
Lindsay Bassett

Introduction to
JavaScript
Object
Notation
A TO-THE-POINT GUIDE TO JSON

www.itbook.store/books/9781491929483

https://itbook.store/books/9781491929483

WEB PROGR AMMING

Introduction to JavaScript Object Notation

ISBN: 978-1-491-92948-3

US $19.99 CAN $22.99

“	A	whole	book,	just	on	
JSON?	Yes.	This	book	
covers	everything	you	
need	to	know	about	
JSON,	and	then	goes	
beyond	that	into	
everything	you	need	to	
know	about	JSON	that	
you	didn't	know	you	
needed.	An	excellent,	
informative,	and	
exhaustive	resource.”

—Shelley Powers
Web Developer, Author of

JavaScript Cookbook and HTML5 Media

Twitter: @oreillymedia
facebook.com/oreilly

What is JavaScript Object Notation (JSON) and how can you put it to work?
This concise guide helps busy IT professionals get up and running quickly
with this popular data interchange format, and provides a deep
understanding of how JSON works. Author Lindsay Bassett begins with an
overview of JSON syntax, data types, formatting, and security concerns
before exploring the many ways you can apply JSON today.

From Web APIs and server-side language libraries to NoSQL databases and
client-side frameworks, JSON has emerged as a viable alternative to XML
for exchanging data between different platforms. If you have some
programming experience and a basic understanding of HTML and JavaScript,
this is your book.

 ■ Learn why JSON syntax represents data in name-value pairs

 ■ Explore JSON data types, including object, string, number,
and array

 ■ Find out how you can combat common security concerns

 ■ Learn how the JSON schema verifies that data is formatted
correctly

 ■ Examine the relationship between browsers, web APIs, and JSON

 ■ Understand how web servers can both request and create data

 ■ Discover how jQuery and other client-side frameworks use JSON

 ■ Learn why the CouchDB NoSQL database uses JSON to store data

Lindsay Bassett is an author, educator, and web developer with a passion for writing,
teaching, and technology. Her online technology courses and books share the same
“to-the-point” style that caters to IT professionals and students.

www.itbook.store/books/9781491929483

https://itbook.store/books/9781491929483

978-1-491-92948-3

[LSI]

Introduction to JavaScript Object Notation
by Lindsay Bassett

Copyright © 2015 Lindsay Bassett. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meg Foley
Production Editor: Kristen Brown
Copyeditor: Jasmine Kwityn
Proofreader: Charles Roumeliotis

Indexer: Ellen Troutman
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

August 2015: First Edition

Revision History for the First Edition
2015-08-04: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491929483 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Introduction to JavaScript Object Nota‐
tion, the cover image of a harbor seal, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.itbook.store/books/9781491929483

https://itbook.store/books/9781491929483

Table of Contents

Preface. vii

1. What Is JSON?. 1
JSON Is a Data Interchange Format 1
JSON Is Programming Language Independent 2
Key Terms and Concepts 4

2. JSON Syntax. 5
JSON Is Based on JavaScript Object Literals 5
Name-Value Pairs 6
Proper JSON Syntax 7
Syntax Validation 10
JSON as a Document 11
The JSON MediaType 11
Key Terms and Concepts 11

3. JSON Data Types. 13
Quick Look at Data Types 13
The JSON Data Types 15
The JSON Object Data Type 16
The JSON String Data Type 17
The JSON Number Data Type 19
The JSON Boolean Data Type 20
The JSON null Data Type 20
The JSON Array Data Type 21
Key Terms and Concepts 26

iii

www.itbook.store/books/9781491929483

https://itbook.store/books/9781491929483

4. JSON Schema. 29
Contracts with Validation Magic 30
Introduction to JSON Schema 31
Key Terms and Concepts 37

5. JSON Security Concerns. 39
A Quick Look at Client- and Server-Side Relationships 39
Cross-Site Request Forgery (CSRF) 40
Injection Attacks 43

Cross-Site Scripting (XSS) 43
Holes in Security: Architectural Decisions 45

Key Terms and Concepts 46

6. The JavaScript XMLHttpRequest and Web APIs. 49
Web APIs 50
The JavaScript XMLHttpRequest 53
Relationship Woes and Rules About Sharing 57

Cross-Origin Resource Sharing (CORS) 57
JSON-P 58

Key Terms and Concepts 60

7. JSON and Client-Side Frameworks. 63
jQuery and JSON 64
AngularJS 66
Key Terms and Concepts 71

8. JSON and NoSQL. 73
The CouchDB Database 74
The CouchDB API 77
Key Terms and Concepts 85

9. JSON on the Server Side. 87
Serializing, Deserializing, and Requesting JSON 88

ASP.NET 88
PHP 92
A Smorgasbord of JSON HTTP Requests 97
Ruby on Rails 97
Node.js 98
Java 99

Key Terms and Concepts 100

iv | Table of Contents

www.itbook.store/books/9781491929483

https://itbook.store/books/9781491929483

10. Conclusion. 101
JSON as a Configuration File 101
The Big Picture 104

Index. 107

Table of Contents | v

www.itbook.store/books/9781491929483

https://itbook.store/books/9781491929483

www.itbook.store/books/9781491929483

https://itbook.store/books/9781491929483

CHAPTER 1

What Is JSON?

Before we look at JSON from a low-level point of view, let’s take a look at JSON from
about 6,000 feet. From the mountain summit, we can see JSON flitting about in the
world, carrying data in its lightweight format. If we look through our binoculars at
JSON, we will see data among many curly bracket characters ({}). However, if we step
back, and watch how it’s being used, we will ultimately see that it is a data interchange
format.

JSON Is a Data Interchange Format
A data interchange format is a text format used to exchange data between platforms.
Another data interchange format you may already have heard of is XML. The world
needs data interchange formats, like XML and JSON, to exchange data between very
different systems.

Imagine for a moment a world comprised of hundreds of tiny, isolated islands among
a vast ocean. Each island has its own unique language and customs. The islands all
have seafaring merchants that travel long distances between the islands. Outside trade
is an integral part of all the island economies and contributes to a high standard of
living for the islanders. If it weren’t for the highly trained carrier seagulls, this would
not be possible.

The carrier seagulls move from island to island, carrying a paper report of data on
which goods are in the highest demand. This way, merchants find out where they
should move to next, and which goods they should acquire before embarking on their
long voyages across the oceans. This important data allows all the islands to prosper
without the threat of shortages.

Keep in mind, each island speaks a different language. If the data were passed around
in several languages, each island would need to invest in researchers to learn all the

1

www.itbook.store/books/9781491929483

https://itbook.store/books/9781491929483

world’s languages and employ a team of translators. This would be expensive and
time consuming. This is an intelligent world, however, so the islands all agreed on a
single language with a standard format for communicating their trade data. Each
island employs just a single translator that understands the one data format of the
trade reports brought by the carrier seagulls.

The real world of technology is much like the imagined island world example. There
is a vast ocean, full of islands that have different languages, customs, and architecture.
The ability for these unique systems to communicate is integral to many businesses
and organizations. If each of these systems needed a translator for all the many ways
other systems structure their data, then communications would consume an unrea‐
sonable amount of time and resources. Instead, the systems agree on a single format
for data and employ a single translator.

JSON is a data interchange format that many systems have agreed on using for com‐
municating data. You may hear it referred to as a “data exchange format,” or simply a
“data format.” In this book, I will refer to JSON as a data interchange format because
the definition of “interchange” reminds us that the data format is intended for two or
more entities exchanging it.

Many, but not all systems have agreed on JSON for communicating data. There are
data interchange formats, such as Extensible Markup Language (XML), that were
around before JSON was even thought about. The real world is not quite as simple as
the island example. Many systems have and still use other formats, such as XML, or
more tabular, delimited formats such as comma-separated values (CSV). The deci‐
sion by each island in the real world for which data format to accept for communica‐
tion often has to do with how the data format relates to the customs, language, and
architecture of the island.

In the island world example, each of the hundreds of islands had its own language.
The data in the paper report that the carrier seagulls carried was in an agreed upon
format that was independent of language. This way, a single translator of the trade
reports data could be employed by each island. The same is true of JSON, except the
data is carried across networks in zeros and ones instead of by seagulls. The translator
isn’t a human, it is a parser employed by the system consuming the data so it can be
read within the system it is entering.

JSON Is Programming Language Independent
JSON stands for JavaScript Object Notation. The name of this data interchange for‐
mat may mislead people into thinking they will need to learn JavaScript to under‐
stand and use JSON. There would be some value in learning JavaScript before
learning JSON, as it was born out of a subset of JavaScript, but if you will not be using
JavaScript anytime soon it would be unnecessary. You may remain dedicated to the

2 | Chapter 1: What Is JSON?

www.itbook.store/books/9781491929483

https://itbook.store/books/9781491929483

language or languages of your own island, for the spirit of a data interchange format
is to be independent of language.

JSON is based on JavaScript object literals. A detailed explanation into the “how” of
this is better suited for our discussion on syntax (Chapter 2) and data types (Chap‐
ter 3). For this chapter, the “why” is important. If a data interchange format is meant
to be language independent, then it may seem contradictory to have a data format
that is not only derived from a single language, but advertises it in its name: Java‐
Script Object Notation. Why, then?

If we return to the island example, imagine for a moment what the meeting to select
the data format would have been like. When the representatives from each of the
hundreds of islands arrived at this meeting, and looked to create a single data format,
the first thing they would want to find is common ground.

The languages of each island may have been unique, but there were things the island‐
ers found they had in common. Most of the languages were spoken primarily with
the human voice and included a written form of the language represented by charac‐
ters of some sort. Additionally, facial expressions and hand movements were also
present. There were a few troublesome islands where the people communicated by
other means, such as hitting sticks together or winking, but the majority of the
islands found common ground with their written and spoken forms of language.

In the real world, there are hundreds of programming languages. Some are more
popular and commonly used than others, but the language landscape is diverse.
When college students major in computer science in preparation for a career in pro‐
gramming, they do not study all the programming languages. Students usually begin
with one language, and the language itself is not so important as learning the univer‐
sally accepted programming concepts. Once students gain an understanding of these
concepts, they can more easily learn other programming languages through their
ability to recognize the common features and functionalities.

If we set aside the word “JavaScript” from the name “JavaScript Object Notation,” we
would be left with “Object Notation.” In fact, let’s forget JavaScript all together. We
could then say we are using an object notation data interchange format. “Object” is a
common programming concept, in particular to object-oriented programming
(OOP). Most computer science students studying programming will learn the con‐
cept of objects.

Without diving into an explanation of objects, let’s settle our attention on the word
“Notation.” Notation implies a system of characters for representing data such as
numbers or words. With or without an understanding of objects in programming, it
is not a stretch to see the value of having a notation to describe something that is
common across programming languages.

JSON Is Programming Language Independent | 3

www.itbook.store/books/9781491929483

https://itbook.store/books/9781491929483

Returning again to the island example, the islanders themselves found a notation that
represented a common tie among the majority of languages. Most of the islanders
had a similar way of representing numbers with tallies, and it was agreed they could
understand a series of symbols for representing real-world objects such as wheat or
fabric. Even the island that communicated by winking found this format acceptable.

Despite the agreement among the vast majority of islands, there were still a few
islands, such as the island that communicated by hitting sticks together, that did not
find the format understandable. A good data interchange format covers the majority,
but there are usually outliers. When we talk about this coverage, a term often thrown
around is portability. Portability, or the compatibility in transferring information
between platforms and systems, is the very goal of a data interchange format.

Circling back to notation, the notation of JSON may originate from JavaScript, but
the notation itself is the important part. Not only is JSON language independent, it
represents data in a way that speaks to common elements of many programming lan‐
guages. With the way that data is represented, such as numbers and words, even the
programming languages that aren’t object oriented can find this format acceptable.

Key Terms and Concepts
This chapter covered the following key terms:

JSON
JavaScript Object Notation.

Notation
A system of characters for representing data such as numbers or words.

Data interchange format
Text used to exchange data between platforms or systems.

Portability
Transferring information between platforms in a way that is compatible with
both systems.

We also discussed these key concepts:

• JSON is a data interchange format.
• JSON is programming language independent (JavaScript is not required to use

it).
• JSON is based on the object literal notation of JavaScript (emphasis on the word

“notation”).
• JSON represents data in a way that is friendly to universal programming

concepts.

4 | Chapter 1: What Is JSON?

www.itbook.store/books/9781491929483

https://itbook.store/books/9781491929483

CHAPTER 2

JSON Syntax

JSON Is Based on JavaScript Object Literals
In the English language, the word “literal” is an adjective used to imply that what is
being said is exact, not a metaphor. When your friend says, “She showed up out of
nowhere and I literally dropped my sandwich,” he is stating that the dropping of the
sandwich is not a metaphor.

In programming, the word “literal” is a noun. A literal is a value that is represented
literally with data. It is written precisely as it is meant to be interpreted. If you aren’t
familiar with programming concepts, then this might seem strange. Let’s take a quick
look at literals.

Do you carry cash in your wallet, or a debit card? When I stop off at the sandwich
shop and hand the cashier a five dollar bill for my sandwich, I physically watch my
five dollars leave my wallet. When I swipe my debit card to pay for a sandwich, I
know I have five dollars less in my back account, even though I didn’t see it happen.

In programming, we often use variables to represent values. For example, I might use
a variable I call x in an expression like:

x = 5

Then, later on, I might want to add five more to x:

x = x + 5

At this point, we know the value of x is 10, but we don’t see 10. In this example, x was
the variable, and 5 was a literal. In our sandwich shop example, we could say that the
five dollars cash was a literal, and the debit card was a variable. When we see the
actual value, it is a literal value.

5

www.itbook.store/books/9781491929483

https://itbook.store/books/9781491929483

In the “x = 5” example, 5 is a number literal. A number is a data type. Other types of
data are strings (made up of characters), boolean (true or false), null (nothing), col‐
lections of values, and objects. Representing a number value in a way that we can see
is simple, and we use a number character. Representing a boolean value is also simple
and we can use true/false or 0/1. If you are familiar with the concept of objects, you
will understand that representing an object is no easy or simple matter. If you aren’t
familiar with the concept of objects, that is OK too.

In programming, the concept of an object is similar to how you would describe a
real-world object, such as your shoes. You could describe your shoes with attributes
or properties such as color, style, brand, and the type of insole. Some of these
attribute values could be a number, such as shoe size, and others could be a boolean
(true/false) such as “has laces.” Example 2-1 shows an example.

Example 2-1. Using JSON to describe the shoes I’m wearing right now

{
 "brand": "Crocs",
 "color": "pink",
 "size": 9,
 "hasLaces": false
}

Don’t be concerned just yet about the syntax in the shoe example; we will arrive there
later in this chapter. The main point of the shoe example is that you (even a human)
can literally read the attributes of my shoe. The data type for my JSON shoe example
is object. The literal value of the object exposes the properties or attributes in a way
which we can see (and read). These attributes or properties of the shoe object are rep‐
resented as name-value pairs.

JSON is based on JavaScript object literals. The key phrase here is “based on.” In Java‐
Script (and most programming languages with objects), the object can include a
function. So not only could I represent the properties of my shoe with the JavaScript
object, but I could create a function called “walk.”

However, data interchange is about data, so JSON does not include the functions of
JavaScript object literals. The way that JSON is based on JavaScript object literals is
purely in the syntactic representation of the object literal and its properties. This rep‐
resentation of properties is achieved with name-value pairs.

Name-Value Pairs
The concept of name-value pairs is widespread in computing. They are called by
other names as well: key-value pairs, attribute-value pairs, and field-value pairs. In
this book, we will refer to them as name-value pairs.

6 | Chapter 2: JSON Syntax

www.itbook.store/books/9781491929483

https://itbook.store/books/9781491929483

If you are familiar with the concept of name-value pairs, JSON will seem natural to
you. If you aren’t familiar with name-value pairs, that’s OK too. Let’s take a quick look
at name-value pairs.

In a name-value pair, you first declare the name. For example, "animal". Now, pair
implies two things: a name and a value. So let’s give our name (in this case, "animal")
a value. To simplify this concept for this chapter, let’s use a string value. With name-
value pairs in JSON, the value can also be a number, a boolean, null, an array, or an
object. We will go more in depth with the other value data types beyond string in
Chapter 3. So, for this name-value pair, which has the name "animal", we will use the
string value, "cat":

"animal" : "cat"

"animal" is the name and "cat" is the value. There are many ways that we could
choose to delimit, or separate, the name and the value. If I were to provide you with a
directory of a company’s employees with their job titles, I’d probably hand you a list
that looks something like this:

• Bob Barker, Chief Executive Officer
• Janet Jackson, Chief Operations Officer
• Mr. Ed, Chief Financial Officer

For my employee directory, I used commas to separate my job titles (names) and
employee names (values). I also placed the value on the left and the name on the
right.

JSON uses the colon character (:) to separate the names and values. The name is
always on the left and the value is always on the right. Let’s take a look at a few more:

"animal" : "horse"

"animal" : "dog"

Simple, right? A name and a value, and you have a name-value pair.

Proper JSON Syntax
Now let’s take a look at what proper JSON syntax entails. The name, which in our
example is "animal", is always surrounded in double quotes. The name in the double
quotes can be any valid string. So, you could have a name that looks like this, and it
would be perfectly valid JSON:

"My animal": "cat"

You can even place an apostrophe in the name:

"Lindsay's animal": "cat"

Proper JSON Syntax | 7

www.itbook.store/books/9781491929483

https://itbook.store/books/9781491929483

Now that you know that this is valid JSON, I’m going to tell you why you shouldn’t do
this. The name-value pairs used in JSON are a friendly data structure to many sys‐
tems. Having a space or special character (other than a–z, 0–9) in the name would
not be taking portability into consideration. In Chapter 1, we defined this key term as
“transferring information between platforms in a way that is compatible with both
systems.” We can do things in our JSON data that decrease portability; therefore, we
say it is important to avoid spaces or special characters for maximum portability.

The name in the name-value pair of your JSON, if it is to be loaded in memory by a
system as an object, will become a “property” or “attribute.” A property or attribute in
some systems can include an underscore character (_) or numbers, but in most cases
it is considered good form to stick to the characters of the alphabet, A–Z or a–z. So, if
I wanted to include multiple words in my name, I would format like so:

"lindsaysAnimal": "cat"

or

"myAnimal": "cat"

The "cat" value in the example has double quotes. Unlike the name in the name-
value pair, the value does not always have double quotes. If our value is a string data
type, we must have double quotes. In JSON, the remaining data types are number,
boolean, array, object, and null. These will not be surrounded in double quotes. The
format of these will be covered in Chapter 3.

JSON stands for JavaScript Object Notation. So, the only thing we are missing is the
syntax that makes it an object. We need curly brackets surrounding our name-value
pair to make it an object. So, one before...

{ "animal" : "cat" }

...and one after. When you are formatting your JSON, picture a knighting ceremony
where the master of the ceremony dubs the new knight on the shoulders with a
sword. You are the master of the ceremony, and you must dub your JSON as an object
on each side with a curly bracket. “I dub thee, sir JSON.” The ceremony would not be
complete without a tap on each shoulder.

In JSON, multiple name-value pairs are separated by a comma. So, to extend the ani‐
mal/cat example, let’s add a color:

{ "animal" : "cat", "color" : "orange" }

Another way to look at JSON syntax would be through the eyes of the machine that is
reading it. Unlike humans, machines are very rigidly rule- and instruction-oriented
creatures. When you use any of the following characters outside of a string value (not
surrounded in quotes), you are providing an instruction on how your data is to be
read:

8 | Chapter 2: JSON Syntax

www.itbook.store/books/9781491929483

https://itbook.store/books/9781491929483

• { (left curly bracket) says “begin object”
• } (right curly bracket) says “end object”
• [(left square bracket) says “begin array”
•] (right square bracket) says “end array”
• : (colon) says “separating a name and a value in a name-value pair”
• , (comma) says “separating a name-value pair in an object” or “separating a value

in an array”; can also be read as “here comes another one”

If you forget to say “end object” with a right curly bracket, then your object will not
be recognized as an object. If you place a comma at the end of your list of name-value
pairs, you are giving the instruction “here comes another one” and then not provid‐
ing it. Therefore, it is important to be correct in your syntax.

A Story: The Double Quotes of JSON
One day I was peering over a student’s shoulder, looking at his computer screen. He
was showing me some JSON that he was about to validate (Example 2-2).

Example 2-2. The “JSON” that would not validate

{
 title : "This is my title.",
 body : "This is the body."
}

Upon validation he received a parsing error and became frustrated. He said, “Look,
there’s nothing wrong with it!”

I pointed out to him that he was missing quotes around "title" and "body". He said,
“But I’ve seen JSON formatted both ways, with and without quotes around the
names.” “Ah,” I said. “When you saw it without quotes around the names, that was not
JSON. It was a JavaScript object.”

This confusion is understandable. JSON is based on JavaScript object literals, so it
looks much the same. A JavaScript object literal does not need quotes around the
name of the name-value pair. In JSON, it is absolutely required.

Another point of confusion can be the usage of single quotes instead of double
quotes. In JavaScript, an object may have single quotes for syntax instead of double
quotes (see Example 2-3).

Example 2-3. This is not valid JSON

{
 'title': 'This is my title.',
 'body': 'This is the body.'
}

Proper JSON Syntax | 9

www.itbook.store/books/9781491929483

https://itbook.store/books/9781491929483

In JSON, only double quotes are used, and they are absolutely required around the
name of the name-value pair (see Example 2-4).

Example 2-4. Valid JSON

{
 "title": "This is my title.",
 "body": "This is the body."
}

Syntax Validation
Unlike machines, as a human using a keyboard, creating an error is as simple as a
missed keystroke. It’s amazing, really, that we don’t produce more errors than we do.
Validating JSON is an important part of working with JSON.

Your integrated development environment (IDE) might have built-in validation for
your JSON. If your IDE supports plug-ins and add-ons, you might find a validation
tool there if it is not already integrated. If you don’t use an IDE, or have no idea what
I’m talking about, that’s OK too.

There are many online tools for formatting and validating JSON. A quick jaunt on
your search engine for “JSON validation” will give you several results. Here are a few
worth mentioning:

JSON Formatter & Validator
A formatting tool with options, and a beautiful UI that highlights errors. The
processed JSON displays in a window that doubles as a tree/node style visualiza‐
tion tool and a window to copy/paste your formatted code from.

JSON Editor Online
An all-in-one validation, formatting, and visualization tool for JSON. An error
indicator is displayed on the line of the error. Upon validation, helpful parsing
error information is displayed. The visualization tool displays your JSON in a
tree/node format.

JSONLint
A no-bells-and-whistles validation tool for JSON. Simply copy, paste, and click
“validate.” It also kindly formats your JSON.

These are tools for syntax validation. Later, in Chapter 4, we’ll discuss another type of
validation called conformity validation. Syntax validation concerns the form of JSON
itself, whereas conformity validation concerns a unique data structure. For
Example 2-5, syntax validation would be concerned that our JSON is correct (sur‐
rounded in curly brackets, dividing our name-value pairs with commas). Conformity
validation would be concerned that our data included a name, breed, and age. Addi‐

10 | Chapter 2: JSON Syntax

www.itbook.store/books/9781491929483

https://itbook.store/books/9781491929483

tionally the conformity validation would be concerned that the value of age is a num‐
ber, and the value of name is a string.

Example 2-5. Validation example

{
 "name": "Fluffy",
 "breed": "Siamese",
 "age": 2
}

JSON as a Document
You might find that in your future experiences with JSON, you are only ever creating
it in code and passing it around in an unseen world that can only be inspected by
developer tools. However, as a data interchange format, JSON can be its own docu‐
ment and live in a filesystem. The file extension for JSON is easy to remember: .json.

So, if I were to save my animal/cat JSON to a file and store it on my computer, it
would look something like this: C:\animals.json.

The JSON MediaType
Oftentimes when you are passing data to someone else, you need to tell them ahead
of time what type it is. You may hear this called an Internet media type, a content
type, or a MIME type. This type is formatted as type/subtype. One type that you
may have already heard of is text/html.

The MIME type for JSON is application/json.

The Internet Assigned Numbers Authority (IANA) maintains a comprehensive list of
media types.

Key Terms and Concepts
This chapter covered the following key terms:

Literal
A value that is written precisely as it is meant to be interpreted.

Variable
A value that can be changed and is represented by an identifier, such as x.

Maximum portability (in data interchange)
Transcending the base portability of the data format by ensuring the data itself
will be compatible across systems or platforms.

JSON as a Document | 11

www.itbook.store/books/9781491929483

https://itbook.store/books/9781491929483

Name-value pair
A name-value pair (or key-value pair) is a property or attribute with a name, and
a corresponding value.

Syntax validation
Validation concerned with the form of JSON.

Conformity validation
Validation concerned with the unique data structure.

We also discussed these key concepts:

• JSON is based on the syntactic representation of the properties of JavaScript
object literals. This does not include the functions of JavaScript object literals.

• In the JSON name-value pair, the name is always surrounded by double quotes.
• In the JSON name-value pair, the value can be a string, number, boolean, null,

object, or array.
• The list of name-value pairs in JSON is surrounded by curly brackets.
• In JSON, multiple name-value pairs are separated by a comma.
• JSON files use the .json extension.
• The JSON media type is application/json.

12 | Chapter 2: JSON Syntax

www.itbook.store/books/9781491929483

https://itbook.store/books/9781491929483

	Cover
	Copyright
	Table of Contents
	Preface
	Audience
	Approach to JSON
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. What Is JSON?
	JSON Is a Data Interchange Format
	JSON Is Programming Language Independent
	Key Terms and Concepts

	Chapter 2. JSON Syntax
	JSON Is Based on JavaScript Object Literals
	Name-Value Pairs
	Proper JSON Syntax
	Syntax Validation
	JSON as a Document
	The JSON MediaType
	Key Terms and Concepts

