declare a new x with function prototype
 // scope

int main()
{
 long x = calc(2.5); // Declare a long variable x with block scope

 if(x < 0) // Here, x refers to the long variable
 { float x = 0.0F; // Declare a new variable x with block scope
 /*...*/
 }
 x *= 2; // Here, x refers to the long variable again
 /*...*/
}

In this example, the long variable x delcared in the main() function hides the global
variable x with type double. Thus, there is no direct way to access the double vari‐
able x from within main(). Furthermore, in the conditional block that depends on
the if statement, x refers to the newly declared float variable, which in turn hides
the long variable x.

18 | Chapter 1: Language Basics

www.itbook.store/books/9781491904756

https://itbook.store/books/9781491904756

How the C Compiler Works
Once you have written a source file using a text editor, you can invoke a C compiler
to translate it into machine code. The compiler operates on a translation unit con‐
sisting of a source file and all the header files referenced by #include directives. If
the compiler finds no errors in the translation unit, it generates an object file con‐
taining the corresponding machine code. Object files are usually identified by the
filename suffix .o or .obj. In addition, the compiler may also generate an assembler
listing (see Chapter 19).

Object files are also called modules. A library, such as the C standard library, con‐
tains compiled, rapidly accessible modules of the standard functions.

The compiler translates each translation unit of a C program—that is, each source
file with any header files it includes—into a separate object file. The compiler then
invokes the linker, which combines the object files and any library functions used in
an executable file. Figure 1-1 illustrates the process of compiling and linking a pro‐
gram from several source files and libraries. The executable file also contains any
information that the target operating system needs in order to load and start it.

Figure 1-1. From source code to executable file

The C Compiler’s Translation Phases
The compiling process takes place in eight logical steps. A given compiler may com‐
bine several of these steps as long as the results are not affected. The steps are:

Lang
uag

e
B

asics

How the C Compiler Works | 19

www.itbook.store/books/9781491904756

https://itbook.store/books/9781491904756

1. Characters are read from the source file and converted, if necessary, into the
characters of the source character set. The end-of-line indicators in the source
file, if different from the newline character, are replaced. Likewise, any trigraph
sequences are replaced with the single characters they represent. (Digraphs,
however, are left alone; they are not converted into their single-character equiv‐
alents.)

2. Wherever a backslash is followed immediately by a newline character, the pre‐
processor deletes both. Because a line-end character ends a preprocessor direc‐
tive, this processing step lets you place a backslash at the end of a line in order
to continue a directive, such as a macro definition, on the next line.

Every source file, if not completely empty, must end with
a newline character.

3. The source file is broken down into preprocessor tokens (see “Tokens” on page
21) and sequences of whitespace characters. Each comment is treated as one
space.

4. The preprocessor directives are carried out and macro calls are expanded.

Steps 1 through 4 are also applied to any files inserted by
#include directives. Once the compiler has carried out
the preprocessor directives, it removes them from its
working copy of the source code.

5. The characters and escape sequences in character constants and string literals
are converted into the corresponding characters in the execution character set.

6. Adjacent string literals are concatenated into a single string.
7. The actual compiling takes place: the compiler analyzes the sequence of tokens

and generates the corresponding machine code.
8. The linker resolves references to external objects and functions, and generates

the executable file. If a module refers to external objects or functions that are
not defined in any of the translation units, the linker takes them from the stan‐
dard library or another specified library. External objects and functions must
not be defined more than once in a program.

For most compilers, either the preprocessor is a separate program, or the compiler
provides options to perform only the preprocessing (steps 1 through 4 in the pre‐
ceding list). This setup allows you to verify that your preprocessor directives have
the intended effects. For a more practically oriented look at the compiling process,
see Chapter 19.

20 | Chapter 1: Language Basics

www.itbook.store/books/9781491904756

https://itbook.store/books/9781491904756

Tokens
A token is either a keyword, an identifier, a constant, a string literal, or a symbol.
Symbols in C consist of one or more punctuation characters, and function as opera‐
tors or digraphs, or have syntactic importance, like the semicolon that terminates a
simple statement or the braces { } that enclose a block statement. For example, the
following C statement consists of five tokens:

printf("Hello, world.\n");

The individual tokens are:

printf
(
"Hello, world.\n"
)
;

The tokens interpreted by the preprocessor are parsed in the third translation phase.
These are only slightly different from the tokens that the compiler interprets in the
seventh phase of translation:

• Within an #include directive, the preprocessor recognizes the additional
tokens <filename> and "filename".

• During the preprocessing phase, character constants and string literals have
not yet been converted from the source character set to the execution character
set.

• Unlike the compiler proper, the preprocessor makes no distinction between
integer constants and floating-point constants.

In parsing the source file into tokens, the compiler (or preprocessor) always applies
the following principle: each successive non-whitespace character must be
appended to the token being read, unless appending it would make a valid token
invalid. This rule resolves any ambiguity in the following expression, for example:

a+++b

Because the first + cannot be part of an identifier or keyword starting with a, it
begins a new token. The second + appended to the first forms a valid token—the
increment operator—but a third + does not. Hence the expression must be parsed
as:

a ++ + b

See Chapter 19 for more information on compiling C programs.

Lang
uag

e
B

asics

How the C Compiler Works | 21

www.itbook.store/books/9781491904756

https://itbook.store/books/9781491904756

	Copyright
	Table of Contents
	Preface
	How This Book Is Organized
	Part I
	Part II
	Part III

	Further Reading
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Peter
	Tony

	Part I. Language
	Chapter 1. Language Basics
	Characteristics of C
	The Structure of C Programs
	Source Files
	Comments
	Character Sets
	Wide Characters and Multibyte Characters
	Universal Character Names
	Digraphs and Trigraphs

	Identifiers
	Identifier Name Spaces
	Identifier Scope

	How the C Compiler Works
	The C Compiler’s Translation Phases
	Tokens

	Chapter 2. Types
	Typology
	Integer Types
	Integer Types Defined in Standard Headers

	Floating-Point Types
	Complex Floating-Point Types
	Enumerated Types
	The Type void
	void in Function Declarations
	Expressions of Type void
	Pointers to void

	The Alignment of Objects in Memory

	Chapter 3. Literals
	Integer Constants
	Floating-Point Constants
	Decimal Floating-Point Constants
	Hexadecimal Floating-Point Constants

	Character Constants
	Types and Values of Character Constants
	Escape Sequences

	String Literals

	Chapter 4. Type Conversions
	Conversion of Arithmetic Types
	Hierarchy of Types
	Integer Promotion
	Usual Arithmetic Conversions
	Other Implicit Type Conversions
	The Results of Arithmetic Type Conversions

	Conversion of Nonarithmetic Types
	Array and Function Designators
	Explicit Pointer Conversions
	Implicit Pointer Conversions
	Conversions Between Pointer and Integer Types

	Chapter 5. Expressions and Operators
	How Expressions Are Evaluated
	Generic Selections (C11)
	Lvalues
	Side Effects and Sequence Points
	Operator Precedence and Associativity

	Operators in Detail
	Arithmetic Operators
	Assignment Operators
	Increment and Decrement Operators
	Comparative Operators
	Logical Operators
	Bitwise Operators
	Memory Addressing Operators
	Other Operators

	Constant Expressions
	Integer Constant Expressions
	Other Constant Expressions

	Chapter 6. Statements
	Expression Statements
	Block Statements
	Loops
	while Statements
	for Statements
	do…while Statements
	Nested Loops

	Selection Statements
	if Statements
	switch Statements

	Unconditional Jumps
	The break Statement
	The continue Statement
	The goto Statement
	The return Statement

	Chapter 7. Functions
	Function Definitions
	Functions and Storage Class Specifiers
	K&R-Style Function Definitions
	Function Parameters
	Arrays as Function Parameters
	The main() Function

	Function Declarations
	Declaring Optional Parameters
	Declaring Variable-Length Array Parameters

	How Functions Are Executed
	Pointers as Arguments and Return Values
	Inline Functions
	Non-Returning Functions
	Recursive Functions
	Variable Numbers of Arguments

	Chapter 8. Arrays
	Defining Arrays
	Fixed-Length Arrays
	Variable-Length Arrays

	Accessing Array Elements
	Initializing Arrays
	Writing Initialization Lists
	Initializing Specific Elements

	Strings
	Multidimensional Arrays
	Matrices
	Declaring Multidimensional Arrays
	Initializing Multidimensional Arrays

	Arrays as Arguments of Functions

	Chapter 9. Pointers
	Declaring Pointers
	Null Pointers
	void Pointers
	Initializing Pointers

	Operations with Pointers
	Using Pointers to Read and Modify Objects
	Modifying and Comparing Pointers

	Pointers and Type Qualifiers
	Constant Pointers and Pointers to Constant Objects
	Restricted Pointers

	Pointers to Arrays and Arrays of Pointers
	Array Pointers
	Pointer Arrays

	Pointers to Functions

	Chapter 10. Structures, Unions, and Bit-Fields
	Structures
	Defining Structure Types
	Structure Objects and typedef Names
	Incomplete Structure Types
	Accessing Structure Members
	Initializing Structures
	Initializing Specific Members
	Structure Members in Memory
	Flexible Structure Members
	Pointers as Structure Members

	Unions
	Defining Union Types
	Initializing Unions

	Anonymous Structures and Unions
	Bit-Fields

	Chapter 11. Declarations
	Object and Function Declarations
	Examples
	Storage Class Specifiers
	Type Qualifiers
	Declarations and Definitions
	Complex Declarators

	Type Names
	typedef Declarations
	_Static_assert Declarations
	Linkage of Identifiers
	External Linkage
	Internal Linkage
	No Linkage

	Storage Duration of Objects
	Static Storage Duration
	Thread Storage Duration
	Automatic Storage Duration

	Initialization
	Implicit Initialization
	Explicit Initialization

	Chapter 12. Dynamic Memory Management
	Allocating Memory Dynamically
	Characteristics of Allocated Memory
	Resizing and Releasing Memory
	An All-Purpose Binary Tree
	Characteristics
	Implementation
	Generating an Empty Tree
	Inserting New Data
	Finding Data in the Tree
	Removing Data from the Tree
	Traversing a Tree
	A Sample Application

	Chapter 13. Input and Output
	Streams
	Text Streams
	Binary Streams

	Files
	File Position
	Buffers
	The Standard Streams

	Opening and Closing Files
	Opening a File
	Access Modes
	Closing a File

	Reading and Writing
	Byte-Oriented and Wide-Oriented Streams
	Error Handling
	Unformatted I/O
	Formatted Output
	Formatted Input

	Random File Access
	Obtaining the Current File Position
	Setting the File Access Position

	Chapter 14. Multithreading
	Threads
	Creating Threads
	Other Thread Functions

	Accessing Shared Data
	Mutual Exclusion
	Atomic Objects
	Atomic Operations
	Memory Ordering
	Fences

	Communication Between Threads: Condition Variables
	Thread-Local Objects and Thread-Specific Storage
	Using Thread-Local Objects
	Using Thread-Specific Storage

	Chapter 15. Preprocessing Directives
	Inserting the Contents of Header Files
	How the Preprocessor Finds Header Files
	Nested #include Directives

	Defining and Using Macros
	Macros Without Parameters
	Macros with Parameters
	Using Macros Within Macros
	Macro Scope and Redefinition

	Type-generic Macros
	Conditional Compiling
	The #if and #elif Directives
	The defined Operator
	The #ifdef and #ifndef Directives

	Defining Line Numbers
	Generating Error Messages
	The #pragma Directive
	The _Pragma Operator
	Predefined Macros
	Conditionally Defined Macros

	Part II. Standard Library
	Chapter 16. The Standard Headers
	Using the Standard Headers
	Execution Environments
	Function and Macro Calls
	Reserved Identifiers

	Functions with Bounds-Checking
	Availability
	Runtime Constraints

	Contents of the Standard Headers
	assert.h
	complex.h
	ctype.h
	errno.h
	fenv.h
	float.h
	inttypes.h
	iso646.h
	limits.h
	locale.h
	math.h
	setjmp.h
	signal.h
	stdalign.h
	stdarg.h
	stdatomic.h
	stdbool.h
	stddef.h
	stdint.h
	stdio.h
	stdlib.h
	stdnoreturn.h
	string.h
	tgmath.h
	threads.h
	time.h
	uchar.h
	wchar.h
	wctype.h

	Chapter 17. Functions at a Glance
	Input and Output
	Mathematical Functions
	Mathematical Functions for Integer Types
	Floating-Point Functions
	Function-Like Macros
	Pragmas for Arithmetic Operations
	The Floating-Point Environment
	Error Handling

	Character Classification and Conversion
	Character Classification
	Case Mapping

	String Processing
	Multibyte Characters
	Converting Between Numbers and Strings
	Searching and Sorting
	Memory Block Handling
	Dynamic Memory Management
	Date and Time
	Process Control
	Communication with the Operating System
	Signals

	Internationalization
	Nonlocal Jumps
	Multithreading (C11)
	Thread Functions
	Atomic Operations

	Debugging
	Error Messages

	Chapter 18. Standard Library Functions
	Part III. Basic Tools
	Chapter 19. Compiling with GCC
	The GNU Compiler Collection
	Obtaining and Installing GCC
	Compiling C Programs with GCC
	Step by Step
	Multiple Input Files
	Dynamic Linking and Shared Object Files
	Freestanding Programs

	C Dialects
	Compiler Warnings
	Optimization
	The -O Levels
	The -f Flags
	Floating-Point Optimization
	Architecture-Specific Optimization
	Why Not Optimize?

	Debugging
	Profiling
	Option and Environment Variable Summary
	Command-Line Options
	Environment Variables

	Chapter 20. Using make to Build C Programs
	Targets, Prerequisites, and Commands
	The Makefile
	Rules
	The Command Script
	Pattern Rules
	Suffix Rules
	Built-In Rules
	Implicit Rule Chains
	Double-Colon Rules

	Comments
	Variables
	Assignment Operators
	Variables and Whitespace
	Target-Specific Variable Assignments
	The Automatic Variables
	Other Built-In Variables
	Environment Variables

	Phony Targets
	Other Target Attributes
	Macros
	Functions
	Built-In Functions
	User-Defined Functions

	Directives
	Conditionals
	Includes
	Other Directives

	Running make
	Generating Header Dependencies
	Recursive make Commands
	Command-Line Options
	Special Targets Used as Runtime Options
	GCC Options for Generating Makefile Rules

	Chapter 21. Debugging C Programs with GDB
	Installing GDB
	A Sample Debugging Session
	Symbol Information
	Finding a Bug

	Starting GDB
	Command-Line Arguments
	Command-Line Options
	Initialization Files

	Using GDB Commands
	Command Completion
	Displaying Help for Commands
	Status Information
	Running a Program in the Debugger
	Displaying Source Code
	Working with Breakpoints
	Resuming Execution After a Break
	Analyzing the Stack
	Displaying Data
	Watchpoints: Observing Operations on Variables

	Analyzing Core Files in GDB

	Chapter 22. Using an IDE with C
	IDEs for C
	The Eclipse IDE for C/C++
	Installing Eclipse CDT
	Running Eclipse
	Perspectives and Views

	Developing a C Program with Eclipse
	Creating a New C Project
	Editing
	Compiling and Running a Program
	Project Properties

	Debugging a C Program in Eclipse
	Starting the Debugger
	Setting Breakpoints
	Controlling Program Execution in the Debugger

	Further Information on Eclipse

	Index

