=\

IMI.;”II“ Ak >§\\

S NS Ay A
S /V<$ /e
d@%%ﬁ\&\u\»\\

=
=
T
<
=
@)
T
<
()]
=
<
T
=
L
=
Ll
&)
<t
=
<
=
=
=
T
<
o
>
O
[
=
@)
o
@)
T
L
=]
)
&
<C

10
O
o
D

[,

®)
5
-
-
®
D
—]

O'REILLY"

www.itbook.store/books/9781491907665


https://itbook.store/books/9781491907665

O'REILLY"

Learning Puppet 4

If you're a system administrator, developer, or site reliability engineer
responsible for handling hundreds or even thousands of nodes in your
network, the Puppet configuration management tool will make your job a
whole lot easier. This practical guide shows you what Puppet does, how it
works, and how it can provide significant value to your organization.

Through hands-on tutorials, DevOps engineer Jo Rhett demonstrates how
Puppet manages complex and distributed components to ensure service
availability. You'll learn how to secure configuration consistency across
servers, clients, your router, and even that computer in your pocket by
setting up your own testing environment.

m Learn exactly what Puppet is, why it was created, and what
problems it solves

m Tailor Puppet to your infrastructure with environment layouts
that meet your specific needs

m Write declarative Puppet policies to produce consistency in
your systems

m Build, test, and publish your own Puppet modules

m Manage network devices such as routers and switches with
puppet device and integrated Puppet agents

m Scale Puppet servers for high availability and performance

m Explore web dashboards and orchestration tools that
supplement and complement Puppet

Jo Rhett is a DevOps engineer with 20 years of experience conceptualizing and
delivering large-scale Internet services. He focuses on creating automation and
infrastructure to accelerate deployment and minimize outages.

SYSTEM ADMINISTRATION Twitter: @oreillymedia

facebook.com/oreilly

US $49.99 CAN $57.99
ISBN: 978-1-491-90766-5

NIVINNMILEIN g
TANLE o

90766
www.itbook.store/books/9781491907665

9 8



https://itbook.store/books/9781491907665

Learning Puppet 4

A Guide to Configuration Management
and Automation

Jo Rhett

Bejng - Boston « Farnham - Sebastopol - Tokyo  [@YRIIMNY

www.itbook.store/books/9781491907665


https://itbook.store/books/9781491907665

Learning Puppet 4
by Jo Rhett

Copyright © 2016 Jo Rhett. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian Anderson Indexer: Judy McConville
Production Editor: Kristen Brown Interior Designer: David Futato
Copyeditor: Rachel Monaghan Cover Designer: Karen Montgomery
Proofreader: Jasmine Kwityn lllustrator: Rebecca Demarest
April 2016: First Edition

Revision History for the First Edition
2016-03-22: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491907665 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning Puppet 4, the cover image of
an European polecat, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-491-90766-5
[LSI]

www.itbook.store/books/9781491907665


https://itbook.store/books/9781491907665

Table of Contents

310 =111} (o XXi
o] [ XXiii
INEPOUCTION. v ettt ettt ettt ettt ettt eeetneneensneanensneensnens XXxi

Partl. Controlling with Puppet Apply

1. Thinking Declarative. ... ......ccoiiiiiiiiiiiiii it iiieiieeieeenaaens 3
Handling Change 3
Using Idempotence 4
Declaring Final State 5
Reviewing Declarative Programming 6

2. (reatinga Learning Environment..........c.ooiiuiiiiiiiiiiiiiiiiiiiennnnnns 7
Installing Vagrant 8

Installing Vagrant on Mac 8
Installing Git Tools on Windows 10
Installing VirtualBox on Windows 11
Installing Vagrant on Windows 14
Starting a Bash Shell 17
Downloading a Box 18
Cloning the Learning Repository 19
Install the Vagrant vbguest Plugin 19
Initializing the Vagrant Setup 19
Verifying the /vagrant Filesystem 21
Initializing Non-Vagrant Systems 22

www.itbook.store/books/9781491907665


https://itbook.store/books/9781491907665

Installing Some Helpful Utilities
Choosing a Text Editor

On the Virtual System

On Your Desktop

In Your Profile
Reviewing the Learning Environment

. Installing Puppet..........covviiiiiiiiiiiiiiiiiiinnennn,

Adding the Package Repository
What Is a Puppet Collection?
Installing the Puppet Agent
Reviewing Dependencies
Reviewing Puppet 4 Changes
Linux and Unix
Windows
Making Tests Convenient
Running Puppet Without sudo
Running Puppet with sudo
Reviewing Puppet Installation

. Writing Manifests............cooiiiiiiiiiiiiieiiinnnns.

Implementing Resources
Applying a Manifest
Declaring Resources
Viewing Resources
Executing Programs

Was That Idempotent?
Managing Files

Finding File Backups

Restoring Files
Avoiding Imperative Manifests
Testing Yourself
Reviewing Writing Manifests

. Using the Puppet Configuration Language

Defining Variables
Defining Numbers
Creating Arrays and Hashes
Mapping Hash Keys and Values
Using Variables in Strings
Using Braces to Limit Problems
Preventing Interpolation

22
22
23
24
24
25

27
27
28
28
29
30
30
32
32
33
34
35

37
37
38
39
40
41
42
43
44
45
45
47
47

49
50
51
52
52
53
53
54

| Table of Contents

www.itbook.store/books/9781491907665


https://itbook.store/books/9781491907665

Using Unicode Characters 55

Avoiding Redefinition 55
Avoiding Reserved Words 56
Learning More 57
Finding Facts 57
Calling Functions in Manifests 59
Using Variables in Resources 60
Defining Attributes with a Hash 62
Declaring Multiple Resource Titles 63
Declaring Multiple Resource Bodies 63
Modifying with Operators 64
Adding to Arrays and Hashes 65
Removing from Arrays and Hashes 65
Order of Operations 66
Using Comparison Operators 66
Evaluating Conditional Expressions 68
Matching Regular Expressions 70
Building Lambda Blocks 71
Looping Through Iterations 72
each() 73
filter() 75
map() 76
reduce() 76
slice() 78
with() 79
Capturing Extra Parameters 79
Iteration Wrap-Up 80
Reviewing Puppet Configuration Language 80
6. Controlling Resource Processing. ........c.ovviuirinniennienirenneenneennnss 81
Adding Aliases 81
Specifying an Alias by Title 82
Adding an Alias Metaparameter 82
Preventing Action 82
Auditing Changes 83
Defining Log Level 84
Filtering with Tags 84

Skipping Tags 85
Limiting to a Schedule 86
Utilizing periodmatch 87
Avoiding Dependency Failures 90
Declaring Resource Defaults 91
Table of Contents | v

www.itbook.store/books/9781491907665


https://itbook.store/books/9781491907665

Reviewing Resource Processing 91

7. Expressing Relationships. ........oovviiiiiiiiiiiii it i i 93
Managing Dependencies 93
Referring to Resources 94
Ordering Resources 95
Assuming Implicit Dependencies 95
Triggering Refresh Events 96
Chaining Resources with Arrows 97
Processing with Collectors 98
Understanding Puppet Ordering 99
Debugging Dependency Cycles 100

Avoiding the Root User Trap 101
Utilizing Stages 103
Reviewing Resource Relationships 103

8. Upgrading Puppet 3 Manifests. .........ooveuerenneeiiieiierenneenneennnnns 105

Replacing Deprecated Features 105
Junking the Ruby DSL 105
Upgrading Config Environments 106
Removing Node Inheritence 107
Disabling puppet kick 107
Qualifying Relative Class Names 107
Losing the Search Function 108
Replacing Import 108
Documenting Modules with Puppet Strings 108
Installing the Tagmail Report Processor 109
Querying PuppetDB 109

Preparing for the Upgrade 109
Validating Variable Names 109
Quoting Strings 110
Preventing Numeric Assignment 110
Testing Boolean Facts 112
Qualifying Defined Types 112
Adding Declarative Permissions 113
Removing Cron Purge 114
Replacing MSI Package Provider 114
Adjusting Networking Facts 114

Testing with the Future Parser 115
Using Directory Environments 115
Duplicating a Master or Node 116

Enhancing Older Manifests 116

vi | Tableof Contents

www.itbook.store/books/9781491907665


https://itbook.store/books/9781491907665

Adding else to unless 116

Calling Functions in Strings 116
Matching String Regexps 117
Letting Expressions Stand Alone 117
Chaining Assignments 118
Chaining Expressions with a Semicolon 118
Using Hash and Array Literals 118
Configuring Error Reporting 119

9. Wrap-Up of Puppet Basics. . ....oovveeerneeiieiiieiieiiieeieenneennenens 121
Best Practices for Writing Manifests 122
Learning More About Puppet Manifests 122

Partll. Creating Puppet Modules

10. CreatingaTestEnvironment..........oovviiiiiiniieniieiinrinrenneennns 125
Verifying the Production Environment 125
Creating the Test Environment 125
Changing the Base Module Path 126
Skipping Ahead 126

11. SeparatingDatafromCode..........c.ovviuiiiiiiiiiiiiiiiiiiiiiieinennn, 127
Introducing Hiera 127
Creating Hiera Backends 128

Hiera Data in YAML 128
Hiera Data in JSON 129
Puppet Variable and Function Lookup 130
Configuring Hiera 130
Backends 131
Backend Configuration 131
Logger 131
Hierarchy 132
Merge Strategy 133
Complete Example 134
Looking Up Hiera Data 134
Checking Hiera Values from the Command Line 135
Performing Hiera Lookups in a Manifest 136
Testing Merge Strategy 136
Providing Global Data 139
Table of Contents | vii

www.itbook.store/books/9781491907665


https://itbook.store/books/9781491907665

12, USingModules. . ..ouvennreniniiii ittt it reiieeiieeniesnnesanns 141

Finding Modules 141
Puppet Forge 141
Public GitHub Repositories 142
Internal Repositories 143

Evaluating Module Quality 143
Puppet Supported 144
Puppet Approved 144
Quality Score 145
Community Rating 148

Installing Modules 149
Installing from a Puppet Forge 149
Installing from GitHub 150

Testing a Single Module 151

Defining Config with Hiera 152

Assigning Modules to Nodes 153
Using Hiera for Module Assignment 153
Assigning Classes to Every Node 154
Altering the Class List per Node 155
Avoiding Node Assignments in Manifests 155
Upgrading from Puppet 2 or 3 157

Examining a Module 158

Reviewing Modules 159

13. Designinga CustomModule...........coviiiiiiiiiiiiiiiiiiiiiiiiiinienn, 161

Choosing a Module Name 161
Avoiding Reserved Names 162

Generating a Module Skeleton 162
Moditying the Default Skeleton 163

Understanding Module Structure 164

Installing the Module 164

Creating a Class Manifest 164
What Is a Class? 165

Declaring Class Resources 165

Accepting Input 166

Sharing Files 168

Testing File Synchronization 169

Synchronizing Directories 170

Parsing Templates 171
Common Syntax 171
Using Puppet EPP Templates 172
Using Ruby ERB Templates 175

viii | Table of Contents

www.itbook.store/books/9781491907665


https://itbook.store/books/9781491907665

Creating Readable Templates 177

Testing the Module 177
Peeking Beneath the Hood 178
Best Practices for Module Design 179
Reviewing Custom Modules 179
14. ImprovingtheModule. .........c.ooviriiiiiiiii it iiiieiiieeeieaenns 181
Validating Input with Data Types 181
Valid Types 182
Validating Values 184
Testing Values 186
Comparing Strings with Regular Expressions 187
Matching a Regular Expression 188
Revising the Module 188
Looking Up Input from Hiera 189
Naming Parameters Keys Correctly 189
Using Array and Hash Merges 190
Understanding Lookup Merge 191
Specifying Merge Strategy in Data 192
Replacing Direct Hiera Calls 192
Building Subclasses 194
Creating New Resource Types 195
Understanding Variable Scope 197
Using Out-of-Scope Variables 197
Understanding Top Scope 198
Understanding Node Scope 199
Understanding Parent Scope 199
Tracking Resource Defaults Scope 199
Avoiding Resource Default Bleed 200
Redefining Variables 201
Calling Other Modules 202
Sourcing a Common Dependency 202
Using a Different Module 204
Ordering Dependencies 205
Depending on Entire Classes 205
Placing Dependencies Within Optional Classes 206
Notifying Dependencies from Dynamic Resources 207
Solving Unknown Resource Dependencies 208
Containing Classes 210
Creating Reusable Modules 211
Avoiding Fixed Values in Attribute Values 211
Ensuring Fixed Values for Resource Names 212
Table of Contents | ix

www.itbook.store/books/9781491907665


https://itbook.store/books/9781491907665

Defining Defaults in a Params Manifest 213

Best Practices for Module Improvements 214
Reviewing Module Improvements 215
15. Extending Modules with Plugins. ..........cooviiiiiiiiiiiiiiiiiiiienennnns 217
Adding Custom Facts 217
External Facts 218
Custom (Ruby) Facts 220
Debugging 224
Understanding Implementation Issues 225
Defining Functions 225
Puppet Functions 226
Ruby Functions 227
Using Custom Functions 230
Creating Puppet Types 230
Defining Ensurable 231
Accepting Params and Properties 231
Validating Input Values 232
Defining Implicit Dependencies 234
Learning More About Puppet Types 234
Adding New Providers 235
Determining Provider Suitability 235
Assigning a Default Provider 236
Defining Commands for Use 237
Ensure the Resource State 237
Adjusting Properties 238
Providing a List of Instances 239
Taking Advantage of Caching 240
Learning More About Puppet Providers 241
Identifying New Features 241
Binding Data Providers in Modules 242
Using Data from a Function 242
Using Data from Hiera 243
Performing Lookup Queries 244
Requirements for Module Plugins 244
Reviewing Module Plugins 245
16. DocumentingModules. .........ccviiriiiiiiiiiiiiiiiiiiiiii i, 247
Learning Markdown 247
Writing a Good README 248
Documenting the Classes and Types 248
Installing YARD and Puppet Strings 248

X | Tableof Contents

www.itbook.store/books/9781491907665


https://itbook.store/books/9781491907665

Fixing the Headers 249

Listing Parameters 250
Documenting Variable References 251
Showing Examples 251
Listing Authors and Copyright 252
Documenting Functions 252
Generating Documentation 253
Updating Module Metadata 254
Identifying the License 254
Promoting the Project 255
Indicating Compatibility 255
Defining Requirements 256
Listing Dependencies 257
Identifying a Module Data Source 257
Updating Old Metadata 258
Maintaining the Change Log 258
Evolving and Improving 258
Best Practices for Documenting Modules 259
17. TestingModules. .......coovniiiiiiiiiiiii ittt eanes 261
Installing Dependencies 261
Installing Ruby 261
Adding Beaker 262
Bundling Dependencies 262
Preparing Your Module 263
Defining Fixtures 263
Defining RSpec Unit Tests 264
Defining the Main Class 264
Passing Valid Parameters 265
Failing Invalid Parameters 266
Testing File Creation 267
Validating Class Inclusion 268
Using Facts in Tests 268
Using Hiera Input 269
Defining Parent Class Parameters 270
Testing Functions 270
Adding an Agent Class 271
Testing Other Types 271
Creating Acceptance Tests 272
Installing Ruby for System Tests 272
Defining the Nodeset 272
Configuring the Test Environment 273
Table of Contents |  xi

www.itbook.store/books/9781491907665


https://itbook.store/books/9781491907665

Creating an Acceptance Test 274

Running Acceptance Tests 275
Using Skeletons with Testing Features 278
Finding Documentation 280
Reviewing Testing Modules 280

18. PublishingModules.........ccoviiriiiiiiiiiiiii i iiee s 283
Updating the Module Metadata 283
Packaging a Module 284
Uploading a Module to the Puppet Forge 284
Publishing a Module on GitHub 285
Automating Module Publishing 287
Getting Approved Status from Puppet Labs 287

Partlll. Using a Puppet Server

19. Preparing fora PuppetServer.........oovvuiiiiiiiiiiiiiiiiiiiiiiiieennans 291
Understanding the Catalog Builder 291
Node 291
Agent 292
Server 293
Planning for Puppet Server 294
The Server Is Not the Node 294
The Node Is Not the Server 295
Store Server Data Files Separately 296
Functions Run on the Server 297
Choosing Puppet Master Versus Puppet Server 297
Upgrading Easily with Puppet Master 298
Embracing the Future with Puppet Server 298
Why There’s Really No Choice 299
Ensuring a High-Performance Server 299
20. Creatinga Puppet Master.......oovvvuiiiiiiieiiienernnrnnrrneeneeneennnns 301
Starting the puppetmaster VM 301
Installing the Puppet Master 302
Configuring a Firewall for the Puppet Master 303
Running the WEBrick Server 303
Testing with the Puppet Master Service 304
Scaling the Puppet Master with Passenger 305
Installing Apache 306
Installing Phusion Passenger 306

xii | Tableof Contents

www.itbook.store/books/9781491907665


https://itbook.store/books/9781491907665

Configuring the Puppet Master 307

IPv6 Dual-Stack Puppet Master 309
Debugging Puppet Master 309

21, Creating a Puppet SeIver. ... vvvri ittt ittt i et reietieeneaneenns N
Starting the puppetserver VM 311
Installing Puppet Server 312
Configuring a Firewall for Puppet Server 312
Configuring Puppet Server 313
Defining Server Paths 314
Limiting Memory Usage 315
Configuring TLS Certificates 315
Avoiding Obsolete Settings 317
Configuring Server Logs 318
Configuring Server Authentication 319
Running Puppet Server 321
Adding Ruby Gems 321

IPv6 Dual-Stack Puppet Server 322

22, ConnectingaNode. .......uveriiierinreniieriertierenneeneennesennes 323
Creating a Key Pair 323
Authorizing the Node 324
Downloading the First Catalog 324
Installing Hiera Data and Modules 325
Testing with a Client Node 326
Learning More About Puppet Server 326

23. Migrating an Existing PuppetMaster...........ccoooiiiiiiiiiiiiiiiiiiinnnnns 329
Migrating the Puppet Master Config 329
Synchronizing All Environments 330
Copying Hiera Data 331
Moving the MCollective Config Directory 332
Removing Node Inheritance 332
Testing a Client Node 333
Upgrading Clients 334

24, Utilizing Advantages of a PuppetServer. ........c.coovvveiiirinneenneennnnnns 335
Using Server Data in Your Manifests 335
Trusted Facts 335
Server Facts 336
Server Configuration Settings 337
Backing Up Files Changed on Nodes 337
Table of Contents |  xiii

www.itbook.store/books/9781491907665


https://itbook.store/books/9781491907665

Processing Puppet Node Reports 338

Enabling Transmission of Reports 339
Running Audit Inspections 339
Storing Node Reports 340
Logging Node Reports 341
Transmitting Node Reports via HTTP 342
Transmitting Node Reports to PuppetDB 342
Emailing Node Reports 342
Creating a Custom Report Processor 344
25. Managing TLS Certificates. .. ....ovvveiririeriiin i e reieeenneennnns 347
Reviewing Node Authentication 347
Autosigning Agent Certificates 348
Name-Based Autosigning 348
Policy-Based Autosigning 349
Naive Autosigning 353
Using an External Certificate Authority 353
Distributing Certificates Manually 354
Installing Certificates on the Server 355
Disabling CA on a Puppet Server 355
Disabling CA on a Puppet Master 355
Using Different CAs for Servers and Agents 356
Distributing the CA Revocation List 357
Learning More About TLS Authentication 357
26. Growing Your Puppet Deployment..........ccoviuiiiiiiiiiiiiiiienniennnnnns 359
Using a Node Terminus 359
Running an External Node Classifier 360
Querying LDAP 361
Starting with Community Examples 363
Deploying Puppet Servers at Scale 364
Keeping Distinct Domains 364
Sharing a Single Puppet CA 364
Using a Load Balancer 365
Managing Geographically Dispersed Servers 366
Managing Geographically Dispersed Nodes 367
Falling Back to Cached Catalogs 368
Making the Right Choice 368
Best Practices for Puppet Servers 369
Reviewing Puppet Servers 369
xiv | Table of Contents

www.itbook.store/books/9781491907665


https://itbook.store/books/9781491907665

PartIV. Integrating Puppet

27. Tracking Puppet Status with Dashboards. ...............ccovviiiiiiiiinn.n, 373
Using Puppet Dashboard 373
Installing Dashboard Dependencies 374
Enabling Puppet Dashboard 381
Viewing node status 389
Using Dashboard as a Node Classifier 394
Implementing Dashboard in Production 401
Evaluating Alternative Dashboards 405
Puppetboard 405
Puppet Explorer 406
PanoPuppet 408
ENC Dashboard 409
Foreman 410
Upgrading to the Enterprise Console 412
Viewing Status 412
Classifying Nodes 413
Inspecting Events 413
Tracking Changes 414
Controlling Access 415
Evaluating Puppet Enterprise 416
Finding Plugins and Tools 416
28. Running the Puppet Agent on Windows. .........ccovvviiiiiiinniennnnnnnss 417
Creating a Windows Virtual Machine 417
Creating a VirtualBox Windows VM 418
Adding an Internal Network Adapter 418
Connecting the Windows Installation Media 419
Configuring the Internal Network Adapter 420
Installing Puppet on Windows 421
Configuring Puppet on Windows 422
Running Puppet Interactively 423
Starting the Puppet Service 424
Debugging Puppet Problems 425
Writing Manifests for Windows 425
Finding Windows-Specific Modules 426
Concluding Thoughts on Puppet Windows 427
29. Customizing Environments. ..........oviiiiiiiiiiiiiiiiiiiiniiieeneeneenns 429
Understanding Environment Isolation 429
Enabling Directory Environments 430
Table of Contents | xv

www.itbook.store/books/9781491907665


https://itbook.store/books/9781491907665

Assigning Environments to Nodes 431

Configuring an Environment 431
Choosing a Manifest Path 433
Utilizing Hiera Hierarchies 433
Binding Data Providers in Environments 434
Querying Data from a Function 434
Querying Data from Hiera 435
Strategizing How to Use Environments 436
Promoting Change Through Layers 436
Solving One-Off Problems Using Environments 437
Supporting Diverse Teams with Environments 438
Managing Environments with r10k 439
Listing Modules in the Puppetfile 439
Creating a Control Repository 440
Configuring r10k Sources 442
Adding New Environments 442
Populating a New Installation 443
Updating a Single Environment 444
Replicating Hiera Data 444
Invalidating the Environment Cache 445
Restarting JRuby When Updating Plugins 447
Reviewing Environments 448
30. Controlling Puppet with MCollective..........covvviniiiiiiiiiiiiiniennnen 449
Configuring MCollective 449
Enabling the Puppet Labs Repository 450
Installing the MCollective Module 450
Generating Passwords 450
Configuring Hiera for MCollective 451
Enabling the Middleware 452
Connecting MCollective Servers 453
Validating the Installation 454
Creating Another Client 455
Installing MCollective Agents and Clients 456
Sharing Facts with Puppet 457
Pulling the Puppet Strings 458
Viewing Node Inventory 458
Checking Puppet Status 460
Disabling the Puppet Agent 461
Invoking Ad Hoc Puppet Runs 461
Limiting Targets with Filters 464
Providing a List of Targets 466
xvi | Table of Contents

www.itbook.store/books/9781491907665


https://itbook.store/books/9781491907665

Limiting Concurrency 466

Manipulating Puppet Resource Types 467
Comparing to Puppet Application Orchestration 469
Learning More About MCollective 470

31. Managing Network Infrastructure with Puppet................cooovveiitt 4an
Managing Network Devices with Puppet Device 472

Enabling SSH on the Switch 472

Configuring the Puppet Proxy Agent 473

Installing the Device_Hiera Module 475

Defining Resource Defaults in Hiera 475

Centralizing VLAN Configuration 477

Applying Default Configs to Interfaces 477

Customizing Interface Configurations 478

Testing Out the Switch Configuration 479

Adding Resource Types and Providers 479

Merging Defaults with Other Resources 480
Using the NetDev Standard Library 481

Finding NetDev Vendor Extensions 481

Creating a NetDev Device Object 482

Reducing Duplication with Device_Hiera 482
Puppetizing Cisco Nexus Switches 483

Configuring the Puppet Server 483

Preparing the NX-OS Device 484

Installing the NX-OS Puppet Agent 485

Enabling the NX-OS Puppet Agent 485

Managing Configuration 486
Puppetizing Juniper Devices 486

Supported Devices 487

Installing Modules on the Puppet Server 488

Preparing the Junos Device 489

Installing the Junos Puppet Agent 489

Creating the Puppet User 490

Adjusting Physical Interface Settings 491

Simplifying Layer-2 VLANSs 492

Enabling Link Aggregation 493

Defining Ad Hoc Configuration Parameters 494

Distributing Junos Event Scripts 495

Running Puppet Automatically 496

Troubleshooting 496
Best Practices for Network Devices 497
Reviewing Network Devices 497

Table of Contents |  xvii

www.itbook.store/books/9781491907665


https://itbook.store/books/9781491907665

32. Assimilating Puppet Best Practices. ........c.ovvviiriiiiiiiieiiniiiniennnes 499

Managing Change 499
Expecting Change 499
Controlling Rate of Change 500
Tracking Change 500

Choosing Puppet Apply Versus Puppet Server 501
Benefits of Puppet Apply 502
Benefits of Puppet Server 503
Benefits Shared 504
Summarizing the Differences 505

Creating a Private Puppet Forge 506
Pulp 506
Puppet Forge Server 506
Django Forge 506

Good Practices 507
Indenting Heredoc 507
Splaying Puppet Agent Cron Jobs 507
Cleaning Puppet Reports 508
Trimming the File Bucket 509

Drinking the Magic Monkey Juice 509
Hating on Params.pp 510
Disabling Environments 511
Tracking Providers 511
Breaking the Rules 512
Working Good, Fast, Cheap 513
Choosing Fight or Flight 513
Letting the Strings Pull You 513
Leveraging Puppet for Small Changes 513
Tossing Declarative to the Wind 514
Allowing Anyone to sudo puppet 515

33. Finding Support RESOUrCes. ... ..ovvereeierieeeieeriereeeenneennenns 517

Accessing Community Support 517

Engaging Puppet Labs Support 518

Contacting the Author 518

AFtrWOrd. . ...t 521
A. Installing Puppet on Other Platforms. ............ccooviiiiiiiiiiinnninnnnnes 523
B. Configuring Firewalls on Other Platforms..................cooiiiiiiiiinnaen, 525
xviii | Table of Contents

www.itbook.store/books/9781491907665


https://itbook.store/books/9781491907665

Table of Contents |  xix

www.itbook.store/books/9781491907665


https://itbook.store/books/9781491907665

CHAPTER 1
Thinking Declarative

If you have experience writing shell, Ruby, Python, or Perl scripts that make changes
to a system, you've very likely been performing imperative programming. Imperative
programming issues commands that change a target’s state, much as the imperative
grammatical mood in natural language expresses commands for people to act on.

You may be using procedural programming standards, where state changes are han-
dled within procedures or subroutines to avoid duplication. This is a step toward
declarative programming, but the main program still tends to define each operation,
each procedure to be executed, and the order in which to execute them in an impera-
tive manner.

While it can be useful to have a background in procedural programming, a common
mistake is to attempt to use Puppet to make changes in an imperative fashion. The
very best thing you can do is forget everything you know about imperative or proce-
dural programming.

If you are new to programming, don't feel intimidated. People without a background
in imperative or procedural programming can often learn good Puppet practices
faster.

Writing good Puppet manifests requires declarative programming. When it comes to
maintaining configuration on systems, you’ll find declarative programming to be eas-
ier to create, easier to read, and easier to maintain. Let'’s show you why.

Handling Change

The reason that you need to cast aside imperative programming is to handle change
better.

www.itbook.store/books/9781491907665


https://itbook.store/books/9781491907665

When you write code that performs a sequence of operations, that sequence will
make the desired change the first time it is run. If you run the same code the second
time in a row, the same operations will either fail or create a different state than
desired. Here’s an example:

$ sudo useradd -u 1001 -g 1001 -c "Joe User" -m joe
$ sudo useradd -u 1001 -g 1000 -c "Joe User" -m joe
useradd: user 'joe' already exists

So then you need to change the code to handle that situation:

# bash excerpt
getent passwd SUSERNAME > /dev/null 2> /dev/null
if [ $? -ne 0 ]; then
useradd -u SUID -g SGID -c "SCOMMENT" -s SSHELL -m SUSERNAME
else
usermod -u SUID -g $GID -c "SCOMMENT" -s $SHELL -m SUSERNAME
fi
OK, thats six lines of code and all we've done is ensure that the username isn’t already
in use. What if we need to check to ensure the UID is unique, the GID is valid, and
that the password expiration is set? You can see that this will be a very long script
even before we adjust it to ensure it works properly on multiple operating systems.

This is why we say that imperative programming doesn’'t handle change very well. It
takes a lot of code to cover every situation you need to test.

Using Idempotence

When managing computer systems, you want the operations applied to be idempo-
tent, where the operation achieves the same results every time it executes. Idempo-
tence allows you to apply and reapply (or converge) a configuration manifest and
always achieve the desired state.

In order for imperative code to be idempotent, it needs to have instructions for how
to compare, evaluate, and apply not just every resource, but also each attribute of the
resource. As you saw in the previous section, even the simplest of operations will
quickly become ponderous and difficult to maintain.

4 | Chapter 1: Thinking Dedarative

www.itbook.store/books/9781491907665


https://itbook.store/books/9781491907665

What is an Idempotent Operation?

In mathematics and computer science, idempotent operations are those that can be
applied multiple times without changing the result beyond the initial application. The
word literally means “[the quality of] having the same power;” from the Latin roots
idem + potent “same” + “power.’! Here are some examples of idempotent and non-
idempotent math and code:

any number™1 Idempotent A number to the power of 1 s the same
value = value * 2 Non-idempotent  Will double every time
value = value * 2 [ 2 Idempotent Remains the same value

echo "Good!" >> /some/file Non-idempotent File will keep growing
echo "Good!" > /some/file Idempotent File will always have the same content

The simplistic final example avoids having to compare the state of the item by simply
overwriting it every time. This only works in a limited set of situations. Most changes
require evaluation to determine what changes are necessary.

Declaring Final State

As we mentioned in Introduction, for a configuration state to be achieved no matter
the conditions, the configuration language must avoid describing the actions required
to reach the desired state. Instead, the configuration language should describe the
desired state itself, and leave the actions up to the interpreter. Language that declares
the final state is called declarative.

Rather than writing extensive imperative code to handle every situation, it is much
simpler to declare what you want the final state to be. In other words, instead of
including dozens of lines of comparison, the code reflects only the desired final state
of the resource (a user account, in this example). Here we will introduce you to your
first bit of Puppet configuration language, a resource declaration for the same user we
created earlier:

1 First seen in George Boole’s book The Mathematical Analysis of Logic, originally published in 1847.

Declaring Final State | 5

www.itbook.store/books/9781491907665


https://itbook.store/books/9781491907665

user { 'joe':

ensure => present,
uid => '1001',

gid => '1000',
comment => 'Joe User',
managehome => true,

}

As you can see, the code is not much more than a simple text explanation of the
desired state. A user named Joe User should be present, a home directory for the user
should be created, and so on. It is very clear, very easy to read. Exactly how the user
should be created is not within the code, nor are instructions for handling different
operating systems.

Declarative language is much easier to read, and less prone to breakage due to envi-
ronment differences. Puppet was designed to achieve consistent and repeatable
results. You describe what the final state of the resource should be, and Puppet will
evaluate the resource and apply any necessary changes to reach that state.

Reviewing Declarative Programming

Conventional programming languages create change by listing exact operations that
should be performed. Code that defines each state change and the order of changes is
known as imperative programming.

Good Puppet manifests are written with declarative programming. Instead of defin-
ing exactly how to make changes, in which you must write code to test and compare
the system state before making that change, you instead declare how it should be. It is
up to the Puppet agent to evaluate the current state and apply the necessary changes.

As this chapter has demonstrated, declarative programming is easier to create, easier
to read, and easier to maintain.

6 | Chapter 1: Thinking Declarative

www.itbook.store/books/9781491907665


https://itbook.store/books/9781491907665

	Copyright
	Table of Contents
	Foreword
	Preface
	Who This Book Is For
	What to Expect from Me
	What You Will Need
	What You’ll Find in This Book
	How to Use This Book
	IPv6 Ready
	SSL is now TLS
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Introduction
	What Is Puppet?
	Why Declarative
	How Puppet Works
	Why Use Puppet
	Is Puppet DevOps?
	Time to Get Started

	Part I. Controlling with Puppet Apply
	Chapter 1. Thinking Declarative
	Handling Change
	Using Idempotence
	Declaring Final State
	Reviewing Declarative Programming

	Chapter 2. Creating a Learning Environment
	Installing Vagrant
	Installing Vagrant on Mac
	Installing Git Tools on Windows
	Installing VirtualBox on Windows
	Installing Vagrant on Windows

	Starting a Bash Shell
	Downloading a Box
	Cloning the Learning Repository
	Install the Vagrant vbguest Plugin
	Initializing the Vagrant Setup
	Verifying the /vagrant Filesystem
	Initializing Non-Vagrant Systems
	Installing Some Helpful Utilities
	Choosing a Text Editor
	On the Virtual System
	On Your Desktop
	In Your Profile

	Reviewing the Learning Environment

	Chapter 3. Installing Puppet
	Adding the Package Repository
	What Is a Puppet Collection?

	Installing the Puppet Agent
	Reviewing Dependencies
	Reviewing Puppet 4 Changes
	Linux and Unix
	Windows

	Making Tests Convenient
	Running Puppet Without sudo
	Running Puppet with sudo
	Reviewing Puppet Installation

	Chapter 4. Writing Manifests
	Implementing Resources
	Applying a Manifest
	Declaring Resources
	Viewing Resources
	Executing Programs
	Was That Idempotent?

	Managing Files
	Finding File Backups
	Restoring Files

	Avoiding Imperative Manifests
	Testing Yourself
	Reviewing Writing Manifests

	Chapter 5. Using the Puppet Configuration Language
	Defining Variables
	Defining Numbers
	Creating Arrays and Hashes
	Mapping Hash Keys and Values
	Using Variables in Strings
	Using Braces to Limit Problems
	Preventing Interpolation
	Using Unicode Characters
	Avoiding Redefinition
	Avoiding Reserved Words
	Learning More

	Finding Facts
	Calling Functions in Manifests
	Using Variables in Resources
	Defining Attributes with a Hash
	Declaring Multiple Resource Titles
	Declaring Multiple Resource Bodies
	Modifying with Operators
	Adding to Arrays and Hashes
	Removing from Arrays and Hashes
	Order of Operations

	Using Comparison Operators
	Evaluating Conditional Expressions
	Matching Regular Expressions
	Building Lambda Blocks
	Looping Through Iterations
	each()
	filter()
	map()
	reduce()
	slice()
	with()
	Capturing Extra Parameters
	Iteration Wrap-Up

	Reviewing Puppet Configuration Language

	Chapter 6. Controlling Resource Processing
	Adding Aliases
	Specifying an Alias by Title
	Adding an Alias Metaparameter

	Preventing Action
	Auditing Changes
	Defining Log Level
	Filtering with Tags
	Skipping Tags
	Limiting to a Schedule
	Utilizing periodmatch
	Avoiding Dependency Failures

	Declaring Resource Defaults
	Reviewing Resource Processing

	Chapter 7. Expressing Relationships
	Managing Dependencies
	Referring to Resources
	Ordering Resources
	Assuming Implicit Dependencies
	Triggering Refresh Events
	Chaining Resources with Arrows
	Processing with Collectors
	Understanding Puppet Ordering
	Debugging Dependency Cycles
	Avoiding the Root User Trap
	Utilizing Stages

	Reviewing Resource Relationships

	Chapter 8. Upgrading Puppet 3 Manifests
	Replacing Deprecated Features
	Junking the Ruby DSL
	Upgrading Config Environments
	Removing Node Inheritence
	Disabling puppet kick
	Qualifying Relative Class Names
	Losing the Search Function
	Replacing Import
	Documenting Modules with Puppet Strings
	Installing the Tagmail Report Processor
	Querying PuppetDB

	Preparing for the Upgrade
	Validating Variable Names
	Quoting Strings
	Preventing Numeric Assignment
	Testing Boolean Facts
	Qualifying Defined Types
	Adding Declarative Permissions
	Removing Cron Purge
	Replacing MSI Package Provider
	Adjusting Networking Facts

	Testing with the Future Parser
	Using Directory Environments
	Duplicating a Master or Node

	Enhancing Older Manifests
	Adding else to unless
	Calling Functions in Strings
	Matching String Regexps
	Letting Expressions Stand Alone
	Chaining Assignments
	Chaining Expressions with a Semicolon
	Using Hash and Array Literals
	Configuring Error Reporting


	Chapter 9. Wrap-Up of Puppet Basics
	Best Practices for Writing Manifests
	Learning More About Puppet Manifests


	Part II. Creating Puppet Modules
	Chapter 10. Creating a Test Environment
	Verifying the Production Environment
	Creating the Test Environment
	Changing the Base Module Path
	Skipping Ahead

	Chapter 11. Separating Data from Code
	Introducing Hiera
	Creating Hiera Backends
	Hiera Data in YAML
	Hiera Data in JSON
	Puppet Variable and Function Lookup

	Configuring Hiera
	Backends
	Backend Configuration
	Logger
	Hierarchy
	Merge Strategy
	Complete Example

	Looking Up Hiera Data
	Checking Hiera Values from the Command Line
	Performing Hiera Lookups in a Manifest
	Testing Merge Strategy

	Providing Global Data

	Chapter 12. Using Modules
	Finding Modules
	Puppet Forge
	Public GitHub Repositories
	Internal Repositories

	Evaluating Module Quality
	Puppet Supported
	Puppet Approved
	Quality Score
	Community Rating

	Installing Modules
	Installing from a Puppet Forge
	Installing from GitHub

	Testing a Single Module
	Defining Config with Hiera
	Assigning Modules to Nodes
	Using Hiera for Module Assignment
	Assigning Classes to Every Node
	Altering the Class List per Node
	Avoiding Node Assignments in Manifests
	Upgrading from Puppet 2 or 3

	Examining a Module
	Reviewing Modules

	Chapter 13. Designing a Custom Module
	Choosing a Module Name
	Avoiding Reserved Names

	Generating a Module Skeleton
	Modifying the Default Skeleton

	Understanding Module Structure
	Installing the Module
	Creating a Class Manifest
	What Is a Class?

	Declaring Class Resources
	Accepting Input
	Sharing Files
	Testing File Synchronization
	Synchronizing Directories
	Parsing Templates
	Common Syntax
	Using Puppet EPP Templates
	Using Ruby ERB Templates
	Creating Readable Templates

	Testing the Module
	Peeking Beneath the Hood
	Best Practices for Module Design
	Reviewing Custom Modules

	Chapter 14. Improving the Module
	Validating Input with Data Types
	Valid Types
	Validating Values
	Testing Values
	Comparing Strings with Regular Expressions
	Matching a Regular Expression
	Revising the Module

	Looking Up Input from Hiera
	Naming Parameters Keys Correctly
	Using Array and Hash Merges
	Understanding Lookup Merge
	Specifying Merge Strategy in Data
	Replacing Direct Hiera Calls

	Building Subclasses
	Creating New Resource Types
	Understanding Variable Scope
	Using Out-of-Scope Variables
	Understanding Top Scope
	Understanding Node Scope
	Understanding Parent Scope
	Tracking Resource Defaults Scope
	Avoiding Resource Default Bleed
	Redefining Variables

	Calling Other Modules
	Sourcing a Common Dependency
	Using a Different Module

	Ordering Dependencies
	Depending on Entire Classes
	Placing Dependencies Within Optional Classes
	Notifying Dependencies from Dynamic Resources
	Solving Unknown Resource Dependencies

	Containing Classes
	Creating Reusable Modules
	Avoiding Fixed Values in Attribute Values
	Ensuring Fixed Values for Resource Names
	Defining Defaults in a Params Manifest

	Best Practices for Module Improvements
	Reviewing Module Improvements

	Chapter 15. Extending Modules with Plugins
	Adding Custom Facts
	External Facts
	Custom (Ruby) Facts
	Debugging
	Understanding Implementation Issues

	Defining Functions
	Puppet Functions
	Ruby Functions
	Using Custom Functions

	Creating Puppet Types
	Defining Ensurable
	Accepting Params and Properties
	Validating Input Values
	Defining Implicit Dependencies
	Learning More About Puppet Types

	Adding New Providers
	Determining Provider Suitability
	Assigning a Default Provider
	Defining Commands for Use
	Ensure the Resource State
	Adjusting Properties
	Providing a List of Instances
	Taking Advantage of Caching
	Learning More About Puppet Providers

	Identifying New Features
	Binding Data Providers in Modules
	Using Data from a Function
	Using Data from Hiera
	Performing Lookup Queries

	Requirements for Module Plugins
	Reviewing Module Plugins

	Chapter 16. Documenting Modules
	Learning Markdown
	Writing a Good README
	Documenting the Classes and Types
	Installing YARD and Puppet Strings
	Fixing the Headers
	Listing Parameters
	Documenting Variable References
	Showing Examples
	Listing Authors and Copyright

	Documenting Functions
	Generating Documentation
	Updating Module Metadata
	Identifying the License
	Promoting the Project
	Indicating Compatibility
	Defining Requirements
	Listing Dependencies
	Identifying a Module Data Source
	Updating Old Metadata

	Maintaining the Change Log
	Evolving and Improving
	Best Practices for Documenting Modules

	Chapter 17. Testing Modules
	Installing Dependencies
	Installing Ruby
	Adding Beaker
	Bundling Dependencies

	Preparing Your Module
	Defining Fixtures

	Defining RSpec Unit Tests
	Defining the Main Class
	Passing Valid Parameters
	Failing Invalid Parameters
	Testing File Creation
	Validating Class Inclusion
	Using Facts in Tests
	Using Hiera Input
	Defining Parent Class Parameters
	Testing Functions
	Adding an Agent Class
	Testing Other Types

	Creating Acceptance Tests
	Installing Ruby for System Tests
	Defining the Nodeset
	Configuring the Test Environment
	Creating an Acceptance Test
	Running Acceptance Tests

	Using Skeletons with Testing Features
	Finding Documentation
	Reviewing Testing Modules

	Chapter 18. Publishing Modules
	Updating the Module Metadata
	Packaging a Module
	Uploading a Module to the Puppet Forge
	Publishing a Module on GitHub
	Automating Module Publishing
	Getting Approved Status from Puppet Labs


	Part III. Using a Puppet Server
	Chapter 19. Preparing for a Puppet Server
	Understanding the Catalog Builder
	Node
	Agent
	Server

	Planning for Puppet Server
	The Server Is Not the Node
	The Node Is Not the Server
	Store Server Data Files Separately
	Functions Run on the Server

	Choosing Puppet Master Versus Puppet Server
	Upgrading Easily with Puppet Master
	Embracing the Future with Puppet Server
	Why There’s Really No Choice

	Ensuring a High-Performance Server

	Chapter 20. Creating a Puppet Master
	Starting the puppetmaster VM
	Installing the Puppet Master
	Configuring a Firewall for the Puppet Master
	Running the WEBrick Server
	Testing with the Puppet Master Service
	Scaling the Puppet Master with Passenger
	Installing Apache
	Installing Phusion Passenger
	Configuring the Puppet Master

	IPv6 Dual-Stack Puppet Master
	Debugging Puppet Master

	Chapter 21. Creating a Puppet Server
	Starting the puppetserver VM
	Installing Puppet Server
	Configuring a Firewall for Puppet Server
	Configuring Puppet Server
	Defining Server Paths
	Limiting Memory Usage
	Configuring TLS Certificates
	Avoiding Obsolete Settings
	Configuring Server Logs
	Configuring Server Authentication

	Running Puppet Server
	Adding Ruby Gems

	IPv6 Dual-Stack Puppet Server

	Chapter 22. Connecting a Node
	Creating a Key Pair
	Authorizing the Node
	Downloading the First Catalog
	Installing Hiera Data and Modules
	Testing with a Client Node
	Learning More About Puppet Server

	Chapter 23. Migrating an Existing Puppet Master
	Migrating the Puppet Master Config
	Synchronizing All Environments
	Copying Hiera Data
	Moving the MCollective Config Directory
	Removing Node Inheritance
	Testing a Client Node
	Upgrading Clients

	Chapter 24. Utilizing Advantages of a Puppet Server
	Using Server Data in Your Manifests
	Trusted Facts
	Server Facts
	Server Configuration Settings

	Backing Up Files Changed on Nodes
	Processing Puppet Node Reports
	Enabling Transmission of Reports
	Running Audit Inspections
	Storing Node Reports
	Logging Node Reports
	Transmitting Node Reports via HTTP
	Transmitting Node Reports to PuppetDB
	Emailing Node Reports
	Creating a Custom Report Processor


	Chapter 25. Managing TLS Certificates
	Reviewing Node Authentication
	Autosigning Agent Certificates
	Name-Based Autosigning
	Policy-Based Autosigning
	Naive Autosigning

	Using an External Certificate Authority
	Distributing Certificates Manually
	Installing Certificates on the Server
	Disabling CA on a Puppet Server
	Disabling CA on a Puppet Master
	Using Different CAs for Servers and Agents
	Distributing the CA Revocation List

	Learning More About TLS Authentication

	Chapter 26. Growing Your Puppet Deployment
	Using a Node Terminus
	Running an External Node Classifier
	Querying LDAP
	Starting with Community Examples

	Deploying Puppet Servers at Scale
	Keeping Distinct Domains
	Sharing a Single Puppet CA
	Using a Load Balancer
	Managing Geographically Dispersed Servers
	Managing Geographically Dispersed Nodes
	Falling Back to Cached Catalogs
	Making the Right Choice

	Best Practices for Puppet Servers
	Reviewing Puppet Servers


	Part IV. Integrating Puppet
	Chapter 27. Tracking Puppet Status with Dashboards
	Using Puppet Dashboard
	Installing Dashboard Dependencies
	Enabling Puppet Dashboard
	Viewing node status
	Using Dashboard as a Node Classifier
	Implementing Dashboard in Production

	Evaluating Alternative Dashboards
	Puppetboard
	Puppet Explorer
	PanoPuppet
	ENC Dashboard
	Foreman

	Upgrading to the Enterprise Console
	Viewing Status
	Classifying Nodes
	Inspecting Events
	Tracking Changes
	Controlling Access
	Evaluating Puppet Enterprise

	Finding Plugins and Tools

	Chapter 28. Running the Puppet Agent on Windows
	Creating a Windows Virtual Machine
	Creating a VirtualBox Windows VM
	Adding an Internal Network Adapter
	Connecting the Windows Installation Media
	Configuring the Internal Network Adapter

	Installing Puppet on Windows
	Configuring Puppet on Windows
	Running Puppet Interactively
	Starting the Puppet Service
	Debugging Puppet Problems
	Writing Manifests for Windows
	Finding Windows-Specific Modules
	Concluding Thoughts on Puppet Windows

	Chapter 29. Customizing Environments
	Understanding Environment Isolation
	Enabling Directory Environments
	Assigning Environments to Nodes
	Configuring an Environment
	Choosing a Manifest Path
	Utilizing Hiera Hierarchies
	Binding Data Providers in Environments
	Querying Data from a Function
	Querying Data from Hiera

	Strategizing How to Use Environments
	Promoting Change Through Layers
	Solving One-Off Problems Using Environments
	Supporting Diverse Teams with Environments

	Managing Environments with r10k
	Listing Modules in the Puppetfile
	Creating a Control Repository
	Configuring r10k Sources
	Adding New Environments
	Populating a New Installation
	Updating a Single Environment
	Replicating Hiera Data

	Invalidating the Environment Cache
	Restarting JRuby When Updating Plugins
	Reviewing Environments

	Chapter 30. Controlling Puppet with MCollective
	Configuring MCollective
	Enabling the Puppet Labs Repository
	Installing the MCollective Module
	Generating Passwords
	Configuring Hiera for MCollective
	Enabling the Middleware
	Connecting MCollective Servers
	Validating the Installation
	Creating Another Client
	Installing MCollective Agents and Clients
	Sharing Facts with Puppet

	Pulling the Puppet Strings
	Viewing Node Inventory
	Checking Puppet Status
	Disabling the Puppet Agent
	Invoking Ad Hoc Puppet Runs
	Limiting Targets with Filters
	Providing a List of Targets
	Limiting Concurrency
	Manipulating Puppet Resource Types

	Comparing to Puppet Application Orchestration
	Learning More About MCollective

	Chapter 31. Managing Network Infrastructure with Puppet
	Managing Network Devices with Puppet Device
	Enabling SSH on the Switch
	Configuring the Puppet Proxy Agent
	Installing the Device_Hiera Module
	Defining Resource Defaults in Hiera
	Centralizing VLAN Configuration
	Applying Default Configs to Interfaces
	Customizing Interface Configurations
	Testing Out the Switch Configuration
	Adding Resource Types and Providers
	Merging Defaults with Other Resources

	Using the NetDev Standard Library
	Finding NetDev Vendor Extensions
	Creating a NetDev Device Object
	Reducing Duplication with Device_Hiera

	Puppetizing Cisco Nexus Switches
	Configuring the Puppet Server
	Preparing the NX-OS Device
	Installing the NX-OS Puppet Agent
	Enabling the NX-OS Puppet Agent
	Managing Configuration

	Puppetizing Juniper Devices
	Supported Devices
	Installing Modules on the Puppet Server
	Preparing the Junos Device
	Installing the Junos Puppet Agent
	Creating the Puppet User
	Adjusting Physical Interface Settings
	Simplifying Layer-2 VLANs
	Enabling Link Aggregation
	Defining Ad Hoc Configuration Parameters
	Distributing Junos Event Scripts
	Running Puppet Automatically
	Troubleshooting

	Best Practices for Network Devices
	Reviewing Network Devices

	Chapter 32. Assimilating Puppet Best Practices
	Managing Change
	Expecting Change
	Controlling Rate of Change
	Tracking Change

	Choosing Puppet Apply Versus Puppet Server
	Benefits of Puppet Apply
	Benefits of Puppet Server
	Benefits Shared
	Summarizing the Differences

	Creating a Private Puppet Forge
	Pulp
	Puppet Forge Server
	Django Forge

	Good Practices
	Indenting Heredoc
	Splaying Puppet Agent Cron Jobs
	Cleaning Puppet Reports
	Trimming the File Bucket

	Drinking the Magic Monkey Juice
	Hating on Params.pp
	Disabling Environments
	Tracking Providers
	Breaking the Rules
	Working Good, Fast, Cheap
	Choosing Fight or Flight
	Letting the Strings Pull You
	Leveraging Puppet for Small Changes
	Tossing Declarative to the Wind
	Allowing Anyone to sudo puppet


	Chapter 33. Finding Support Resources
	Accessing Community Support
	Engaging Puppet Labs Support
	Contacting the Author


	Afterword
	Some Best Practices May Not Work for You
	Learning to Fail is the Secret to Success

	Appendix A. Installing Puppet on Other Platforms
	Debian and Ubuntu
	Fedora
	Other Platforms

	Appendix B. Configuring Firewalls on Other Platforms
	IP Tables
	Uncomplicated Firewall

	Appendix C. Installing Ruby
	Ruby for Mac
	Ruby for Windows
	Ruby for Linux

	Index
	About the Author
	Colophon



