
Edited by Betsy Beyer, Chris Jones,
Jennifer Petoff & Niall Richard Murphy

Site
Reliability
Engineering
HOW GOOGLE RUNS PRODUCTION SYSTEMS

www.itbook.store/books/9781491929124

https://itbook.store/books/9781491929124

Edited by Betsy Beyer, Chris Jones, Jennifer Petoff,
and Niall Richard Murphy

Site Reliability Engineering
How Google Runs Production Systems

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

www.itbook.store/books/9781491929124

https://itbook.store/books/9781491929124

978-1-491-92912-4

[LSI]

Site Reliability Engineering
Edited by Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy

Copyright © 2016 Google, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian Anderson
Production Editor: Kristen Brown
Copyeditor: Kim Cofer
Proofreader: Rachel Monaghan

Indexer: Judy McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

April 2016: First Edition

Revision History for the First Edition
2016-03-21: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491929124 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Site Reliability Engineering, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.itbook.store/books/9781491929124

https://itbook.store/books/9781491929124

Table of Contents

Foreword. xiii

Preface. xv

Part I. Introduction

1. Introduction. 3
The Sysadmin Approach to Service Management 3
Google’s Approach to Service Management: Site Reliability Engineering 5
Tenets of SRE 7
The End of the Beginning 12

2. The Production Environment at Google, from the Viewpoint of an SRE. 13
Hardware 13
System Software That “Organizes” the Hardware 15
Other System Software 18
Our Software Infrastructure 19
Our Development Environment 19
Shakespeare: A Sample Service 20

Part II. Principles

3. Embracing Risk. 25
Managing Risk 25
Measuring Service Risk 26
Risk Tolerance of Services 28

v

www.itbook.store/books/9781491929124

https://itbook.store/books/9781491929124

Motivation for Error Budgets 33

4. Service Level Objectives. 37
Service Level Terminology 37
Indicators in Practice 40
Objectives in Practice 43
Agreements in Practice 47

5. Eliminating Toil. 49
Toil Defined 49
Why Less Toil Is Better 51
What Qualifies as Engineering? 52
Is Toil Always Bad? 52
Conclusion 54

6. Monitoring Distributed Systems. 55
Definitions 55
Why Monitor? 56
Setting Reasonable Expectations for Monitoring 57
Symptoms Versus Causes 58
Black-Box Versus White-Box 59
The Four Golden Signals 60
Worrying About Your Tail (or, Instrumentation and Performance) 61
Choosing an Appropriate Resolution for Measurements 62
As Simple as Possible, No Simpler 62
Tying These Principles Together 63
Monitoring for the Long Term 64
Conclusion 66

7. The Evolution of Automation at Google. 67
The Value of Automation 67
The Value for Google SRE 70
The Use Cases for Automation 70
Automate Yourself Out of a Job: Automate ALL the Things! 73
Soothing the Pain: Applying Automation to Cluster Turnups 75
Borg: Birth of the Warehouse-Scale Computer 81
Reliability Is the Fundamental Feature 83
Recommendations 84

8. Release Engineering. 87
The Role of a Release Engineer 87
Philosophy 88

vi | Table of Contents

www.itbook.store/books/9781491929124

https://itbook.store/books/9781491929124

Continuous Build and Deployment 90
Configuration Management 93
Conclusions 95

9. Simplicity. 97
System Stability Versus Agility 97
The Virtue of Boring 98
I Won’t Give Up My Code! 98
The “Negative Lines of Code” Metric 99
Minimal APIs 99
Modularity 100
Release Simplicity 100
A Simple Conclusion 101

Part III. Practices

10. Practical Alerting from Time-Series Data. 107
The Rise of Borgmon 108
Instrumentation of Applications 109
Collection of Exported Data 110
Storage in the Time-Series Arena 111
Rule Evaluation 114
Alerting 118
Sharding the Monitoring Topology 119
Black-Box Monitoring 120
Maintaining the Configuration 121
Ten Years On… 122

11. Being On-Call. 125
Introduction 125
Life of an On-Call Engineer 126
Balanced On-Call 127
Feeling Safe 128
Avoiding Inappropriate Operational Load 130
Conclusions 132

12. Effective Troubleshooting. 133
Theory 134
In Practice 136
Negative Results Are Magic 144
Case Study 146

Table of Contents | vii

www.itbook.store/books/9781491929124

https://itbook.store/books/9781491929124

Making Troubleshooting Easier 150
Conclusion 150

13. Emergency Response. 151
What to Do When Systems Break 151
Test-Induced Emergency 152
Change-Induced Emergency 153
Process-Induced Emergency 155
All Problems Have Solutions 158
Learn from the Past. Don’t Repeat It. 158
Conclusion 159

14. Managing Incidents. 161
Unmanaged Incidents 161
The Anatomy of an Unmanaged Incident 162
Elements of Incident Management Process 163
A Managed Incident 165
When to Declare an Incident 166
In Summary 166

15. Postmortem Culture: Learning from Failure. 169
Google’s Postmortem Philosophy 169
Collaborate and Share Knowledge 171
Introducing a Postmortem Culture 172
Conclusion and Ongoing Improvements 175

16. Tracking Outages. 177
Escalator 178
Outalator 178

17. Testing for Reliability. 183
Types of Software Testing 185
Creating a Test and Build Environment 190
Testing at Scale 192
Conclusion 204

18. Software Engineering in SRE. 205
Why Is Software Engineering Within SRE Important? 205
Auxon Case Study: Project Background and Problem Space 207
Intent-Based Capacity Planning 209
Fostering Software Engineering in SRE 218
Conclusions 222

viii | Table of Contents

www.itbook.store/books/9781491929124

https://itbook.store/books/9781491929124

19. Load Balancing at the Frontend. 223
Power Isn’t the Answer 223
Load Balancing Using DNS 224
Load Balancing at the Virtual IP Address 227

20. Load Balancing in the Datacenter. 231
The Ideal Case 232
Identifying Bad Tasks: Flow Control and Lame Ducks 233
Limiting the Connections Pool with Subsetting 235
Load Balancing Policies 240

21. Handling Overload. 247
The Pitfalls of “Queries per Second” 248
Per-Customer Limits 248
Client-Side Throttling 249
Criticality 251
Utilization Signals 253
Handling Overload Errors 253
Load from Connections 257
Conclusions 258

22. Addressing Cascading Failures. 259
Causes of Cascading Failures and Designing to Avoid Them 260
Preventing Server Overload 265
Slow Startup and Cold Caching 274
Triggering Conditions for Cascading Failures 276
Testing for Cascading Failures 278
Immediate Steps to Address Cascading Failures 280
Closing Remarks 283

23. Managing Critical State: Distributed Consensus for Reliability. 285
Motivating the Use of Consensus: Distributed Systems Coordination Failure 288
How Distributed Consensus Works 289
System Architecture Patterns for Distributed Consensus 291
Distributed Consensus Performance 296
Deploying Distributed Consensus-Based Systems 304
Monitoring Distributed Consensus Systems 312
Conclusion 313

24. Distributed Periodic Scheduling with Cron. 315
Cron 315
Cron Jobs and Idempotency 316

Table of Contents | ix

www.itbook.store/books/9781491929124

https://itbook.store/books/9781491929124

Cron at Large Scale 317
Building Cron at Google 319
Summary 326

25. Data Processing Pipelines. 327
Origin of the Pipeline Design Pattern 327
Initial Effect of Big Data on the Simple Pipeline Pattern 328
Challenges with the Periodic Pipeline Pattern 328
Trouble Caused By Uneven Work Distribution 328
Drawbacks of Periodic Pipelines in Distributed Environments 329
Introduction to Google Workflow 333
Stages of Execution in Workflow 335
Ensuring Business Continuity 337
Summary and Concluding Remarks 338

26. Data Integrity: What You Read Is What You Wrote. 339
Data Integrity’s Strict Requirements 340
Google SRE Objectives in Maintaining Data Integrity and Availability 344
How Google SRE Faces the Challenges of Data Integrity 349
Case Studies 360
General Principles of SRE as Applied to Data Integrity 367
Conclusion 368

27. Reliable Product Launches at Scale. 369
Launch Coordination Engineering 370
Setting Up a Launch Process 372
Developing a Launch Checklist 375
Selected Techniques for Reliable Launches 380
Development of LCE 384
Conclusion 387

Part IV. Management

28. Accelerating SREs to On-Call and Beyond. 391
You’ve Hired Your Next SRE(s), Now What? 391
Initial Learning Experiences: The Case for Structure Over Chaos 394
Creating Stellar Reverse Engineers and Improvisational Thinkers 397
Five Practices for Aspiring On-Callers 400
On-Call and Beyond: Rites of Passage, and Practicing Continuing Education 406
Closing Thoughts 406

x | Table of Contents

www.itbook.store/books/9781491929124

https://itbook.store/books/9781491929124

29. Dealing with Interrupts. 407
Managing Operational Load 408
Factors in Determining How Interrupts Are Handled 408
Imperfect Machines 409

30. Embedding an SRE to Recover from Operational Overload. 417
Phase 1: Learn the Service and Get Context 418
Phase 2: Sharing Context 420
Phase 3: Driving Change 421
Conclusion 423

31. Communication and Collaboration in SRE. 425
Communications: Production Meetings 426
Collaboration within SRE 430
Case Study of Collaboration in SRE: Viceroy 432
Collaboration Outside SRE 437
Case Study: Migrating DFP to F1 437
Conclusion 440

32. The Evolving SRE Engagement Model. 441
SRE Engagement: What, How, and Why 441
The PRR Model 442
The SRE Engagement Model 443
Production Readiness Reviews: Simple PRR Model 444
Evolving the Simple PRR Model: Early Engagement 448
Evolving Services Development: Frameworks and SRE Platform 451
Conclusion 456

Part V. Conclusions

33. Lessons Learned from Other Industries. 459
Meet Our Industry Veterans 460
Preparedness and Disaster Testing 462
Postmortem Culture 465
Automating Away Repetitive Work and Operational Overhead 467
Structured and Rational Decision Making 469
Conclusions 470

34. Conclusion. 473

Table of Contents | xi

www.itbook.store/books/9781491929124

https://itbook.store/books/9781491929124

A. Availability Table. 477

B. A Collection of Best Practices for Production Services. 479

C. Example Incident State Document. 485

D. Example Postmortem. 487

E. Launch Coordination Checklist. 493

F. Example Production Meeting Minutes. 497

Bibliography. 501

Index. 511

xii | Table of Contents

www.itbook.store/books/9781491929124

https://itbook.store/books/9781491929124

1 Vice President, Google Engineering, founder of Google SRE

CHAPTER 1

Introduction

Written by Benjamin Treynor Sloss1

Edited by Betsy Beyer

Hope is not a strategy.
—Traditional SRE saying

It is a truth universally acknowledged that systems do not run themselves. How, then,
should a system—particularly a complex computing system that operates at a large
scale—be run?

The Sysadmin Approach to Service Management
Historically, companies have employed systems administrators to run complex com‐
puting systems.

This systems administrator, or sysadmin, approach involves assembling existing soft‐
ware components and deploying them to work together to produce a service.
Sysadmins are then tasked with running the service and responding to events and
updates as they occur. As the system grows in complexity and traffic volume, generat‐
ing a corresponding increase in events and updates, the sysadmin team grows to
absorb the additional work. Because the sysadmin role requires a markedly different
skill set than that required of a product’s developers, developers and sysadmins are
divided into discrete teams: “development” and “operations” or “ops.”

The sysadmin model of service management has several advantages. For companies
deciding how to run and staff a service, this approach is relatively easy to implement:
as a familiar industry paradigm, there are many examples from which to learn and

3

www.itbook.store/books/9781491929124

https://itbook.store/books/9781491929124

emulate. A relevant talent pool is already widely available. An array of existing tools,
software components (off the shelf or otherwise), and integration companies are
available to help run those assembled systems, so a novice sysadmin team doesn’t
have to reinvent the wheel and design a system from scratch.

The sysadmin approach and the accompanying development/ops split has a number
of disadvantages and pitfalls. These fall broadly into two categories: direct costs and
indirect costs.

Direct costs are neither subtle nor ambiguous. Running a service with a team that
relies on manual intervention for both change management and event handling
becomes expensive as the service and/or traffic to the service grows, because the size
of the team necessarily scales with the load generated by the system.

The indirect costs of the development/ops split can be subtle, but are often more
expensive to the organization than the direct costs. These costs arise from the fact
that the two teams are quite different in background, skill set, and incentives. They
use different vocabulary to describe situations; they carry different assumptions about
both risk and possibilities for technical solutions; they have different assumptions
about the target level of product stability. The split between the groups can easily
become one of not just incentives, but also communication, goals, and eventually,
trust and respect. This outcome is a pathology.

Traditional operations teams and their counterparts in product development thus
often end up in conflict, most visibly over how quickly software can be released to
production. At their core, the development teams want to launch new features and
see them adopted by users. At their core, the ops teams want to make sure the service
doesn’t break while they are holding the pager. Because most outages are caused by
some kind of change—a new configuration, a new feature launch, or a new type of
user traffic—the two teams’ goals are fundamentally in tension.

Both groups understand that it is unacceptable to state their interests in the baldest
possible terms (“We want to launch anything, any time, without hindrance” versus
“We won’t want to ever change anything in the system once it works”). And because
their vocabulary and risk assumptions differ, both groups often resort to a familiar
form of trench warfare to advance their interests. The ops team attempts to safeguard
the running system against the risk of change by introducing launch and change
gates. For example, launch reviews may contain an explicit check for every problem
that has ever caused an outage in the past—that could be an arbitrarily long list, with
not all elements providing equal value. The dev team quickly learns how to respond.
They have fewer “launches” and more “flag flips,” “incremental updates,” or “cherry‐
picks.” They adopt tactics such as sharding the product so that fewer features are sub‐
ject to the launch review.

4 | Chapter 1: Introduction

www.itbook.store/books/9781491929124

https://itbook.store/books/9781491929124

Google’s Approach to Service Management:
Site Reliability Engineering
Conflict isn’t an inevitable part of offering a software service. Google has chosen to
run our systems with a different approach: our Site Reliability Engineering teams
focus on hiring software engineers to run our products and to create systems to
accomplish the work that would otherwise be performed, often manually, by
sysadmins.

What exactly is Site Reliability Engineering, as it has come to be defined at Google?
My explanation is simple: SRE is what happens when you ask a software engineer to
design an operations team. When I joined Google in 2003 and was tasked with run‐
ning a “Production Team” of seven engineers, my entire life up to that point had been
software engineering. So I designed and managed the group the way I would want it
to work if I worked as an SRE myself. That group has since matured to become Goo‐
gle’s present-day SRE team, which remains true to its origins as envisioned by a life‐
long software engineer.

A primary building block of Google’s approach to service management is the compo‐
sition of each SRE team. As a whole, SRE can be broken down two main categories.

50–60% are Google Software Engineers, or more precisely, people who have been
hired via the standard procedure for Google Software Engineers. The other 40–50%
are candidates who were very close to the Google Software Engineering qualifications
(i.e., 85–99% of the skill set required), and who in addition had a set of technical skills
that is useful to SRE but is rare for most software engineers. By far, UNIX system
internals and networking (Layer 1 to Layer 3) expertise are the two most common
types of alternate technical skills we seek.

Common to all SREs is the belief in and aptitude for developing software systems to
solve complex problems. Within SRE, we track the career progress of both groups
closely, and have to date found no practical difference in performance between engi‐
neers from the two tracks. In fact, the somewhat diverse background of the SRE team
frequently results in clever, high-quality systems that are clearly the product of the
synthesis of several skill sets.

The result of our approach to hiring for SRE is that we end up with a team of people
who (a) will quickly become bored by performing tasks by hand, and (b) have the
skill set necessary to write software to replace their previously manual work, even
when the solution is complicated. SREs also end up sharing academic and intellectual
background with the rest of the development organization. Therefore, SRE is funda‐
mentally doing work that has historically been done by an operations team, but using
engineers with software expertise, and banking on the fact that these engineers are

Google’s Approach to Service Management: | 5

www.itbook.store/books/9781491929124

https://itbook.store/books/9781491929124

inherently both predisposed to, and have the ability to, design and implement auto‐
mation with software to replace human labor.

By design, it is crucial that SRE teams are focused on engineering. Without constant
engineering, operations load increases and teams will need more people just to keep
pace with the workload. Eventually, a traditional ops-focused group scales linearly
with service size: if the products supported by the service succeed, the operational
load will grow with traffic. That means hiring more people to do the same tasks over
and over again.

To avoid this fate, the team tasked with managing a service needs to code or it will
drown. Therefore, Google places a 50% cap on the aggregate “ops” work for all SREs—
tickets, on-call, manual tasks, etc. This cap ensures that the SRE team has enough
time in their schedule to make the service stable and operable. This cap is an upper
bound; over time, left to their own devices, the SRE team should end up with very
little operational load and almost entirely engage in development tasks, because the
service basically runs and repairs itself: we want systems that are automatic, not just
automated. In practice, scale and new features keep SREs on their toes.

Google’s rule of thumb is that an SRE team must spend the remaining 50% of its time
actually doing development. So how do we enforce that threshold? In the first place,
we have to measure how SRE time is spent. With that measurement in hand, we
ensure that the teams consistently spending less than 50% of their time on develop‐
ment work change their practices. Often this means shifting some of the operations
burden back to the development team, or adding staff to the team without assigning
that team additional operational responsibilities. Consciously maintaining this bal‐
ance between ops and development work allows us to ensure that SREs have the
bandwidth to engage in creative, autonomous engineering, while still retaining the
wisdom gleaned from the operations side of running a service.

We’ve found that Google SRE’s approach to running large-scale systems has many
advantages. Because SREs are directly modifying code in their pursuit of making
Google’s systems run themselves, SRE teams are characterized by both rapid innova‐
tion and a large acceptance of change. Such teams are relatively inexpensive—sup‐
porting the same service with an ops-oriented team would require a significantly
larger number of people. Instead, the number of SREs needed to run, maintain, and
improve a system scales sublinearly with the size of the system. Finally, not only does
SRE circumvent the dysfunctionality of the dev/ops split, but this structure also
improves our product development teams: easy transfers between product develop‐
ment and SRE teams cross-train the entire group, and improve skills of developers
who otherwise may have difficulty learning how to build a million-core distributed
system.

Despite these net gains, the SRE model is characterized by its own distinct set of chal‐
lenges. One continual challenge Google faces is hiring SREs: not only does SRE

6 | Chapter 1: Introduction

www.itbook.store/books/9781491929124

https://itbook.store/books/9781491929124

compete for the same candidates as the product development hiring pipeline, but the
fact that we set the hiring bar so high in terms of both coding and system engineering
skills means that our hiring pool is necessarily small. As our discipline is relatively
new and unique, not much industry information exists on how to build and manage
an SRE team (although hopefully this book will make strides in that direction!). And
once an SRE team is in place, their potentially unorthodox approaches to service
management require strong management support. For example, the decision to stop
releases for the remainder of the quarter once an error budget is depleted might not
be embraced by a product development team unless mandated by their management.

DevOps or SRE?
The term “DevOps” emerged in industry in late 2008 and as of this writing (early
2016) is still in a state of flux. Its core principles—involvement of the IT function in
each phase of a system’s design and development, heavy reliance on automation ver‐
sus human effort, the application of engineering practices and tools to operations
tasks—are consistent with many of SRE’s principles and practices. One could view
DevOps as a generalization of several core SRE principles to a wider range of organi‐
zations, management structures, and personnel. One could equivalently view SRE as a
specific implementation of DevOps with some idiosyncratic extensions.

Tenets of SRE
While the nuances of workflows, priorities, and day-to-day operations vary from SRE
team to SRE team, all share a set of basic responsibilities for the service(s) they sup‐
port, and adhere to the same core tenets. In general, an SRE team is responsible for
the availability, latency, performance, efficiency, change management, monitoring,
emergency response, and capacity planning of their service(s). We have codified rules
of engagement and principles for how SRE teams interact with their environment—
not only the production environment, but also the product development teams, the
testing teams, the users, and so on. Those rules and work practices help us to main‐
tain our focus on engineering work, as opposed to operations work.

The following section discusses each of the core tenets of Google SRE.

Ensuring a Durable Focus on Engineering
As already discussed, Google caps operational work for SREs at 50% of their time.
Their remaining time should be spent using their coding skills on project work. In
practice, this is accomplished by monitoring the amount of operational work being
done by SREs, and redirecting excess operational work to the product development
teams: reassigning bugs and tickets to development managers, [re]integrating devel‐
opers into on-call pager rotations, and so on. The redirection ends when the opera‐

Tenets of SRE | 7

www.itbook.store/books/9781491929124

https://itbook.store/books/9781491929124

tional load drops back to 50% or lower. This also provides an effective feedback
mechanism, guiding developers to build systems that don’t need manual intervention.
This approach works well when the entire organization—SRE and development alike
—understands why the safety valve mechanism exists, and supports the goal of hav‐
ing no overflow events because the product doesn’t generate enough operational load
to require it.

When they are focused on operations work, on average, SREs should receive a maxi‐
mum of two events per 8–12-hour on-call shift. This target volume gives the on-call
engineer enough time to handle the event accurately and quickly, clean up and
restore normal service, and then conduct a postmortem. If more than two events
occur regularly per on-call shift, problems can’t be investigated thoroughly and engi‐
neers are sufficiently overwhelmed to prevent them from learning from these events.
A scenario of pager fatigue also won’t improve with scale. Conversely, if on-call SREs
consistently receive fewer than one event per shift, keeping them on point is a waste
of their time.

Postmortems should be written for all significant incidents, regardless of whether or
not they paged; postmortems that did not trigger a page are even more valuable, as
they likely point to clear monitoring gaps. This investigation should establish what
happened in detail, find all root causes of the event, and assign actions to correct the
problem or improve how it is addressed next time. Google operates under a blame-
free postmortem culture, with the goal of exposing faults and applying engineering to
fix these faults, rather than avoiding or minimizing them.

Pursuing Maximum Change Velocity Without Violating a Service’s SLO
Product development and SRE teams can enjoy a productive working relationship by
eliminating the structural conflict in their respective goals. The structural conflict is
between pace of innovation and product stability, and as described earlier, this con‐
flict often is expressed indirectly. In SRE we bring this conflict to the fore, and then
resolve it with the introduction of an error budget.

The error budget stems from the observation that 100% is the wrong reliability target
for basically everything (pacemakers and anti-lock brakes being notable exceptions).
In general, for any software service or system, 100% is not the right reliability target
because no user can tell the difference between a system being 100% available and
99.999% available. There are many other systems in the path between user and ser‐
vice (their laptop, their home WiFi, their ISP, the power grid…) and those systems
collectively are far less than 99.999% available. Thus, the marginal difference between
99.999% and 100% gets lost in the noise of other unavailability, and the user receives
no benefit from the enormous effort required to add that last 0.001% of availability.

8 | Chapter 1: Introduction

www.itbook.store/books/9781491929124

https://itbook.store/books/9781491929124

If 100% is the wrong reliability target for a system, what, then, is the right reliability
target for the system? This actually isn’t a technical question at all—it’s a product
question, which should take the following considerations into account:

• What level of availability will the users be happy with, given how they use the
product?

• What alternatives are available to users who are dissatisfied with the product’s
availability?

• What happens to users’ usage of the product at different availability levels?

The business or the product must establish the system’s availability target. Once that
target is established, the error budget is one minus the availability target. A service
that’s 99.99% available is 0.01% unavailable. That permitted 0.01% unavailability is
the service’s error budget. We can spend the budget on anything we want, as long as
we don’t overspend it.

So how do we want to spend the error budget? The development team wants to
launch features and attract new users. Ideally, we would spend all of our error budget
taking risks with things we launch in order to launch them quickly. This basic prem‐
ise describes the whole model of error budgets. As soon as SRE activities are concep‐
tualized in this framework, freeing up the error budget through tactics such as phased
rollouts and 1% experiments can optimize for quicker launches.

The use of an error budget resolves the structural conflict of incentives between
development and SRE. SRE’s goal is no longer “zero outages”; rather, SREs and prod‐
uct developers aim to spend the error budget getting maximum feature velocity. This
change makes all the difference. An outage is no longer a “bad” thing—it is an
expected part of the process of innovation, and an occurrence that both development
and SRE teams manage rather than fear.

Monitoring
Monitoring is one of the primary means by which service owners keep track of a sys‐
tem’s health and availability. As such, monitoring strategy should be constructed
thoughtfully. A classic and common approach to monitoring is to watch for a specific
value or condition, and then to trigger an email alert when that value is exceeded or
that condition occurs. However, this type of email alerting is not an effective solution:
a system that requires a human to read an email and decide whether or not some type
of action needs to be taken in response is fundamentally flawed. Monitoring should
never require a human to interpret any part of the alerting domain. Instead, software
should do the interpreting, and humans should be notified only when they need to
take action.

Tenets of SRE | 9

www.itbook.store/books/9781491929124

https://itbook.store/books/9781491929124

2 See “Disaster Role Playing” on page 401.

There are three kinds of valid monitoring output:

Alerts
Signify that a human needs to take action immediately in response to something
that is either happening or about to happen, in order to improve the situation.

Tickets
Signify that a human needs to take action, but not immediately. The system can‐
not automatically handle the situation, but if a human takes action in a few days,
no damage will result.

Logging
No one needs to look at this information, but it is recorded for diagnostic or for‐
ensic purposes. The expectation is that no one reads logs unless something else
prompts them to do so.

Emergency Response
Reliability is a function of mean time to failure (MTTF) and mean time to repair
(MTTR) [Sch15]. The most relevant metric in evaluating the effectiveness of emer‐
gency response is how quickly the response team can bring the system back to health
—that is, the MTTR.

Humans add latency. Even if a given system experiences more actual failures, a sys‐
tem that can avoid emergencies that require human intervention will have higher
availability than a system that requires hands-on intervention. When humans are
necessary, we have found that thinking through and recording the best practices
ahead of time in a “playbook” produces roughly a 3x improvement in MTTR as com‐
pared to the strategy of “winging it.” The hero jack-of-all-trades on-call engineer does
work, but the practiced on-call engineer armed with a playbook works much better.
While no playbook, no matter how comprehensive it may be, is a substitute for smart
engineers able to think on the fly, clear and thorough troubleshooting steps and tips
are valuable when responding to a high-stakes or time-sensitive page. Thus, Google
SRE relies on on-call playbooks, in addition to exercises such as the “Wheel of Mis‐
fortune,”2 to prepare engineers to react to on-call events.

Change Management
SRE has found that roughly 70% of outages are due to changes in a live system. Best
practices in this domain use automation to accomplish the following:

10 | Chapter 1: Introduction

www.itbook.store/books/9781491929124

https://itbook.store/books/9781491929124

• Implementing progressive rollouts
• Quickly and accurately detecting problems
• Rolling back changes safely when problems arise

This trio of practices effectively minimizes the aggregate number of users and opera‐
tions exposed to bad changes. By removing humans from the loop, these practices
avoid the normal problems of fatigue, familiarity/contempt, and inattention to highly
repetitive tasks. As a result, both release velocity and safety increase.

Demand Forecasting and Capacity Planning
Demand forecasting and capacity planning can be viewed as ensuring that there is
sufficient capacity and redundancy to serve projected future demand with the
required availability. There’s nothing particularly special about these concepts, except
that a surprising number of services and teams don’t take the steps necessary to
ensure that the required capacity is in place by the time it is needed. Capacity plan‐
ning should take both organic growth (which stems from natural product adoption
and usage by customers) and inorganic growth (which results from events like feature
launches, marketing campaigns, or other business-driven changes) into account.

Several steps are mandatory in capacity planning:

• An accurate organic demand forecast, which extends beyond the lead time
required for acquiring capacity

• An accurate incorporation of inorganic demand sources into the demand
forecast

• Regular load testing of the system to correlate raw capacity (servers, disks, and so
on) to service capacity

Because capacity is critical to availability, it naturally follows that the SRE team must
be in charge of capacity planning, which means they also must be in charge of provi‐
sioning.

Provisioning
Provisioning combines both change management and capacity planning. In our
experience, provisioning must be conducted quickly and only when necessary, as
capacity is expensive. This exercise must also be done correctly or capacity doesn’t
work when needed. Adding new capacity often involves spinning up a new instance
or location, making significant modification to existing systems (configuration files,
load balancers, networking), and validating that the new capacity performs and deliv‐
ers correct results. Thus, it is a riskier operation than load shifting, which is often

Tenets of SRE | 11

www.itbook.store/books/9781491929124

https://itbook.store/books/9781491929124

3 For further discussion of how this collaboration can work in practice, see “Communications: Production
Meetings” on page 426.

done multiple times per hour, and must be treated with a corresponding degree of
extra caution.

Efficiency and Performance
Efficient use of resources is important any time a service cares about money. Because
SRE ultimately controls provisioning, it must also be involved in any work on utiliza‐
tion, as utilization is a function of how a given service works and how it is provi‐
sioned. It follows that paying close attention to the provisioning strategy for a service,
and therefore its utilization, provides a very, very big lever on the service’s total costs.

Resource use is a function of demand (load), capacity, and software efficiency. SREs
predict demand, provision capacity, and can modify the software. These three factors
are a large part (though not the entirety) of a service’s efficiency.

Software systems become slower as load is added to them. A slowdown in a service
equates to a loss of capacity. At some point, a slowing system stops serving, which
corresponds to infinite slowness. SREs provision to meet a capacity target at a specific
response speed, and thus are keenly interested in a service’s performance. SREs and
product developers will (and should) monitor and modify a service to improve its
performance, thus adding capacity and improving efficiency.3

The End of the Beginning
Site Reliability Engineering represents a significant break from existing industry best
practices for managing large, complicated services. Motivated originally by familiarity
—“as a software engineer, this is how I would want to invest my time to accomplish a
set of repetitive tasks”—it has become much more: a set of principles, a set of practi‐
ces, a set of incentives, and a field of endeavor within the larger software engineering
discipline. The rest of the book explores the SRE Way in detail.

12 | Chapter 1: Introduction

www.itbook.store/books/9781491929124

https://itbook.store/books/9781491929124

	Copyright
	Table of Contents
	Foreword
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. Introduction
	Chapter 1. Introduction
	The Sysadmin Approach to Service Management
	Google’s Approach to Service Management: Site Reliability Engineering
	Tenets of SRE
	Ensuring a Durable Focus on Engineering
	Pursuing Maximum Change Velocity Without Violating a Service’s SLO
	Monitoring
	Emergency Response
	Change Management
	Demand Forecasting and Capacity Planning
	Provisioning
	Efficiency and Performance

	The End of the Beginning

	Chapter 2. The Production Environment at Google, from the Viewpoint of an SRE
	Hardware
	System Software That “Organizes” the Hardware
	Managing Machines
	Storage
	Networking

	Other System Software
	Lock Service
	Monitoring and Alerting

	Our Software Infrastructure
	Our Development Environment
	Shakespeare: A Sample Service
	Life of a Request
	Job and Data Organization

	Part II. Principles
	Chapter 3. Embracing Risk
	Managing Risk
	Measuring Service Risk
	Risk Tolerance of Services
	Identifying the Risk Tolerance of Consumer Services
	Identifying the Risk Tolerance of Infrastructure Services

	Motivation for Error Budgets1An early version of this section appeared as an article in ;login: (August 2015, vol. 40, no. 4).
	Forming Your Error Budget
	Benefits

	Chapter 4. Service Level Objectives
	Service Level Terminology
	Indicators
	Objectives
	Agreements

	Indicators in Practice
	What Do You and Your Users Care About?
	Collecting Indicators
	Aggregation
	Standardize Indicators

	Objectives in Practice
	Defining Objectives
	Choosing Targets
	Control Measures
	SLOs Set Expectations

	Agreements in Practice

	Chapter 5. Eliminating Toil
	Toil Defined
	Why Less Toil Is Better
	What Qualifies as Engineering?
	Is Toil Always Bad?
	Conclusion

	Chapter 6. Monitoring Distributed Systems
	Definitions
	Why Monitor?
	Setting Reasonable Expectations for Monitoring
	Symptoms Versus Causes
	Black-Box Versus White-Box
	The Four Golden Signals
	Worrying About Your Tail (or, Instrumentation and Performance)
	Choosing an Appropriate Resolution for Measurements
	As Simple as Possible, No Simpler
	Tying These Principles Together
	Monitoring for the Long Term
	Bigtable SRE: A Tale of Over-Alerting
	Gmail: Predictable, Scriptable Responses from Humans
	The Long Run

	Conclusion

	Chapter 7. The Evolution of Automation at Google
	The Value of Automation
	Consistency
	A Platform
	Faster Repairs
	Faster Action
	Time Saving

	The Value for Google SRE
	The Use Cases for Automation
	Google SRE’s Use Cases for Automation
	A Hierarchy of Automation Classes

	Automate Yourself Out of a Job: Automate ALL the Things!
	Soothing the Pain: Applying Automation to Cluster Turnups
	Detecting Inconsistencies with Prodtest
	Resolving Inconsistencies Idempotently
	The Inclination to Specialize
	Service-Oriented Cluster-Turnup

	Borg: Birth of the Warehouse-Scale Computer
	Reliability Is the Fundamental Feature
	Recommendations

	Chapter 8. Release Engineering
	The Role of a Release Engineer
	Philosophy
	Self-Service Model
	High Velocity
	Hermetic Builds
	Enforcement of Policies and Procedures

	Continuous Build and Deployment
	Building
	Branching
	Testing
	Packaging
	Rapid
	Deployment

	Configuration Management
	Conclusions
	It’s Not Just for Googlers
	Start Release Engineering at the Beginning

	Chapter 9. Simplicity
	System Stability Versus Agility
	The Virtue of Boring
	I Won’t Give Up My Code!
	The “Negative Lines of Code” Metric
	Minimal APIs
	Modularity
	Release Simplicity
	A Simple Conclusion

	Part III. Practices
	Chapter 10. Practical Alerting from Time-Series Data
	The Rise of Borgmon
	Instrumentation of Applications
	Collection of Exported Data
	Storage in the Time-Series Arena
	Labels and Vectors

	Rule Evaluation
	Alerting
	Sharding the Monitoring Topology
	Black-Box Monitoring
	Maintaining the Configuration
	Ten Years On…

	Chapter 11. Being On-Call
	Introduction
	Life of an On-Call Engineer
	Balanced On-Call
	Balance in Quantity
	Balance in Quality
	Compensation

	Feeling Safe
	Avoiding Inappropriate Operational Load
	Operational Overload
	A Treacherous Enemy: Operational Underload

	Conclusions

	Chapter 12. Effective Troubleshooting
	Theory
	In Practice
	Problem Report
	Triage
	Examine
	Diagnose
	Test and Treat

	Negative Results Are Magic
	Cure

	Case Study
	Making Troubleshooting Easier
	Conclusion

	Chapter 13. Emergency Response
	What to Do When Systems Break
	Test-Induced Emergency
	Details
	Response
	Findings

	Change-Induced Emergency
	Details
	Response
	Findings

	Process-Induced Emergency
	Details
	Response
	Findings

	All Problems Have Solutions
	Learn from the Past. Don’t Repeat It.
	Keep a History of Outages
	Ask the Big, Even Improbable, Questions: What If…?
	Encourage Proactive Testing

	Conclusion

	Chapter 14. Managing Incidents
	Unmanaged Incidents
	The Anatomy of an Unmanaged Incident
	Sharp Focus on the Technical Problem
	Poor Communication
	Freelancing

	Elements of Incident Management Process
	Recursive Separation of Responsibilities
	A Recognized Command Post
	Live Incident State Document
	Clear, Live Handoff

	A Managed Incident
	When to Declare an Incident
	In Summary

	Chapter 15. Postmortem Culture: Learning from Failure
	Google’s Postmortem Philosophy
	Collaborate and Share Knowledge
	Introducing a Postmortem Culture
	Conclusion and Ongoing Improvements

	Chapter 16. Tracking Outages
	Escalator
	Outalator
	Aggregation
	Tagging
	Analysis
	Unexpected Benefits

	Chapter 17. Testing for Reliability
	Types of Software Testing
	Traditional Tests
	Production Tests

	Creating a Test and Build Environment
	Testing at Scale
	Testing Scalable Tools
	Testing Disaster
	The Need for Speed
	Pushing to Production
	Expect Testing Fail
	Integration
	Production Probes

	Conclusion

	Chapter 18. Software Engineering in SRE
	Why Is Software Engineering Within SRE Important?
	Auxon Case Study: Project Background and Problem Space
	Traditional Capacity Planning
	Our Solution: Intent-Based Capacity Planning

	Intent-Based Capacity Planning
	Precursors to Intent
	Introduction to Auxon
	Requirements and Implementation: Successes and Lessons Learned
	Raising Awareness and Driving Adoption
	Team Dynamics

	Fostering Software Engineering in SRE
	Successfully Building a Software Engineering Culture in SRE: Staffing and Development Time
	Getting There

	Conclusions

	Chapter 19. Load Balancing at the Frontend
	Power Isn’t the Answer
	Load Balancing Using DNS
	Load Balancing at the Virtual IP Address

	Chapter 20. Load Balancing in the Datacenter
	The Ideal Case
	Identifying Bad Tasks: Flow Control and Lame Ducks
	A Simple Approach to Unhealthy Tasks: Flow Control
	A Robust Approach to Unhealthy Tasks: Lame Duck State

	Limiting the Connections Pool with Subsetting
	Picking the Right Subset
	A Subset Selection Algorithm: Random Subsetting
	A Subset Selection Algorithm: Deterministic Subsetting

	Load Balancing Policies
	Simple Round Robin
	Least-Loaded Round Robin
	Weighted Round Robin

	Chapter 21. Handling Overload
	The Pitfalls of “Queries per Second”
	Per-Customer Limits
	Client-Side Throttling
	Criticality
	Utilization Signals
	Handling Overload Errors
	Deciding to Retry

	Load from Connections
	Conclusions

	Chapter 22. Addressing Cascading Failures
	Causes of Cascading Failures and Designing to Avoid Them
	Server Overload
	Resource Exhaustion
	Service Unavailability

	Preventing Server Overload
	Queue Management
	Load Shedding and Graceful Degradation
	Retries
	Latency and Deadlines

	Slow Startup and Cold Caching
	Always Go Downward in the Stack

	Triggering Conditions for Cascading Failures
	Process Death
	Process Updates
	New Rollouts
	Organic Growth
	Planned Changes, Drains, or Turndowns

	Testing for Cascading Failures
	Test Until Failure and Beyond
	Test Popular Clients
	Test Noncritical Backends

	Immediate Steps to Address Cascading Failures
	Increase Resources
	Stop Health Check Failures/Deaths
	Restart Servers
	Drop Traffic
	Enter Degraded Modes
	Eliminate Batch Load
	Eliminate Bad Traffic

	Closing Remarks

	Chapter 23. Managing Critical State: Distributed Consensus for Reliability
	Motivating the Use of Consensus: Distributed Systems Coordination Failure
	Case Study 1: The Split-Brain Problem
	Case Study 2: Failover Requires Human Intervention
	Case Study 3: Faulty Group-Membership Algorithms

	How Distributed Consensus Works
	Paxos Overview: An Example Protocol

	System Architecture Patterns for Distributed Consensus
	Reliable Replicated State Machines
	Reliable Replicated Datastores and Configuration Stores
	Highly Available Processing Using Leader Election
	Distributed Coordination and Locking Services
	Reliable Distributed Queuing and Messaging

	Distributed Consensus Performance
	Multi-Paxos: Detailed Message Flow
	Scaling Read-Heavy Workloads
	Quorum Leases
	Distributed Consensus Performance and Network Latency
	Reasoning About Performance: Fast Paxos
	Stable Leaders
	Batching
	Disk Access

	Deploying Distributed Consensus-Based Systems
	Number of Replicas
	Location of Replicas
	Capacity and Load Balancing

	Monitoring Distributed Consensus Systems
	Conclusion

	Chapter 24. Distributed Periodic Scheduling with Cron
	Cron
	Introduction
	Reliability Perspective

	Cron Jobs and Idempotency
	Cron at Large Scale
	Extended Infrastructure
	Extended Requirements

	Building Cron at Google
	Tracking the State of Cron Jobs
	The Use of Paxos
	The Roles of the Leader and the Follower
	Storing the State
	Running Large Cron

	Summary

	Chapter 25. Data Processing Pipelines
	Origin of the Pipeline Design Pattern
	Initial Effect of Big Data on the Simple Pipeline Pattern
	Challenges with the Periodic Pipeline Pattern
	Trouble Caused By Uneven Work Distribution
	Drawbacks of Periodic Pipelines in Distributed Environments
	Monitoring Problems in Periodic Pipelines
	“Thundering Herd” Problems
	Moiré Load Pattern

	Introduction to Google Workflow
	Workflow as Model-View-Controller Pattern

	Stages of Execution in Workflow
	Workflow Correctness Guarantees

	Ensuring Business Continuity
	Summary and Concluding Remarks

	Chapter 26. Data Integrity: What You Read Is What You Wrote
	Data Integrity’s Strict Requirements
	Choosing a Strategy for Superior Data Integrity
	Backups Versus Archives
	Requirements of the Cloud Environment in Perspective

	Google SRE Objectives in Maintaining Data Integrity and Availability
	Data Integrity Is the Means; Data Availability Is the Goal
	Delivering a Recovery System, Rather Than a Backup System
	Types of Failures That Lead to Data Loss
	Challenges of Maintaining Data Integrity Deep and Wide

	How Google SRE Faces the Challenges of Data Integrity
	The 24 Combinations of Data Integrity Failure Modes
	First Layer: Soft Deletion
	Second Layer: Backups and Their Related Recovery Methods
	Overarching Layer: Replication
	1T Versus 1E: Not “Just” a Bigger Backup
	Third Layer: Early Detection
	Knowing That Data Recovery Will Work

	Case Studies
	Gmail—February, 2011: Restore from GTape
	Google Music—March 2012: Runaway Deletion Detection

	General Principles of SRE as Applied to Data Integrity
	Beginner’s Mind
	Trust but Verify
	Hope Is Not a Strategy
	Defense in Depth

	Conclusion

	Chapter 27. Reliable Product Launches at Scale
	Launch Coordination Engineering
	The Role of the Launch Coordination Engineer

	Setting Up a Launch Process
	The Launch Checklist
	Driving Convergence and Simplification
	Launching the Unexpected

	Developing a Launch Checklist
	Architecture and Dependencies
	Integration
	Capacity Planning
	Failure Modes
	Client Behavior
	Processes and Automation
	Development Process
	External Dependencies
	Rollout Planning

	Selected Techniques for Reliable Launches
	Gradual and Staged Rollouts
	Feature Flag Frameworks
	Dealing with Abusive Client Behavior
	Overload Behavior and Load Tests

	Development of LCE
	Evolution of the LCE Checklist
	Problems LCE Didn’t Solve

	Conclusion

	Part IV. Management
	Chapter 28. Accelerating SREs to On-Call and Beyond
	You’ve Hired Your Next SRE(s), Now What?
	Initial Learning Experiences: The Case for Structure Over Chaos
	Learning Paths That Are Cumulative and Orderly
	Targeted Project Work, Not Menial Work

	Creating Stellar Reverse Engineers and Improvisational Thinkers
	Reverse Engineers: Figuring Out How Things Work
	Statistical and Comparative Thinkers: Stewards of the Scientific Method Under Pressure
	Improv Artists: When the Unexpected Happens
	Tying This Together: Reverse Engineering a Production Service

	Five Practices for Aspiring On-Callers
	A Hunger for Failure: Reading and Sharing Postmortems
	Disaster Role Playing
	Break Real Things, Fix Real Things
	Documentation as Apprenticeship
	Shadow On-Call Early and Often

	On-Call and Beyond: Rites of Passage, and Practicing Continuing Education
	Closing Thoughts

	Chapter 29. Dealing with Interrupts
	Managing Operational Load
	Factors in Determining How Interrupts Are Handled
	Imperfect Machines
	Cognitive Flow State
	Do One Thing Well
	Seriously, Tell Me What to Do
	Reducing Interrupts

	Chapter 30. Embedding an SRE to Recover from Operational Overload
	Phase 1: Learn the Service and Get Context
	Identify the Largest Sources of Stress
	Identify Kindling

	Phase 2: Sharing Context
	Write a Good Postmortem for the Team
	Sort Fires According to Type

	Phase 3: Driving Change
	Start with the Basics
	Get Help Clearing Kindling
	Explain Your Reasoning
	Ask Leading Questions

	Conclusion

	Chapter 31. Communication and Collaboration in SRE
	Communications: Production Meetings
	Agenda
	Attendance

	Collaboration within SRE
	Team Composition
	Techniques for Working Effectively

	Case Study of Collaboration in SRE: Viceroy
	The Coming of the Viceroy
	Challenges
	Recommendations

	Collaboration Outside SRE
	Case Study: Migrating DFP to F1
	Conclusion

	Chapter 32. The Evolving SRE Engagement Model
	SRE Engagement: What, How, and Why
	The PRR Model
	The SRE Engagement Model
	Alternative Support

	Production Readiness Reviews: Simple PRR Model
	Engagement
	Analysis
	Improvements and Refactoring
	Training
	Onboarding
	Continuous Improvement

	Evolving the Simple PRR Model: Early Engagement
	Candidates for Early Engagement
	Benefits of the Early Engagement Model

	Evolving Services Development: Frameworks and SRE Platform
	Lessons Learned
	External Factors Affecting SRE
	Toward a Structural Solution: Frameworks
	New Service and Management Benefits

	Conclusion

	Part V. Conclusions
	Chapter 33. Lessons Learned from Other Industries
	Meet Our Industry Veterans
	Preparedness and Disaster Testing
	Relentless Organizational Focus on Safety
	Attention to Detail
	Swing Capacity
	Simulations and Live Drills
	Training and Certification
	Focus on Detailed Requirements Gathering and Design
	Defense in Depth and Breadth

	Postmortem Culture
	Automating Away Repetitive Work and Operational Overhead
	Structured and Rational Decision Making
	Conclusions

	Chapter 34. Conclusion

	Appendix A. Availability Table
	Appendix B. A Collection of Best Practices for Production Services
	Fail Sanely
	Progressive Rollouts
	Define SLOs Like a User
	Error Budgets
	Monitoring
	Postmortems
	Capacity Planning
	Overloads and Failure
	SRE Teams

	Appendix C. Example Incident State Document
	Appendix D. Example Postmortem
	Appendix E. Launch Coordination Checklist
	Appendix F. Example Production Meeting Minutes
	Bibliography
	Index
	About the Authors
	Colophon

