
www.itbook.store/books/9781491933091

https://itbook.store/books/9781491933091

www.itbook.store/books/9781491933091

https://itbook.store/books/9781491933091

978-1-491-93309-1

[LSI]

PHP Web Services
by Lorna Jane Mitchell

Copyright © 2016 Lorna Mitchell. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Allyson MacDonald
Production Editor: Colleen Lobner
Copyeditor: Charles Roumeliotis
Proofreader: James Fraleigh

Indexer: WordCo Indexing Services
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

April 2013: First Edition
January 2016: Second Edition

Revision History for the Second Edition
2016-01-05: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491933091 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. PHP Web Services, the cover image of
an alpine accentor, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.itbook.store/books/9781491933091

https://itbook.store/books/9781491933091

Table of Contents

Preface. vii

1. HTTP. 1
Clients and Servers 4
Making HTTP Requests 5

Command-Line HTTP 6
Browser Tools 10
Doing HTTP with PHP 12

2. HTTP Verbs. 17
Serving GET Requests 17
Making GET Requests 19
Handling POST Requests 20
Making POST Requests 22
Using Other HTTP Verbs 23

3. Headers. 27
Request and Response Headers 28
Identify Clients with User-Agent 29
Headers for Content Negotiation 30

Parsing an Accept Header 31
Demonstrating Accept Headers with cURL 33

Securing Requests with the Authorization Header 34
HTTP Basic Authentication 35
HTTP Digest Authentication 36
OAuth 36

Caching Headers 37
Custom Headers 38

iii

www.itbook.store/books/9781491933091

https://itbook.store/books/9781491933091

4. Cookies. 41
Cookie Mechanics 41
Reading and Writing Cookies 43
Making Requests with Cookies 44
Cookies and APIs 45

5. JSON. 47
When to Choose JSON 48
Handling JSON with PHP 49

The JSONSerializable Interface 50
Consuming JSON APIs 51

6. XML. 53
XML in PHP 55

Creating XML 55
Consuming XML APIs 58

Parsing XML 58
Flickr’s XML API 58

7. RPC and SOAP Services. 63
RPC 63
SOAP 66

WSDL 66
PHP SOAP Client 67
PHP SOAP Server 68
Generating a WSDL File from PHP 70
PHP Client and Server with WSDL 72

8. REST. 75
RESTful URLs 76
Resource Structure and Hypermedia 76
Build the Basic RESTful Server 79

Example Project: The Wishlist 79
Create Resources with POST 82
Fetch a Resource or Collection with GET 84
Update a Resource with PUT 87
DELETE a Resource 88

RESTful Versus Useful 90

9. Webhooks. 91
GitHub’s Webhooks 92
Publishing Your Own Webhooks 94

iv | Table of Contents

www.itbook.store/books/9781491933091

https://itbook.store/books/9781491933091

10. HTTP Tools. 97
Easy Command-Line JSON 98
Graphical cURL Alternatives 100
Inspect HTTP Traffic with Wireshark 101
Tunnel Local Traffic Remotely with ngrok 105
Inspect, Edit, Repeat, and Share Requests 107
Proxying PHP Applications 111

Proxy Settings for Guzzle 111
Proxy Settings for HTTP Stream Handling 112

Finding the Tool for the Job 112

11. Maintainable Web Services. 113
Sample API Application 113
Consistent Output Formats 115
Debug Output as a Tool 117
Effective Logging Techniques 120

Error Logging in PHP Applications with Monolog 122
Error Handling with PHP Exceptions 123

12. Making Service Design Decisions. 127
Service Type Decisions 128
How to Present API Data 129

Hypermedia for Easy API Navigation 130
Nested Data or Many Round Trips 130
Data Formats and Media Types 131

Customizable Experiences 134
Pick Your Defaults 137

13. Building a Robust Service. 139
Consistency Is Key 139

Consistent and Meaningful Naming 140
Common Validation Rules 140
Predictable Structures 141

Error Handling in APIs 142
Meaningful Error Messages 142
What to Do When You See Errors 143
Making Design Decisions for Robustness 144

14. Publishing Your API. 145
Documentation Is Key 145

Overview Documentation 145
Generated API Documentation 146

Table of Contents | v

www.itbook.store/books/9781491933091

https://itbook.store/books/9781491933091

Interactive Documentation 148
API Description Languages 150
Automated Testing Tools 151
Tutorials and the Wider Ecosystem 154

A. A Guide to Common Status Codes. 157

B. Common HTTP Headers. 161

Index. 163

vi | Table of Contents

www.itbook.store/books/9781491933091

https://itbook.store/books/9781491933091

CHAPTER 1

HTTP

HTTP stands for HyperText Transfer Protocol, and is the basis upon which the Web
is built. Each HTTP transaction consists of a request and a response. The HTTP pro‐
tocol itself is made up of many pieces: the URL at which the request was directed, the
verb that was used, other headers and status codes, and of course, the body of the
responses, which is what we usually see when we browse the Web in a browser. We’ll
see more detailed examples later in the book, but this idea of requests and responses
consisting of headers as well as body data is a key concept.

When surfing the Web, ideally we experience a smooth journey between all the vari‐
ous places that we’d like to visit. However, this is in stark contrast to what is happen‐
ing behind the scenes as we make that journey. As we go along, clicking on links or
causing the browser to make requests for us, a series of little “steps” is taking place
behind the scenes. Each step is made up of a request/response pair; the client (usually
your browser, either on your laptop or your phone) makes a request to the server, and
the server processes the request and sends the response back. At every step along the
way, the client makes a request and the server sends the response.

As an example, point a browser to http://lornajane.net and you’ll see a page that looks
something like Figure 1-1; either the information desired can be found on the page,
or the hyperlinks on that page direct us to journey onward for it.

The web page arrives in the body of the HTTP response, but it tells only half of the
story. There is so much more going on in the request and response as they happen;
let’s inspect that request to http://lornajane.net (a pretty average WordPress blog) in
more detail.

1

www.itbook.store/books/9781491933091

https://itbook.store/books/9781491933091

Request headers:

GET / HTTP/1.1
Host: www.lornajane.net
Connection: keep-alive
Cache-Control: no-cache
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/
*;q=0.8
User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like
Gecko) ...
Accept-Encoding: gzip, deflate, sdch
Accept-Language: en-GB,en-US;q=0.8,en;q=0.6

Request body: (no body needed for a GET request)

Response headers:

HTTP/1.1 200 OK
Server: Apache/2.4.7 (Ubuntu)
X-Powered-By: PHP/5.5.9-1ubuntu4.6
X-Pingback: http://www.lornajane.net/xmlrpc.php
Expires: Wed, 11 Jan 1984 05:00:00 GMT
Cache-Control: no-cache, must-revalidate, max-age=0
Content-Encoding: gzip
Content-Type: text/html; charset=UTF-8
Content-Length: 8806
Date: Tue, 15 Sep 2015 08:43:54 GMT
X-Varnish: 612483212
Age: 0
Via: 1.1 varnish

Response body (truncated):

<!DOCTYPE html>
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width" />
<meta name="bitly-verification" content="ff69fb2e45ef"/>
<title>Home - LornaJaneLornaJane | Lorna Jane Mitchell's Website</title>
<link rel="shortcut icon" href="http://www.lornajane.net/wp-content/themes/lj/
images/favicon.ico">

... (truncated)

As you can see, there are plenty of other useful pieces of information being
exchanged over HTTP that are not usually seen when using a browser. The browser
understands how to work with request and response headers, and handles that so the
user doesn’t need to.

2 | Chapter 1: HTTP

www.itbook.store/books/9781491933091

https://itbook.store/books/9781491933091

Figure 1-1. Front page of lornajane.net

Understanding this separation between client and server, and the steps taken by
the request and response pairs, is key to understanding HTTP and working with web
services. Here’s an example of what happens when we head to Google in search of kit‐
tens:

1. We make a request to http://www.google.com and the response contains a Loca
tion header and a 301 status code sending us to a regional search page; for me
that’s http://www.google.co.uk.

2. The browser follows the redirect instruction (without confirmation from the
user; browsers follow redirects by default), makes a request to http://
www.google.co.uk, and receives the page with the search box (for fun, view the
source of this page; there’s a lot going on!). We fill in the box and hit search.

3. We make a request to https://www.google.co.uk/search?q=kittens (plus a few other
parameters) and get a response showing our search results.

HTTP | 3

www.itbook.store/books/9781491933091

https://itbook.store/books/9781491933091

The part of the URL after the ? is the “query string” and it’s one
way of passing additional data to a particular URL or endpoint.

In the story shown here, all the requests were made from the browser in response to a
user’s actions, although some occur behind the scenes, such as following redirects or
requesting additional assets. All the assets for a page, such as images, stylesheets, and
so on are fetched using separate requests that are handled by a server. Any content
that is loaded asynchronously (by JavaScript, for example) also creates more requests.
When we work with APIs, we get closer to the requests and make them in a more
deliberate manner, but the mechanisms are the same as those we use to make very
basic web pages. If you’re already making websites, then you already know all you
need to make web services!

Clients and Servers
Earlier in this chapter we talked about a request and response between a client and a
server. When we make websites with PHP, the PHP part is always the server. When
using APIs, we build the server in PHP, but we can consume APIs from PHP as well.
This is the point where things can get confusing. We can create either a client or a
server in PHP, and requests and responses can be either incoming or outgoing—or
both!

When we build a server, we follow patterns similar to those we use to build web
pages. A request arrives, and we use PHP to figure out what was requested and craft
the correct response. For example, if we built an API for customers so they could get
updates on their orders programmatically, we would be building a server.

Using PHP to consume APIs means we are building a client. Our PHP application
makes requests to external services over HTTP, and then uses the responses for its
own purposes. An example of a client would be a script that fetches your most recent
tweets and displays them.

It isn’t unusual for an application to be both a client and a server, as shown in
Figure 1-2. An application that accepts a request, and then calls out to other services
to gather the information it needs to produce the response, is acting as both a client
and a server.

When working on applications that are APIs or consume APIs,
take care with how you name variables involving the word
“request” to avoid confusion!

4 | Chapter 1: HTTP

www.itbook.store/books/9781491933091

https://itbook.store/books/9781491933091

Figure 1-2. Web application acting as a server to the user, but also as a client to access
other APIs

Making HTTP Requests
To be able to work with web services, it is important to have a very good understand‐
ing of how to work with HTTP from various angles. In this section we’ll cover three
common ways of working with HTTP:

• Using command-line tools
• Using browser tools
• Using PHP itself

We’ll also look at tools specifically designed for inspecting and debugging HTTP in
Chapter 10.

The examples here use a site that logs the requests it receives, which is perfect for
exploring how different API requests are seen by a server. To use it, visit the site and
create a new “request bin.” You will be given a URL to make requests to and be redi‐
rected to a page showing the history of requests made to the bin. This is my own
favorite tool, not just for teaching HTTP but also when actually building and testing
API clients.

There are a few other tools that are similar and could be useful to you when testing.
Try out some of these:

• The reserved endpoints (http://example.com, http://example.net, and http://exam
ple.org) established by the Internet Assigned Numbers Authority.

• HTTPResponder is a similar tool and is on GitHub so you could host/adapt it
yourself.

• A selection of endpoints with specific behaviors at httpbin.org.

Register your own endpoint at http://requestb.in and use it in place of http://
requestb.in/example in the examples that follow.

Making HTTP Requests | 5

www.itbook.store/books/9781491933091

https://itbook.store/books/9781491933091

Command-Line HTTP
cURL is a command-line tool available on all platforms. It allows us to make any web
request imaginable in any form, repeat those requests, and observe in detail exactly
what information is exchanged between client and server. In fact, cURL produced the
example output at the beginning of this chapter. It is a brilliant, quick tool for inspect‐
ing what’s going on with a web request, particularly when dealing with something
that isn’t in a browser or where you need to be more specific about how the request is
made. There’s also a cURL extension in PHP; we’ll cover that shortly in “Doing HTTP
with PHP” on page 12, but this section is about the command-line tool.

In its most basic form, a cURL request can be made like this:

curl http://requestb.in/example

We can control every aspect of the request to send; some of the most commonly used
features are outlined here and used throughout this book to illustrate and test the var‐
ious APIs shown.

If you’ve built websites before, you’ll already know the difference between GET and
POST requests from creating web forms. Changing between GET, POST, and other
HTTP verbs using cURL is done with the -X switch, so a POST request can be specifi‐
cally made by using the following:

curl -X POST http://requestb.in/example

There are also specific switches for GET, POST, and so on, but once you start working
with a wider selection of verbs, it’s easier to use -X for everything.

To get more information than just the body response, try the -v switch since this will
show everything: request headers, response headers, and the response body in full! It
splits the response up, though, sending the header information to STDERR and the
body to STDOUT:

$ curl -v -X POST http://requestb.in/example -d name="Lorna" -d
email="lorna@example.com" -d message="this HTTP stuff is rather excellent"
* Hostname was NOT found in DNS cache
* Trying 54.197.228.184...
* Connected to requestb.in (54.197.228.184) port 80 (#0)
> POST /example HTTP/1.1
> User-Agent: curl/7.38.0
> Host: requestb.in
> Accept: */*
> Content-Length: 78
> Content-Type: application/x-www-form-urlencoded
>
* upload completely sent off: 78 out of 78 bytes
< HTTP/1.1 200 OK
< Connection: keep-alive
* Server gunicorn/19.3.0 is not blacklisted

6 | Chapter 1: HTTP

www.itbook.store/books/9781491933091

https://itbook.store/books/9781491933091

< Server: gunicorn/19.3.0
< Date: Tue, 07 Jul 2015 14:49:57 GMT
< Content-Type: text/html; charset=utf-8
< Content-Length: 2
< Sponsored-By: https://www.runscope.com
< Via: 1.1 vegur
<
* Connection #0 to host requestb.in left intact

When the response is fairly large, it can be hard to find a particular piece of informa‐
tion while using cURL. To help with this, it is possible to combine cURL with other
tools such as less or grep; however, cURL shows a progress output bar if it realizes it
isn’t outputting to a terminal, which is confusing to these other tools (and to
humans). To silence the progress bar, use the -s switch (but beware that it also silen‐
ces cURL’s errors). It can be helpful to use -s in combination with -v to create output
that you can send to a pager such as less in order to examine it in detail, using a
command like this:

curl -s -v http://requestb.in/example 2>&1 | less

The extra 2>&1 is there to send the STDERR output to STDOUT so that you’ll see
both headers and body; by default, only STDOUT would be visible to less. With the
preceding command, you can see the full details of the headers and body, request and
response, all available in a pager that allows you to search and page up/down through
the output.

Working with the Web in general, and APIs in particular, means working with data.
cURL lets us do that in a few different ways. The simplest way is to send data along
with a request in key/value pairs—exactly as when a form is submitted on the Web—
which uses the -d switch. The switch is used as many times as there are fields to
include. To make a POST request as if I had filled in a web form, I can use a curl
command like this:

curl -X POST http://requestb.in/example -d name="Lorna"
-d email="lorna@example.com"
-d message="this HTTP stuff is rather excellent"

APIs accept their data in different formats; sometimes the data cannot be POSTed as a
form, but must be created in JSON or XML format, for example. There are dedicated
chapters in this book for working with those formats, but in either case we would
assemble the data in the correct format and then send it with cURL. We can either
send it on the command line by passing a string rather than a key/value pair to a sin‐
gle -d switch, or we can put it into a file and ask cURL to use that file rather than a
string (this is a very handy approach for repeat requests where the command line can
become very long). If you run the previous request and inspect it, you will see that the
body of it is sent as:

name=Lorna&email=lorna@example.com

Making HTTP Requests | 7

www.itbook.store/books/9781491933091

https://itbook.store/books/9781491933091

We can use this body data as an example of using the contents of a file as the body of
a request. Store the data in a file and then give the filename prepended with an @
symbol as a single -d switch to cURL:

curl -X POST http://requestb.in/example -d @data.txt

Working with the extended features of HTTP requires the ability to work with vari‐
ous headers. cURL allows the sending of any desired header (this is why, from a secu‐
rity standpoint, the header can never be trusted!) by using the -H switch, followed by
the full header to send. The command to set the Accept header to ask for an HTML
response becomes:

curl -H "Accept: text/html" http://requestb.in/example

Before moving on from cURL to some other tools, let’s take a look at one more fea‐
ture: how to handle cookies. Cookies will be covered in more detail in Chapter 4, but
for now it is important to know that cookies are stored by the client and sent with
requests, and that new cookies may be received with each response. Browsers send
cookies with requests as default behavior, but in cURL we need to do this manually by
asking cURL to store the cookies in a response and then use them on the next
request. The file that stores the cookies is called the “cookie jar”; clearly, even HTTP
geeks have a sense of humor.

To receive and store cookies from one request:

curl -c cookiejar.txt http://requestb.in/example

At this point, cookiejar.txt contains the cookies that were returned in the response.
The file is a plain-text file, and the way that a browser would store this information is
pretty similar; the data is just text. Feel free to open this file in your favorite text edi‐
tor; it can be amended in any way you see fit (which is another good reminder of why
trusting outside information is a bad idea; it may well have been changed), and then
sent to the server with the next request you make. To send the cookie jar, amended or
otherwise, use the -b switch and specify the file to find the cookies in:

curl -b cookiejar.txt http://requestb.in/example

To capture cookies and resend them with each request, use both the -b and -c
switches, referring to the same cookiejar file with each switch. This way, all incoming
cookies are captured and sent to a file, and then sent back to the server on any subse‐
quent request, behaving just as they do in a browser. This approach is useful if you
want to test something from cURL that requires, for example, logging in.

Another command-line tool well worth a mention here is HTTPie, which claims to
be a cURL-like tool for humans. It has many nice touches that you may find useful,
such as syntax highlighting. Let’s see some examples of the same kinds of requests
that we did with cURL.

8 | Chapter 1: HTTP

www.itbook.store/books/9781491933091

https://itbook.store/books/9781491933091

The first thing you will probably notice (for example, in Figure 1-3) is that HTTPie
gives more output.

Figure 1-3. A simple GET request with both cURL and HTTPie

You can control what HTTPie outputs with the --print or -p switch, and pass H to
see the request header, B to see the request body, h to see the response header, or b to
see the response body. These can be combined in any way you like and the default is
hb. To get the same output as cURL gives by default, use the b switch:

http -p b http://requestb.in/example

HTTPie will attempt to guess whether each additional item after the URL is a form
field, a header, or something else. This can be confusing, but once you’ve become
used to it, it’s very quick to work with. Here’s an example with POSTing data as if sub‐
mitting a form:

$ http -p bhBH -f http://requestb.in/example name=Lorna email=lorna@example.com
message="This HTTP stuff is rather excellent"

POST /example HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Connection: keep-alive
Content-Length: 80
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Host: requestb.in
User-Agent: HTTPie/0.8.0

Making HTTP Requests | 9

www.itbook.store/books/9781491933091

https://itbook.store/books/9781491933091

name=Lorna&email=lorna%40example.com&message=This+HTTP+stuff+is+rather+excellent

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 2
Content-Type: text/html; charset=utf-8
Date: Tue, 07 Jul 2015 14:46:28 GMT
Server: gunicorn/19.3.0
Sponsored-By: https://www.runscope.com
Via: 1.1 vegur

ok

To add a header, the approach is similar; HTTPie sees the : in the argument and uses
it as a header. For example, to send an Accept header:

$ http -p H -f http://requestb.in/example Accept:text/html

GET /149njzd1 HTTP/1.1
Accept: text/html
Accept-Encoding: gzip, deflate
Connection: keep-alive
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Host: requestb.in
User-Agent: HTTPie/0.8.0

Whether you choose cURL or HTTPie is a matter of taste; they are both worth a try
and are useful tools to have in your arsenal when working with HTTP.

Browser Tools
All the newest versions of the modern browsers (Chrome, Firefox, Opera, Safari,
Internet Explorer) have built-in tools or available plug-ins to help inspect the HTTP
that’s being transferred, and for simple services you may find that your browser’s
tools are an approachable way to work with an API. These tools vary between brows‐
ers and are constantly updating, but here are a few favorites to give you an idea.

In Firefox, this functionality is provided by the Developer Toolbar and various plug-
ins. Many web developers are familiar with FireBug, which does have some helpful
tools, but there is another tool that is built specifically to show you all the headers for
all the requests made by your browser: LiveHTTPHeaders. Using this, we can observe
the full details of each request, as seen in Figure 1-4.

10 | Chapter 1: HTTP

www.itbook.store/books/9781491933091

https://itbook.store/books/9781491933091

Figure 1-4. LiveHTTPHeaders showing HTTP details

All browsers offer some way to inspect and change the cookies being used for
requests to a particular site. In Chrome, for example, this functionality is offered by
an extension called “Edit This Cookie,” and other similar extentions. This shows
existing cookies and lets you edit and delete them—and also allows you to add new
cookies. Take a look at the tools in your favorite browser and see the cookies sent by
the sites you visit the most.

Sometimes, additional headers need to be added to a request, such as when sending
authentication headers, or specific headers to indicate to the service that we want
some extra debugging. Often, cURL is the right tool for this job, but it’s also possible
to add the headers into your browser. Different browsers have different tools, but for
Chrome try an extension called ModHeader, seen in Figure 1-5.

Making HTTP Requests | 11

www.itbook.store/books/9781491933091

https://itbook.store/books/9781491933091

Figure 1-5. The ModHeader plug-in in Chrome

Doing HTTP with PHP
You won’t be surprised to hear that there is more than one way to handle HTTP
requests using PHP, and each of the frameworks will also offer their own additions.
This section focuses on plain PHP and looks at three different ways to work with
APIs:

• PHP’s cURL extension (usually available in PHP, sometimes via an additional
package)

• PHP’s built-in stream-handling functionaltiy
• Guzzle (a PHP library)

Earlier in this chapter, we discussed a command-line tool called cURL (see
“Command-Line HTTP” on page 6). PHP has its own wrappers for cURL, so we can
use the same tool from within PHP. A simple GET request looks like this:

<?php

$url = "http://www.lornajane.net/";
$ch = curl_init($url);

curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
$result = curl_exec($ch);
curl_close($ch);

12 | Chapter 1: HTTP

www.itbook.store/books/9781491933091

https://itbook.store/books/9781491933091

The previous example is the simplest form; it sets the URL, makes a request to its
location (by default this is a GET request), and capture the output. Notice the use of
curl_setopt(); this function is used to set many different options on cURL handles
and it has excellent and comprehensive documentation on http://php.net. In this
example, it is used to set the CURLOPT_RETURNTRANSFER option to true, which causes
cURL to return the results of the HTTP request rather than output them. There aren’t
many use cases where you’d want to output the response so this flag is very useful.

We can use this extension to make all kinds of HTTP requests, including sending cus‐
tom headers, sending body data, and using different verbs to make our request. Take
a look at this example, which sends some JSON data and a Content-Type header with
the POST request:

<?php

$url = "http://requestb.in/example";
$data = ["name" => "Lorna", "email" => "lorna@example.com"];

$ch = curl_init($url);
curl_setopt($ch, CURLOPT_POST, 1);
curl_setopt($ch, CURLOPT_POSTFIELDS, json_encode($data));

curl_setopt($ch, CURLOPT_HTTPHEADER,
 ['Content-Type: application/json']
);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
$result = curl_exec($ch);
curl_close($ch);

Again, curl_setopt() is used to control the various aspects of the request we send.
Here, a POST request is made by setting the CURLOPT_POST option to 1, and passing the
data we want to send as an array to the CURLOPT_POSTFIELDS option. We also set a
Content-Type header, which indicates to the server what format the body data is in;
the various headers are covered in more detail in Chapter 3.

The PHP cURL extension isn’t the easiest interface to use, although it does have the
advantage of being reliably available. Another great way of making HTTP requests
that is always available in PHP is to use PHP’s stream-handling abilities with the file
functions. In its simplest form, this means that, if allow_url_fopen is enabled (see
the PHP manual), it is possible to make requests using file_get_contents(). The
simplest example is making a GET request and reading the response body in as if it
were a local file:

<?php

$result = file_get_contents("http://www.lornajane.net/");

Making HTTP Requests | 13

www.itbook.store/books/9781491933091

https://itbook.store/books/9781491933091

We can take advantage of the fact that PHP can handle a variety of different protocols
(HTTP, FTP, SSL, and more) and files using streams. The simple GET requests are
easy, but what about something more complicated? Here is an example that makes
the same POST request as our earlier example with JSON data and headers, illustrating
how to use various aspects of the streams functionality:

<?php

$url = "http://requestb.in/example";
$data = ["name" => "Lorna", "email" => "lorna@example.com"];

$context = stream_context_create([
 'http' => [
 'method' => 'POST',
 'header' => ['Accept: application/json',
 'Content-Type: application/json'),
 'content' => json_encode($data)
]
]];

$result = file_get_contents($url, false, $context);

Options are set as part of the context that we create to dictate how the request should
work. Then, when PHP opens the stream, it uses the information supplied to deter‐
mine how to handle the stream correctly—including sending the given data and set‐
ting the correct headers.

The third way that I’ll cover here for working with PHP and HTTP is Guzzle, a PHP
library that you can include in your own projects with excellent HTTP-handling
functionality. It’s installable via Composer, or you can download the code from Git‐
Hub and include it in your own project manually if you’re not using Composer yet
(the examples here are for version 6 of Guzzle).

For completeness, let’s include an example of making the same POST request as before,
but this time using Guzzle:

<?php

require "vendor/autoload.php";

$url = "http://requestb.in/example";
$data = ["name" => "Lorna", "email" => "lorna@example.com"];

$client = new \GuzzleHttp\Client();

$result = $client->post($url, ["json" => $data]);
echo $result->getBody();

The Guzzle library is object-oriented and it has excellent documentation, so do feel
free to take these examples and build on them using the documentation for reference.

14 | Chapter 1: HTTP

www.itbook.store/books/9781491933091

https://itbook.store/books/9781491933091

The preceding example first includes the Composer autoloader since that’s how I
installed Guzzle. Then it initializes both the URL that the request will go to and the
data that will be sent. Before making a request in Guzzle, a client is initialized, and at
this point you can set all kinds of configuration on either the client to apply to all
requests, or on individual requests before sending them. Here we’re simply sending a
POST request and using the json config shortcut so that Guzzle will encode the JSON
and set the correct headers for us. You can see this in action by running this example
and then visiting your http://requestb.in page to inspect how the request looked when
it arrived.

As you can see, there are a few different options for dealing with HTTP, both from
PHP and the command line, and you’ll see all of them used throughout this book.
These approaches are all aimed at “vanilla” PHP, but if you’re working with a frame‐
work, it will likely offer some functionality along the same lines; all the frameworks
will be wrapping one of these methods so it will be useful to have a good grasp of
what is happening underneath the wrappings. After trying out the various examples,
it’s common to pick one that you will work with more than the others; they can all do
the job, so the one you pick is a result of both personal preference and which tools are
available (or can be made available) on your platform. Most of my own projects make
use of streams unless I need to do something nontrivial, in which case I use Guzzle as
it’s so configurable that it’s easy to build up all the various pieces of the request and
still understand what the code does when you come back to it later.

Making HTTP Requests | 15

www.itbook.store/books/9781491933091

https://itbook.store/books/9781491933091

	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. HTTP
	Clients and Servers
	Making HTTP Requests
	Command-Line HTTP
	Browser Tools
	Doing HTTP with PHP

	Chapter 2. HTTP Verbs
	Serving GET Requests
	Making GET Requests
	Handling POST Requests
	Making POST Requests
	Using Other HTTP Verbs

	Chapter 3. Headers
	Request and Response Headers
	Identify Clients with User-Agent
	Headers for Content Negotiation
	Parsing an Accept Header
	Demonstrating Accept Headers with cURL

	Securing Requests with the Authorization Header
	HTTP Basic Authentication
	HTTP Digest Authentication
	OAuth

	Caching Headers
	Custom Headers

	Chapter 4. Cookies
	Cookie Mechanics
	Reading and Writing Cookies
	Making Requests with Cookies
	Cookies and APIs

	Chapter 5. JSON
	When to Choose JSON
	Handling JSON with PHP
	The JSONSerializable Interface

	Consuming JSON APIs

	Chapter 6. XML
	XML in PHP
	Creating XML

	Consuming XML APIs
	Parsing XML
	Flickr’s XML API

	Chapter 7. RPC and SOAP Services
	RPC
	SOAP
	WSDL
	PHP SOAP Client
	PHP SOAP Server
	Generating a WSDL File from PHP
	PHP Client and Server with WSDL

	Chapter 8. REST
	RESTful URLs
	Resource Structure and Hypermedia
	Build the Basic RESTful Server
	Example Project: The Wishlist
	Create Resources with POST
	Fetch a Resource or Collection with GET
	Update a Resource with PUT
	DELETE a Resource

	RESTful Versus Useful

	Chapter 9. Webhooks
	GitHub’s Webhooks
	Publishing Your Own Webhooks

	Chapter 10. HTTP Tools
	Easy Command-Line JSON
	Graphical cURL Alternatives
	Inspect HTTP Traffic with Wireshark
	Tunnel Local Traffic Remotely with ngrok
	Inspect, Edit, Repeat, and Share Requests
	Proxying PHP Applications
	Proxy Settings for Guzzle
	Proxy Settings for HTTP Stream Handling

	Finding the Tool for the Job

	Chapter 11. Maintainable Web Services
	Sample API Application
	Consistent Output Formats
	Debug Output as a Tool
	Effective Logging Techniques
	Error Logging in PHP Applications with Monolog

	Error Handling with PHP Exceptions

	Chapter 12. Making Service Design Decisions
	Service Type Decisions
	How to Present API Data
	Hypermedia for Easy API Navigation
	Nested Data or Many Round Trips
	Data Formats and Media Types

	Customizable Experiences
	Pick Your Defaults

	Chapter 13. Building a Robust Service
	Consistency Is Key
	Consistent and Meaningful Naming
	Common Validation Rules
	Predictable Structures

	Error Handling in APIs
	Meaningful Error Messages
	What to Do When You See Errors
	Making Design Decisions for Robustness

	Chapter 14. Publishing Your API
	Documentation Is Key
	Overview Documentation
	Generated API Documentation
	Interactive Documentation

	API Description Languages
	Automated Testing Tools
	Tutorials and the Wider Ecosystem

	Appendix A. A Guide to Common Status Codes
	Appendix B. Common HTTP Headers
	Index
	About the Author

