
Owen Yamauchi

Hack &
HHVM
PROGRAMMING PRODUCTIVITY WITHOUT BREAKING THINGS

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

PHP

Hack and HHVM

ISBN: 978-1-491-92087-9

US $34.99 CAN $40.99

“	Hack	is	remarkable	not	
only	for	the	elegance	and	
power	of	its	type	system	
and	concurrency	model,	
but	because	it	provides	
existing	PHP	applications	
a	thoughtful,	iterative	
migration	strategy	that	
can	be	executed	at	
scale.	Yamauchi's	survey	
of	the	language	and	its	
runtime	is	clear,	expert,	
and	essential.	Highly	
recommended.”

—Ori Livneh
Principal Performance Engineer,

Wikimedia Foundation

Twitter: @oreillymedia
facebook.com/oreilly

How can you take advantage of the HipHop Virtual Machine (HHVM) and
the Hack programming language, two new technologies that Facebook
developed to run their web servers? With this practical guide, Owen
Yamauchi—a member of Facebook’s core Hack and HHVM teams—shows
you how to get started with these battle-tested open source tools.

You’ll explore static typechecking and several other features that separate
Hack from its PHP origins, and learn how to set up, configure, deploy,
and monitor HHVM. Ideal for developers with basic PHP knowledge or
experience with other languages, this book also demonstrates how these
tools can be used with existing PHP codebases and new projects alike.

 ■ Learn how Hack provides static typechecking while retaining
PHP’s flexible, rapid development capability

 ■ Write typesafe code with Hack’s generics feature

 ■ Explore HHVM, a just-in-time compilation runtime engine with
full PHP compatibility

 ■ Dive into Hack collections, asynchronous functions, and the
XHP extension for PHP

 ■ Understand Hack’s design rationale, including why it omits
some PHP features

 ■ Use Hack for multitasking, and for generating HTML securely

 ■ Learn tools for working with Hack code, including PHP-to-Hack
migration

Owen Yamauchi is a software engineer at Facebook, where he works on the
Hack and HHVM teams. Before joining the company in 2009, he worked as a
software engineer at Apple and served as an intern at VMware.

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

O’Reilly ebooks.
Your bookshelf on your devices.

When you buy an ebook through oreilly.com you get lifetime access to the
book, and whenever possible we provide it to you in four DRM-free file
formats—PDF, .epub, Kindle-compatible .mobi, and DAISY—that you can
use on the devices of your choice. Our ebook files are fully searchable,
and you can cut-and-paste and print them. We also alert you when we’ve
updated the files with corrections and additions.

Learn more at ebooks.oreilly.com
You can also purchase O’Reilly ebooks through the

iBookstore, the Android Marketplace, and Amazon.com.

©2015 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 15055

ePubPDF Mobi DAISY

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

978-1-491-92087-9

[LSI]

Hack and HHVM
by Owen Yamauchi

Copyright © 2015 Facebook, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Allyson MacDonald
Production Editor: Melanie Yarbrough
Copyeditor: Rachel Head
Proofreader: Jasmine Kwityn

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Ellie Volkhausen
Illustrator: Rebecca Demarest

September 2015: First Edition

Revision History for the First Edition
2015-09-02: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491920879 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Hack and HHVM, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

Table of Contents

Foreword. ix

Preface. xi

1. Typechecking. 1
Why Use the Typechecker? 1
Setting Up the Typechecker 2

Autoload Everything 3
Reading Error Messages 3

Type Annotation Syntax 4
Function Return Types 4
Function Parameters 5
Properties 6

Hack’s Type System 6
Typechecker Modes 14
Code Without Annotations 16
Calling into PHP 17

Rules 18
Using Superglobals 18
Types of Overriding Methods 19
Property Initialization 20
Typed Variadic Arguments 23
Types for Generators 24
Fallthrough in switch Statements 25

Type Inference 26
Variables Don’t Have Types 26
Unresolved Types 26
Inference Is Function-Local 28

iii

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

Refining Types 29
Refining Nullable Types to Non-Nullable 30
Refining Mixed Types to Primitives 32
Refining Object Types 32
Inference on Properties 35

Enforcement of Type Annotations at Runtime 36

2. Generics. 39
Introductory Example 39
Other Generic Entities 41

Functions and Methods 41
Traits and Interfaces 42
Type Aliases 42

Type Erasure 43
Constraints 45
Unresolved Types, Revisited 47
Generics and Subtypes 49

Arrays and Collections 50
Advanced: Covariance and Contravariance 51

Syntax 51
When to Use Them 52

3. Other Features of Hack. 57
Enums 57

Enum Functions 59
Type Aliases 60

Transparent Type Aliases 60
Opaque Type Aliases 61
Autoloading Type Aliases 64

Array Shapes 64
Lambda Expressions 66
Constructor Parameter Promotion 68
Attributes 69

Attribute Syntax 69
Special Attributes 71

Enhanced Autoloading 73
Integer Arithmetic Overflow 77
Nullsafe Method Call Operator 77
Trait and Interface Requirements 78
Silencing Typechecker Errors 80

iv | Table of Contents

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

4. PHP Features Not Supported in Hack. 83
References 83

The global Statement 84
Top-Level Code 84

Old-Style Constructors 85
Case-Insensitive Name Lookup 86
Variable Variables 86
Dynamic Properties 87
Mixing Method Call Syntax 88
isset, empty, and unset 88
Others 89

5. Collections. 91
Why Use Collections? 93
Collections Have Reference Semantics 94
Using Collections 96

Literal Syntax 96
Reading and Writing 97

Type Annotations for Collections 102
Core Interfaces 102
General Collection Interfaces 106
Specific Collection Interfaces 107
Concrete Collection Classes 110

Interoperating with Arrays 112
Conversion to Arrays 112
Use with Built-In and User Functions 112

6. Async. 117
Introductory Examples 118
Async in Detail 121

Wait Handles 121
Async and Callable Types 123
await Is Not an Expression 124
Async Generators 125
Exceptions in Async Functions 127
Mapping and Filtering Helpers 129

Structuring Async Code 132
Data Dependencies 133
Antipatterns 135

Other Types of Waiting 140
Sleeping 140
Rescheduling 140

Table of Contents | v

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

Common Mistakes 143
Dropping Wait Handles 143
Memoizing Async Functions 145

Async Extensions 147
MySQL 147
MCRouter and memcached 151
cURL 153
Streams 154

7. XHP. 157
Why Use XHP? 157

Runtime Validation 158
Secure by Default 159

How to Use XHP 161
Basic Tag Usage 161
Attributes 163
Embedding Hack Code 164
Type Annotations for XHP 164
Object Interface 165
Validation 167

Creating Your Own XHP Classes 168
Attributes 169
children Declarations 171
Categories 173
Context 174
Async XHP 175
XHP Helpers 176

XHP Best Practices 178
No Additional Public API 179
Composition, Not Inheritance 179
Don’t Make Control Flow Tags 180
Distinguish Attributes from Children 181
Style Guide 182

Migrating to XHP 182
Converting Bottom-Up 183
Getting Around XHP’s Escaping 184

XHP Internals 185
The Parser Transformation 185
The Hack Library 186

8. Configuring and Deploying HHVM. 189
Specifying Configuration Options 189

vi | Table of Contents

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

Important Options 190
Server Mode 192
Warming Up the JIT 193
Repo-Authoritative Mode 194

Building the Repo 195
Deploying the Repo 196

The Admin Server 196

9. hphpd: Interactive Debugging. 199
Getting Started 199
Evaluating Code 202
The Execution Environment 203

Local Mode 204
Remote Mode 205

Using Breakpoints 207
Setting Breakpoints 208
Navigating the Call Stack 211
Navigating Code 213
Managing Breakpoints 217

Viewing Code and Documentation 218
Macros 222
Configuring hphpd 223

10. Hack Tools. 227
Inspecting the Codebase 227

Scripting Support 230
Migrating PHP to Hack 231

The Hackificator 231
Inferring and Adding Type Annotations 234

Transpiling Hack to PHP 236
Conversions 237
Unsupported Features 239

Index. 241

Table of Contents | vii

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

CHAPTER 1

Typechecking

The typechecker is the flagship feature of Hack. It analyzes Hack programs statically
(i.e., without running them) and checks for many different kinds of errors, which
prevents bugs at an early stage of development and makes code easier to read and
understand. To enhance the typechecker’s ability to do this, Hack allows program‐
mers to explicitly annotate the types of some values in their programs: function
parameters, function return types, and properties. The typechecker will infer the rest.

The choice between statically typed languages and dynamically typed languages is
endlessly debated among programmers. It’s often presented as a choice between the
robustness of static typing and the flexibility of dynamic typing. The philosophy of
Hack rejects this as a false dichotomy. Hack retains the flexible, rapid-development
character of PHP, a dynamically typed language, while adding a layer of robust,
sophisticated typechecking.

In this chapter, we’ll see why you should use the typechecker, how to use it, and how
to write type annotations for it.

Why Use the Typechecker?
The argument in favor of Hack typechecking sounds similar to the argument often
used in favor of statically typed languages. The typechecker is able to look for mis‐
takes without running the program, so it can catch problems even with codepaths
that aren’t run during testing. Because it doesn’t need to run the program, it catches
problems earlier in development, which saves development time. Static analysis capa‐
bility makes refactoring easier, as it can ensure that there are no breakages at module
boundaries.

In the classic debate, the disadvantage that supposedly accompanies these features is a
drag on development speed. Before you can run your program, you have to wait for it

1

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

1 A Hack file is also allowed to start with a shebang line like #!/usr/bin/hhvm, but the <?hh must be the next
non-blank line.

to compile, and depending on the language and the size of the program, that can take
a long time. You also have to write out types everywhere, making your code more
verbose and harder to change.

These downsides aren’t present in Hack, for two reasons. First, the typechecker is
designed for instant feedback, even when working in very large codebases. It uses a
client/server model: the typechecking server runs in the background and monitors
the filesystem for changes. When you edit a file, the server updates its in-memory
analysis of your codebase. By the time you’re ready to run your code, the analysis is
already done; the client simply queries the server and displays results almost instanta‐
neously. It can easily be integrated into text editors and IDEs, giving you feedback in
real time.

Second, Hack type annotations are designed to be gradual. You can use as many or as
few as you want. Type-annotated code can interoperate seamlessly with non-
annotated Hack code and with PHP code. In addition, you don’t annotate local vari‐
ables; the typechecker infers their types from their surroundings.

Setting Up the Typechecker
Before we look at the syntax and semantics of Hack type annotations, we’ll get the
typechecker set up.

The first thing you need is an .hhconfig file. As well as holding project-wide configu‐
ration settings, this file serves to mark the top-level directory of your codebase, so the
typechecker knows which files to include in its analysis.

For now, we don’t need any configuration; our .hhconfig file can just be empty. So,
navigate to the top-level directory of your project, and do this:

$ touch .hhconfig
$ hh_client

Running hh_client first checks for a running hh_server process. If there isn’t one,
the client will start one, so you should never have to start one yourself. The server will
find the .hhconfig file and analyze every Hack file it finds in the directory containing
that file and all directories below it.

A Hack file is one whose contents start with <?hh.1 This is an adaptation of PHP’s
“opening tag” syntax. After the <?hh at the beginning (possibly supplemented by a
mode, as described in “Typechecker Modes” on page 14), the rest of the file is Hack

2 | Chapter 1: Typechecking

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

code. Unlike in PHP, the closing tag ?> is not valid in Hack; you can’t use Hack with
PHP’s templating-language syntax.

Filename extensions are irrelevant: it’s fine to name Hack files with the exten‐
sion .php, although .hh is also conventional.

Once the typechecking server is started, if you have no Hack files in your project (i.e.,
all of your code is inside <?php tags instead of <?hh), running hh_client should sim‐
ply print No errors!. This is because the typechecker only looks at Hack files; it
doesn’t do anything with PHP files.

Autoload Everything
One key assumption that the typechecker makes is that your project is set up so that
any class, function, or constant in your codebase can be used from anywhere else in
the codebase. It makes no attempt to analyze include or require statements to make
sure that the right files have been included or required by the time their contents
are used. Instead, it assumes that you have autoloading set up.

This both sidesteps a difficult static analysis problem and reflects modern best prac‐
tice. “Autoload everything” is the approach taken by Composer, a popular package
manager for PHP and Hack. Note that autoloading isn’t mandatory—you can write
your code using require and include, and the typechecker won’t complain—but it’s
strongly recommended, because the typechecker won’t protect you from missing
require or include statements.

PHP provides autoloading for classes, and HHVM supports this, through both
__autoload() and spl_autoload_register(). HHVM provides an additional fea‐
ture that allows autoloading for functions and constants in both PHP and Hack, plus
autoloading for type aliases (see “Type Aliases” on page 60) in Hack only. See
“Enhanced Autoloading” on page 73 for full details on the HHVM-specific API.

Reading Error Messages
The typechecker’s error messages are designed to be both detailed and easy to under‐
stand. Here’s some example code with an error:

<?hh
function main() {
 $a = 10;
 $a[] = 20;
}

We’ll put this in a file called test.hh and run the typechecker:

$ hh_client
/home/oyamauchi/test.hh:4:3,6: an int does not allow array append (Typing[4006])
 /home/oyamauchi/test.hh:3:8,9: You might want to check this out

Setting Up the Typechecker | 3

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

Each line shows the full path to the file with the error, followed by the line number
and the column numbers where the erroneous code starts and ends. The first error
message line explains what the actual problem is—“an int does not allow array
append”—and gives a number that uniquely identifies this error message (see “Silenc‐
ing Typechecker Errors” on page 80 to find out how this is used). The line and col‐
umn numbers are pointing to the code $a[].

The next line of the error message is indented, to show that it’s not a separate error
but is elaborating on the previous line. It explains why the typechecker thinks $a is an
int: it’s pointing to the code 10, which gets assigned to $a.

Type Annotation Syntax
This section explains the syntax for the three places where you can put type annota‐
tions. We haven’t seen the full range of type annotations that Hack supports yet—that
will be covered in “Hack’s Type System” on page 6—but for now, all you need to know
is that int and string are valid type annotations.

The three places where you can put type annotations are on function return types,
function parameters, and properties.

Function Return Types
The syntax for function return types is the simplest. After the closing parenthesis of a
function’s parameter list, add a colon and a type name. You can do this with functions
and methods, as well as body-less method declarations in interfaces and abstract
classes. For example:

function returns_an_int(): int {
 // ...
}
function returns_a_string(): string {
 // ...
}

Whitespace is allowed between the closing parenthesis and the colon. It’s common to
put a newline between them in function signatures that are too long to fit on one line.

Closures can also have their return types annotated:

$add_one = function ($x): int { return $x + 1; };
$add_n = function ($x): int use ($n) { return $x + $n; };

This syntax is compatible with the return typehint syntax that will be released in PHP
7, except for the case of closures with lists of captured variables. In PHP 7, the return
typehint goes after the list of captures, but in Hack, it goes after the list of parameters.

4 | Chapter 1: Typechecking

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

Function Parameters
Annotating function parameters uses exactly the same syntax as PHP uses for param‐
eter typehints—just put the type name before the parameter name:

function f(int $start, string $thing) {
 // ...
}

Default arguments are supported as usual, but of course the default value must satisfy
the type annotation. In regular PHP, there is a special allowance for a default value of
null for a typehinted parameter, so that this is valid:

function f(SomeClass $obj = null) {
 // ...
}

This is not valid in Hack—it conflates the concept of an optional argument with that
of a required argument that allows a placeholder value. In Hack, you can express the
latter by making the parameter type nullable (see “Hack’s Type System” on page 6).

Parameters Versus Arguments
These terms are often used interchangeably in casual talk among programmers, but
they aren’t the same thing. The difference between them is the same as the difference
between variables and values. Parameters are variables, and arguments are the values
that get assigned to parameters when a function is called. Consider this code:

function add_one($x) {
 return $x + 1;
}

echo add_one(10);

$x is a parameter of the function add_one(). 10 is an argument that gets assigned to
the parameter $x.

We say that a function has parameters, but it’s also correct to say that it takes argu‐
ments, because you pass arguments to a function when you call it.

Variadic functions
A variadic function is one that can take a variable number of arguments. In PHP, all
functions are implicitly variadic; passing a function more arguments than it has
parameters doesn’t result in an error, and any function can access all arguments that
were passed to it using the built-in functions func_get_args(), func_get_arg(), and
func_num_args().

Type Annotation Syntax | 5

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

In Hack, by contrast, passing excess arguments to a function is an error, unless the
function is explicitly declared as variadic. The Hack syntax for making a function var‐
iadic is to put ... as the last argument in the function signature. Within such a func‐
tion, you can access the arguments with func_get_args(), func_get_arg(), and
func_num_args(), the same way as in PHP:

function log_error(string $format, ...) {
 $varargs = func_get_args();
 // ...
}

The variadic arguments are allowed to be of any type. The first argument to
log_error() must be a string, but the subsequent arguments can be of any type and
the typechecker will accept it.

Properties
In the declaration of a property (either static or non-static), the type annotation goes
immediately before the property name:

class C {
 public static int $logging_level = 2;
 private string $name;
}

Initial values are supported (like 2 for $logging_level in the example), and the ini‐
tial value must satisfy the type annotation.

Initialization of properties with type annotations actually has sev‐
eral more rules, to avoid situations where code can access a prop‐
erty that hasn’t been initialized. See “Property Initialization” on
page 20 for details.

Hack’s Type System
Hack provides a multitude of powerful ways to describe types. It builds on PHP’s
basic type system of booleans, integers, strings, arrays, etc., and adds many new ways
to combine them or make them more expressive:

Primitive types
These are the same as PHP’s primitive types: bool, int, float, string, array,
and resource. All these are valid Hack type annotations.

In PHP, there are additional names for these types: boolean, integer, real, and
double. These are not valid in Hack. The six mentioned above are the only
acceptable primitive types in Hack.

6 | Chapter 1: Typechecking

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

There are two other types that express a simple combination of primitive types:
num, which is either an integer or a float; and arraykey, which is either an integer
or a string.

Object types
The name of any class or interface—built-in or non-built-in—can be used in a
type annotation.

Enums
Enums are described more fully in Chapter 3. For our purposes here, it’s enough
to know that an enum gives a name to a set of constants. The name of an enum
can be used as a type annotation; the only values that satisfy that annotation are
the constants that are members of the enum.

Tuples
Tuples are a way to bundle together a fixed number of values of possibly different
types. The most common use for tuples is to return multiple values from a func‐
tion.

The syntax for tuple type annotations is simply a parenthesis-enclosed, comma-
separated list of types (which may be any of the other types in this list, except
void). The syntax for creating a tuple is identical to the array() syntax for creat‐
ing arrays, except that the keyword array is replaced by tuple, and keys are not
allowed.

For example, this function returns a tuple containing an integer and a float:

function find_max_and_index(array<float> $nums): (int, float) {
 $max = -INF;
 $max_index = -1;
 foreach ($nums as $index => $num) {
 if ($num > $max) {
 $max = $num;
 $max_index = $index;
 }
 }

 return tuple($max_index, $max);
}

Tuples behave like a restricted version of arrays. You can’t change a tuple’s set of
keys: that is, you can’t add or remove elements. You can change the values in a
tuple, as long as you don’t change their type. You can read from a tuple with
array-indexing syntax, but it’s more common to unpack them with list assign‐
ment instead of reading individual elements.

Under the hood, tuples really are arrays: if you pass a tuple to is_array(), it will
return true.

Hack’s Type System | 7

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

mixed

mixed means any value that can possibly exist in a Hack program, including null.

void

void is only valid as a function return type, and it means that the function
returns nothing. (In PHP, a function that “returns nothing” actually has a return
value of null, but in Hack, it’s an error to use the return value of a function
returning void.)

void is included within mixed. That is, it’s legal for a function with return type
mixed to return nothing.

this

this is only valid as a method return type—it’s not a valid return type for a bare
function. It signifies that the method returns an object of the same class as the
object that the method was called on.

The purpose of this annotation is to allow chained method calls on classes that
have subclasses. Chained method calls are a useful trick. They look like this:

$random = $rng->setSeed(1234)->generate();

To allow for this, the class in question has to return $this from methods that
have no logical return value, like this:

class RNG {
 private int $seed = 0;

 public function setSeed(int $seed): RNG {
 $this->seed = $seed;
 return $this;
 }

 // ...
}

In this example, if RNG has no subclasses, you can use RNG as the return type
annotation of setSeed(), and there will be no problems. The trouble begins if
RNG has subclasses.

The typechecker will report an error in the following example. Because the return
type of setSeed() is RNG, it thinks that the call $rng->setSeed(1234) returns a
RNG, and calling generateSpecial() on a RNG object is invalid; that method is
only defined in the subclass. The more specific type of $rng (which the type‐
checker knows is a SpecialRNG) has been lost:

class SpecialRNG extends RNG {
 public function generateSpecial(): int {
 // ...

8 | Chapter 1: Typechecking

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

 }
}

function main(): void {
 $rng = new SpecialRNG();
 $special = $rng->setSeed(1234)->generateSpecial();
}

The this return type annotation solves this problem:

class RNG {
 private int $seed = 0;

 public function setSeed(int $seed): this {
 $this->seed = $seed;
 return $this;
 }

 // ...
}

Now, when the typechecker is calculating the type returned from the call
$rng->setSeed(1234), the this annotation tells it to preserve the specific type of
the expression to the left of the arrow. That way, the chained call to
generateSpecial() is valid.

Static methods can also have the this return type, and in that case, it signifies
that they return an object of the same class that the method was called on—that
is, the class whose name is returned from get_called_class(). The way to sat‐
isfy this type annotation is to return new static():

class ParentClass {
 // This is needed to reassure the typechecker that 'new static()'
 // is valid
 final protected function __construct() {}

 public static function newInstance(): this {
 return new static();
 }
}

class ChildClass extends ParentClass {
}

function main(): void {
 ParentClass::newInstance(); // Returns a ParentClass instance
 ChildClass::newInstance(); // Returns a ChildClass instance
}

Hack’s Type System | 9

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

Type aliases
Described fully in “Type Aliases” on page 60, type aliases are a way to give a new
name to an existing type. You can use the new name as a type annotation.

Shapes
Shapes, described in “Array Shapes” on page 64, are a special kind of type alias,
and their names can also be used as type annotations.

Nullable types
All types except void and mixed can be made nullable by prefixing them with a
question mark. A type annotation of ?int indicates a value that can be an integer
or null. mixed can’t be made nullable because it already includes null.

Callable types
Although PHP allows callable as a parameter typehint, Hack does not. Instead,
Hack offers a much more powerful syntax that allows you to specify not only that
a value is callable, but what types it takes as arguments and what type it returns.

The syntax is the keyword function, followed by a parenthesis-enclosed list of
parameter types, followed by a colon and a return type, with all of that enclosed
in parentheses. This mirrors the syntax of type annotations for functions; it is
essentially a function signature without a name and without names for the
parameters. In this example, $callback is a function taking an integer and a
string, and returning a string:

function do_some_work(array $items,
 (function(int, string): string) $callback): array {
 foreach ($items as $index => $value) {
 $string_result = $callback($index, $value);
 // ...
 }
}

There are four kinds of callable values that satisfy callable type annotations: clo‐
sures, functions, instance methods, and static methods. Let’s take a look at how to
express them:

• Closures simply work as is:
function do_some_work((function(int): void) $callback): void {
 // ...
}

function main(): void {
 do_some_work(function (int $x): void { /* ... */ });
}

• To use a named function as a callable value, you have to pass the name
through the special function fun():

10 | Chapter 1: Typechecking

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

function do_some_work((function(int): void) $callback): void {
 // ...
}

function f(int $x): void {
 // ...
}

function main(): void {
 do_some_work(fun('f'));
}

The argument to fun() must be a single-quoted string literal. The type‐
checker will look up that function to determine its parameter types and
return type, and treat fun() as if it returns a callable value of the right type.

• To use an instance method as a callable value, you have to pass the object and
the method name through the special function inst_meth(). This is similar
to fun() in that the typechecker will look up the named method and treat
inst_meth() as if it returns a callable value of the right type. Again, the
method name must be a single-quoted string literal:

function do_some_work((function(int): void) $callback): void {
 // ...
}

class C {
 public function do_work(int $x): void {
 // ...
 }
}

function main(): void {}
 $c = new C();
 do_some_work(inst_meth($c, 'do_work'));
}

• Using static methods is very similar: pass the class name and method name
through the special function class_meth(). The method name must be a
single-quoted string literal. The class name can be either a single-quoted
string literal, or the Hack-specific construct ::class appended to an unquo‐
ted class name:

function do_some_work((function(int): void): $callback): void {
 // ...
}

class C {
 public static function prognosticate(int $x): void {
 // ...

Hack’s Type System | 11

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

 }
}

function main(): void {
 do_some_work(class_meth(C::class, 'prognosticate'));

 // Equivalent:
 do_some_work(class_meth('C', 'prognosticate'));
}

At runtime, ClassName::class simply evaluates to 'ClassName’.
There’s another way to create a callable value that calls instance methods,
which is meth_caller(). It creates a callable value that calls a specific
method on objects you pass to it. You pass it a class name and a method
name (there is a restriction that the method must have no parameters, but
this will be lifted in a future version):

class C {
 function speak(): void {
 echo "hi!";
 }
}

function main(): void {
 $caller = meth_caller(C::class, 'speak');
 $obj = new C();
 $caller($obj); // Equivalent to calling $obj->speak();
}

This is in contrast to inst_meth(), which bundles together a specific object
and a method to call on it. meth_caller() is especially useful with utility
functions like array_map() and array_filter():

class User {
 public function getName(): string {
 // ...
 }
}

function all_names(array<User> $users): string {
 $names = array_map($users, meth_caller(User::class, 'getName'));
 return implode(', ', $names);
}

There is one kind of value that is callable in PHP, but isn’t recognized as such
by the Hack typechecker: objects with an __invoke() method. This may
change in the future.

12 | Chapter 1: Typechecking

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

Generics
Also known as parameterized types, generics allow a single piece of code to work
with multiple different types in a way that is still verifiably typesafe. The simplest
example is that instead of simply specifying that a value is an array, you can spec‐
ify that it’s an array of strings, or an array of objects of class Person, and so on.

Generics are an extremely powerful tool, and there’s quite a bit to learn about
them. They’re fully described in Chapter 2.

For this chapter, though, it’s enough to understand the syntax for generic arrays.
It consists of the keyword array followed by either one or two types inside angle
brackets. If there’s just one type inside the angle brackets, that is the type of the
values in the array, and the keys are assumed to be of type int. If there are two
types, the first one is the type of the keys, and the second one is the type of the
values. So, for example, array<bool> signifies an array with integer keys map‐
ping to booleans, and array<string, int> signifies an array with string keys
mapping to integers. The types inside the angle brackets are called type parame‐
ters.

One very important thing to note is that in Hack, you can’t create any values that you
can’t create in PHP. The underlying bits are all the same between PHP and Hack;
Hack’s type system just gives you ways to express interesting unions and subsets of
the possible values.

More concretely, consider this code:

function main(): void {
 f(10, 10);
}

function f(mixed $m, int $i): void {
 // ...
}

Within the body of f(), we say that $m is of type mixed and $i is of type int, even
though they’re storing exactly the same bits.

Or consider this:

function main(): void {
 $callable = function(string $s): ?int { /* ... */ };
}

Although we say that $callable is of type (function(string): ?int), under the
hood, it’s still just an object, like any other closure. It’s not a magical “function
pointer” value that is only possible in Hack, or anything like that.

In general, saying that some expression “is of type X” is a statement about what the
typechecker knows, not about what the runtime knows.

Hack’s Type System | 13

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

2 A named entity is a function, class, interface, constant, trait, enum, or type alias.
3 require, include, require_once, and include_once.
4 Defining constants with const syntax is allowed, but doing so with define() is not allowed.

Typechecker Modes
The Hack typechecker has three different modes: strict, partial, and decl. These
modes are set on a file-by-file basis, and files in different modes can interoperate
seamlessly. Each file declares, in a double-slash comment on its first line, which mode
the typechecker should use on it. For example:

<?hh // strict

If there is no comment on the first line (i.e., the first line is just <?hh), then partial
mode is used.

There are several differences between the modes, and we’ll see many of them as we
look at the typechecker’s features. Here’s the general idea of each mode:

Strict mode: <?hh // strict
The most important feature of strict mode is that all named functions (and meth‐
ods) must have their return types and all parameter types annotated, and all
properties must have type annotations. In other words, anywhere there can be a
type annotation, there must be one, with a few exceptions:

• Closures don’t need their parameter types or return types annotated.
• Constructors and destructors don’t need return type annotations—it doesn’t

make sense for them to return anything.

There are three major restrictions in strict mode:

• Using any named entity2 that isn’t defined in a Hack file is an error. This
means that strict-mode code can’t call into PHP code. Note that strict-mode
code can call into partial-mode or decl-mode Hack code.

• Most code at the top level of a file results in an error. The require family of
statements3 is allowed, as are statements that define named entities.4

• Using reference assignment (e.g., $a = &$b), or defining a function or
method that returns by reference or takes arguments by reference, results in
an error.

There are a few smaller differences, too; we’ll cover those as we get to them.

To take full advantage of the typechecker, you should aim to have as much of
your code in strict mode as possible. Strict-mode Hack is a sound type system.
That means that if 100% of your code is in strict mode, it should be impossible to

14 | Chapter 1: Typechecking

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

incur a type error at runtime. This is a very powerful guarantee, and the closer
you can get to achieving it, the better.

Partial mode: <?hh
Partial mode relaxes the restrictions of strict mode. It does all the typechecking it
can, but it doesn’t require type annotations. In addition:

• If you use functions and classes that the typechecker doesn’t see in a Hack
file, there’s no error. The typechecker leniently assumes that the missing
entity is defined in a PHP file. See “Calling into PHP” on page 17 for details.

• Top-level code is allowed, but not typechecked. To minimize the amount of
unchecked code you have, ideally you should wrap all your top-level code in
a function and have your only top-level statement be a call to that function.
That is, instead of this:

<?hh

set_up_autoloading();
do_logging();
$c = find_controller();
$c->go();

Do this:
<?hh

function main() {
 set_up_autoloading();
 do_logging();
 $c = find_controller();
 $c->go();
}

main();

Even better, put the definition of main() in a strict-mode file.
• References are allowed, but the typechecker essentially pretends they don’t

exist and doesn’t try to model their behavior. In this example, after the last
line the typechecker still thinks $a is an integer, even though it is really a
string:

$a = 10;
$b = &$a;
$b = 'not an int';

Put simply, you can use references in partial mode, but they break type
safety, so it’s best to avoid them.
Even in a project written in Hack from the ground up, there are uses for par‐
tial mode. In any script or web app, there has to be some amount of top-level

Hack’s Type System | 15

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

code to serve as an entry point, so you’ll always have at least one partial-
mode file. You’ll also need partial mode for access to superglobals like $_GET,
$_POST, and $argv; we’ll learn more about that in “Using Superglobals” on
page 18.

Decl mode: <?hh // decl
In decl mode, code is not typechecked. All the typechecker does is read and index
the signatures of functions and classes defined in the file. (There can still be
errors in decl mode, for things like invalid type annotation syntax.)

The purpose of decl mode is to be a transition aid when migrating an existing
PHP codebase to Hack: it provides a stepping stone between PHP and the other
Hack modes. Changing a PHP file into decl-mode Hack is generally a very easy
step, and has significant benefits over leaving the file as PHP. First, typechecking
around calls to PHP code is very loose (see “Calling into PHP” on page 17), but
calls to decl-mode Hack can be typechecked much more rigorously. Second,
strict-mode Hack can’t call into PHP at all, but it can call into decl-mode Hack.

If you’re writing a new codebase that is 100% Hack from the beginning, you
shouldn’t use decl mode at all.

Code Without Annotations
There’s one type that I didn’t mention in the list earlier. It’s the type signified by the
absence of an annotation. For example, it’s the type of $x inside this function:

function f($x) {
}

This type doesn’t have a name that you can write in code. Among the Hack team, it’s
referred to as “any.”

The typechecker treats this type specially. It can never be involved in a type error.
Every value that can possibly exist in a Hack program satisfies this type “annotation,”
so you can pass anything at all to the function f() in this example without a type
error. In the other direction, a value of this type satisfies every possible type annota‐
tion, so within f(), you can do anything at all with $x without a type error.

This may sound similar to mixed, but there is a very important difference. Every pos‐
sible value satisfies mixed, but a value of type mixed does not satisfy every possible
type annotation. If you want to pass a value of type mixed to a function that expects
an int, for example, you must either make sure it’s an integer (see “Refining Mixed
Types to Primitives” on page 32) or cast it.

Values of the “any” type work the same way in all Hack modes. In strict mode, you
can’t write code without annotations, but you can call into code without annotations,

16 | Chapter 1: Typechecking

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

defined in partial or decl mode. Another way to phrase the “everything that can be
annotated must be annotated” restriction of strict mode is: code in strict mode may
use values of this special type, but it’s not allowed to produce them.

Calling into PHP
In partial and decl modes, if you use a named entity that the typechecker doesn’t see
defined in any Hack file, there will be no error. (In strict mode, there will be an
“unbound name” error.) This may seem like a strangely loose behavior, but its pur‐
pose is rooted in Hack’s easy migration path from PHP. This allows code in Hack files
to use code in PHP files: to call functions, to use constants, and to instantiate and
extend classes. You are on your own in cases like this—remember, the typechecker
makes no attempt at all to analyze PHP files, not even to see what functions they
define.

You can also make this an error in partial mode with a configuration option. The
option is called assume_php (as in: “assume missing entities are defined in PHP”), and
it’s turned on by default. You can turn it off by adding this line to your .hhconfig file
and restarting the typechecker server with the command hh_client restart:

assume_php = false

If you’re just starting to migrate a large PHP codebase to Hack, it will be easier if you
leave assume_php on. Later on, as more of the codebase becomes Hack, it’s a good
idea to turn it off, to get the benefit of stricter checking. If you’re starting a new Hack
codebase, you should turn it off (i.e., set assume_php = false) from the very begin‐
ning.

The use of unknown functions and classes hamstrings the typechecker somewhat, as
it has to make generous assumptions around them:

• Calls to unknown functions are typechecked as if they could take any number of
arguments of any type, and had no return type annotation.

• Unknown constants are assumed to be of the special “any” type—as if they were
the result of calling a function with no return type annotation.

• Instantiating an unknown class results in a value that is known to be an object.
Any method call on an object like this is valid, and is typechecked like a call to an
unknown function. Any property access on an object like this is valid too, and
returns a value of the special “any” type.

• A Hack class that has any unknown ancestor, or uses any unknown trait, or has
any ancestor that uses an unknown trait, is very similar to an unknown class. A
single unknown trait or class will cripple the typechecker in the entire hierarchy
it’s part of. Calling any unknown method on such a class is valid, and so is access‐
ing any unknown property.

Hack’s Type System | 17

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

However, if the typechecker can resolve a method call or property access to a
method or property defined in Hack (even in decl mode), it will typecheck the
call or access appropriately. For example:

class C extends SomeClassNotDefinedInHack {
 public int $known_property;

 public function known_method(string $s) {
 // ...
 }
}

function main(): void {
 $c = new C();
 $c->unknown_method(); // No error
 $c->known_method(12); // Error: int not compatible with string

 $c->unknown_property->func(); // No error
 $c->known_property->func(); // Error: can't call method on an int
}

Rules
The rules enforced by the typechecker are largely quite straightforward, and its error
messages are designed to explain problems clearly and suggest solutions. There are a
few cases that are more subtle, though, and this section explains them.

Using Superglobals
Superglobals are global variables that are available in every scope, without the need
for a global statement. There are nine of them, special-cased by the runtime:

• $GLOBALS

• $_SERVER

• $_GET

• $_POST

• $_FILES

• $_COOKIE

• $_SESSION

• $_REQUEST

18 | Chapter 1: Typechecking

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

• $_ENV

Hack’s strict mode doesn’t support superglobals; if you try to use one, the typechecker
will say the variable is undefined. However, to write nontrivial web apps and scripts,
you’ll need to use them.

The simplest thing you can do is to write accessor functions in a partial-mode file,
and call them from strict-mode files:

function get_params(): array {
 return $_GET;
}

function env_vars(): array {
 return $_ENV;
}

// ...

That approach doesn’t contribute any type safety to your codebase, though, and it’s
easy to do better. With HTTP GET and POST parameters especially, you often know the
type of the value you expect, and you can use this knowledge to get more strongly
typed code:

function string_param(string $key): ?string {
 if (!array_key_exists($_GET, $key)) {
 return null;
 }
 $value = $_GET[$key];
 return is_string($value) ? $value : null;
}

// Alternative, stronger version: throw if wrong type
function string_param(string $key): ?string {
 if (!array_key_exists($_GET, $key)) {
 return null;
 }
 $value = $_GET[$key];
 invariant(is_string($value), 'GET param must be a string');
 return $value;
}

We’ll see the invariant() function in more detail in “Refining Types” on page 29. For
now, it’s enough to know that it throws an exception if its first argument is false.

You can write similar accessors for other superglobals, and for other value types.

Types of Overriding Methods
Inheritance is one of the more complex interactions between pieces of code in Hack.
The complexity arises from the action-at-a-distance phenomenon that inheritance

Rules | 19

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

creates. For example, if you have an object that has been type-annotated as SomeClass
and you call a method on it, you could enter a method in any class that descends from
SomeClass. The call still has to be typesafe, though, which means there have to be
rules around the types of methods that override other methods.

In an overriding method, parameter types must be exactly the same as in the overrid‐
den method. This is mainly due to a behavior inherited from PHP. In PHP, any
method that is overriding an abstract method, or a method declared in an interface,
must match the overridden method’s parameter types exactly. This is likely to change
in future versions of Hack, to instead allow overriding methods’ parameter types to
be more general.

Return types, on the other hand, do not have to be the same when overriding. An
overriding method may have a more specific return type than the overridden method.
For example:

class ParentClass {
 public function generate(): num {
 // ...
 }
}

class ChildClass extends ParentClass {
 public function generate(): int { // OK
 // ...
 }
}

Despite the changed return type, polymorphic callsites are still typesafe:

function f(ParentClass $obj) {
 $number = $obj->generate();
 // Even if $obj is a ChildClass instance, generate() still returns a num,
 // because ChildClass::generate() returns an int, and all ints are nums.
}

Overriding with a more general return type isn’t valid—for example, if ChildClass’s
version of generate() were declared to return mixed, the typechecker would report
an error.

Property Initialization
To maintain type safety, the typechecker enforces rules about how type-annotated
properties are initialized, in both strict and partial modes. The overarching aim is to
ensure that no property is ever read from before it is initialized to a value of the right
type.

20 | Chapter 1: Typechecking

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

For static properties, the rule is simple: any non-nullable static property is required to
have an initial value. Nullable properties without an explicit initial value are implicitly
initialized to null.

Non-static properties have a more complex set of rules. The typechecker has to make
sure that it’s not possible to instantiate an object with an uninitialized non-nullable
property. To that end, any non-nullable non-static property without an initial value
must be initialized in the class’s constructors:

class Person {
 private string $name;
 private ?string $address;

 public function __construct(string $name) {
 $this->name = $name;
 }
}

This code will pass the typechecker: the property $name is properly initialized, and
$address is nullable so doesn’t need to be initialized.

The typechecker will make sure that all possible codepaths through the constructor
result in all properties being initialized. For this code:

class Person {
 private string $name;

 public function __construct(string $name, bool $skip_name) {
 if (!$skip_name) {
 $this->name = $name;
 }
 }
}

the typechecker will report this error:

/home/oyamauchi/test.php:5:19,29: The class member name is not always properly
initialized
Make sure you systematically set $this->name when the method __construct is
called
Alternatively, you can define the type as optional (?...)
 (NastCheck[3015])

Another component of the typechecker’s enforcement of this rule is that you aren’t
allowed to call public or protected methods from within the constructor until after all
properties are initialized. For this code:

class C {
 private string $name;

 public function __construct(string $name) {
 $this->doSomething();

Rules | 21

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

 $this->name = $name;
 }

 protected function doSomething(): void {
 // ...
 }
}

the typechecker will raise this error (you would, however, be allowed to call
$this->doSomething() after the assignment to $this->name):

/home/oyamauchi/test.php:6:14,18: Until the initialization of $this is over,
you can only call private methods
The initialization is not over because $this->name can still potentially be
null (NastCheck[3004])

You are allowed to call private methods in that situation, but any private methods you
call will be checked to make sure they don’t access potentially uninitialized properties.
Non-private methods can’t be checked in this way, because they may be overridden in
subclasses, so it’s invalid to call them in this situation. For the following code:

class C {
 private string $name;

 public function __construct(string $name) {
 $this->dumpInfo();
 $this->name = $name;
 }

 private function dumpInfo(): void {
 var_dump($this->name);
 }
}

the typechecker will raise this error (again, however, you would be allowed to call
$this->dumpInfo() after assigning to $this->name):

/home/oyamauchi/test.php:11:21,24: Read access to $this->name before
initialization (Typing[4083])

Properties declared in abstract classes are exempt from these rules. However, concrete
child classes will be required to initialize their ancestors’ uninitialized properties. For
this code:

abstract class Abstr {
 protected string $name;
}
class C extends Abstr {
}

the typechecker reports this error:

/home/oyamauchi/test.php:5:7,7: The class member name is not always properly
initialized

22 | Chapter 1: Typechecking

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

Make sure you systematically set $this->name when the method __construct is
called
Alternatively, you can define the type as optional (?...)
 (NastCheck[3015])

Lastly, for simple cases like the examples in this section, where the property is simply
initialized with a parameter of the constructor, you should use constructor parameter
promotion (see “Constructor Parameter Promotion” on page 68). It cuts down on
boilerplate code, and you don’t have to think about property initialization issues:

class C {
 public function __construct(private string $name) { }
}

Typed Variadic Arguments
As we saw earlier, Hack has syntax to declare that a function is variadic:

function log_error(string $format, ...) {
 $args = func_get_args();
 // ...
}

PHP 5.6 introduced a different variadic function syntax, which has two features
beyond Hack’s—it packs variadic arguments into an array automatically, and it allows
a typehint on the variadic parameter:

function sum(SomeClass ...$args) {
 // $args is an array of SomeClass objects
}

This syntax also exists in Hack. The typechecker supports the syntax, and typechecks
calls to such functions correctly. HHVM supports the syntax too, but only without the
type annotation. HHVM doesn’t support checking the types of the variadic argu‐
ments, so it will raise a fatal error if it encounters a type annotation on a variadic
parameter, to avoid giving the impression that the annotation is having an effect.

This creates a conflict. In strict mode, the Hack typechecker won’t allow a parameter
without a type annotation—even a variadic parameter—but HHVM won’t run code
that has an annotated variadic parameter.

There are two possible solutions to the conflict:

• Omit the annotation, and use partial mode.
• Omit the annotation, use strict mode, and add an HH_FIXME[4033] comment (see

“Silencing Typechecker Errors” on page 80). This is the preferred solution, as
strict mode should always be preferred over partial mode when possible.

Rules | 23

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

Types for Generators
There are three interfaces you can use when adding return type annotations to gener‐
ators: Iterator, KeyedIterator, and Generator. All three are generic. We won’t
cover generics in full until Chapter 2, but we’ll see some basics here.

Use the first two when you don’t expect to call send() on the generator. Use Iterator
when you’re only yielding a value, and KeyedIterator when you’re yielding a key as
well:

function yields_value_only(): Iterator<int> {
 yield 1;
 yield 2;
}

function yields_key_and_value(): KeyedIterator<int, string> {
 yield 1 => 'one';
 yield 2 => 'two';
}

The return type annotation Iterator<int> means that the generator is yielding val‐
ues of type int, and no keys. The annotation KeyedIterator<int, string> means
that the generator is yielding keys of type int and values of type string. This is simi‐
lar to array types, which we’ve already seen; for example, array<int, string> means
an array whose keys are integers and whose values are strings.

If you will be calling send() on the generator, use the annotation Generator:

function has_send_called(): Generator<int, string, User> {
 // Empty yield to get first User
 $user = yield 0 => '';
 // $user is of type ?User

 while ($user !== null) {
 $id = $user->getID();
 $name = $user->getName();
 $user = yield $id => $name;
 }
}

function main(array<User> $users): void {
 $generator = has_send_called();
 $generator->next();

 foreach ($users as $user) {
 $generator->send($user);
 var_dump($generator->key());
 var_dump($generator->current());
 }
}

24 | Chapter 1: Typechecking

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

The return type annotation Generator<int, string, User> means that the genera‐
tor yields int keys and string values, and expects values of type User to be passed to
its send() method.

Note that the value resulting from the yield is not of type User, but rather ?User.
This is because it’s always possible for the caller of the generator to call next() instead
of send(), which makes the corresponding yield evaluate to null. You have to check
that value against null before calling methods on it; see “Refining Nullable Types to
Non-Nullable” on page 30 for details.

Fallthrough in switch Statements
There’s a common mistake in switch statements of having one case that unintention‐
ally falls through to the next. Hack adds a rule that catches this mistake—it’s an error
to have a case that falls through to the next case, unless the first one is empty:

switch ($day) {
 case 'sun':
 echo 'Sunday'; // Error
 case 'sat':
 echo 'Weekend';
 break;
 default:
 echo 'Weekday';
}

switch ($day) {
 case 'sun': // OK: this case falls through, but is empty
 case 'sat':
 echo 'Weekend';
 break;
 default:
 echo 'Weekday';
}

If the fallthrough is intentional, put the comment // FALLTHROUGH as the last line of
the falling-through case:

switch ($day) {
 case 'sun':
 echo 'Sunday';
 // FALLTHROUGH
 case 'sat':
 echo 'Weekend';
 break;
 default:
 echo 'Weekday';
}

Rules | 25

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

This requires action on the part of the programmer, which greatly reduces the chan‐
ces that the fallthrough is an oversight.

Type Inference
Type inference is central to Hack’s approach to static typechecking. Like in PHP, local
variables are not declared with types. However, being able to typecheck operations on
locals is crucial to getting a useful amount of coverage.

Hack closes the gap with type inference. The typechecker starts with a small set of
known types, from annotations and from literals, and then follows them through
operators and function calls, deducing and checking types for everything down‐
stream.

The way Hack’s type inference works isn’t always obvious at first glance. Let’s take a
look at the details.

Variables Don’t Have Types
In most statically typed languages, a local variable is given a type when it comes into
existence, and the variable can only hold values of that type for its entire lifetime.
This example code could be C++ or Java, and in either case, there is a type error—
because x was declared as an int, it can never hold values that aren’t integers:

int x = 10;
x = "a string"; // Error

This is not the case in Hack. Like in PHP, local variables are not declared in Hack.
You create a local variable simply by assigning a value to it. You can assign a new
value to any local variable, regardless of what type of value the variable already holds:

$x = 10;
$x = "a string"; // OK

The key difference is that in Hack, local variables don’t have types. Local variables
hold values, which have types.

At each point in the program, the typechecker knows what type of value each variable
holds at that point. If it sees a new value assigned to a variable, it will update its
knowledge of what type of value that variable holds.

Unresolved Types
The fact that variables don’t have types means that the typechecker needs a way to
deal with code like the following:

if (some_condition()) {
 $x = 10;
} else {

26 | Chapter 1: Typechecking

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

 $x = 'ten';
}

This pattern is not uncommon in PHP code, and it’s legal in Hack. The question,
then, is: after the end of the conditional, what does the typechecker think the type of
$x is?

The answer is that it uses an unresolved type. This is a construct that the typechecker
uses to remember every type that $x could have. In this case, it remembers that $x
could be an integer, or it could be a string.

After the conditional, you can do anything with $x that you could do with an integer
and with a string, and you can’t do anything that would be invalid for either an integer
or a string. For example:

if (some_condition()) {
 $x = 10;
} else {
 $x = 'ten';
}

echo $x; // OK: you can echo ints and strings
echo $x + 20; // Error: can't use + on a string
echo $x->method(); // Error: can't call a method on an int or a string

Most importantly, $x will satisfy any type annotation that includes both integers and
strings—like arraykey and mixed—and it won’t satisfy anything else:

function takes_mixed(mixed $y): void {
}

function takes_int(int $y): void {
}

function main(): void {
 if (some_condition()) {
 $x = 10;
 } else {
 $x = 'ten';
 }

 takes_int($x); // Error: $x may be a string
 takes_mixed($x); // OK
}

This situation also commonly arises with class and interface hierarchies:

interface I {
}
class One implements I {
 public function method(): int {
 // ...
 }

Type Inference | 27

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

}
class Two implements I {
 public function method(): string {
 // ...
 }
}

function main(): I {
 if (some_condition()) {
 $obj = new One();
 } else {
 $obj = new Two();
 }

 $int_or_string = $obj->method(); // OK

 return $obj; // OK
}

Here, the call $obj->method() is valid, because both classes One and Two have a
method with the right name and the right number of parameters. The type returned
from the call is itself an unresolved type consisting of both possibilities: int or
string.

The return statement is also valid, because both possibilities for $obj satisfy the
return type annotation I.

We’ll see unresolved types again when we discuss generics in “Unresolved Types,
Revisited” on page 47.

Inference Is Function-Local
A fundamental restriction of Hack’s type inference is that when analyzing one func‐
tion, it will never look at the body of another function or method. For example, sup‐
pose the following code is your entire codebase:

function f($str) {
 return 'Here is a string: ' . $str;
}

function main() {
 echo f('boo!');
}

main();

Two facts are clear to a human reader: that $str is always a string, and that f()
always returns a string. However, the Hack typechecker will not infer these facts.
While inferring types within f(), it will not go looking for callers of f() to find out
what types of arguments they’re passing. While inferring types within main(), it will

28 | Chapter 1: Typechecking

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

5 Except when it doesn’t. See “Integer Arithmetic Overflow” on page 77.

not go look at the body of f() to find out what type it returns. It will look at the sig‐
nature of f() for a return type annotation, though, and find none, so it will treat f()
as returning the special “any” type (see “Code Without Annotations” on page 16).

This restriction exists for performance reasons. Forcing inference in one function to
stay within that function puts a strict upper bound on the amount of computation it
takes to analyze one function, and by extension, an entire codebase. In
computational-complexity terms, the type inference algorithm is superlinear in com‐
plexity, so it’s important to give it many small inputs instead of one huge input, to
keep the total running time manageable.

For large codebases—such as Facebook, the one Hack was originally designed for—
this property is absolutely crucial. When the body of one function is changed (but not
its signature), the typechecking server needs only to reanalyze that one function to
bring its knowledge up to date, and it can do that almost instantaneously. When a
function signature changes, the typechecking server reanalyzes that function and all
of its callers, but not their callers, which puts a fairly low cap on the amount of work
required.

There is one pseudoexception to this restriction: closures. Although a closure is tech‐
nically a separate function from the one it’s defined within, type inference on a func‐
tion containing a closure is allowed to look inside the closure. Consider the following
example:

$doubler = function ($x) { return $x + $x; };
var_dump($doubler(10)); // int(20)
var_dump($doubler(3.14)); // float(6.28)

Even though the closure has no annotations (which is valid even in strict mode), the
typechecker can infer that the type of $doubler(10) is int—it analyzes the closure’s
body under the assumption that $x is an integer, and infers the return type because
the addition operator applied to two integers results in an integer.5 Similarly, it can
infer that the type of $doubler(3.14) is float.

Incidentally, it’s because type inference can look inside closures that strict mode
allows closures to forgo type annotations.

Refining Types
Suppose you have a value of type ?string, and you want to pass it to a function that
has a parameter of type string. How do you convert from one to the other? Or sup‐
pose you have an object that may or may not implement the interface Polarizable,

Refining Types | 29

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

6 This is because, for example, null == "0" is true, which makes the null check at least slightly nonsensical.

and you want to call polarize() on it if it does. How can the typechecker know when
the polarize() call is valid?

The task of establishing that a value of one type is also of another type is common in
well-typed code. It may seem like a chore that you have to do to placate the type‐
checker, but this is really the key to how Hack catches mistakes early in development.
This is how Hack prevents things like calling methods that don’t exist, finding null in
unexpected places, and other common annoyances of debugging a large PHP code‐
base.

You refine types using three constructs that the typechecker treats specially: null
checks, type-querying built-in functions like is_integer(), and instanceof. When
these constructs are used in control flow statements like loops and if statements, the
type inference engine understands that this means types are different on different
control flow paths.

Refining Nullable Types to Non-Nullable
Null checks are used to refine nullable types into non-nullable types. This example
passes the typechecker:

function takes_string(string $str) {
 // ...
}

function takes_nullable_string(?string $str) {
 if ($str !== null) {
 takes_string($str);
 }
 // ...
}

Inside the if block, the typechecker knows that $str is a non-nullable string, and
thus that it can be passed to takes_string(). Note that null checks should use the
identity comparison operators === and !== instead of equality comparison (== and !
=) or conversion to a boolean; if you don’t use identity comparison, the typechecker
will issue an error.6 The built-in function is_null() also works, as do ternary expres‐
sions:

function takes_nullable_string(?string $str) {
 takes_string($str === null ? "(null)" : $str);
 // ...
}

You can also use this style, where one branch of control flow is cut off:

30 | Chapter 1: Typechecking

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

function processInfo(?string $info) {
 if ($info === null) {
 return;
 }
 takes_string($info);
}

The typechecker understands that the call to takes_string() will only be executed if
$info is not null, because if it is null, the if block will be entered and the function
will return. (If the return statement were a throw instead, the effect would be the
same.)

Here’s a slightly bigger example that demonstrates more complex control flow sensi‐
tivity:

function fetch_from_cache(): ?string {
 // ...
}

function do_expensive_computation(): string {
 // ...
}

function get_data(): string {
 $result = fetch_from_cache();
 if ($result === null) {
 $result = do_expensive_computation();
 }
 return $result;
}

At the point of the return statement, the typechecker knows that $result is a non-
null string, so the return type annotation is satisfied. If the if block was entered,
then a non-null string was assigned to $result; if the if block wasn’t entered, then
$result must have already been a non-null string.

Finally, Hack includes a special built-in function called invariant(), which you can
use essentially to state facts to the typechecker. It takes two arguments—a boolean
expression, and a string describing what’s being asserted (for human readers’ benefit):

function processInfo(?string $info) {
 invariant($info !== null, "I know it's never null somehow");
 takes_string($info);
}

At runtime, if the first argument to invariant() turns out to be false, an
InvariantException will be thrown. The typechecker knows this and infers that in
the code after the invariant() call, $info cannot be null, because otherwise an
exception would have been thrown and execution wouldn’t have reached that code.

Refining Types | 31

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

7 This is because is_object() returns true for resources. The lack of support for is_object() isn’t a problem
in practice, because you can’t really do anything useful with an object without knowing its class.

Refining Mixed Types to Primitives
For each primitive type, there is a built-in function to check whether a variable is of
that type (e.g., is_integer(), is_string(), is_array()). The typechecker recog‐
nizes all of them specially, except for is_object().7 You’ll often be using them on val‐
ues of type mixed, or of a generic type.

The way you use these built-ins to give information to the typechecker is largely the
same as the way you use null checks—the typechecker is control flow–sensitive, you
can use invariant(), and so on. However, the type information these built-ins carry
is more complex than just “null or not null,” so there’s a bit more detail in how
inference works with them.

First, the typechecker doesn’t remember negative information like “this value is not a
string.” For example:

function f(mixed $val) {
 if (!is_string($val)) {
 // $val is of type "mixed" here -- we don't remember it's not a string
 } else {
 // $val is of type "string" here
 }
}

In practice, this isn’t much of a hindrance: there’s little that could usefully be done
with a value that we know is “anything but a string,” other than refine its type further.

Second, the type-querying built-ins are the only way to refine types down to primi‐
tives. Even doing identity comparison against values of known type doesn’t work:

function f(mixed $val) {
 if ($val === 'some string') {
 // $val is of type "mixed" here
 // Only is_string would tell the typechecker it's a string
 }
}

Refining Object Types
Finally, the typechecker understands using instanceof to check if an object is an
instance of a given class or interface. Like null checks and type-querying built-ins, the
typechecker understands instanceof in conditional statements and in invariant():

class ParentClass {
}

32 | Chapter 1: Typechecking

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

class ChildClass extends ParentClass {
 public function doChildThings(): void {
 // ...
 }
}

function doThings(ParentClass $obj): void {
 if ($obj instanceof ChildClass) {
 $obj->doChildThings(); // OK
 }
}

function unconditionallyDoThings(ParentClass $obj): void {
 invariant($obj instanceof ChildClass, 'just trust me');
 $obj->doChildThings(); // OK
}

There are more details to cover here. Unlike null checks and the type-querying built-
ins, instanceof deals with types that can overlap in complex ways, and the type‐
checker’s ability to navigate them is slightly limited.

This example demonstrates the limitations—we have an abstract base class, with pos‐
sibly many subclasses, some of which implement the built-in interface Countable and
some of which don’t:

abstract class BaseClass {
 abstract public function twist(): void;
}

class CountableSubclass extends BaseClass implements Countable {
 public function count(): int {
 // ...
 }
 public function twist(): void {
 // ...
 }
}

class NonCountableSubclass extends BaseClass {
 public function twist(): void {
 // ...
 }
}

Then we have a function that takes a BaseClass, calls count() on it if it’s Countable,
and then calls a method that BaseClass declares. This is a fairly common pattern in
object-oriented codebases, albeit with interfaces other than Countable:

function twist_and_count(BaseClass $obj): void {
 if ($obj instanceof Countable) {
 echo 'Count: ' . $obj->count();
 }

Refining Types | 33

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

 $obj->twist();
}

On the last line, there is a type error. This probably seems entirely unexpected, so let’s
go into detail about why.

The key to understanding the error is that when the typechecker sees an instanceof
check, the information it derives from this is exactly what the check says, and it doesn’t
take inheritance hierarchies, interfaces, or anything else into account. It may even be
the case that the condition is provably impossible to satisfy (e.g. if Countable were
not implemented by BaseClass or any of its descendants), but the typechecker
doesn’t consider that.

At the beginning of the function, the typechecker thinks the type of $obj is Base
Class, because of the annotation. But then, within the if block, the typechecker
thinks that the type of $obj is Countable—not a BaseClass instance that implements
Countable; just Countable. It has forgotten that $obj is also a BaseClass.

Then we come to the part after the if block. Here, the type of $obj is an unresolved
type (see “Unresolved Types” on page 26) consisting of either BaseClass or
Countable. So when it sees $obj->twist(), it reports an error, because it thinks there
are possible values of $obj for which the call isn’t valid—ones that are Countable but
not BaseClass. You, the human reader, know that this isn’t possible, but the type‐
checker doesn’t.

The workaround for this is to use a separate local variable for the instanceof check.
This prevents the typechecker from losing type information about $obj, which is the
root cause of the problem:

function twist_and_count(BaseClass $obj) {
 $obj_countable = $obj;
 if ($obj_countable instanceof Countable) {
 echo 'Count: ' . $obj_countable->count();
 }
 $obj->twist();
}

34 | Chapter 1: Typechecking

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

8 As we’ve seen, the typechecker pretends that references don’t exist; if you pass a local variable as a by-
reference argument to a function, the typechecker assumes that it won’t be changed.

In all of the situations just described, the condition in the if state‐
ment or invariant() call must be just a single type query. Com‐
bining multiple type queries with logical operators like || isn’t
supported by the typechecker. For example, this is a type error:

class Parent {
}
class One extends Parent {
 public function go(): void {}
}
class Two extends Parent {
 public function go(): void {}
}

function f(Parent $obj): void {
 if ($obj instanceof One || $obj instanceof Two) {
 $obj->go(); // Error
 }
}

A good way to work around this is with interfaces. Create an inter‐
face that declares the go() method, make One and Two implement
it, and check for that interface in f().

Inference on Properties
All our examples of inference so far have been on local variables. This is easy: the
typechecker can be confident that it can see all reads and writes of local variables,8 so
it can make fairly strong guarantees when doing type inference on them.

Doing inference on properties is more difficult. The root of the problem is that,
whereas local variables can’t be modified from outside the function they’re in, proper‐
ties can. Consider this code, for example:

function increment_check_count(): void {
 // ...
}

function check_for_valid_characters(string $name): void {
 // ...
}

class C {
 private ?string $name;

 public function checkName(): void {
 if ($this->name !== null) {

Refining Types | 35

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

 increment_check_count();
 check_for_valid_characters($this->name);
 }
 }
}

This code will not pass the typechecker. It will report an error:

/home/oyamauchi/test.php:16:34,44: Invalid argument (Typing[4110])
 /home/oyamauchi/test.php:6:37,42: This is a string
 /home/oyamauchi/test.php:11:11,17: It is incompatible with a nullable type
 /home/oyamauchi/test.php:15:7,29: All the local information about the member
 name has been invalidated during this call.
This is a limitation of the type-checker, use a local if that's the problem.

The error points to the call to check_for_valid_characters(). The error message
gives a brief explanation of the problem. After the null check, the typechecker knows
that $this->name is not null. However, the call to increment_check_count() forces
the typechecker to forget that $this->name is not null, because that fact could be
changed as a result of the call.

You, the programmer, might know that the value of $this->name won’t change as a
result of the call to increment_check_count(), but the typechecker can’t find that out
for itself—as we’ve seen, inference is function-local. The workaround for this is, as
the error message says, to use a local variable. Copy the property into a local variable
and use that instead:

public function checkName(): void {
 if ($this->name !== null) {
 $local_name = $this->name;
 Logger::log('checking name: ' . $local_name);
 check_for_valid_characters($local_name);
 }
}

You could also make the copy outside of the if block, and null-check the local
instead. Either way, the typechecker can be sure that $local_name is not modified,
and so it can remember its inferred non-nullable type.

Enforcement of Type Annotations at Runtime
Even if the typechecker reports no errors in a Hack codebase, there may still be errors
at runtime. The most obvious way for this to happen is through decl mode: because
code in decl mode isn’t typechecked, it can do things like call functions with the
wrong types of arguments.

In future releases, HHVM’s runtime typechecking will likely become much stricter,
but for now it has only partial support for checking type annotations at runtime.

36 | Chapter 1: Typechecking

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

9 “Catchable fatal” may sound like an oxymoron. These errors do have odd behavior: the only way to “catch”
them is with a user error handler, which you can set using the built-in function set_error_handler().

First of all, HHVM ignores property type annotations. You can assign anything you
like to a type-annotated property, and HHVM won’t complain.

Parameter type annotations behave just like PHP typehints: if they’re violated, a
catchable fatal error will be raised.9 Return type annotations behave the same way.

You can make any parameter or return type annotation raise a warning instead of a
catchable fatal error if violated, by putting an @ before it. This is called a soft annota‐
tion. Soft annotations are meant solely as a transitional mechanism while adding new
annotations to existing code (see “Inferring and Adding Type Annotations” on page
234). They shouldn’t be used in new code, and existing hard annotations should cer‐
tainly never be made soft.

In both parameter type annotations and return type annotations, some of the details
of Hack type annotations are not enforced:

• Any annotation of a primitive type, object type, num, or arraykey is enforced
exactly as is.

• The return type void is not enforced. That is, a function with return type void
can return an actual value, and no error will occur at runtime.

• Callable type annotations are not enforced at all.
• Annotations of tuples and shapes are enforced as if they said only array. The

inner types aren’t checked.
• Annotations of enums are enforced as if they were the underlying type of the

enum. At runtime, values will not be checked to make sure they’re valid values of
the enum.

• Generic type annotations are enforced without their type parameters. That is, an
annotation of array<string, MyClass> is enforced as if it just said array. The
inner types aren’t checked.

• Nullable types are enforced correctly.

Enforcement of Type Annotations at Runtime | 37

www.itbook.store/books/9781491920879

https://itbook.store/books/9781491920879

Want to
read more?

You can buy this book at oreilly.com
in print and ebook format.

Buy 2 books, get the 3rd FREE!
Use discount code OPC10

All orders over $29.95 qualify for free shipping within the US.

It’s also available at your favorite book retailer, including
the iBookstore, the Android Marketplace, and Amazon.com.

©2015 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 15055

www.itbook.store/books/9781491920879

http://shop.oreilly.com/product/0636920037194.do
https://itbook.store/books/9781491920879

	Copyright
	Table of Contents
	Foreword
	Preface
	What Are Hack and HHVM?
	Who This Book Is For
	Philosophy
	Program Types
	Gradual Migration

	How the Book Is Organized
	Versions
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Typechecking
	Why Use the Typechecker?
	Setting Up the Typechecker
	Autoload Everything
	Reading Error Messages

	Type Annotation Syntax
	Function Return Types
	Function Parameters
	Properties

	Hack’s Type System
	Typechecker Modes
	Code Without Annotations
	Calling into PHP

	Rules
	Using Superglobals
	Types of Overriding Methods
	Property Initialization
	Typed Variadic Arguments
	Types for Generators
	Fallthrough in switch Statements

	Type Inference
	Variables Don’t Have Types
	Unresolved Types
	Inference Is Function-Local

	Refining Types
	Refining Nullable Types to Non-Nullable
	Refining Mixed Types to Primitives
	Refining Object Types
	Inference on Properties

	Enforcement of Type Annotations at Runtime

	Chapter 2. Generics
	Introductory Example
	Other Generic Entities
	Functions and Methods
	Traits and Interfaces
	Type Aliases

	Type Erasure
	Constraints
	Unresolved Types, Revisited
	Generics and Subtypes
	Arrays and Collections

	Advanced: Covariance and Contravariance
	Syntax
	When to Use Them

	Chapter 3. Other Features of Hack
	Enums
	Enum Functions

	Type Aliases
	Transparent Type Aliases
	Opaque Type Aliases
	Autoloading Type Aliases

	Array Shapes
	Lambda Expressions
	Constructor Parameter Promotion
	Attributes
	Attribute Syntax
	Special Attributes

	Enhanced Autoloading
	Integer Arithmetic Overflow
	Nullsafe Method Call Operator
	Trait and Interface Requirements
	Silencing Typechecker Errors

	Chapter 4. PHP Features Not Supported in Hack
	References
	The global Statement
	Top-Level Code

	Old-Style Constructors
	Case-Insensitive Name Lookup
	Variable Variables
	Dynamic Properties
	Mixing Method Call Syntax
	isset, empty, and unset
	Others

	Chapter 5. Collections
	Why Use Collections?
	Collections Have Reference Semantics
	Using Collections
	Literal Syntax
	Reading and Writing

	Type Annotations for Collections
	Core Interfaces
	General Collection Interfaces
	Specific Collection Interfaces
	Concrete Collection Classes

	Interoperating with Arrays
	Conversion to Arrays
	Use with Built-In and User Functions

	Chapter 6. Async
	Introductory Examples
	Async in Detail
	Wait Handles
	Async and Callable Types
	await Is Not an Expression
	Async Generators
	Exceptions in Async Functions
	Mapping and Filtering Helpers

	Structuring Async Code
	Data Dependencies
	Antipatterns

	Other Types of Waiting
	Sleeping
	Rescheduling

	Common Mistakes
	Dropping Wait Handles
	Memoizing Async Functions

	Async Extensions
	MySQL
	MCRouter and memcached
	cURL
	Streams

	Chapter 7. XHP
	Why Use XHP?
	Runtime Validation
	Secure by Default

	How to Use XHP
	Basic Tag Usage
	Attributes
	Embedding Hack Code
	Type Annotations for XHP
	Object Interface
	Validation

	Creating Your Own XHP Classes
	Attributes
	children Declarations
	Categories
	Context
	Async XHP
	XHP Helpers

	XHP Best Practices
	No Additional Public API
	Composition, Not Inheritance
	Don’t Make Control Flow Tags
	Distinguish Attributes from Children
	Style Guide

	Migrating to XHP
	Converting Bottom-Up
	Getting Around XHP’s Escaping

	XHP Internals
	The Parser Transformation
	The Hack Library

	Chapter 8. Configuring and Deploying HHVM
	Specifying Configuration Options
	Important Options

	Server Mode
	Warming Up the JIT
	Repo-Authoritative Mode
	Building the Repo
	Deploying the Repo

	The Admin Server

	Chapter 9. hphpd: Interactive Debugging
	Getting Started
	Evaluating Code
	The Execution Environment
	Local Mode
	Remote Mode

	Using Breakpoints
	Setting Breakpoints
	Navigating the Call Stack
	Navigating Code
	Managing Breakpoints

	Viewing Code and Documentation
	Macros
	Configuring hphpd

	Chapter 10. Hack Tools
	Inspecting the Codebase
	Scripting Support

	Migrating PHP to Hack
	The Hackificator
	Inferring and Adding Type Annotations

	Transpiling Hack to PHP
	Conversions
	Unsupported Features

	Index
	About the Author

