
Ethan Brown

Learning
JavaScript
ADD SPARKLE AND LIFE TO YOUR WEB PAGES

3rd Edition

www.itbook.store/books/9781491914915

https://itbook.store/books/9781491914915

www.itbook.store/books/9781491914915

https://itbook.store/books/9781491914915

Want to
read more?

You can buy this book at oreilly.com
in print and ebook format.

Buy 2 books, get the 3rd FREE!
Use discount code OPC10

All orders over $29.95 qualify for free shipping within the US.

It’s also available at your favorite book retailer, including
the iBookstore, the Android Marketplace, and Amazon.com.

©2015 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 15055

www.itbook.store/books/9781491914915

https://play.google.com/store/books?hl=en
http://www.amazon.com/
http://shop.oreilly.com/product/0636920035534.do
https://itbook.store/books/9781491914915

978-1-491-91491-5

[LSI]

Learning JavaScript
by Ethan Brown

Copyright © 2016 Ethan Brown. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meg Foley
Production Editor: Kristen Brown
Copyeditor: Rachel Monaghan
Proofreader: Jasmine Kwityn

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

October 2006: First Edition
December 2008: Second Edition
March 2016: Third Edition

Revision History for the Third Edition
2016-02-12: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491914915 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning JavaScript, the cover image of
a baby rhino, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.itbook.store/books/9781491914915

https://itbook.store/books/9781491914915

Table of Contents

Preface. xv

1. Your First Application. 1
Where to Start 2
The Tools 2
A Comment on Comments 4
Getting Started 5
The JavaScript Console 7
jQuery 8
Drawing Graphics Primitive 9
Automating Repetitive Tasks 11
Handling User Input 12
Hello, World 13

2. JavaScript Development Tools. 15
Writing ES6 Today 15
ES6 Features 16

Installing Git 17
The Terminal 17
Your Project Root 18
Version Control: Git 18
Package Management: npm 21
Build Tools: Gulp and Grunt 23
Project Structure 24

The Transcompilers 25
Running Babel with Gulp 25

Linting 27
Conclusion 30

v

www.itbook.store/books/9781491914915

https://itbook.store/books/9781491914915

3. Literals, Variables, Constants, and Data Types. 33
Variables and Constants 33
Variables or Constants: Which to Use? 35
Identifier Names 35
Literals 36
Primitive Types and Objects 37
Numbers 38
Strings 40

Escaping 40
Special Characters 41

Template Strings 42
Multiline Strings 43
Numbers as Strings 44

Booleans 44
Symbols 45
null and undefined 45
Objects 46
Number, String, and Boolean Objects 48
Arrays 49
Trailing Commas in Objects and Arrays 50
Dates 51
Regular Expressions 51
Maps and Sets 52
Data Type Conversion 52

Converting to Numbers 52
Converting to String 53
Converting to Boolean 53

Conclusion 54

4. Control Flow. 55
A Control Flow Primer 55

while Loops 59
Block Statements 59
Whitespace 60
Helper Functions 61
if…else Statement 62
do…while Loop 63
for Loop 64
if Statement 65
Putting It All Together 66

Control Flow Statements in JavaScript 68
Control Flow Exceptions 68

vi | Table of Contents

www.itbook.store/books/9781491914915

https://itbook.store/books/9781491914915

Chaining if...else Statements 69
Metasyntax 69
Additional for Loop Patterns 71
switch Statements 72
for...in loop 75
for...of loop 75

Useful Control Flow Patterns 76
Using continue to Reduce Conditional Nesting 76
Using break or return to Avoid Unnecessary Computation 76
Using Value of Index After Loop Completion 77
Using Descending Indexes When Modifying Lists 77

Conclusion 78

5. Expressions and Operators. 79
Operators 81
Arithmetic Operators 81
Operator Precedence 84
Comparison Operators 85
Comparing Numbers 87
String Concatenation 88
Logical Operators 88

Truthy and Falsy Values 89
AND, OR, and NOT 89

Short-Circuit Evaluation 91
Logical Operators with Nonboolean Operands 91
Conditional Operator 92
Comma Operator 93

Grouping Operator 93
Bitwise Operators 93
typeof Operator 95
void Operator 96
Assignment Operators 96

Destructuring Assignment 98
Object and Array Operators 99
Expressions in Template Strings 100
Expressions and Control Flow Patterns 100

Converting if...else Statements to Conditional Expressions 100
Converting if Statements to Short-Circuited Logical OR Expressions 101

Conclusion 101

6. Functions. 103
Return Values 104

Table of Contents | vii

www.itbook.store/books/9781491914915

https://itbook.store/books/9781491914915

Calling Versus Referencing 104
Function Arguments 105

Do Arguments Make the Function? 107
Destructuring Arguments 108
Default Arguments 109

Functions as Properties of Objects 109
The this Keyword 110
Function Expressions and Anonymous Functions 112
Arrow Notation 113
call, apply, and bind 114
Conclusion 116

7. Scope. 117
Scope Versus Existence 118
Lexical Versus Dynamic Scoping 118
Global Scope 119
Block Scope 121
Variable Masking 121
Functions, Closures, and Lexical Scope 123
Immediately Invoked Function Expressions 124
Function Scope and Hoisting 125
Function Hoisting 127
The Temporal Dead Zone 127
Strict Mode 128
Conclusion 129

8. Arrays and Array Processing. 131
A Review of Arrays 131
Array Content Manipulation 132

Adding or Removing Single Elements at the Beginning or End 133
Adding Multiple Elements at the End 133
Getting a Subarray 134
Adding or Removing Elements at Any Position 134
Cutting and Replacing Within an Array 134
Filling an Array with a Specific Value 135
Reversing and Sorting Arrays 135

Array Searching 136
The Fundamental Array Operations: map and filter 138
Array Magic: reduce 140
Array Methods and Deleted or Never-Defined Elements 143
String Joining 143
Conclusion 144

viii | Table of Contents

www.itbook.store/books/9781491914915

https://itbook.store/books/9781491914915

9. Objects and Object-Oriented Programming. 147
Property Enumeration 147

for...in 148
Object.keys 148

Object-Oriented Programming 149
Class and Instance Creation 150
Dynamic Properties 151
Classes Are Functions 152
The Prototype 153
Static Methods 155
Inheritance 156
Polymorphism 157
Enumerating Object Properties, Revisited 158
String Representation 159

Multiple Inheritance, Mixins, and Interfaces 159
Conclusion 161

10. Maps and Sets. 163
Maps 163
Weak Maps 165
Sets 166
Weak Sets 167
Breaking the Object Habit 167

11. Exceptions and Error Handling. 169
The Error Object 169
Exception Handling with try and catch 170
Throwing Errors 171
Exception Handling and the Call Stack 171
try...catch...finally 173
Let Exceptions Be Exceptional 174

12. Iterators and Generators. 175
The Iteration Protocol 177
Generators 179

yield Expressions and Two-Way Communication 180
Generators and return 182

Conclusion 182

13. Functions and the Power of Abstract Thinking. 183
Functions as Subroutines 183
Functions as Subroutines That Return a Value 184

Table of Contents | ix

www.itbook.store/books/9781491914915

https://itbook.store/books/9781491914915

Functions as…Functions 185
So What? 187

Functions Are Objects 188
IIFEs and Asynchronous Code 189
Function Variables 191

Functions in an Array 193
Pass a Function into a Function 194
Return a Function from a Function 195

Recursion 196
Conclusion 197

14. Asynchronous Programming. 199
The Analogy 200
Callbacks 200

setInterval and clearInterval 201
Scope and Asynchronous Execution 202
Error-First Callbacks 203
Callback Hell 204

Promises 205
Creating Promises 206
Using Promises 206
Events 208
Promise Chaining 210
Preventing Unsettled Promises 211

Generators 212
One Step Forward and Two Steps Back? 215
Don’t Write Your Own Generator Runner 216
Exception Handling in Generator Runners 216

Conclusion 217

15. Date and Time. 219
Dates, Time Zones, Timestamps, and the Unix Epoch 219
Constructing Date Objects 220
Moment.js 221
A Practical Approach to Dates in JavaScript 222
Constructing Dates 222

Constructing Dates on the Server 222
Constructing Dates in the Browser 223

Transmitting Dates 223
Displaying Dates 224
Date Components 225
Comparing Dates 226

x | Table of Contents

www.itbook.store/books/9781491914915

https://itbook.store/books/9781491914915

Date Arithmetic 226
User-Friendly Relative Dates 227
Conclusion 227

16. Math. 229
Formatting Numbers 229

Fixed Decimals 230
Exponential Notation 230
Fixed Precision 230
Different Bases 231
Advanced Number Formatting 231

Constants 231
Algebraic Functions 232

Exponentiation 232
Logarithmic Functions 233
Miscellaneous 233
Pseudorandom Number Generation 234

Trigonometric Functions 235
Hyperbolic Functions 236

17. Regular Expressions. 237
Substring Matching and Replacing 237
Constructing Regular Expressions 238
Searching with Regular Expressions 239
Replacing with Regular Expressions 239
Input Consumption 240
Alternation 242
Matching HTML 242
Character Sets 243
Named Character Sets 244
Repetition 245
The Period Metacharacter and Escaping 246

A True Wildcard 246
Grouping 247
Lazy Matches, Greedy Matches 248
Backreferences 249
Replacing Groups 250
Function Replacements 251
Anchoring 253
Word Boundary Matching 253
Lookaheads 254
Constructing Regexes Dynamically 255

Table of Contents | xi

www.itbook.store/books/9781491914915

https://itbook.store/books/9781491914915

Conclusion 256

18. JavaScript in the Browser. 257
ES5 or ES6? 257
The Document Object Model 258
Some Tree Terminology 261
DOM “Get” Methods 261
Querying DOM Elements 262
Manipulating DOM Elements 263
Creating New DOM Elements 263
Styling Elements 264
Data Attributes 265
Events 266

Event Capturing and Bubbling 267
Event Categories 270

Ajax 271
Conclusion 274

19. jQuery. 275
The Almighty Dollar (Sign) 275
Including jQuery 276
Waiting for the DOM to Load 276
jQuery-Wrapped DOM Elements 277
Manipulating Elements 277
Unwrapping jQuery Objects 279
Ajax 280
Conclusion 280

20. Node. 281
Node Fundamentals 281
Modules 282
Core Modules, File Modules, and npm Modules 284
Customizing Modules with Function Modules 287
Filesystem Access 289
Process 291
Operating System 294
Child Processes 294
Streams 295
Web Servers 297
Conclusion 299

xii | Table of Contents

www.itbook.store/books/9781491914915

https://itbook.store/books/9781491914915

21. Object Property Configuration and Proxies. 301
Accessor Properties: Getters and Setters 301
Object Property Attributes 303
Protecting Objects: Freezing, Sealing, and Preventing Extension 305
Proxies 308
Conclusion 310

22. Additional Resources. 311
Online Documentation 311
Periodicals 312
Blogs and Tutorials 312
Stack Overflow 313
Contributing to Open Source Projects 315
Conclusion 315

A. Reserved Words. 317

B. Operator Precedence. 321

Index. 325

Table of Contents | xiii

www.itbook.store/books/9781491914915

https://itbook.store/books/9781491914915

www.itbook.store/books/9781491914915

https://itbook.store/books/9781491914915

CHAPTER 1

Your First Application

Often, the best way to learn is to do: so we’re going to start off by creating a simple
application. The point of this chapter is not to explain everything that’s going on:
there’s a lot that’s going to be unfamiliar and confusing, and my advice to you is to
relax and not get caught up in trying to understand everything right now. The point
of this chapter is to get you excited. Just enjoy the ride; by the time you finish this
book, everything in this chapter will make perfect sense to you.

If you don’t have much programming experience, one of the things
that is going to cause you a lot of frustration at first is how literal
computers are. Our human minds can deal with confusing input
very easily, but computers are terrible at this. If I make a grammati‐
cal error, it may change your opinion about my writing ability, but
you will probably still understand me. JavaScript—like all pro‐
gramming languages—has no such facility to deal with confusing
input. Capitalization, spelling, and the order of words and punctu‐
ation are crucial. If you’re experiencing problems, make sure you’ve
copied everything correctly: you haven’t substituted semicolons for
colons or commas for periods, you haven’t mixed single quotation
and double quotation marks, and you’ve capitalized all of your
code correctly. Once you’ve had some experience, you’ll learn
where you can “do things your way,” and where you have to be per‐
fectly literal, but for now, you will experience less frustration by
entering the examples exactly as they’re written.

Historically, programming books have started out with an example called “Hello,
World” that simply prints the phrase “hello world” to your terminal. It may interest
you to know that this tradition was started in 1972 by Brian Kernighan, a computer
scientist working at Bell Labs. It was first seen in print in 1978 in The C Programming

1

www.itbook.store/books/9781491914915

https://itbook.store/books/9781491914915

1 I hope you have more compassion for your creations than Dr. Frankenstein—and fare better.

Language, by Brian Kernighan and Dennis Ritchie. To this day, The C Programming
Language is widely considered to be one of the best and most influential program‐
ming language books ever written, and I have taken much inspiration from that work
in writing this book.

While “Hello, World” may seem dated to an increasingly sophisticated generation of
programming students, the implicit meaning behind that simple phrase is as potent
today as it was in 1978: they are the first words uttered by something that you have
breathed life into. It is proof that you are Prometheus, stealing fire from the gods; a
rabbi scratching the true name of God into a clay golem; Doctor Frankenstein breath‐
ing life into his creation.1 It is this sense of creation, of genesis, that first drew me to
programming. Perhaps one day, some programmer—maybe you—will give life to the
first artificially sentient being. And perhaps its first words will be “hello world.”

In this chapter, we will balance the tradition that Brian Kernighan started 44 years
ago with the sophistication available to programmers today. We will see “hello world”
on our screen, but it will be a far cry from the blocky words etched in glowing phos‐
phor you would have enjoyed in 1972.

Where to Start
In this book, we will cover the use of JavaScript in all its current incarnations (server-
side, scripting, desktop, browser-based, and more), but for historical and practical
reasons, we’re going to start with a browser-based program.

One of the reasons we’re starting with a browser-based example is that it gives us easy
access to graphics libraries. Humans are inherently visual creatures, and being able to
relate programming concepts to visual elements is a powerful learning tool. We will
spend a lot of time in this book staring at lines of text, but let’s start out with some‐
thing a little more visually interesting. I’ve also chosen this example because it organi‐
cally introduces some very important concepts, such as event-driven programming,
which will give you a leg up on later chapters.

The Tools
Just as a carpenter would have trouble building a desk without a saw, we can’t write
software without some tools. Fortunately, the tools we need in this chapter are mini‐
mal: a browser and a text editor.

I am happy to report that, as I write this, there is not one browser on the market that
is not suited to the task at hand. Even Internet Explorer—which has long been a

2 | Chapter 1: Your First Application

www.itbook.store/books/9781491914915

https://itbook.store/books/9781491914915

thorn in the side of programmers—has cleaned up its act, and is now on par with
Chrome, Firefox, Safari, and Opera. That said, my browser of choice is Firefox, and in
this text, I will discuss Firefox features that will help you in your programming jour‐
ney. Other browsers also have these features, but I will describe them as they are
implemented in Firefox, so the path of least resistance while you go through this book
will be to use Firefox.

You will need a text editor to actually write your code. The choice of text editors can
be a very contentious—almost religious—debate. Broadly speaking, text editors can
be categorized as text-mode editors or windowed editors. The two most popular text-
mode editors are vi/vim and Emacs. One big advantage to text-mode editors is that,
in addition to using them on your computer, you can use them over SSH—meaning
you can remotely connect to a computer and edit your files in a familiar editor. Win‐
dowed editors can feel more modern, and add some helpful (and more familiar) user
interface elements. At the end of the day, however, you are editing text only, so a win‐
dowed editor doesn’t offer an inherent advantage over a text-mode editor. Popular
windowed editors are Atom, Sublime Text, Coda, Visual Studio, Notepad++, TextPad,
and Xcode. If you are already familiar with one of these editors, there is probably no
reason to switch. If you are using Notepad on Windows, however, I highly recom‐
mend upgrading to a more sophisticated editor (Notepad++ is an easy and free
choice for Windows users).

Describing all the features of your editor is beyond the scope of this book, but there
are a few features that you will want to learn how to use:

Syntax highlighting
Syntax highlighting uses color to distinguish syntactic elements in your program.
For example, literals might be one color and variables another (you will learn
what these terms mean soon!). This feature can make it easier to spot problems
in your code. Most modern text editors will have syntax highlighting enabled by
default; if your code isn’t multicolored, consult your editor documentation to
learn how to enable it.

Bracket matching
Most programming languages make heavy use of parentheses, curly braces, and
square brackets (collectively referred to as “brackets”). Sometimes, the contents
of these brackets span many lines, or even more than one screen, and you’ll have
brackets within brackets, often of different types. It’s critical that brackets match
up, or “balance”; if they don’t, your program won’t work correctly. Bracket match‐
ing provides visual cues about where brackets begin and end, and can help you
spot problems with mismatched brackets. Bracket matching is handled differ‐
ently in different editors, ranging from a very subtle cue to a very obvious one.
Unmatched brackets are a common source of frustration for beginners, so I

The Tools | 3

www.itbook.store/books/9781491914915

https://itbook.store/books/9781491914915

2 Microsoft’s terminology.

strongly recommend that you learn how to use your editor’s bracket-matching
feature.

Code folding
Somewhat related to bracket matching is code folding. Code folding refers to the
ability to temporarily hide code that’s not relevant to what you’re doing at the
moment, allowing you to focus. The term comes from the idea of folding a piece
of paper over on itself to hide unimportant details. Like bracket matching, code
folding is handled differently by different editors.

Autocompletion
Autocompletion (also called word completion or IntelliSense2) is a convenience
feature that attempts to guess what you are typing before you finish typing it. It
has two purposes. The first is to save typing time. Instead of typing, for example,
encodeURIComponent, you can simply type enc, and then select encodeURICompo
nent from a list. The second purpose is called discoverability. For example, if you
type enc because you want to use encodeURIComponent, you’ll find (or “dis‐
cover”) that there’s also a function called encodeURI. Depending on the editor,
you may even see some documentation to distinguish the two choices. Autocom‐
pletion is more difficult to implement in JavaScript than it is in many other lan‐
guages because it’s a loosely typed language, and because of its scoping rules
(which you will learn about later). If autocompletion is an important feature to
you, you may have to shop around to find an editor that meets your needs: this is
an area in which some editors definitely stand out from the pack. Other editors
(vim, for example) offer very powerful autocompletion, but not without some
extra configuration.

A Comment on Comments
JavaScript—like most programming languages—has a syntax for making comments in
code. Comments are completely ignored by JavaScript; they are meant for you or
your fellow programmers. They allow you to add natural language explanations of
what’s going on when it’s not clear. In this book, we’ll be liberally using comments in
code samples to explain what’s happening.

In JavaScript, there are two kinds of comments: inline comments and block com‐
ments. An inline comment starts with two forward slashes (//) and extends to the
end of the line. A block comment starts with a forward slash and an asterisk (/*) and
ends with an asterisk and a forward slash (*/), and can span multiple lines. Here’s an
example that illustrates both types of comments:

4 | Chapter 1: Your First Application

www.itbook.store/books/9781491914915

https://itbook.store/books/9781491914915

console.log("echo"); // prints "echo" to the console
/*
 In the previous line, everything up to the double forward slashes
 is JavaScript code, and must be valid syntax. The double
 forward slashes start a comment, and will be ignored by JavaScript.

 This text is in a block comment, and will also be ignored
 by JavaScript. We've chosen to indent the comments of this block
 for readability, but that's not necessary.
*/
/*Look, Ma, no indentation!*/

Cascading Style Sheets (CSS), which we’ll see shortly, also use JavaScript syntax for
block comments (inline comments are not supported in CSS). HTML (like CSS)
doesn’t have inline comments, and its block comments are different than JavaScript.
They are surrounded by the unwieldy <!-- and -->:

<head>
 <title>HTML and CSS Example</title>
 <!-- this is an HTML comment...
 which can span multiple lines. -->
 <style>
 body: { color: red; }
 /* this is a CSS comment...
 which can span multiple lines. */
 </style>
 <script>
 console.log("echo"); // back in JavaScript...
 /* ...so both inline and block comments
 are supported. */
 </script>
</head>

Getting Started
We’re going to start by creating three files: an HTML file, a CSS file, and a JavaScript
source file. We could do everything in the HTML file (JavaScript and CSS can be
embedded in HTML), but there are certain advantages to keeping them separate. If
you’re new to programming, I strongly recommend that you follow along with these
instructions step by step: we’re going to take a very exploratory, incremental approach
in this chapter, which will facilitate your learning process.

It may seem like we’re doing a lot of work to accomplish something fairly simple, and
there’s some truth in that. I certainly could have crafted an example that does the
same thing with many fewer steps, but by doing so, I would be teaching you bad hab‐
its. The extra steps you’ll see here are ones you’ll see over and over again, and while it
may seem overcomplicated now, you can at least reassure yourself that you’re learning
to do things the right way.

Getting Started | 5

www.itbook.store/books/9781491914915

https://itbook.store/books/9781491914915

One last important note about this chapter. This is the lone chapter in the book in
which the code samples will be written in ES5 syntax, not ES6 (Harmony). This is to
ensure that the code samples will run, even if you aren’t using a browser that has
implemented ES6. In the following chapters, we will talk about how to write code in
ES6 and “transcompile” it so that it will run on legacy browsers. After we cover that
ground, the rest of the book will use ES6 syntax. The code samples in this chapter are
simple enough that using ES5 doesn’t represent a significant handicap.

For this exercise, you’ll want to make sure the files you create are in
the same directory or folder. I recommend that you create a new
directory or folder for this example so it doesn’t get lost among
your other files.

Let’s start with the JavaScript file. Using a text editor, create a file called main.js. For
now, let’s just put a single line in this file:

console.log('main.js loaded');

Then create the CSS file, main.css. We don’t actually have anything to put in here yet,
so we’ll just include a comment so we don’t have an empty file:

/* Styles go here. */

Then create a file called index.html:
<!doctype html>
<html>
 <head>
 <link rel="stylesheet" href="main.css">
 </head>
 <body>
 <h1>My first application!</h1>
 <p>Welcome to <i>Learning JavaScript, 3rd Edition</i>.</p>

 <script src="main.js"></script>
 </body>
</html>

While this book isn’t about HTML or web application development, many of you are
learning JavaScript for that purpose, so we will point out some aspects of HTML as
they relate to JavaScript development. An HTML document consists of two main
parts: the head and the body. The head contains information that is not directly dis‐
played in your browser (though it can affect what’s displayed in your browser). The
body contains the contents of your page that will be rendered in your browser. It’s
important to understand that elements in the head will never be shown in the
browser, whereas elements in the body usually are (certain types of elements, like
<script>, won’t be visible, and CSS styles can also hide body elements).

6 | Chapter 1: Your First Application

www.itbook.store/books/9781491914915

https://itbook.store/books/9781491914915

3 You will learn more about the difference between a function and a method in Chapter 9.

In the head, we have the line <link rel="stylesheet" href="main.css">; this is
what links the currently empty CSS file into your document. Then, at the end of the
body, we have the line <script src="main.js"></script>, which is what links the
JavaScript file into your document. It may seem odd to you that one goes in the head
and the other goes at the end of the body. While we could have put the <script> tag
in the head, there are performance and complexity reasons for putting it at the end of
the body.

In the body, we have <h1>My first application!</h1>, which is first-level header
text (which indicates the largest, most important text on the page), followed by a <p>
(paragraph) tag, which contains some text, some of which is italic (denoted by the
<i> tag).

Go ahead and load index.html in your browser. The easiest way to do this on most
systems is to simply double-click on the file from a file browser (you can also usually
drag the file onto a browser window). You’ll see the body contents of your HTML file.

There are many code samples in this book. Because HTML and
JavaScript files can get very large, I won’t present the whole files
every time: instead, I will explain in the text where the code sample
fits into the file. This may cause some trouble for beginning pro‐
grammers, but understanding the way code fits together is impor‐
tant, and can’t be avoided.

The JavaScript Console
We’ve already written some JavaScript: console.log('main.js loaded'). What did
that do? The console is a text-only tool for programmers to help them diagnose their
work. You will use the console extensively as you go through this book.

Different browsers have different ways of accessing the console. Because you will be
doing this quite often, I recommend learning the keyboard shortcut. In Firefox, it’s
Ctrl-Shift-K (Windows and Linux) or Command-Option-K (Mac).

In the page in which you loaded index.html, open the JavaScript console; you should
see the text “main.js loaded” (if you don’t see it, try reloading the page). console.log
is a method3 that will print whatever you want to the console, which is very helpful
for debugging and learning alike.

One of the many helpful features of the console is that, in addition to seeing output
from your program, you can enter JavaScript directly in the console, thereby testing

The JavaScript Console | 7

www.itbook.store/books/9781491914915

https://itbook.store/books/9781491914915

things out, learning about JavaScript features, and even modifying your program
temporarily.

jQuery
We’re going to add an extremely popular client-side scripting library called jQuery to
our page. While it is not necessary, or even germane to the task at hand, it is such a
ubiquitous library that it is often the first one you will include in your web code. Even
though we could easily get by without it in this example, the sooner you start getting
accustomed to seeing jQuery code, the better off you will be.

At the end of the body, before we include our own main.js, we’ll link in jQuery:

<script src="https://code.jquery.com/jquery-2.1.1.min.js"></script>

<script src="main.js"></script>

You’ll notice that we’re using an Internet URL, which means your page won’t work
correctly without Internet access. We’re linking in jQuery from a publicly hosted con‐
tent delivery network (CDN), which has certain performance advantages. If you will
be working on your project offline, you’ll have to download the file and link it from
your computer instead. Now we’ll modify our main.js file to take advantage of one of
jQuery’s features:

$(document).ready(function() {
 'use strict';
 console.log('main.js loaded');
});

Unless you’ve already had some experience with jQuery, this probably looks like gib‐
berish. There’s actually a lot going on here that won’t become clear until much later.
What jQuery is doing for us here is making sure that the browser has loaded all of the
HTML before executing our JavaScript (which is currently just a single console.log).
Whenever we’re working with browser-based JavaScript, we’ll be doing this just to
establish the practice: any JavaScript you write will go between the $(docu
ment).ready(function() { and }); lines. Also note the line 'use strict'; this is
something we’ll learn more about later, but basically this tells the JavaScript inter‐
preter to treat your code more rigorously. While that may not sound like a good thing
at first, it actually helps you write better JavaScript, and prevents common and
difficult-to-diagnose problems. We’ll certainly be learning to write very rigorous Java‐
Script in this book!

8 | Chapter 1: Your First Application

www.itbook.store/books/9781491914915

https://itbook.store/books/9781491914915

4 If you want to learn more about CSS and HTML, I recommend the Codecademy’s free HTML & CSS track.

Drawing Graphics Primitive
Among many of the benefits HTML5 brought was a standardized graphics interface.
The HTML5 canvas allows you to draw graphics primitives like squares, circles, and
polygons. Using the canvas directly can be painful, so we’ll use a graphics library
called Paper.js to take advantage of the HTML5 canvas.

Paper.js is not the only canvas graphics library available: KineticJS,
Fabric.js, and EaselJS are very popular and robust alternatives. I’ve
used all of these libraries, and they’re all very high quality.

Before we start using Paper.js to draw things, we’ll need an HTML canvas element to
draw on. Add the following to the body (you can put it anywhere; after the intro para‐
graph, for example):

<canvas id="mainCanvas"></canvas>

Note that we’ve given the canvas an id attribute: that’s how we will be able to easily
refer to it from within JavaScript and CSS. If we load our page right now, we won’t see
anything different; not only haven’t we drawn anything on the canvas, but it’s a white
canvas on a white page and has no width and height, making it very hard to see
indeed.

Every HTML element can have an ID, and for the HTML to be
valid (correctly formed), each ID must be unique. So now that
we’ve created a canvas with the id “mainCanvas”, we can’t reuse
that ID. Because of this, it’s recommended that you use IDs spar‐
ingly. We’re using one here because it’s often easier for beginners to
deal with one thing at a time, and by definition, an ID can only
refer to one thing on a page.

Let’s modify main.css so our canvas stands out on the page. If you’re not familiar with
CSS, that’s OK—this CSS is simply setting a width and height for our HTML element,
and giving it a black border:4

#mainCanvas {
 width: 400px;
 height: 400px;
 border: solid 1px black;
}

Drawing Graphics Primitive | 9

www.itbook.store/books/9781491914915

https://itbook.store/books/9781491914915

If you reload your page, you should see the canvas now.

Now that we have something to draw on, we’ll link in Paper.js to help us with the
drawing. Right after we link in jQuery, but before we link in our own main.js, add the
following line:

<script src="https://cdnjs.cloudflare.com/ajax/libs/paper.js/0.9.24/ ↩
paper-full.min.js"></script>

Note that, as with jQuery, we’re using a CDN to include Paper.js in our project.

You might be starting to realize that the order in which we link
things in is very important. We’re going to use both jQuery and
Paper.js in our own main.js, so we have to link in both of those first.
Neither of them depends on the other, so it doesn’t matter which
one comes first, but I always include jQuery first as a matter of
habit, as so many things in web development depend on it.

Now that we have Paper.js linked in, we have to do a little work to configure Paper.js.
Whenever you encounter code like this—repetitive code that is required before you
do something—it’s often called boilerplate. Add the following to main.js, right after
'use strict' (you can remove the console.log if you wish):

paper.install(window);
paper.setup(document.getElementById('mainCanvas'));

// TODO

paper.view.draw();

The first line installs Paper.js in the global scope (which will make more sense in
Chapter 7). The second line attaches Paper.js to the canvas, and prepares Paper.js for
drawing. In the middle, where we put TODO is where we’ll actually be doing the inter‐
esting stuff. The last line tells Paper.js to actually draw something to the screen.

Now that all of the boilerplate is out of the way, let’s draw something! We’ll start with
a green circle in the middle of the canvas. Replace the “TODO” comment with the
following lines:

var c = Shape.Circle(200, 200, 50);
c.fillColor = 'green';

Refresh your browser, and behold, a green circle. You’ve written your first real Java‐
Script. There’s actually a lot going on in those two lines, but for now, it’s only impor‐
tant to know a few things. The first line creates a circle object, and it does so with
three arguments: the x and y coordinates of the center of the circle, and the radius of
the circle. Recall we made our canvas 400 pixels wide and 400 pixels tall, so the center
of the canvas lies at (200, 200). And a radius of 50 makes a circle that’s an eighth of

10 | Chapter 1: Your First Application

www.itbook.store/books/9781491914915

https://itbook.store/books/9781491914915

the width and height of the canvas. The second line sets the fill color, which is distinct
from the outline color (called the stroke in Paper.js parlance). Feel free to experiment
with changing those arguments.

Automating Repetitive Tasks
Consider what you’d have to do if you wanted not just to add one circle, but to fill the
canvas with them, laid out in a grid. If you space the circles 50 pixels apart and make
them slightly smaller, you could fit 64 of them on the canvas. Certainly you could
copy the code you’ve already written 63 times, and by hand, modify all of the coordi‐
nates so that they’re spaced out in a grid. Sounds like a lot of work, doesn’t it? Fortu‐
nately, this kind of repetitive task is what computers excel at. Let’s see how we can
draw out 64 circles, evenly spaced. We’ll replace our code that draws a single circle
with the following:

var c;
for(var x=25; x<400; x+=50) {
 for(var y=25; y<400; y+=50) {
 c = Shape.Circle(x, y, 20);
 c.fillColor = 'green';
 }
}

If you refresh your browser, you’ll see we have 64 green circles! If you’re new to pro‐
gramming, what you’ve just written may seem confusing, but you can see it’s better
than writing the 128 lines it would take to do this by hand.

What we’ve used is called a for loop, which is part of the control flow syntax that we’ll
learn about in detail in Chapter 4. A for loop allows you to specify an initial condi‐
tion (25), an ending condition (less than 400), and an increment value (50). We use
one loop inside the other to accomplish this for both the x-axis and y-axis.

There are many ways we could have written this example. The way
we’ve written it, we’ve made the x and y coordinates the important
pieces of information: we explicitly specify where the circles will
start and how far apart they’ll be spaced. We could have
approached this problem from another direction: we could have
said what’s important is the number of circles we want (64), and let
the program figure out how to space them so that they fit on the
canvas. The reason we went with this solution is that it better
matches what we would have done if we had cut and pasted our
circle code 64 times and figured out the spacing ourselves.

Automating Repetitive Tasks | 11

www.itbook.store/books/9781491914915

https://itbook.store/books/9781491914915

5 Technical reviewer Matt Inman suggested that the Paper.js developers might have been Photoshop users
familiar with “hand tool,” “direct selection tool,” and so on.

Handling User Input
So far, what we’ve been doing hasn’t had any input from the user. The user can click
on the circles, but it doesn’t do anything. Likewise, trying to drag a circle would have
no effect. Let’s make this a little more interactive, by allowing the user to choose
where the circles get drawn.

It’s important to become comfortable with the asynchronous nature of user input. An
asynchronous event is an event whose timing you don’t have any control over. A user’s
mouse click is an example of an asynchronous event: you can’t be inside your users’
minds, knowing when they’re going to click. Certainly you can prompt their click
response, but it is up to them when—and if—they actually click. Asynchronous
events arising from user input make intuitive sense, but we will cover much less intu‐
itive asynchronous events in later chapters.

Paper.js uses an object called a tool to handle user input. If that choice of names seems
unintuitive to you, you are in good company: I agree, and don’t know why the
Paper.js developers used that terminology.5 It might help you to translate “tool” to
“user input tool” in your mind. Let’s replace our code that drew a grid of circles with
the following code:

var tool = new Tool();

tool.onMouseDown = function(event) {
 var c = Shape.Circle(event.point.x, event.point.y, 20);
 c.fillColor = 'green';
};

The first step in this code is to create our tool object. Once we’ve done that, we can
attach an event handler to it. In this case, the event handler is called onMouseDown.
Whenever the user clicks the mouse, the function we’ve attached to this handler is
invoked. This is a very important point to understand. In our previous code, the code
ran right away: we refreshed the browser, and the green circles appeared automati‐
cally. That is not happening here: if it were, it would draw a single green circle some‐
where on the screen. Instead, the code contained between the curly braces after
function is executed only when the user clicks the mouse on the canvas.

The event handler is doing two things for you: it is executing your code when the
mouse is clicked, and it is telling you where the mouse was clicked. That location is
stored in a property of the argument, event.point, which has two properties, x and
y, indicating where the mouse was clicked.

12 | Chapter 1: Your First Application

www.itbook.store/books/9781491914915

https://itbook.store/books/9781491914915

Note that we could save ourselves a little typing by passing the point directly to the
circle (instead of passing the x and y coordinates separately):

var c = Shape.Circle(event.point, 20);

This highlights a very important aspect of JavaScript: it’s able to ascertain information
about the variables that are passed in. In the previous case, if it sees three numbers in
a row, it knows that they represent the x and y coordinates and the radius. If it sees
two arguments, it knows that the first one is a point object, and the second one is the
radius. We’ll learn more about this in Chapters 6 and 9.

Hello, World
Let’s conclude this chapter with a manifestation of Brian Kernighan’s 1972 example.
We’ve already done all the heavy lifting: all that remains is to add the text. Before your
onMouseDown handler, add the following:

var c = Shape.Circle(200, 200, 80);
c.fillColor = 'black';
var text = new PointText(200, 200);
text.justification = 'center';
text.fillColor = 'white';
text.fontSize = 20;
text.content = 'hello world';

This addition is fairly straightforward: we create another circle, which will be a back‐
drop for our text, and then we actually create the text object (PointText). We specify
where to draw it (the center of the screen) and some additional properties (justifica‐
tion, color, and size). Lastly, we specify the actual text contents (“hello world”).

Note that this is not the first time we emitted text with JavaScript: we did that first
with console.log earlier in this chapter. We certainly could have changed that text to
“hello world.” In many ways, that would be more analogous to the experience you
would have had in 1972, but the point of the example is not the text or how it’s ren‐
dered: the point is that you’re creating something autonomous, which has observable
effects.

By refreshing your browser with this code, you are participating in a venerable tradi‐
tion of “Hello, World” examples. If this is your first “Hello, World,” let me welcome
you to the club. If it is not, I hope that this example has given you some insight into
JavaScript.

Hello, World | 13

www.itbook.store/books/9781491914915

https://itbook.store/books/9781491914915

O’Reilly ebooks.
Your bookshelf on your devices.

When you buy an ebook through oreilly.com you get lifetime access to the
book, and whenever possible we provide it to you in four DRM-free file
formats—PDF, .epub, Kindle-compatible .mobi, and DAISY—that you can
use on the devices of your choice. Our ebook files are fully searchable,
and you can cut-and-paste and print them. We also alert you when we’ve
updated the files with corrections and additions.

Learn more at ebooks.oreilly.com
You can also purchase O’Reilly ebooks through the

iBookstore, the Android Marketplace, and Amazon.com.

©2015 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 15055

ePubPDF Mobi DAISY

www.itbook.store/books/9781491914915

http://www.oreilly.com/
http://shop.oreilly.com/category/ebooks.do
https://play.google.com/store/books?hl=en
http://www.amazon.com/
https://itbook.store/books/9781491914915

	Copyright
	Table of Contents
	Preface
	A Brief History of JavaScript
	ES6
	Who This Book Is For
	What This Book Is Not
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Your First Application
	Where to Start
	The Tools
	A Comment on Comments
	Getting Started
	The JavaScript Console
	jQuery
	Drawing Graphics Primitive
	Automating Repetitive Tasks
	Handling User Input
	Hello, World

