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CHAPTER 1

The What and Why of Containers

Containers are fundamentally changing the way we develop, distribute, and run soft‐
ware. Developers can build software locally, knowing that it will run identically
regardless of host environment—be it a rack in the IT department, a user’s laptop, or
a cluster in the cloud. Operations engineers can concentrate on networking, resour‐
ces, and uptime and spend less time configuring environments and battling system
dependencies. The use and uptake of containers is increasing at a phenomenal rate
across the industry, from the smallest start ups to large-scale enterprises. Developers
and operations engineers should expect to regularly use containers in some fashion
within the next few years.

Containers are an encapsulation of an application with its dependencies. At first
glance, they appear to be just a lightweight form of virtual machines (VMs)—like a
VM, a container holds an isolated instance of an operating system (OS), which we
can use to run applications.

However, containers have several advantages that enable use cases that are difficult or
impossible with traditional VMs:

• Containers share resources with the host OS, which makes them an order of
magnitude more efficient. Containers can be started and stopped in a fraction of
a second. Applications running in containers incur little to no overhead com‐
pared to applications running natively on the host OS.

• The portability of containers has the potential to eliminate a whole class of bugs
caused by subtle changes in the running environment—it could even put an end
to the age-old developer refrain of “but it works on my machine!”

• The lightweight nature of containers means developers can run dozens of con‐
tainers at the same time, making it possible to emulate a production-ready dis‐

3
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1 The diagram depicts a type 2 hypervisor, such as Virtualbox or VMWare Workstation, which runs on top of a
host OS. Type 1 hypervisors, such as Xen, are also available where the hypervisor runs directly on top of the
bare metal.

2 The kernel is the core component in an OS and is responsible for providing applications with essential system
functions related to memory, CPU, and device access. A full OS consists of the kernel plus various system
programs, such as init systems, compilers, and window managers.

tributed system. Operations engineers can run many more containers on a single
host machine than using VMs alone.

• Containers also have advantages for end users and developers outside of deploy‐
ing to the cloud. Users can download and run complex applications without
needing to spend hours on configuration and installation issues or worrying
about the changes required to their system. In turn, the developers of such appli‐
cations can avoid worrying about differences in user environments and the avail‐
ability of dependencies.

More importantly, the fundamental goals of VMs and containers are different—the
purpose of a VM is to fully emulate a foreign environment, while the purpose of a
container is to make applications portable and self-contained.

Containers Versus VMs
Though containers and VMs seem similar at first, there are some important differ‐
ences, which are easiest to explain using diagrams.

Figure 1-1 shows three applications running in separate VMs on a host. The hypervi‐
sor1 is required to create and run VMs, controlling access to the underlying OS and
hardware as well as interpreting system calls when necessary. Each VM requires a full
copy of the OS, the application being run, and any supporting libraries.

In contrast, Figure 1-2 shows how the same three applications could be run in a con‐
tainerized system. Unlike VMs, the host’s kernel2 is shared with the running contain‐
ers. This means that containers are always constrained to running the same kernel as
the host. Applications Y and Z use the same libraries and can share this data rather
than having redundant copies. The container engine is responsible for starting and
stopping containers in a similar way to the hypervisor on a VM. However, processes
running inside containers are equivalent to native processes on the host and do not
incur the overheads associated with hypervisor execution.

Both VMs and containers can be used to isolate applications from other applications
running on the same host. VMs have an added degree of isolation from the hypervi‐
sor and are a trusted and battle-hardened technology. Containers are comparatively
new, and many organizations are hesitant to completely trust the isolation features of
containers before they have a proven track record. For this reason, it is common to

4 | Chapter 1: The What and Why of Containers
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find hybrid systems with containers running inside VMs in order to take advantage
of both technologies.

Figure 1-1. Three VMs running on a single host

Figure 1-2. Three containers running on a single host

Containers Versus VMs | 5

www.itbook.store/books/9781491915769

https://itbook.store/books/9781491915769


3 OpenVZ never achieved mass adoption, possibly because of the requirement to run a patched kernel.

Docker and Containers
Containers are an old concept. For decades, UNIX systems have had the chroot com‐
mand that provides a simple form of filesystem isolation. Since 1998, FreeBSD has
had the jail utility, which extended chroot sandboxing to processes. Solaris Zones
offered a comparatively complete containerization technology around 2001 but was
limited to the Solaris OS. Also in 2001, Parrallels Inc, (then SWsoft) released the
commercial Virtuozzo container technology for Linux and later open sourced the
core technology as OpenVZ in 2005.3 Then Google started the development of
CGroups for the Linux kernel and began moving its infrastructure to containers. The 
Linux Containers (LXC) project started in 2008 and brought together CGroups, ker‐
nel namespaces, and chroot technology (among others) to provide a complete con‐
tainerization solution. Finally, in 2013, Docker brought the final pieces to the
containerization puzzle, and the technology began to enter the mainstream.

Docker took the existing Linux container technology and wrapped and extended it in
various ways—primarily through portable images and a user-friendly interface—to
create a complete solution for the creation and distribution of containers. The Docker
platform has two distinct components: the Docker Engine, which is responsible for
creating and running containers; and the Docker Hub, a cloud service for distributing
containers.

The Docker Engine provides a fast and convenient interface for running containers.
Before this, running a container using a technology such as LXC required significant
specialist knowledge and manual work. The Docker Hub provides an enormous
number of public container images for download, allowing users to quickly get
started and avoid duplicating work already done by others. Further tooling developed
by Docker includes Swarm, a clustering manager; Kitematic, a GUI for working with
containers; and Machine, a command-line utility for provisioning Docker hosts.

By open sourcing the Docker Engine, Docker was able to grow a large community
around Docker and take advantage of public help with bug fixes and enhancements.
The rapid rise of Docker meant that it effectively became a de facto standard, which
led to industry pressure to move to develop independent formal standards for the
container runtime and format. In 2015, this culminated in the establishment of the 
Open Container Initiative, a “governance structure” sponsored by Docker, Microsoft,
CoreOS, and many other important organizations, whose mission is to develop such
a standard. Docker’s container format and runtime forms the basis of the effort.

The uptake of containers has largely been driven by developers, who for the first time
were given the tools to use containers effectively. The fast start-up time of Docker

6 | Chapter 1: The What and Why of Containers
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4 This originally stood for Linux, Apache, MySQL, and PHP—common components in a web application.

containers is essential to developers who crave quick and iterative development cycles
where they can promptly see the results of code changes. The portability and isolation
guarantees of containers ease collaboration with other developers and operations;
developers can be sure their code will work across environments, and operations can
focus on hosting and orchestrating containers rather than worrying about the code
running inside them.

The changes brought about by Docker are significantly changing the way we develop
software. Without Docker, containers would have remained in the shadows of IT for
a long time to come.

The Shipping Metaphor
The Docker philosophy is often explained in terms of a shipping-container metaphor,
which presumably explains the Docker name. The story normally goes something like
this:

When goods are transported, they have to pass through a variety of different means,
possibly including trucks, forklifts, cranes, trains, and ships. These means have to be
able to handle a wide variety of goods of different sizes and with different require‐
ments (e.g., sacks of coffee, drums of hazardous chemicals, boxes of electronic goods,
fleets of luxury cars, and racks of refrigerated lamb). Historically, this was a cumber‐
some and costly process, requiring manual labor, such as dock workers, to load and
unload items by hand at each transit point (Figure 1-3).

The transport industry was revolutionized by the introduction of the intermodal con‐
tainer. These containers come in standard sizes and are designed to be moved
between modes of transport with a minimum of manual labor. All transport machi‐
nery is designed to handle these containers, from the forklifts and cranes to the
trucks, trains, and ships. Refrigerated and insulated containers are available for trans‐
porting temperature sensitive goods, such as food and pharmaceuticals. The benefits
of standardization also extend to other supporting systems, such as the labeling and
sealing of containers. This means the transport industry can let the producers of
goods worry about the contents of the containers so that it can focus on the move‐
ment and storage of the containers themselves.

The goal of Docker is to bring the benefits of container standardization to IT. In
recent years, software systems have exploded in terms of diversity. Gone are the days
of a LAMP4 stack running on a single machine. A typical modern system may include
Javascript frameworks, NoSQL databases, message queues, REST APIs, and backends
all written in a variety of programming languages. This stack has to run partly or
completely on top of a variety of hardware—from the developer’s laptop and the in-
house testing cluster to the production cloud provider. Each of these environments is

Docker and Containers | 7
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different, running different operating systems with different versions of libraries on
different hardware. In short, we have a similar issue to the one seen by the transport
industry—we have to continually invest substantial manual effort to move code
between environments. Much as the intermodal containers simplified the transporta‐
tion of goods, Docker containers simplify the transportation of software applications.
Developers can concentrate on building the application and shipping it through test‐
ing and production without worrying about differences in environment and depen‐
dencies. Operations can focus on the core issues of running containers, such as
allocating resources, starting and stopping containers, and migrating them between
servers.

Figure 1-3. Dockers working in Bristol, England, in 1940 (by Ministry of Information
Photo Division Photographer)

Docker: A History
In 2008, Solomon Hykes founded dotCloud to build a language-agnostic Plaftform-
as-a-Service (PaaS) offering. The language-agnostic aspect was the unique selling
point for dotCloud—existing PaaSs were tied to particular sets of languages (e.g.,

8 | Chapter 1: The What and Why of Containers
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Heroku supported Ruby, and Google App Engine supported Java and Python). In
2010, dotCloud took part in Y Combinator accelerator program, where it was were
exposed to new partners and began to attract serious investment. The major turning
point came in March 2013, when dotCloud open sourced Docker, the core building
block of dotCloud. While some companies may have been scared that they were giv‐
ing away their magic beans, dotCloud recognized that Docker would benefit enor‐
mously from becoming a community-driven project.

Early versions of Docker were little more than a wrapper around LXC paired with a
union filesystem, but the uptake and speed of development was shockingly fast.
Within six months, it had more than 6,700 stars on GitHub and 175 nonemployee
contributors. This led dotCloud to change its name to Docker, Inc. and to refocus its
business model. Docker 1.0 was announced in June 2014, just 15 months after the 0.1
release. Docker 1.0 represented a major jump in stability and reliability—it was now
declared “production ready,” although it had already seen production use in several
companies, including Spotify and Baidu. At the same time, Docker started moving
toward being a complete platform rather than just a container engine, with the launch
of the Docker Hub, a public repository for containers.

Other companies were quick to see the potential of Docker. Red Hat became a major
partner in September 2013 and started using Docker to power its OpenShift cloud
offering. Google, Amazon, and DigitalOcean were quick to offer Docker support on
their clouds, and several startups began specializing in Docker hosting, such as Stack‐
Dock. In October 2014, Microsoft announced that future versions of Windows Server
would support Docker, representing a huge shift in positioning for a company tradi‐
tionally associated with bloated enterprise software.

DockerConEU in December 2014 saw the announcement of Docker Swarm, a clus‐
tering manager for Docker and Docker Machine, a CLI tool for provisioning Docker
hosts. This was a clear signal of Docker’s intention to provide a complete and integra‐
ted solution for running containers and not allowing themselves to be restricted to
only providing the Docker engine.

Also that December, CoreOS announced the development of rkt, its own container
runtime, and the development of the appc container specification. In June 2015, dur‐
ing DockerCon in San Francisco, Solomon Hykes from Docker and Alex Polvi from
CoreOS announced the formation of the Open Container Initiative (then called the
Open Container Project) to develop a common standard for container formats and
runtimes.

Also in June 2015, the FreeBSD project announced that Docker was now supported
on FreeBSD, using ZFS and the Linux compatibility layer. In August 2015, Docker
and Microsoft released a “tech preview” of the Docker Engine for Windows server.

Docker: A History | 9
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5 Personally, I’ve never liked the phrase; all batteries provide much the same functionality and can only be
swapped with batteries of the same size and voltage. I assume the phrase has its origins in Python’s “Batteries
Included” philosophy, which it uses to describe the extensive standard library that ships with Python.

With the release of Docker 1.8, Docker introduced the content trust feature, which
verifies the integrity and publisher of Docker images. Content trust is a critical com‐
ponent for building trusted workflows based on images retrieved from Docker regis‐
tries.

Plugins and Plumbing
As a company, Docker Inc. has always been quick to recognize it owes a lot of its suc‐
cess to the ecosystem. While Docker Inc. was concentrating on producing a stable,
production-ready version of the container engine, other companies such as CoreOS,
WeaveWorks, and ClusterHQ were working on related areas, such as orchestrating
and networking containers. However, it quickly became clear that Docker Inc., was
planning to provide a complete platform out of the box, including networking, stor‐
age, and orchestration capabilities. In order to encourage continued ecosystem
growth and ensure users had access to solutions for a wide range of use cases, Docker
Inc. announced it would create a modular, extensible framework for Docker where
stock components could be swapped out for third-party equivalents or extended with
third-party functionality. Docker Inc. called this philosophy “Batteries Included, But
Replaceable,” meaning that a complete solution would be provided, but parts could be
swapped out.5

At the time of writing, the plugin infrastructure is in its infancy, but is available.
There are several plugins already available for networking containers and data man‐
agement.

Docker also follows what it calls the “Infrastructure Plumbing Manifesto,” which
underlines its commitment to reusing and improving existing infrastructure compo‐
nents where possible and contributing reusable components back to the community
when new tools are required. This led to the spinning out of the low-level code for
running containers into the runC project, which is overseen by the OCI and can be
reused as the basis for other container platforms.

64-Bit Linux
At the time of writing, the only stable, production-ready platform for Docker is 64-bit
Linux. This means your computer will need to run a 64-bit Linux distribution, and all
your containers will also be 64-bit Linux. If you are a Windows or Mac OS user, you
can run Docker inside a VM.

10 | Chapter 1: The What and Why of Containers
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Support for other native containers on other platforms, including BSD, Solaris, and
Windows Server, is in various stages of development. Since Docker does not natively
do any virtualization, containers must always match the host kernel—a Windows
Server container can only run on a Windows Server host, and a 64-bit Linux con‐
tainer will only run on a 64-bit Linux host.

Microservices and Monoliths
One of the biggest use cases and strongest drivers behind the uptake of containers are
microservices.

Microservices are a way of developing and composing software systems such that
they are built out of small, independent components that interact with one another
over the network. This is in contrast to the traditional monolithic way of developing
software, where there is a single large program, typically written in C++ or Java.

When it comes to scaling a monolith, commonly the only choice is to scale up, where
extra demand is handled by using a larger machine with more RAM and CPU power.
Conversely, microservices are designed to scale out, where extra demand is handled
by provisioning multiple machines the load can be spread over. In a microservice
architecture, it’s possible to only scale the resources required for a particular service,
focusing on the bottlenecks in the system. In a monolith, it’s scale everything or noth‐
ing, resulting in wasted resources.

In terms of complexity, microservices are a double-edged sword. Each individual
microservice should be easy to understand and modify. However, in a system com‐
posed of dozens or hundreds of such services, the overall complexity increases due to
the interaction between individual components.

The lightweight nature and speed of containers mean they are particularly well suited
for running a microservice architecture. Compared to VMs, containers are vastly
smaller and quicker to deploy, allowing microservice architectures to use the mini‐
mum of resources and react quickly to changes in demand.

For more information on microservices, see Building Microservices by Sam Newman
(O’Reilly) and Martin Fowler’s Microservice Resource Guide.
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