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1 Vice President, Google Engineering, founder of Google SRE

CHAPTER 1

Introduction

Written by Benjamin Treynor Sloss1

Edited by Betsy Beyer

Hope is not a strategy.
—Traditional SRE saying

It is a truth universally acknowledged that systems do not run themselves. How, then,
should a system—particularly a complex computing system that operates at a large
scale—be run?

The Sysadmin Approach to Service Management
Historically, companies have employed systems administrators to run complex com‐
puting systems.

This systems administrator, or sysadmin, approach involves assembling existing soft‐
ware components and deploying them to work together to produce a service.
Sysadmins are then tasked with running the service and responding to events and
updates as they occur. As the system grows in complexity and traffic volume, generat‐
ing a corresponding increase in events and updates, the sysadmin team grows to
absorb the additional work. Because the sysadmin role requires a markedly different
skill set than that required of a product’s developers, developers and sysadmins are
divided into discrete teams: “development” and “operations” or “ops.”

The sysadmin model of service management has several advantages. For companies
deciding how to run and staff a service, this approach is relatively easy to implement:
as a familiar industry paradigm, there are many examples from which to learn and

3
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emulate. A relevant talent pool is already widely available. An array of existing tools,
software components (off the shelf or otherwise), and integration companies are
available to help run those assembled systems, so a novice sysadmin team doesn’t
have to reinvent the wheel and design a system from scratch.

The sysadmin approach and the accompanying development/ops split has a number
of disadvantages and pitfalls. These fall broadly into two categories: direct costs and
indirect costs.

Direct costs are neither subtle nor ambiguous. Running a service with a team that
relies on manual intervention for both change management and event handling
becomes expensive as the service and/or traffic to the service grows, because the size
of the team necessarily scales with the load generated by the system.

The indirect costs of the development/ops split can be subtle, but are often more
expensive to the organization than the direct costs. These costs arise from the fact
that the two teams are quite different in background, skill set, and incentives. They
use different vocabulary to describe situations; they carry different assumptions about
both risk and possibilities for technical solutions; they have different assumptions
about the target level of product stability. The split between the groups can easily
become one of not just incentives, but also communication, goals, and eventually,
trust and respect. This outcome is a pathology.

Traditional operations teams and their counterparts in product development thus
often end up in conflict, most visibly over how quickly software can be released to
production. At their core, the development teams want to launch new features and
see them adopted by users. At their core, the ops teams want to make sure the service
doesn’t break while they are holding the pager. Because most outages are caused by
some kind of change—a new configuration, a new feature launch, or a new type of
user traffic—the two teams’ goals are fundamentally in tension.

Both groups understand that it is unacceptable to state their interests in the baldest
possible terms (“We want to launch anything, any time, without hindrance” versus
“We won’t want to ever change anything in the system once it works”). And because
their vocabulary and risk assumptions differ, both groups often resort to a familiar
form of trench warfare to advance their interests. The ops team attempts to safeguard
the running system against the risk of change by introducing launch and change
gates. For example, launch reviews may contain an explicit check for every problem
that has ever caused an outage in the past—that could be an arbitrarily long list, with
not all elements providing equal value. The dev team quickly learns how to respond.
They have fewer “launches” and more “flag flips,” “incremental updates,” or “cherry‐
picks.” They adopt tactics such as sharding the product so that fewer features are sub‐
ject to the launch review.

4 | Chapter 1: Introduction
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Google’s Approach to Service Management:
Site Reliability Engineering
Conflict isn’t an inevitable part of offering a software service. Google has chosen to
run our systems with a different approach: our Site Reliability Engineering teams
focus on hiring software engineers to run our products and to create systems to
accomplish the work that would otherwise be performed, often manually, by
sysadmins.

What exactly is Site Reliability Engineering, as it has come to be defined at Google?
My explanation is simple: SRE is what happens when you ask a software engineer to
design an operations team. When I joined Google in 2003 and was tasked with run‐
ning a “Production Team” of seven engineers, my entire life up to that point had been
software engineering. So I designed and managed the group the way I would want it
to work if I worked as an SRE myself. That group has since matured to become Goo‐
gle’s present-day SRE team, which remains true to its origins as envisioned by a life‐
long software engineer.

A primary building block of Google’s approach to service management is the compo‐
sition of each SRE team. As a whole, SRE can be broken down two main categories.

50–60% are Google Software Engineers, or more precisely, people who have been
hired via the standard procedure for Google Software Engineers. The other 40–50%
are candidates who were very close to the Google Software Engineering qualifications
(i.e., 85–99% of the skill set required), and who in addition had a set of technical skills
that is useful to SRE but is rare for most software engineers. By far, UNIX system
internals and networking (Layer 1 to Layer 3) expertise are the two most common
types of alternate technical skills we seek.

Common to all SREs is the belief in and aptitude for developing software systems to
solve complex problems. Within SRE, we track the career progress of both groups
closely, and have to date found no practical difference in performance between engi‐
neers from the two tracks. In fact, the somewhat diverse background of the SRE team
frequently results in clever, high-quality systems that are clearly the product of the
synthesis of several skill sets.

The result of our approach to hiring for SRE is that we end up with a team of people
who (a) will quickly become bored by performing tasks by hand, and (b) have the
skill set necessary to write software to replace their previously manual work, even
when the solution is complicated. SREs also end up sharing academic and intellectual
background with the rest of the development organization. Therefore, SRE is funda‐
mentally doing work that has historically been done by an operations team, but using
engineers with software expertise, and banking on the fact that these engineers are

Google’s Approach to Service Management:  | 5
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inherently both predisposed to, and have the ability to, design and implement auto‐
mation with software to replace human labor.

By design, it is crucial that SRE teams are focused on engineering. Without constant
engineering, operations load increases and teams will need more people just to keep
pace with the workload. Eventually, a traditional ops-focused group scales linearly
with service size: if the products supported by the service succeed, the operational
load will grow with traffic. That means hiring more people to do the same tasks over
and over again.

To avoid this fate, the team tasked with managing a service needs to code or it will
drown. Therefore, Google places a 50% cap on the aggregate “ops” work for all SREs—
tickets, on-call, manual tasks, etc. This cap ensures that the SRE team has enough
time in their schedule to make the service stable and operable. This cap is an upper
bound; over time, left to their own devices, the SRE team should end up with very
little operational load and almost entirely engage in development tasks, because the
service basically runs and repairs itself: we want systems that are automatic, not just
automated. In practice, scale and new features keep SREs on their toes.

Google’s rule of thumb is that an SRE team must spend the remaining 50% of its time
actually doing development. So how do we enforce that threshold? In the first place,
we have to measure how SRE time is spent. With that measurement in hand, we
ensure that the teams consistently spending less than 50% of their time on develop‐
ment work change their practices. Often this means shifting some of the operations
burden back to the development team, or adding staff to the team without assigning
that team additional operational responsibilities. Consciously maintaining this bal‐
ance between ops and development work allows us to ensure that SREs have the
bandwidth to engage in creative, autonomous engineering, while still retaining the
wisdom gleaned from the operations side of running a service.

We’ve found that Google SRE’s approach to running large-scale systems has many
advantages. Because SREs are directly modifying code in their pursuit of making
Google’s systems run themselves, SRE teams are characterized by both rapid innova‐
tion and a large acceptance of change. Such teams are relatively inexpensive—sup‐
porting the same service with an ops-oriented team would require a significantly
larger number of people. Instead, the number of SREs needed to run, maintain, and
improve a system scales sublinearly with the size of the system. Finally, not only does
SRE circumvent the dysfunctionality of the dev/ops split, but this structure also
improves our product development teams: easy transfers between product develop‐
ment and SRE teams cross-train the entire group, and improve skills of developers
who otherwise may have difficulty learning how to build a million-core distributed
system.

Despite these net gains, the SRE model is characterized by its own distinct set of chal‐
lenges. One continual challenge Google faces is hiring SREs: not only does SRE
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compete for the same candidates as the product development hiring pipeline, but the
fact that we set the hiring bar so high in terms of both coding and system engineering
skills means that our hiring pool is necessarily small. As our discipline is relatively
new and unique, not much industry information exists on how to build and manage
an SRE team (although hopefully this book will make strides in that direction!). And
once an SRE team is in place, their potentially unorthodox approaches to service
management require strong management support. For example, the decision to stop
releases for the remainder of the quarter once an error budget is depleted might not
be embraced by a product development team unless mandated by their management.

DevOps or SRE?
The term “DevOps” emerged in industry in late 2008 and as of this writing (early
2016) is still in a state of flux. Its core principles—involvement of the IT function in
each phase of a system’s design and development, heavy reliance on automation ver‐
sus human effort, the application of engineering practices and tools to operations
tasks—are consistent with many of SRE’s principles and practices. One could view
DevOps as a generalization of several core SRE principles to a wider range of organi‐
zations, management structures, and personnel. One could equivalently view SRE as a
specific implementation of DevOps with some idiosyncratic extensions.

Tenets of SRE
While the nuances of workflows, priorities, and day-to-day operations vary from SRE
team to SRE team, all share a set of basic responsibilities for the service(s) they sup‐
port, and adhere to the same core tenets. In general, an SRE team is responsible for
the availability, latency, performance, efficiency, change management, monitoring,
emergency response, and capacity planning of their service(s). We have codified rules
of engagement and principles for how SRE teams interact with their environment—
not only the production environment, but also the product development teams, the
testing teams, the users, and so on. Those rules and work practices help us to main‐
tain our focus on engineering work, as opposed to operations work.

The following section discusses each of the core tenets of Google SRE.

Ensuring a Durable Focus on Engineering
As already discussed, Google caps operational work for SREs at 50% of their time.
Their remaining time should be spent using their coding skills on project work. In
practice, this is accomplished by monitoring the amount of operational work being
done by SREs, and redirecting excess operational work to the product development
teams: reassigning bugs and tickets to development managers, [re]integrating devel‐
opers into on-call pager rotations, and so on. The redirection ends when the opera‐
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tional load drops back to 50% or lower. This also provides an effective feedback
mechanism, guiding developers to build systems that don’t need manual intervention.
This approach works well when the entire organization—SRE and development alike
—understands why the safety valve mechanism exists, and supports the goal of hav‐
ing no overflow events because the product doesn’t generate enough operational load
to require it.

When they are focused on operations work, on average, SREs should receive a maxi‐
mum of two events per 8–12-hour on-call shift. This target volume gives the on-call
engineer enough time to handle the event accurately and quickly, clean up and
restore normal service, and then conduct a postmortem. If more than two events
occur regularly per on-call shift, problems can’t be investigated thoroughly and engi‐
neers are sufficiently overwhelmed to prevent them from learning from these events.
A scenario of pager fatigue also won’t improve with scale. Conversely, if on-call SREs
consistently receive fewer than one event per shift, keeping them on point is a waste
of their time.

Postmortems should be written for all significant incidents, regardless of whether or
not they paged; postmortems that did not trigger a page are even more valuable, as
they likely point to clear monitoring gaps. This investigation should establish what
happened in detail, find all root causes of the event, and assign actions to correct the
problem or improve how it is addressed next time. Google operates under a blame-
free postmortem culture, with the goal of exposing faults and applying engineering to
fix these faults, rather than avoiding or minimizing them.

Pursuing Maximum Change Velocity Without Violating a Service’s SLO
Product development and SRE teams can enjoy a productive working relationship by
eliminating the structural conflict in their respective goals. The structural conflict is
between pace of innovation and product stability, and as described earlier, this con‐
flict often is expressed indirectly. In SRE we bring this conflict to the fore, and then
resolve it with the introduction of an error budget.

The error budget stems from the observation that 100% is the wrong reliability target
for basically everything (pacemakers and anti-lock brakes being notable exceptions).
In general, for any software service or system, 100% is not the right reliability target
because no user can tell the difference between a system being 100% available and
99.999% available. There are many other systems in the path between user and ser‐
vice (their laptop, their home WiFi, their ISP, the power grid…) and those systems
collectively are far less than 99.999% available. Thus, the marginal difference between
99.999% and 100% gets lost in the noise of other unavailability, and the user receives
no benefit from the enormous effort required to add that last 0.001% of availability.
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If 100% is the wrong reliability target for a system, what, then, is the right reliability
target for the system? This actually isn’t a technical question at all—it’s a product
question, which should take the following considerations into account:

• What level of availability will the users be happy with, given how they use the
product?

• What alternatives are available to users who are dissatisfied with the product’s
availability?

• What happens to users’ usage of the product at different availability levels?

The business or the product must establish the system’s availability target. Once that
target is established, the error budget is one minus the availability target. A service
that’s 99.99% available is 0.01% unavailable. That permitted 0.01% unavailability is
the service’s error budget. We can spend the budget on anything we want, as long as
we don’t overspend it.

So how do we want to spend the error budget? The development team wants to
launch features and attract new users. Ideally, we would spend all of our error budget
taking risks with things we launch in order to launch them quickly. This basic prem‐
ise describes the whole model of error budgets. As soon as SRE activities are concep‐
tualized in this framework, freeing up the error budget through tactics such as phased
rollouts and 1% experiments can optimize for quicker launches.

The use of an error budget resolves the structural conflict of incentives between
development and SRE. SRE’s goal is no longer “zero outages”; rather, SREs and prod‐
uct developers aim to spend the error budget getting maximum feature velocity. This
change makes all the difference. An outage is no longer a “bad” thing—it is an
expected part of the process of innovation, and an occurrence that both development
and SRE teams manage rather than fear.

Monitoring
Monitoring is one of the primary means by which service owners keep track of a sys‐
tem’s health and availability. As such, monitoring strategy should be constructed
thoughtfully. A classic and common approach to monitoring is to watch for a specific
value or condition, and then to trigger an email alert when that value is exceeded or
that condition occurs. However, this type of email alerting is not an effective solution:
a system that requires a human to read an email and decide whether or not some type
of action needs to be taken in response is fundamentally flawed. Monitoring should
never require a human to interpret any part of the alerting domain. Instead, software
should do the interpreting, and humans should be notified only when they need to
take action.

Tenets of SRE | 9

www.itbook.store/books/9781491929124

https://itbook.store/books/9781491929124


2 See “Disaster Role Playing” on page 401.

There are three kinds of valid monitoring output:

Alerts
Signify that a human needs to take action immediately in response to something
that is either happening or about to happen, in order to improve the situation.

Tickets
Signify that a human needs to take action, but not immediately. The system can‐
not automatically handle the situation, but if a human takes action in a few days,
no damage will result.

Logging
No one needs to look at this information, but it is recorded for diagnostic or for‐
ensic purposes. The expectation is that no one reads logs unless something else
prompts them to do so.

Emergency Response
Reliability is a function of mean time to failure (MTTF) and mean time to repair
(MTTR) [Sch15]. The most relevant metric in evaluating the effectiveness of emer‐
gency response is how quickly the response team can bring the system back to health
—that is, the MTTR.

Humans add latency. Even if a given system experiences more actual failures, a sys‐
tem that can avoid emergencies that require human intervention will have higher
availability than a system that requires hands-on intervention. When humans are
necessary, we have found that thinking through and recording the best practices
ahead of time in a “playbook” produces roughly a 3x improvement in MTTR as com‐
pared to the strategy of “winging it.” The hero jack-of-all-trades on-call engineer does
work, but the practiced on-call engineer armed with a playbook works much better.
While no playbook, no matter how comprehensive it may be, is a substitute for smart
engineers able to think on the fly, clear and thorough troubleshooting steps and tips
are valuable when responding to a high-stakes or time-sensitive page. Thus, Google
SRE relies on on-call playbooks, in addition to exercises such as the “Wheel of Mis‐
fortune,”2 to prepare engineers to react to on-call events.

Change Management
SRE has found that roughly 70% of outages are due to changes in a live system. Best
practices in this domain use automation to accomplish the following:
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• Implementing progressive rollouts
• Quickly and accurately detecting problems
• Rolling back changes safely when problems arise

This trio of practices effectively minimizes the aggregate number of users and opera‐
tions exposed to bad changes. By removing humans from the loop, these practices
avoid the normal problems of fatigue, familiarity/contempt, and inattention to highly
repetitive tasks. As a result, both release velocity and safety increase.

Demand Forecasting and Capacity Planning
Demand forecasting and capacity planning can be viewed as ensuring that there is
sufficient capacity and redundancy to serve projected future demand with the
required availability. There’s nothing particularly special about these concepts, except
that a surprising number of services and teams don’t take the steps necessary to
ensure that the required capacity is in place by the time it is needed. Capacity plan‐
ning should take both organic growth (which stems from natural product adoption
and usage by customers) and inorganic growth (which results from events like feature
launches, marketing campaigns, or other business-driven changes) into account.

Several steps are mandatory in capacity planning:

• An accurate organic demand forecast, which extends beyond the lead time
required for acquiring capacity

• An accurate incorporation of inorganic demand sources into the demand
forecast

• Regular load testing of the system to correlate raw capacity (servers, disks, and so
on) to service capacity

Because capacity is critical to availability, it naturally follows that the SRE team must
be in charge of capacity planning, which means they also must be in charge of provi‐
sioning.

Provisioning
Provisioning combines both change management and capacity planning. In our
experience, provisioning must be conducted quickly and only when necessary, as
capacity is expensive. This exercise must also be done correctly or capacity doesn’t
work when needed. Adding new capacity often involves spinning up a new instance
or location, making significant modification to existing systems (configuration files,
load balancers, networking), and validating that the new capacity performs and deliv‐
ers correct results. Thus, it is a riskier operation than load shifting, which is often
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3 For further discussion of how this collaboration can work in practice, see “Communications: Production
Meetings” on page 426.

done multiple times per hour, and must be treated with a corresponding degree of
extra caution.

Efficiency and Performance
Efficient use of resources is important any time a service cares about money. Because
SRE ultimately controls provisioning, it must also be involved in any work on utiliza‐
tion, as utilization is a function of how a given service works and how it is provi‐
sioned. It follows that paying close attention to the provisioning strategy for a service,
and therefore its utilization, provides a very, very big lever on the service’s total costs.

Resource use is a function of demand (load), capacity, and software efficiency. SREs
predict demand, provision capacity, and can modify the software. These three factors
are a large part (though not the entirety) of a service’s efficiency.

Software systems become slower as load is added to them. A slowdown in a service
equates to a loss of capacity. At some point, a slowing system stops serving, which
corresponds to infinite slowness. SREs provision to meet a capacity target at a specific
response speed, and thus are keenly interested in a service’s performance. SREs and
product developers will (and should) monitor and modify a service to improve its
performance, thus adding capacity and improving efficiency.3

The End of the Beginning
Site Reliability Engineering represents a significant break from existing industry best
practices for managing large, complicated services. Motivated originally by familiarity
—“as a software engineer, this is how I would want to invest my time to accomplish a
set of repetitive tasks”—it has become much more: a set of principles, a set of practi‐
ces, a set of incentives, and a field of endeavor within the larger software engineering
discipline. The rest of the book explores the SRE Way in detail.
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