
Adrian Mouat

 Using
Docker
DEVELOPING AND DEPLOYING SOFTWARE WITH CONTAINERS

www.itbook.store/books/9781491915769

https://itbook.store/books/9781491915769

www.itbook.store/books/9781491915769

https://itbook.store/books/9781491915769

O’Reilly ebooks.
Your bookshelf on your devices.

When you buy an ebook through oreilly.com you get lifetime access to the
book, and whenever possible we provide it to you in four DRM-free file
formats—PDF, .epub, Kindle-compatible .mobi, and DAISY—that you can
use on the devices of your choice. Our ebook files are fully searchable,
and you can cut-and-paste and print them. We also alert you when we’ve
updated the files with corrections and additions.

Learn more at ebooks.oreilly.com
You can also purchase O’Reilly ebooks through the

iBookstore, the Android Marketplace, and Amazon.com.

©2015 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 15055

ePubPDF Mobi DAISY

www.itbook.store/books/9781491915769

http://www.oreilly.com/
http://shop.oreilly.com/category/ebooks.do
https://itbook.store/books/9781491915769

978-1-491-91576-9

[LSI]

Using Docker
by Adrian Mouat

Copyright © 2016 Adrian Mouat. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian Anderson
Production Editor: Melanie Yarbrough
Copyeditor: Christina Edwards
Proofreader: Amanda Kersey

Indexer: WordCo Indexing Services
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

December 2015: First Edition

Revision History for the First Edition
2015-12-07: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491915769 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Using Docker, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.itbook.store/books/9781491915769

https://itbook.store/books/9781491915769

Table of Contents

Preface. xi

Part I. Background and Basics

1. The What and Why of Containers. 3
Containers Versus VMs 4
Docker and Containers 6
Docker: A History 8
Plugins and Plumbing 10
64-Bit Linux 10

2. Installation. 13
Installing Docker on Linux 13

Run SELinux in Permissive Mode 14
Running Without sudo 15

Installing Docker on Mac OS or Windows 15
A Quick Check 17

3. First Steps. 19
Running Your First Image 19
The Basic Commands 20
Building Images from Dockerfiles 24
Working with Registries 27

Private Repositories 29
Using the Redis Official Image 30
Conclusion 33

v

www.itbook.store/books/9781491915769

https://itbook.store/books/9781491915769

4. Docker Fundamentals. 35
The Docker Architecture 35

Underlying Technologies 36
Surrounding Technologies 37
Docker Hosting 39

How Images Get Built 39
The Build Context 39
Image Layers 41
Caching 43
Base Images 44
Dockerfile Instructions 46

Connecting Containers to the World 49
Linking Containers 49
Managing Data with Volumes and Data Containers 51

Sharing Data 53
Data Containers 54

Common Docker Commands 55
The run Command 56
Managing Containers 59
Docker Info 62
Container Info 62
Dealing with Images 63
Using the Registry 66

Conclusion 67

Part II. The Software Lifecycle with Docker

5. Using Docker in Development. 71
Say “Hello World!” 71
Automating with Compose 81

The Compose Workflow 83
Conclusion 84

6. Creating a Simple Web App. 85
Creating a Basic Web Page 86
Taking Advantage of Existing Images 88
Add Some Caching 93
Microservices 96
Conclusion 97

vi | Table of Contents

www.itbook.store/books/9781491915769

https://itbook.store/books/9781491915769

7. Image Distribution. 99
Image and Repository Naming 99
The Docker Hub 100
Automated Builds 102
Private Distribution 104

Running Your Own Registry 104
Commerical Registries 111

Reducing Image Size 111
Image Provenance 113

Conclusion 114

8. Continuous Integration and Testing with Docker. 115
Adding Unit Tests to Identidock 116
Creating a Jenkins Container 121

Triggering Builds 128
Pushing the Image 129

Responsible Tagging 129
Staging and Production 131
Image Sprawl 131
Using Docker to Provision Jenkins Slaves 132

Backing Up Jenkins 132
Hosted CI Solutions 133
Testing and Microservices 133

Testing in Production 135
Conclusion 135

9. Deploying Containers. 137
Provisioning Resources with Docker Machine 138
Using a Proxy 141
Execution Options 147

Shell Scripts 148
Using a Process Manager (or systemd to Rule Them All) 150
Using a Configuration Management Tool 153

Host Configuration 157
Choosing an OS 157
Choosing a Storage Driver 157

Specialist Hosting Options 160
Triton 160
Google Container Engine 162
Amazon EC2 Container Service 162
Giant Swarm 165

Persistent Data and Production Containers 167

Table of Contents | vii

www.itbook.store/books/9781491915769

https://itbook.store/books/9781491915769

Sharing Secrets 167
Saving Secrets in the Image 167
Passing Secrets in Environment Variables 168
Passing Secrets in Volumes 168
Using a Key-Value Store 169

Networking 170
Production Registry 170
Continuous Deployment/Delivery 171
Conclusion 171

10. Logging and Monitoring. 173
Logging 174

The Default Docker Logging 174
Aggregating Logs 176
Logging with ELK 176
Docker Logging with syslog 187
Grabbing Logs from File 193

Monitoring and Alerting 194
Monitoring with Docker Tools 194
cAdvisor 196
Cluster Solutions 197

Commercial Monitoring and Logging Solutions 201
Conclusion 201

Part III. Tools and Techniques

11. Networking and Service Discovery. 205
Ambassadors 206
Service Discovery 210

etcd 210
SkyDNS 215
Consul 219
Registration 223
Other Solutions 225

Networking Options 226
Bridge 226
Host 227
Container 228
None 228

New Docker Networking 228
Network Types and Plugins 230

viii | Table of Contents

www.itbook.store/books/9781491915769

https://itbook.store/books/9781491915769

Networking Solutions 230
Overlay 231
Weave 233
Flannel 237
Project Calico 242

Conclusion 246

12. Orchestration, Clustering, and Management. 249
Clustering and Orchestration Tools 250

Swarm 251
Fleet 257
Kubernetes 263
Mesos and Marathon 271

Container Management Platforms 282
Rancher 282
Clocker 283
Tutum 285

Conclusion 286

13. Security and Limiting Containers. 289
Things to Worry About 290
Defense-in-Depth 292

Least Privilege 292
Securing Identidock 293
Segregate Containers by Host 295
Applying Updates 296

Avoid Unsupported Drivers 299
Image Provenance 300

Docker Digests 300
Docker Content Trust 301
Reproducible and Trustworthy Dockerfiles 305

Security Tips 307
Set a User 307
Limit Container Networking 309
Remove Setuid/Setgid Binaries 311
Limit Memory 312
Limit CPU 313
Limit Restarts 314
Limit Filesystems 314
Limit Capabilities 315
Apply Resource Limits (ulimits) 316

Run a Hardened Kernel 318

Table of Contents | ix

www.itbook.store/books/9781491915769

https://itbook.store/books/9781491915769

Linux Security Modules 318
SELinux 319
AppArmor 322

Auditing 322
Incident Response 323
Future Features 324
Conclusion 324

Index. 327

x | Table of Contents

www.itbook.store/books/9781491915769

https://itbook.store/books/9781491915769

CHAPTER 1

The What and Why of Containers

Containers are fundamentally changing the way we develop, distribute, and run soft‐
ware. Developers can build software locally, knowing that it will run identically
regardless of host environment—be it a rack in the IT department, a user’s laptop, or
a cluster in the cloud. Operations engineers can concentrate on networking, resour‐
ces, and uptime and spend less time configuring environments and battling system
dependencies. The use and uptake of containers is increasing at a phenomenal rate
across the industry, from the smallest start ups to large-scale enterprises. Developers
and operations engineers should expect to regularly use containers in some fashion
within the next few years.

Containers are an encapsulation of an application with its dependencies. At first
glance, they appear to be just a lightweight form of virtual machines (VMs)—like a
VM, a container holds an isolated instance of an operating system (OS), which we
can use to run applications.

However, containers have several advantages that enable use cases that are difficult or
impossible with traditional VMs:

• Containers share resources with the host OS, which makes them an order of
magnitude more efficient. Containers can be started and stopped in a fraction of
a second. Applications running in containers incur little to no overhead com‐
pared to applications running natively on the host OS.

• The portability of containers has the potential to eliminate a whole class of bugs
caused by subtle changes in the running environment—it could even put an end
to the age-old developer refrain of “but it works on my machine!”

• The lightweight nature of containers means developers can run dozens of con‐
tainers at the same time, making it possible to emulate a production-ready dis‐

3

www.itbook.store/books/9781491915769

https://itbook.store/books/9781491915769

1 The diagram depicts a type 2 hypervisor, such as Virtualbox or VMWare Workstation, which runs on top of a
host OS. Type 1 hypervisors, such as Xen, are also available where the hypervisor runs directly on top of the
bare metal.

2 The kernel is the core component in an OS and is responsible for providing applications with essential system
functions related to memory, CPU, and device access. A full OS consists of the kernel plus various system
programs, such as init systems, compilers, and window managers.

tributed system. Operations engineers can run many more containers on a single
host machine than using VMs alone.

• Containers also have advantages for end users and developers outside of deploy‐
ing to the cloud. Users can download and run complex applications without
needing to spend hours on configuration and installation issues or worrying
about the changes required to their system. In turn, the developers of such appli‐
cations can avoid worrying about differences in user environments and the avail‐
ability of dependencies.

More importantly, the fundamental goals of VMs and containers are different—the
purpose of a VM is to fully emulate a foreign environment, while the purpose of a
container is to make applications portable and self-contained.

Containers Versus VMs
Though containers and VMs seem similar at first, there are some important differ‐
ences, which are easiest to explain using diagrams.

Figure 1-1 shows three applications running in separate VMs on a host. The hypervi‐
sor1 is required to create and run VMs, controlling access to the underlying OS and
hardware as well as interpreting system calls when necessary. Each VM requires a full
copy of the OS, the application being run, and any supporting libraries.

In contrast, Figure 1-2 shows how the same three applications could be run in a con‐
tainerized system. Unlike VMs, the host’s kernel2 is shared with the running contain‐
ers. This means that containers are always constrained to running the same kernel as
the host. Applications Y and Z use the same libraries and can share this data rather
than having redundant copies. The container engine is responsible for starting and
stopping containers in a similar way to the hypervisor on a VM. However, processes
running inside containers are equivalent to native processes on the host and do not
incur the overheads associated with hypervisor execution.

Both VMs and containers can be used to isolate applications from other applications
running on the same host. VMs have an added degree of isolation from the hypervi‐
sor and are a trusted and battle-hardened technology. Containers are comparatively
new, and many organizations are hesitant to completely trust the isolation features of
containers before they have a proven track record. For this reason, it is common to

4 | Chapter 1: The What and Why of Containers

www.itbook.store/books/9781491915769

https://itbook.store/books/9781491915769

find hybrid systems with containers running inside VMs in order to take advantage
of both technologies.

Figure 1-1. Three VMs running on a single host

Figure 1-2. Three containers running on a single host

Containers Versus VMs | 5

www.itbook.store/books/9781491915769

https://itbook.store/books/9781491915769

3 OpenVZ never achieved mass adoption, possibly because of the requirement to run a patched kernel.

Docker and Containers
Containers are an old concept. For decades, UNIX systems have had the chroot com‐
mand that provides a simple form of filesystem isolation. Since 1998, FreeBSD has
had the jail utility, which extended chroot sandboxing to processes. Solaris Zones
offered a comparatively complete containerization technology around 2001 but was
limited to the Solaris OS. Also in 2001, Parrallels Inc, (then SWsoft) released the
commercial Virtuozzo container technology for Linux and later open sourced the
core technology as OpenVZ in 2005.3 Then Google started the development of
CGroups for the Linux kernel and began moving its infrastructure to containers. The
Linux Containers (LXC) project started in 2008 and brought together CGroups, ker‐
nel namespaces, and chroot technology (among others) to provide a complete con‐
tainerization solution. Finally, in 2013, Docker brought the final pieces to the
containerization puzzle, and the technology began to enter the mainstream.

Docker took the existing Linux container technology and wrapped and extended it in
various ways—primarily through portable images and a user-friendly interface—to
create a complete solution for the creation and distribution of containers. The Docker
platform has two distinct components: the Docker Engine, which is responsible for
creating and running containers; and the Docker Hub, a cloud service for distributing
containers.

The Docker Engine provides a fast and convenient interface for running containers.
Before this, running a container using a technology such as LXC required significant
specialist knowledge and manual work. The Docker Hub provides an enormous
number of public container images for download, allowing users to quickly get
started and avoid duplicating work already done by others. Further tooling developed
by Docker includes Swarm, a clustering manager; Kitematic, a GUI for working with
containers; and Machine, a command-line utility for provisioning Docker hosts.

By open sourcing the Docker Engine, Docker was able to grow a large community
around Docker and take advantage of public help with bug fixes and enhancements.
The rapid rise of Docker meant that it effectively became a de facto standard, which
led to industry pressure to move to develop independent formal standards for the
container runtime and format. In 2015, this culminated in the establishment of the
Open Container Initiative, a “governance structure” sponsored by Docker, Microsoft,
CoreOS, and many other important organizations, whose mission is to develop such
a standard. Docker’s container format and runtime forms the basis of the effort.

The uptake of containers has largely been driven by developers, who for the first time
were given the tools to use containers effectively. The fast start-up time of Docker

6 | Chapter 1: The What and Why of Containers

www.itbook.store/books/9781491915769

https://itbook.store/books/9781491915769

4 This originally stood for Linux, Apache, MySQL, and PHP—common components in a web application.

containers is essential to developers who crave quick and iterative development cycles
where they can promptly see the results of code changes. The portability and isolation
guarantees of containers ease collaboration with other developers and operations;
developers can be sure their code will work across environments, and operations can
focus on hosting and orchestrating containers rather than worrying about the code
running inside them.

The changes brought about by Docker are significantly changing the way we develop
software. Without Docker, containers would have remained in the shadows of IT for
a long time to come.

The Shipping Metaphor
The Docker philosophy is often explained in terms of a shipping-container metaphor,
which presumably explains the Docker name. The story normally goes something like
this:

When goods are transported, they have to pass through a variety of different means,
possibly including trucks, forklifts, cranes, trains, and ships. These means have to be
able to handle a wide variety of goods of different sizes and with different require‐
ments (e.g., sacks of coffee, drums of hazardous chemicals, boxes of electronic goods,
fleets of luxury cars, and racks of refrigerated lamb). Historically, this was a cumber‐
some and costly process, requiring manual labor, such as dock workers, to load and
unload items by hand at each transit point (Figure 1-3).

The transport industry was revolutionized by the introduction of the intermodal con‐
tainer. These containers come in standard sizes and are designed to be moved
between modes of transport with a minimum of manual labor. All transport machi‐
nery is designed to handle these containers, from the forklifts and cranes to the
trucks, trains, and ships. Refrigerated and insulated containers are available for trans‐
porting temperature sensitive goods, such as food and pharmaceuticals. The benefits
of standardization also extend to other supporting systems, such as the labeling and
sealing of containers. This means the transport industry can let the producers of
goods worry about the contents of the containers so that it can focus on the move‐
ment and storage of the containers themselves.

The goal of Docker is to bring the benefits of container standardization to IT. In
recent years, software systems have exploded in terms of diversity. Gone are the days
of a LAMP4 stack running on a single machine. A typical modern system may include
Javascript frameworks, NoSQL databases, message queues, REST APIs, and backends
all written in a variety of programming languages. This stack has to run partly or
completely on top of a variety of hardware—from the developer’s laptop and the in-
house testing cluster to the production cloud provider. Each of these environments is

Docker and Containers | 7

www.itbook.store/books/9781491915769

https://itbook.store/books/9781491915769

different, running different operating systems with different versions of libraries on
different hardware. In short, we have a similar issue to the one seen by the transport
industry—we have to continually invest substantial manual effort to move code
between environments. Much as the intermodal containers simplified the transporta‐
tion of goods, Docker containers simplify the transportation of software applications.
Developers can concentrate on building the application and shipping it through test‐
ing and production without worrying about differences in environment and depen‐
dencies. Operations can focus on the core issues of running containers, such as
allocating resources, starting and stopping containers, and migrating them between
servers.

Figure 1-3. Dockers working in Bristol, England, in 1940 (by Ministry of Information
Photo Division Photographer)

Docker: A History
In 2008, Solomon Hykes founded dotCloud to build a language-agnostic Plaftform-
as-a-Service (PaaS) offering. The language-agnostic aspect was the unique selling
point for dotCloud—existing PaaSs were tied to particular sets of languages (e.g.,

8 | Chapter 1: The What and Why of Containers

www.itbook.store/books/9781491915769

https://itbook.store/books/9781491915769

Heroku supported Ruby, and Google App Engine supported Java and Python). In
2010, dotCloud took part in Y Combinator accelerator program, where it was were
exposed to new partners and began to attract serious investment. The major turning
point came in March 2013, when dotCloud open sourced Docker, the core building
block of dotCloud. While some companies may have been scared that they were giv‐
ing away their magic beans, dotCloud recognized that Docker would benefit enor‐
mously from becoming a community-driven project.

Early versions of Docker were little more than a wrapper around LXC paired with a
union filesystem, but the uptake and speed of development was shockingly fast.
Within six months, it had more than 6,700 stars on GitHub and 175 nonemployee
contributors. This led dotCloud to change its name to Docker, Inc. and to refocus its
business model. Docker 1.0 was announced in June 2014, just 15 months after the 0.1
release. Docker 1.0 represented a major jump in stability and reliability—it was now
declared “production ready,” although it had already seen production use in several
companies, including Spotify and Baidu. At the same time, Docker started moving
toward being a complete platform rather than just a container engine, with the launch
of the Docker Hub, a public repository for containers.

Other companies were quick to see the potential of Docker. Red Hat became a major
partner in September 2013 and started using Docker to power its OpenShift cloud
offering. Google, Amazon, and DigitalOcean were quick to offer Docker support on
their clouds, and several startups began specializing in Docker hosting, such as Stack‐
Dock. In October 2014, Microsoft announced that future versions of Windows Server
would support Docker, representing a huge shift in positioning for a company tradi‐
tionally associated with bloated enterprise software.

DockerConEU in December 2014 saw the announcement of Docker Swarm, a clus‐
tering manager for Docker and Docker Machine, a CLI tool for provisioning Docker
hosts. This was a clear signal of Docker’s intention to provide a complete and integra‐
ted solution for running containers and not allowing themselves to be restricted to
only providing the Docker engine.

Also that December, CoreOS announced the development of rkt, its own container
runtime, and the development of the appc container specification. In June 2015, dur‐
ing DockerCon in San Francisco, Solomon Hykes from Docker and Alex Polvi from
CoreOS announced the formation of the Open Container Initiative (then called the
Open Container Project) to develop a common standard for container formats and
runtimes.

Also in June 2015, the FreeBSD project announced that Docker was now supported
on FreeBSD, using ZFS and the Linux compatibility layer. In August 2015, Docker
and Microsoft released a “tech preview” of the Docker Engine for Windows server.

Docker: A History | 9

www.itbook.store/books/9781491915769

https://itbook.store/books/9781491915769

5 Personally, I’ve never liked the phrase; all batteries provide much the same functionality and can only be
swapped with batteries of the same size and voltage. I assume the phrase has its origins in Python’s “Batteries
Included” philosophy, which it uses to describe the extensive standard library that ships with Python.

With the release of Docker 1.8, Docker introduced the content trust feature, which
verifies the integrity and publisher of Docker images. Content trust is a critical com‐
ponent for building trusted workflows based on images retrieved from Docker regis‐
tries.

Plugins and Plumbing
As a company, Docker Inc. has always been quick to recognize it owes a lot of its suc‐
cess to the ecosystem. While Docker Inc. was concentrating on producing a stable,
production-ready version of the container engine, other companies such as CoreOS,
WeaveWorks, and ClusterHQ were working on related areas, such as orchestrating
and networking containers. However, it quickly became clear that Docker Inc., was
planning to provide a complete platform out of the box, including networking, stor‐
age, and orchestration capabilities. In order to encourage continued ecosystem
growth and ensure users had access to solutions for a wide range of use cases, Docker
Inc. announced it would create a modular, extensible framework for Docker where
stock components could be swapped out for third-party equivalents or extended with
third-party functionality. Docker Inc. called this philosophy “Batteries Included, But
Replaceable,” meaning that a complete solution would be provided, but parts could be
swapped out.5

At the time of writing, the plugin infrastructure is in its infancy, but is available.
There are several plugins already available for networking containers and data man‐
agement.

Docker also follows what it calls the “Infrastructure Plumbing Manifesto,” which
underlines its commitment to reusing and improving existing infrastructure compo‐
nents where possible and contributing reusable components back to the community
when new tools are required. This led to the spinning out of the low-level code for
running containers into the runC project, which is overseen by the OCI and can be
reused as the basis for other container platforms.

64-Bit Linux
At the time of writing, the only stable, production-ready platform for Docker is 64-bit
Linux. This means your computer will need to run a 64-bit Linux distribution, and all
your containers will also be 64-bit Linux. If you are a Windows or Mac OS user, you
can run Docker inside a VM.

10 | Chapter 1: The What and Why of Containers

www.itbook.store/books/9781491915769

https://itbook.store/books/9781491915769

Support for other native containers on other platforms, including BSD, Solaris, and
Windows Server, is in various stages of development. Since Docker does not natively
do any virtualization, containers must always match the host kernel—a Windows
Server container can only run on a Windows Server host, and a 64-bit Linux con‐
tainer will only run on a 64-bit Linux host.

Microservices and Monoliths
One of the biggest use cases and strongest drivers behind the uptake of containers are
microservices.

Microservices are a way of developing and composing software systems such that
they are built out of small, independent components that interact with one another
over the network. This is in contrast to the traditional monolithic way of developing
software, where there is a single large program, typically written in C++ or Java.

When it comes to scaling a monolith, commonly the only choice is to scale up, where
extra demand is handled by using a larger machine with more RAM and CPU power.
Conversely, microservices are designed to scale out, where extra demand is handled
by provisioning multiple machines the load can be spread over. In a microservice
architecture, it’s possible to only scale the resources required for a particular service,
focusing on the bottlenecks in the system. In a monolith, it’s scale everything or noth‐
ing, resulting in wasted resources.

In terms of complexity, microservices are a double-edged sword. Each individual
microservice should be easy to understand and modify. However, in a system com‐
posed of dozens or hundreds of such services, the overall complexity increases due to
the interaction between individual components.

The lightweight nature and speed of containers mean they are particularly well suited
for running a microservice architecture. Compared to VMs, containers are vastly
smaller and quicker to deploy, allowing microservice architectures to use the mini‐
mum of resources and react quickly to changes in demand.

For more information on microservices, see Building Microservices by Sam Newman
(O’Reilly) and Martin Fowler’s Microservice Resource Guide.

64-Bit Linux | 11

www.itbook.store/books/9781491915769

https://itbook.store/books/9781491915769

Want to
read more?

You can buy this book at oreilly.com
in print and ebook format.

Buy 2 books, get the 3rd FREE!
Use discount code OPC10

All orders over $29.95 qualify for free shipping within the US.

It’s also available at your favorite book retailer, including
the iBookstore, the Android Marketplace, and Amazon.com.

©2015 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 15055

www.itbook.store/books/9781491915769

http://shop.oreilly.com/product/0636920035671.do
https://itbook.store/books/9781491915769

	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	Why I Wrote This Book
	Navigating This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. Background and Basics
	Chapter 1. The What and Why of Containers
	Containers Versus VMs
	Docker and Containers
	Docker: A History
	Plugins and Plumbing
	64-Bit Linux

	Chapter 2. Installation
	Installing Docker on Linux
	Run SELinux in Permissive Mode
	Running Without sudo

	Installing Docker on Mac OS or Windows
	A Quick Check

	Chapter 3. First Steps
	Running Your First Image
	The Basic Commands
	Building Images from Dockerfiles
	Working with Registries
	Private Repositories

	Using the Redis Official Image
	Conclusion

	Chapter 4. Docker Fundamentals
	The Docker Architecture
	Underlying Technologies
	Surrounding Technologies
	Docker Hosting

	How Images Get Built
	The Build Context
	Image Layers
	Caching
	Base Images
	Dockerfile Instructions

	Connecting Containers to the World
	Linking Containers
	Managing Data with Volumes and Data Containers
	Sharing Data
	Data Containers

	Common Docker Commands
	The run Command
	Managing Containers
	Docker Info
	Container Info
	Dealing with Images
	Using the Registry

	Conclusion

	Part II. The Software Lifecycle with Docker
	Chapter 5. Using Docker in Development
	Say “Hello World!”
	Automating with Compose
	The Compose Workflow

	Conclusion

	Chapter 6. Creating a Simple Web App
	Creating a Basic Web Page
	Taking Advantage of Existing Images
	Add Some Caching
	Microservices
	Conclusion

	Chapter 7. Image Distribution
	Image and Repository Naming
	The Docker Hub
	Automated Builds
	Private Distribution
	Running Your Own Registry
	Commerical Registries

	Reducing Image Size
	Image Provenance
	Conclusion

	Chapter 8. Continuous Integration and Testing with Docker
	Adding Unit Tests to Identidock
	Creating a Jenkins Container
	Triggering Builds

	Pushing the Image
	Responsible Tagging
	Staging and Production
	Image Sprawl
	Using Docker to Provision Jenkins Slaves

	Backing Up Jenkins
	Hosted CI Solutions
	Testing and Microservices
	Testing in Production

	Conclusion

	Chapter 9. Deploying Containers
	Provisioning Resources with Docker Machine
	Using a Proxy
	Execution Options
	Shell Scripts
	Using a Process Manager (or systemd to Rule Them All)
	Using a Configuration Management Tool

	Host Configuration
	Choosing an OS
	Choosing a Storage Driver

	Specialist Hosting Options
	Triton
	Google Container Engine
	Amazon EC2 Container Service
	Giant Swarm

	Persistent Data and Production Containers
	Sharing Secrets
	Saving Secrets in the Image
	Passing Secrets in Environment Variables
	Passing Secrets in Volumes
	Using a Key-Value Store

	Networking
	Production Registry
	Continuous Deployment/Delivery
	Conclusion

	Chapter 10. Logging and Monitoring
	Logging
	The Default Docker Logging
	Aggregating Logs
	Logging with ELK
	Docker Logging with syslog
	Grabbing Logs from File

	Monitoring and Alerting
	Monitoring with Docker Tools
	cAdvisor
	Cluster Solutions

	Commercial Monitoring and Logging Solutions
	Conclusion

	Part III. Tools and Techniques
	Chapter 11. Networking and Service Discovery
	Ambassadors
	Service Discovery
	etcd
	SkyDNS
	Consul
	Registration
	Other Solutions

	Networking Options
	Bridge
	Host
	Container
	None

	New Docker Networking
	Network Types and Plugins

	Networking Solutions
	Overlay
	Weave
	Flannel
	Project Calico

	Conclusion

	Chapter 12. Orchestration, Clustering, and Management
	Clustering and Orchestration Tools
	Swarm
	Fleet
	Kubernetes
	Mesos and Marathon

	Container Management Platforms
	Rancher
	Clocker
	Tutum

	Conclusion

	Chapter 13. Security and Limiting Containers
	Things to Worry About
	Defense-in-Depth
	Least Privilege

	Securing Identidock
	Segregate Containers by Host
	Applying Updates
	Avoid Unsupported Drivers

	Image Provenance
	Docker Digests
	Docker Content Trust
	Reproducible and Trustworthy Dockerfiles

	Security Tips
	Set a User
	Limit Container Networking
	Remove Setuid/Setgid Binaries
	Limit Memory
	Limit CPU
	Limit Restarts
	Limit Filesystems
	Limit Capabilities
	Apply Resource Limits (ulimits)

	Run a Hardened Kernel
	Linux Security Modules
	SELinux
	AppArmor

	Auditing
	Incident Response
	Future Features
	Conclusion

	Index
	About the Author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

