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CHAPTER 1
Thinking Declarative

If you have experience writing shell, Ruby, Python, or Perl scripts that make changes
to a system, you've very likely been performing imperative programming. Imperative
programming issues commands that change a target’s state, much as the imperative
grammatical mood in natural language expresses commands for people to act on.

You may be using procedural programming standards, where state changes are han-
dled within procedures or subroutines to avoid duplication. This is a step toward
declarative programming, but the main program still tends to define each operation,
each procedure to be executed, and the order in which to execute them in an impera-
tive manner.

While it can be useful to have a background in procedural programming, a common
mistake is to attempt to use Puppet to make changes in an imperative fashion. The
very best thing you can do is forget everything you know about imperative or proce-
dural programming.

If you are new to programming, don't feel intimidated. People without a background
in imperative or procedural programming can often learn good Puppet practices
faster.

Writing good Puppet manifests requires declarative programming. When it comes to
maintaining configuration on systems, you’ll find declarative programming to be eas-
ier to create, easier to read, and easier to maintain. Let'’s show you why.

Handling Change

The reason that you need to cast aside imperative programming is to handle change
better.
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When you write code that performs a sequence of operations, that sequence will
make the desired change the first time it is run. If you run the same code the second
time in a row, the same operations will either fail or create a different state than
desired. Here’s an example:

$ sudo useradd -u 1001 -g 1001 -c "Joe User" -m joe
$ sudo useradd -u 1001 -g 1000 -c "Joe User" -m joe
useradd: user 'joe' already exists

So then you need to change the code to handle that situation:

# bash excerpt
getent passwd SUSERNAME > /dev/null 2> /dev/null
if [ $? -ne 0 ]; then
useradd -u SUID -g SGID -c "SCOMMENT" -s SSHELL -m SUSERNAME
else
usermod -u SUID -g $GID -c "SCOMMENT" -s $SHELL -m SUSERNAME
fi
OK, thats six lines of code and all we've done is ensure that the username isn’t already
in use. What if we need to check to ensure the UID is unique, the GID is valid, and
that the password expiration is set? You can see that this will be a very long script
even before we adjust it to ensure it works properly on multiple operating systems.

This is why we say that imperative programming doesn’'t handle change very well. It
takes a lot of code to cover every situation you need to test.

Using Idempotence

When managing computer systems, you want the operations applied to be idempo-
tent, where the operation achieves the same results every time it executes. Idempo-
tence allows you to apply and reapply (or converge) a configuration manifest and
always achieve the desired state.

In order for imperative code to be idempotent, it needs to have instructions for how
to compare, evaluate, and apply not just every resource, but also each attribute of the
resource. As you saw in the previous section, even the simplest of operations will
quickly become ponderous and difficult to maintain.
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What is an Idempotent Operation?

In mathematics and computer science, idempotent operations are those that can be
applied multiple times without changing the result beyond the initial application. The
word literally means “[the quality of] having the same power;” from the Latin roots
idem + potent “same” + “power.’! Here are some examples of idempotent and non-
idempotent math and code:

any number™1 Idempotent A number to the power of 1 s the same
value = value * 2 Non-idempotent  Will double every time
value = value * 2 [ 2 Idempotent Remains the same value

echo "Good!" >> /some/file Non-idempotent File will keep growing
echo "Good!" > /some/file Idempotent File will always have the same content

The simplistic final example avoids having to compare the state of the item by simply
overwriting it every time. This only works in a limited set of situations. Most changes
require evaluation to determine what changes are necessary.

Declaring Final State

As we mentioned in Introduction, for a configuration state to be achieved no matter
the conditions, the configuration language must avoid describing the actions required
to reach the desired state. Instead, the configuration language should describe the
desired state itself, and leave the actions up to the interpreter. Language that declares
the final state is called declarative.

Rather than writing extensive imperative code to handle every situation, it is much
simpler to declare what you want the final state to be. In other words, instead of
including dozens of lines of comparison, the code reflects only the desired final state
of the resource (a user account, in this example). Here we will introduce you to your
first bit of Puppet configuration language, a resource declaration for the same user we
created earlier:

1 First seen in George Boole’s book The Mathematical Analysis of Logic, originally published in 1847.
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user { 'joe':

ensure => present,
uid => '1001',

gid => '1000',
comment => 'Joe User',
managehome => true,

}

As you can see, the code is not much more than a simple text explanation of the
desired state. A user named Joe User should be present, a home directory for the user
should be created, and so on. It is very clear, very easy to read. Exactly how the user
should be created is not within the code, nor are instructions for handling different
operating systems.

Declarative language is much easier to read, and less prone to breakage due to envi-
ronment differences. Puppet was designed to achieve consistent and repeatable
results. You describe what the final state of the resource should be, and Puppet will
evaluate the resource and apply any necessary changes to reach that state.

Reviewing Declarative Programming

Conventional programming languages create change by listing exact operations that
should be performed. Code that defines each state change and the order of changes is
known as imperative programming.

Good Puppet manifests are written with declarative programming. Instead of defin-
ing exactly how to make changes, in which you must write code to test and compare
the system state before making that change, you instead declare how it should be. It is
up to the Puppet agent to evaluate the current state and apply the necessary changes.

As this chapter has demonstrated, declarative programming is easier to create, easier
to read, and easier to maintain.
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