
www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

O’Reilly ebooks.
Your bookshelf on your devices.

When you buy an ebook through oreilly.com you get lifetime access to the
book, and whenever possible we provide it to you in four DRM-free file
formats—PDF, .epub, Kindle-compatible .mobi, and DAISY—that you can
use on the devices of your choice. Our ebook files are fully searchable,
and you can cut-and-paste and print them. We also alert you when we’ve
updated the files with corrections and additions.

Learn more at ebooks.oreilly.com
You can also purchase O’Reilly ebooks through the

iBookstore, the Android Marketplace, and Amazon.com.

©2015 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 15055

ePubPDF Mobi DAISY

www.itbook.store/books/9781491933329

http://www.oreilly.com/
http://shop.oreilly.com/category/ebooks.do
https://itbook.store/books/9781491933329

978-1-491-93332-9

[LSI]

Optimizing Java
by Benjamin J Evans and James Gough

Copyright © 2016 Benjamin Evans, James Gough. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Brian Foster and Nan Barber
Production Editor:
Copyeditor:
Proofreader:

Indexer:
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

August 2016: First Edition

Revision History for the First Edition
2016-MM-YY First Release

See http://oreilly.com/catalog/errata.csp?isbn=0636920042983 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Optimizing Java, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.itbook.store/books/9781491933329

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=0636920042983
https://itbook.store/books/9781491933329

Table of Contents

Preface. ix

1. Optimization and Performance Defined. 11
Java Performance - The Wrong Way 11
Performance as an Experimental Science 12
A Taxonomy for Performance 13

Throughput 14
Latency 14
Capacity 14
Utilisation 14
Efficiency 15
Scalability 15
Degradation 15
Connections between the observables 16

Reading performance graphs 17

2. Overview of the JVM. 23
Overview 23
Code Compilation and Bytecode 23
Interpreting and Classloading 28
Introducing HotSpot 29
JVM Memory Management 31
Threading and the Java Memory Model 32
The JVM and the operating system 33

3. Hardware & Operating Systems. 35
Introduction to Modern Hardware 36
Memory 36

iii

www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

Memory Caches 38
Modern Processor Features 43

Translation Lookaside Buffer 43
Branch Prediction and Speculative Execution 43
Hardware Memory Models 44

Operating systems 45
The Scheduler 45
A Question of Time 47
Context Switches 48

A simple system model 49
Basic Detection Strategies 50
Context switching 52
Garbage Collection 53
I/O 53

Kernel Bypass I/O 54
Mechanical Sympathy 56

Virtualisation 56

4. Performance Testing Patterns and Antipatterns. 59
Types of Performance Test 59

Latency Test 60
Throughput Test 61
Load Test 61
Stress Test 61
Endurance Test 61
Capacity Planning Test 62
Degradation Test 62

Best Practices Primer 63
Top-Down Performance 63
Creating a test environment 63
Identifying performance requirements 64
Java-specific issues 65
Performance testing as part of the SDLC 66

Performance Antipatterns 66
Boredom 67
Resume Padding 67
Peer Pressure 67
Lack of Understanding 68
Misunderstood / Non-Existent Problem 68
Distracted By Simple 68
Description 68
Example Comments 69

iv | Table of Contents

www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

Reality 69
Discussion 69
Resolutions 69
Distracted By Shiny 70
Description 70
Example Comment 70
Reality 70
Discussion 70
Resolutions 70
Performance Tuning Wizard 71
Description 71
Example Comment 71
Reality 71
Discussion 71
Resolutions 71
Tuning By Folklore 72
Description 72
Example Comment 72
Reality 72
Discussion 72
Resolutions 73
Blame Donkey 73
Description 73
Example Comment 73
Reality 74
Discussion 74
Resolutions 74
Missing the Bigger Picture 74
Description 74
Example Comments 75
Reality 75
Discussion 75
Resolutions 76
UAT Is My Desktop 76
Description 76
Example Comment 76
Reality 77
Discussion 77
Resolutions 77
PROD-like Data Is Hard 77
Description 77
Example Comment 78

Table of Contents | v

www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

Reality 78
Discussion 78
Resolutions 79

Cognitive Biases and Performance Testing 79
Reductionist Thinking 80
Confirmation Bias 80
Fog of war (Action Bias) 80
Risk bias 81
Ellsberg’s Paradox 81

5. Microbenchmarking and statistics. 83
Overview 84

Don’t microbenchmark if you can help it - a true story 84
Heuristics for when to microbenchmark 85

Introduction to measuring Java performance 86
Introduction to JMH 90

Selecting and Executing Benchmarks 90
Statistics for JVM performance 95

Systematic Error 96
Random Error 97
Spurious Correlation 97

Non-normal statistics 97
Common Problems for homemade benchmarks 98
Interpretation of statistics 98

Summary 99

6. Monitoring and Analysis. 101
VisualVM 101
Thermostat 101
Illuminate 101
New Relic 101
Java Flight Recorder 101

7. Understanding Garbage Collection. 103
Allocation and lifetime 103
Introducing Mark & Sweep 104

Garbage Collection Glossary 104
Garbage Collection in Hotspot 105

Thread-local allocation 105
Hemispheric Collection 106

The parallel collectors 106
The role of allocation 104

vi | Table of Contents

www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

Summary 107

8. Garbage Collection Monitoring and Tuning. 109
Tuning 109

Introduction to the collectors 109
Parallel 109
CMS 110
G1 110
Other collectors 110
Tools 110

Censum 110
GCViewer 110
Heap Dump Analysis 110
jHiccup 110

9. HotSpot JIT Compilation. 111
Overview of Bytecode Interpretation 112
Profile Guided Optimization 112
The Code Cache 112
JIT Compilation Strategies 112
JITwatch 113

10. Java language performance techniques. 115

11. Profiling. 117
When to profile (and when not to) 117
JProfiler 117
VisualVM Profiler 117
Honest Profiler 117
Mission Control 117

12. Concurrent Performance Techniques. 119
Understanding The JMM 119
Analysing For Concurrency 119

13. The Future. 121
Changes coming in Java 9 121
Looking Ahead - Java 10? 121
Other trends 121
Conclusion 122

Index. 123

Table of Contents | vii

www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

CHAPTER 4

Performance Testing Patterns and
Antipatterns

Performance testing is undertaken for a variety of different reasons. In this chapter
we will introduce the different types of test that a team may wish to execute, and dis‐
cuss best practices for each type.

In the second half of the chapter, we will outline some of the more common antipat‐
terns that can plague a performance test or team, and explain refactored solutions to
help prevent them becoming a problem for teams.

Types of Performance Test
Performance tests are frequently conducted for the wrong reasons, or conducted
badly. The reasons for this vary widely, but are frequently caused by a failure to
understand the nature of performance analysis, and a belief that “something is better
than nothing”. As we will see repeatedly, this belief is often a dangerous half-truth at
best.

One of the more common mistakes is to speak generally of “performance testing”
without engaging with the specifics. In fact, there are a fairly large number of differ‐
ent types of large-scale performance tests that can be performed on a system.

Good performance tests are quantitative. They ask questions that
have a numeric answer that can be handled as an experimental out‐
put, and subjected to statistical analysis.

59

www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

The types of performance tests we will discuss in this book usually have mostly inde‐
pendent (but somewhat overlapping) goals, so care should be taken when thinking
about the domain of any given single test. A good rule-of-thumb when planning a
performance test is simply to write down (& confirm to management / the customer)
the quantitative questions that the test is intended to answer, and why they are impor‐
tant for the application under test.

Some of the most common test types, and an example question for each are given
below.

• Latency Test - what is the end-to-end transaction time?
• Throughput Test - how many concurrent transactions can the current system

capacity deal with?
• Load Test - can the system handle a specific load?
• Stress Test - what is the breaking point of the system?
• Endurance Test - what performance anomalies are discovered when the system is

run for an extended period?
• Capacity Planning Test - Does the system scale as expected when additional

resources are added?
• Degradation - What happens when the system is partially failed?

Let’s look at each of these test types in turn, in more detail.

Latency Test
This is one of the most common types of performance test, usually because it can be
closely related to a system observable that is of direct interest to management - how
long are our customers waiting for a transaction (or a page load). This is a double-
edged sword, as because the quantitative question that a latency test seeks to answer
seems so obvious, that it can obscure the necessity of identifying quantitative ques‐
tions for other types of performance tests.

The goal of a latency tuning exercise is usually to directly improve
user experience.

However, even in the simplest of cases, a latency test has some subtlties that must be
treated carefully. One of the most noticable of these is that (as we will discuss fully in
Section 5.3) a simple mean average is not very useful as a measure of how well an
application is reacting to requests.

60 | Chapter 4: Performance Testing Patterns and Antipatterns

www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

Throughput Test
Throughput is probably the second most common quantity to be the subject of a per‐
formance exercise. It can even be thought of as dual to latency, in some senses.

For example, when conducting a latency test, it is important to state (and control) the
concurrent transactions ongoing when producing a distribution of latency results.

The observed latency of a system should be stated at known and
controlled throughput levels.

Equally, a throughput test is usually conducted whilst monitoring latency. The “maxi‐
mum throughput” is determined by noticing when the latency distribution suddenly
changes - effectively a “breaking point” of the system. This is sometimes observed
during a throughput test, but is more properly the point of a stress test.

Load Test
A load test differs from a throughput test (or a stress test) in that it is usually framed
as a binary test - “Can the system handle this projected load or not?”. Load tests are
sometimes conducted in advanced of expected business events, e.g. the onboarding of
a new customer or market that is expected to drive greatly increased traffic to the
application.

Stress Test
One way to think about a stress test is as a way to determine how much spare head‐
room the system has. The test typically proceeds by placing the system into a steady
state of transactions - that is a specified throughput level (often current peak). The
test then ramps up the concurrent transactions slowly, until the system observables
start to degrade.

The maximum throughput achieved in a throughput is determined as being the value
just before the observables started to degrade.

Endurance Test
Some problems only manifest over much longer periods (often measured in days).
These include slow memory leaks, cache pollution and memory fragmentation (espe‐
cially for applications that use the CMS garbage collector, which may eventually suffer
“Concurrent Mode Failure” - see Section 8.3).

Types of Performance Test | 61

www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

To detect these types of issue, an Endurance Test (also known as a Soak Test) is the
usual approach. These are run at average (or high) utilisation, but within observed
loads for the system. During the test resource levels are closely monitored and break‐
downs or exhaustions of resources are looked for.

This type of test is very common in fast response (or low-latency) systems, as it is
very common that they will not be able to tolerate a full GC leading to a stop-the-
world event (see Chapter 8 for more on stop-the-world and related GC concepts).

Capacity Planning Test
Capacity planning tests bear many similarities to stress tests, but they are a distinct
type of test. The role of a stress test is to find out what the current system will cope
with, whereas a capacity planning test is more forward-looking and seeks to find out
what load an upgraded system could handle.

For this reason, they are often carried out as part of a scheduled planning exercise,
rather in response to a specific event or threat.

Degradation Test
This type of test is also known as a Partial Failure Test. The general discussion of
resilience and fail-over testing is outside the scope of this book, but suffice it to say
that in the most highly regulated and scrutinized enivronments (including banks and
financial institutions), fail-over and recovery testing is taken extremely seriously and
is usually planned in meticulous depth.

For our purposes, the only type of resilience test we consider is the degradation test.
The basic approach to this test is to see how the system behaves when a component or
entire subsystem suddenly loses capacity whilst the system is running at simulated
loads equivalent to usual production volumes. Examples could be application server
clusters that suddenly lose members, databases that suddenly lose RAID disks or net‐
work bandwidth that suddenly drops.

Key observables during a degradation test include the transaction latency distribution
and throughput.

One particularly interesting subtype of Partial Failure Test is known as the Chaos
Monkey. This is named after a project at Netflix that was undertaken to verify the
robustness of their infrastructure.

The idea behind Chaos Monkey is that in a truly resilient architecture, the failure of a
single component should not have the ability to cause a cascading failure or to cause
meaningful impact on the overall system.

Chaos Monkey attempts to demonstrate this by randomly killing off live processes
that are actually in use in the production environment.

62 | Chapter 4: Performance Testing Patterns and Antipatterns

www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

In order to successfully implement Chaos Monkey type systems, an organisation
must have the highest levels of system hygiene, service design and operational excel‐
lence. Nevertheless, it is an area of interest and aspiration for an increasing number of
companies and teams.

Best Practices Primer
When deciding where to focus your effort in a performance tuning exercise, there are
three golden rules that can provide useful guidance:

• Identify what you care about and figure out how to measure it.
• Optimize what matters, not what is easy to optimize.
• Play the big points first.

The second point has a converse, which is to remind yourself not to fall into the trap
of attaching too much significance to whatever quantity you can easily measure. Not
every observable is significant to a business, but it is sometimes tempting to report on
an easy measure, rather than the right measure.

Top-Down Performance
One of the aspects of Java performance that many engineers miss at first encounter is
that large-scale benchmarking of Java applications is usually actually easier than try‐
ing to get accurate numbers for small sections of code. We will discuss this in detail in
Chapter 5.

The approach of starting with the performance behavior of an
entire application is usually called “Top-Down Performance”.

To make the most of the top-down approach, a testing team needs a test environ‐
ment, a clear understanding of what they need to measure and optimize, and an
understanding of how the performance exercise will fit into the overall software
development lifecycle.

Creating a test environment
Setting up a test environment is one of the first tasks most performance testing teams
will need to undertake. Wherever possible, this should be an exact duplicate of the
production environment - in all aspects. This includes not only application servers,
but web servers, databases, load balancers, network firewalls, etc. Any services, e.g.

Best Practices Primer | 63

www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

3rd party network services that are not easy to replicate, or do not have sufficient QA
capacity to handle a production-equivalent load, will need to be mocked for a repre‐
sentative performance testing environment.

Sometimes teams try to reuse or time-share an existing QA environment for perfor‐
mance testing. This can be possible for smaller environments or for one-off testing
but the management overhead and scheduling and logistical problems that it can
cause should not be underestimated.

Performance testing environments that are significantly different
from the production environments that they attempt to represent
often fail to achieve results that have any usefulness or predictive
power in the live environment.

For traditional (i.e. non cloud-based) environments, a production-like performance
testing environment is relatively straightforward to achieve - the team simply buys as
many physical machines as are in use in the production environment and then con‐
figures them in exactly the same way as production is configured.

As we will see in Section 4.3.7, however, management is sometimes resistent to the
additional infrastructure cost that this represents. This is almost always a false econ‐
omy, but sadly many organisations fail to account correctly for the cost of outages.
This can lead to a belief that the savings made by not having an accurate performance
testing environment are meaningful, as it fails to properly for the risks introduced.

Recent developments, notably the advent of cloud technologies, have changed this
rather traditional picture. On-demand and autoscaling infrastructure means that an
increasing number of modern architectures no longer fit the model of “buy servers,
draw network diagram, deploy software on hardware”. The devops approach of treat‐
ing server infrastructure as “livestock, not pets” means that much more dynamic
approaches to infrastructure management are becoming more widespread.

This makes the construction of a performance testing environment that looks like
production potentially mopre challenging. However, it raises the possibility of setting
up a performance environment that can be turned off when not actually being used.
This can be a very significant cost saving to the project, but it requires a proper pro‐
cess for starting up and shutting down the environment as scheduled.

Identifying performance requirements
Let’s recall the simple system model that we met in Section 3.5. This clearly shows
that the overall performance of a system is not solely determined by your application
code. The container, operating system and hardware all have a role to play.

64 | Chapter 4: Performance Testing Patterns and Antipatterns

www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

Therefore, the metrics that we will use to evaluate performance should not be thought
about solely in terms of the code. Instead, we must consider systems as a whole and
the observable quantities that are important to customers and management. These
are usually referred to as performance non-functional requirements (NFRs), and are
the key indicators that we want to optimize.

Some goals are obvious:

• Reduce 95% percentile transaction time by 100 ms
• Improve system so that 5X throughput on existing hardware is possible
• Improve average response time by 30%

Others may be less apparent:

• Reduce resources cost to serve the average customer by 50%
• Ensure system is still within 25% of response targets, even when application clus‐

ters are degraded by 50%
• Reduce customer “drop-off ” rate by 25% per 25ms of latency

An open discussion with the stakeholders as to exactly what should be measured and
what the goals to be achieved are, is essential and should form part of the first kick-
off meeting for the performance exercise.

Java-specific issues
Much of the science of performance analysis is applicable to any modern software
system. However, the nature of the JVM is such that there are certain additional com‐
plications that the performance engineer should be aware of and consider carefully.
These largely stem from the dynamic self-management capabilities of the JVM, such
as the dynamic tuning of memory areas.

One particularly important Java-specific insight is related to JIT compilation. Modern
JVMs analyse which methods are being run to identify candidates for Just-In-Time
(JIT) compilation to optimized machine code. This means that if a method is not
being JIT-compiled, then one of two things is true about the method:

1) It is not being run frequently enough to warrant being compiled.

2) The method is too large or complex to be analysed for compilation.

The second option is much rarer than the first. However, one early performance exer‐
cise for JVM-based applications is to switch on simple logging of which methods are
being compiled and ensure that the important methods for the application’s key code
paths are being compiled.

Best Practices Primer | 65

www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

In Chapter 9 we will discuss JIT compilation in detail, and show some simple techni‐
ques for ensuring that the important methods of applications are targeted for JIT
compilation by the JVM.

Performance testing as part of the SDLC
Some companies and teams prefer to think of performance testing as an occasional,
one-off activity. However, more sophisticated teams tend to build ongoing perfor‐
mance tests, and in particular performance regression testing as an integral part of
their Software Development Lifecycle (SDLC).

This requires collaboration between developers and infrastructure teams for control‐
ling which versions of code are present in the performance environment at any given
time. It is also virtually impossible to implement without a dedicated performance
testing environment.

Having discussed some of the most common best practices for performance, it is also
important to discuss the pitfalls and antipatterns that teams can fall prey to.

Performance Antipatterns
An antipattern is an undesired behavior of a software project or team, that is
observed across a large number of projects. The commonality of occurance leads to
the conclusion (or the suspicion) that some underlying factor is responsible for creat‐
ing the unwanted behavior.

In some cases, the behavior may be driven by social or team constraints, by common
misapplied management techniques or by simple human (and developer) nature. By
classifying and categorising these unwanted features, we develop a “pattern language”
for discussing, and hopefully eliminating them from our projects.

Performance should always be treated as a very objective process, with precise goals
set early in the planning phase. This is an easy statement to make, but when a team is
under pressure or not operating under reasonable circumstances this can simply fall
by the wayside.

Many readers will have seen the situation where either a new client is going live, or a
new feature is being launched and an unexpected outage occurs, in UAT if you are
lucky, but often in production. The team is then left scrambling to fix and find what
has caused the bottleneck. This usually means performance testing has not been car‐
ried out, or the team “ninja” had made an assumption and has now disappeared - nin‐
jas are good at this.

Teams that work in this way will likely fall victim to antipatterns more often than a
team that follows good performance testing practices and have open and reasoned
conversations. As with many development issues, it is often the human elements,

66 | Chapter 4: Performance Testing Patterns and Antipatterns

www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

1 https://dzone.com/articles/why-developers-keep-making-bad

such as communication problems, rather than any technical aspect that leads to an
application having problems.

One interesting possibility for classification was provided in a blogpost by Carey Fli‐
chel 1. The post specifically calls out five main reasons which cause developers to
make bad choices:

Boredom
Most developers have experienced boredom in a role, for some this doesn’t have to
last very long before the developer is seeking a new challenge or role. However, in
some cases either the opportunities are not present in the organisation or moving
somewhere else is not possible.

It is likely many of readers have come across a developer who is simply riding it out,
perhaps even actively seeking an easier life. However, bored developers can harm a
project in a number of ways. For example, technology or code complexity is intro‐
duced that is not required, such as writing a sorting algorithm directly in code when a
simple Collections.sort would be sufficient. Boredom could also manifest as look‐
ing to build components with technologies that are unknown or perhaps don’t fit the
use case just as an opportunity to use them (see “Resume Padding”).

Resume Padding
Occasionally that overuse of technology is not tied to boredom, but in fact an oppor‐
tunity to boost experience with a technology on a CV. This can be related to bore‐
dom, and be an active attempt by a developer to increase their potential salary and
marketability when about to re-enter the job market. It’s not usual that many people
would get away with this inside a well functioning team, but it can still be the root of
a choice that takes a project down an unnecessary path.

The consequences of an unnecessary technology being added due to a developer’s
boredom or resume padding can be far-reaching and very long-lived, lasting for
many years after the original developer has left for greener pastures.

Peer Pressure
Technical decisions are often at their worse when something is not voiced or dis‐
cussed at the time. This can manifest in a few ways; perhaps a junior developer not
wanting to make a mistake in front of more senior members of their team or equally
a developer not wanting to come across as uninformed in a particular topic. Another
particularly toxic type of peer pressure is for competitive teams to want to be seen to

Performance Antipatterns | 67

www.itbook.store/books/9781491933329

https://dzone.com/articles/why-developers-keep-making-bad
https://itbook.store/books/9781491933329

have high development velocity and in doing so, rush key decisions without fully
exploring all of the consequences.

Lack of Understanding
Developers may look to introduce new tools to help solve a problem because they are
not aware of what the current tools are actually capable of. It is often tempting to turn
to a new and exciting technology component as it is great at performing one specific
feature. However introducing more technical complexity must be taken on balance
with what the current tools can actually do.

For example, Hibernate is sometimes seen as the answer to simplifying translation
between domain objects and databases. If there is only limited understanding of
Hibernate on the team, developers can make assumptions about its suitablity based
on having seen it used in another project.

This lack of understanding can cause over-complicated usage of Hibernate and unre‐
coverable production outages. By contrast, rewriting the entire data layer using sim‐
ple JDBC calls allows the developer to stay on familiar territory. One of the authors
has taught a Hibernate course that contained a delegate in exactly this position - he
was trying to learn enough Hibernate to see if the application could be recovered, but
ended up having to rip out Hibernate over the course of a weekend - definitely not an
enviable position.

Misunderstood / Non-Existent Problem
Developers may often use a technology to solve a particular issue where the problem
space itself has not been adequately investigated. Without having measured perfor‐
mance values it is almost impossible to understand the success of a particular solu‐
tion. Often collating these performance metrics enables better understanding of the
problem.

To avoid antipatterns it is important to ensure that the team communication about
technical issues is open from all participants in the team, and actively encouraged.
Where things are unclear gathering factual evidence and working on prototypes can
help to steer team decisions. A technology may look attractive, however if the proto‐
type does not measure up a more informed decision can be made.

Distracted By Simple

Description
The simplest parts of the system are targeted first rather than profiling the application
overall and objectively looking for pain points in the application. There may be parts

68 | Chapter 4: Performance Testing Patterns and Antipatterns

www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

of the system that are deemed “specialist” that only the original wizard that wrote it
can edit that part.

Example Comments
“Let’s get into this by starting with the parts we understand.”
“John wrote that part of the system, and he’s on holiday. Let’s wait until he’s back to
look at the performance”

Reality
Dev understands how to tune (only?) that part of the system. There has been no
knowledge sharing or pair programming on the various system components, creating
single experts.

Discussion
The dual of “Distracted by Shiny”, this antipattern is often seen in an older, more
established team, which may be more used to a maintanence / keep-the-lights-on
role. If their application has recently been merged or paired with newer technology,
the team may feel intimidated or not want to engage with the new systems.

Under these circumstances, developers may feel more comfortable by only profiling
those parts of the system that are familiar, hoping that they will be able to achieve the
desired goals without going outside of their comfort zone.

Of particular note is that both of these first two antipatterns are driven by a reaction
to the unknown - in “Distracted by Shiny” this manifests as a desire by the developer
(or team) to learn more & gain advantage - essentially an offensive play. By contrast,
“Distracted by Simple” is a defensive reaction - to play to the familiar rather than
engage with a potentially threathening new technology.

Resolutions
• Measure to determine real location of bottleneck
• Ask for help from domain experts if problem is in an unfamiliar component
• Ensure that developers understand all components of the system

Performance Antipatterns | 69

www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

Distracted By Shiny

Description
Newest or coolest tech is often first tuning target, as it can be more exciting to under‐
stand how newer technology works rather than digging around in legacy code. It may
also be that the code accompanying the newer technology is better written and easier
to maintain. Both of these facts push developers towards looking at the newer com‐
ponents of the application.

Example Comment
“It’s teething trouble - we need to get to the bottom of it”

Reality
This is often just a shot in the dark rather than an effort at targeted tuning or measur‐
ing the application. The developer may not fully understand the new technology yet,
and will tinker around rather than understand the documentation - often in reality
causing other problems. In the cases of new technology examples online are for small
or sample datasets and don’t discuss good practice about scaling to an enterprise size.

Discussion
This antipattern is most often seen with younger teams. Eager to prove themselves, or
to avoid becoming tied to what they see as legacy systems, they are often advocates for
newer, “hotter” technologies - which may, coincidentally, be exactly the sort of tech‐
nologies which would confer a salary uptick in any new role.

Therefore, the logical subconcious conclusion to any performance issue is to first take
a look at the new tech - after all, it’s not properly understood, so a fresh pair of eyes
would be helpful, right?

Resolutions
• Measure to determine real location of bottleneck
• Ensure adequate logging around new component
• Look at best practices as well as simplified demos
• Ensure the team understand the new technology and establish a level of best

practice across the team

70 | Chapter 4: Performance Testing Patterns and Antipatterns

www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

Performance Tuning Wizard

Description
Management have bought into the Hollywood image of a “lone genius” hacker and
have hired someone who fits the stereotype, to move around the company and fix all
performance issues in the team, by using their perceived superior performance tun‐
ing skills.

There are genuine performance tuning experts and companies out
there, most would agree that you have to measure and investigate
any problem. It’s unlikely the same solution will apply to all uses of
a particular technology in all situations.

Example Comment
“It’s Unix - I know this”

Reality
• The only thing a perceived wizard or superhero is likely to do is challenge the

dress code.

Discussion
This antipattern can be a general alienation of developers in the team who perceive
themselves to not be good enough to address performance issues. It’s concerning as in
many cases a small amount of profile lead optimisation can lead to good performance
increases.

That is not say that there aren’t specialists that can help with specific technologies, but
the thought that there is a stereotype that will understand all performance issues from
the beginning is absurd. Many technologists that are performance experts are special‐
ists at measuring and problem solving based on those measurements.

Superheroes types in teams can be very counterproductive if they are not willing to
share knowledge or the approaches that they took to resolving a particular issue.

Resolutions
• Measure to determine real location of bottleneck

Performance Antipatterns | 71

www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

• Ensure that when hiring experts onto a team they are willing to share and act as
part of the team

Tuning By Folklore

Description
Whilst desperate to try and find a solution to a performance problem in production a
team member finds a “magic” configuration parameter on a website. Without testing
the parameter it is applied to production, because it must improve things exactly as it
has for the person on the internet….

Example Comment
“I found these great tips on Stack Overflow. This changes everything.”

Reality
• Developer does not understand the context or basis of performance tip & true

impact is unknown
• It may have worked for that specific system, but it doesn’t mean the change will

even have a benefit in another. In reality it could make things worse.

Discussion
A performance tip is a workaround for a known problem - essentially a solution
looking for a problem. They have a shelf life and usually date badly - someone will
come up with a solution which will render the tip useless (at best) in a later release of
the software or platform.

One source of performance advice that is usually particularly bad are admin manuals.
They contain general advice devoid of context - this advice and “recommended con‐
figurations” is often insisted on by lawyers, as an additional line of defence if the ven‐
dor is sued.

Java performance happens in a specific context - with a large number of contributing
factors. If we strip away this context, then what is left is almost impossible to reason
about, due to the complexity of the execution environment.

72 | Chapter 4: Performance Testing Patterns and Antipatterns

www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

The Java platform is also constantly evolving, which means a
parameter that provided a performance workaround in one version
of Java may not work in another.

For example, the switches used to control garbage collection algorithms frequently
change between releases. What works in an older VM (version 7 or 6) may not even
be applied in the current version (Java 8). There are even switches that are valid and
useful in version 7 that will cause the VM not to start up in the forthcoming version
9.

Resolutions
• Only apply well-tested & well-understood techniques which directly affect the

most important aspects of system.
• Look for and try out parameters in UAT, but as with any change it is important to

prove and profile the benefit.
• Review and discuss configuration with other developers and operations staff /

devops.

Configuration can be a one or two character change, but have significant impact in a
production environment if not carefully managed.

Blame Donkey

Description
Certain components are always identified as the issue, even if they had nothing to do
with the problem.

For example, one of the authors saw a massive outage in UAT the day before go-live.
A certain path through the code caused a table lock on one of the central database
tables. An error occurred in the code and the lock was retained, rendering the rest of
the application unusable until a full restart was performed. Hibernate was used as the
data access layer and immediately blamed for the issue. However, in this case, the cul‐
prit wasn’t Hibernate but an empty catch block for the timeout exception - that did
not clean up the database connection. It took a full day for developers to stop blaming
Hibernate and to actually look at their code to find the real bug.

Example Comment
“It’s always JMS / Hibernate / A_N_OTHER_LIB”

Performance Antipatterns | 73

www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

Reality
• Insufficient analysis has been done to reach this conclusion
• The usual suspect is the only suspect in the investigation
• The team is unwilling to look wider to establish a true cause

Discussion
This antipattern is often displayed by management or the business, as in many cases
they do not have a full understanding of the technical stack and so are proceeding by
pattern matching and have unacknowledged cognitive biases. However, technologists
are far from immune from this antipattern.

Technologists often fall victim to this antipattern when they have little understanding
about the code base or libraries outside of the ones usually blamed. It is often easier
to name a part of the application that is often the problem, rather than perform a new
investigation. It can be the sign of a tired team, with many production issues at hand.
Hibernate is the perfect example of this, in many situations hibernate grows to the
point where it is not setup or used correctly.

The team has a tendency to bash the technology, as they have seen it fail or not per‐
form in the past. The problem could just as easily be the underlying query, use of an
inappropriate index, the physical connection to the database, the object mapping
layer, etc. Profiling to isolate the exact cause is essential.

Resolutions
• Resist pressure to rush to conclusions
• Perform analysis as normal
• Communicate the results of analysis to all stakeholders (to encourage a more

accurate picture of the causes of problems).

Missing the Bigger Picture

Description
The team becomes obsessed with trying out changes or profiling smaller parts of the
application without fully appreciating the full impact of the changes. The team tweaks
JVM switches to look to gain better performance, perhaps based on an example or a
different application in the same company.

74 | Chapter 4: Performance Testing Patterns and Antipatterns

www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

The team may also look to profile smaller parts of the application using Microbe‐
nchmarking (which is notoriously difficult to get right, as we will explore in Chapter
5).

Example Comments
“If I just change these settings, we’ll get better performance”
“If we can just speed up method dispatch time…”

Reality
• Team does not fully understand the impact of changes
• Teams has not profiled the application fully under the new JVM settings
• Overall system impact from a Microbenchmark has not been determined

Discussion
The JVM has literally hundreds of switches - this gives a very highly configurable
runtime, but gives rise to a great temptation to make use of all of this configurability.
This is usually a mistake - the defaults and self-management capabilities are usually
sufficient. Some of the switches also combine with each other in unexpected ways -
which makes blind changes even more dangerous. Applications even in the same
company are likely to operate and profile in a completely different way, so it’s impor‐
tant to spend time trying out settings that are recommended.

Performance tuning is a statistical activity, which relies on a highly specific context
for execution. This implies that larger systems are usually easier to benchmark than
smaller ones - because with larger systems, the law of large numbers works in the
engineers favour, helping to correct for effects in the platform that distort individual
events.

By contrast, the more we try to focus on a single aspect of the system, the harder we
have to work to unweave the separate subsystems (e.g. threading, GC, scheduling, JIT
compilation, etc) of the complex environment that makes up the platform (at least in
the Java / C# case). This is extremely hard to do, and the handling of the statistics is
sensitive, and is not often a skillset that software engineers have acquired along the
way. This makes it very easy to produce numbers that do not accurately represent the
behaviour of the system aspect that the engineer believed they were benchmarking.

This has an unfortunate tendency to combine with the human bias to see patterns,
even when none exist. Together, these effects lead us to the spectacle of a perfomance
engineer who has been deeply seduced by bad statistics or a poor control - an engi‐

Performance Antipatterns | 75

www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

neer arguing passionately for a performance benchmark or effect that their peers are
simply not able to replicate.

Resolutions
Before putting any change to switches live:

• Measure in PROD
• Change one switch at a time in UAT
• Ensure that your UAT environment has the same stress points as production
• Also the same test data for the normal load condition.

There’s no point in having an optimization that helps your applica‐
tion only in high stress situation and kills performance in the gen‐
eral case. Obtaining sets of data like this which can be used for
accurate emulation can be difficult.

• Test change in UAT
• Retest in UAT
• Have someone recheck your reasoning
• Pair with them to discuss your conclusions

UAT Is My Desktop

Description
UAT environments often differ significantly from PROD, although not always in a
way that’s expected or fully understood. Many developers will have worked in situa‐
tions where a low powered desktop is used to write code for high powered produc‐
tion severs. However it’s also becoming more common that a developers machine is
massively more powerful than the small services deployed in production. Low pow‐
ered micro-environments are usually not a problem, as they can often be virtualised
for a developer to have one each. This is not true of high powered production
machines, which will often have significantly more cores, RAM and efficient IO than
a developer’s machine.

Example Comment
“A full-size UAT environment would be too expensive”

76 | Chapter 4: Performance Testing Patterns and Antipatterns

www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

Reality
• Outages caused by differences in environments are almost always more expensive

than a few more boxes

Discussion
UAT is my Desktop stems from a different kind of cognitive bias than we have previ‐
ously seen. This bias insists that doing some sort of UAT must be better than doing
none at all. Unfortunately, this hopefulness fundamentally misunderstands the com‐
plex nature of enterprise environments. For any kind of meaningful extrapolation to
be possible, the UAT environment must be production like.

In modern adaptive environments, the runtime subsystems will make best use of the
available resources. If these differ radically from the target deployment, they will
make different decisions under the differing circumstances - rendering our hopeful
extrapolation useless at best.

Resolutions
• Track the cost of outages & opportunity cost related to lost customers
• Buy a UAT environment that is identical to PROD
• In most cases, the cost of the first, far outweighs the second and sometimes the

right case needs to be made to managers

PROD-like Data Is Hard

Description
Also known as the DataLite antipattern, this antipattern relates to a few common pit‐
falls that people encounter whilst trying to represent production like data. Consider a
trade processing plant that processes all booked futures and options. The order of
messages would be in the millions that the system would be required to process each
day. Consider the following UAT strategies and their potential issues:

To make things easy to test the mechanism was to capture a small selection of these
messages during the course of the day. The messages are then all run through the UAT
system. This approach fails to capture burst like behaviour of messages that system
could see. It may also not capture the warm up caused by more futures trading on a
particular market before another market opens that trades options.
To make things easier to assert the values on the trades and options are updated to only
use simple values for assertion. This does not give us the “realness” of production data.

Performance Antipatterns | 77

www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

Consider we are using an external library or system for options pricing, it would be
impossible for us ot evaluate with our UAT dataset that this production dependency
has not now caused a performance issue - as the range of calculations we are perform‐
ing is a simplified subset of production data.
To make things easier all values are pushed through the system at once. This is often
done in UAT, but misses out key warm up and optimisations that may happen when
then data is fed at a different rate.

Most of the time in UAT the test data set is simplified to make things easier. How‐
ever it rarely makes results useful.

Example Comment
“It’s too hard to keep PROD and UAT in synch”
“It’s too hard to manipulate data to match what the system expects”
“Production data is protected by security considerations. Developers should not have
access to it.”

Reality
• Data in UAT must be PROD-like for accurate results. If data is not available for

security reasons then it should be obfuscated so it can still be used for a meaning‐
ful test. Another option is to partition UAT so developers still don’t see the data,
but can see the output of the performance tests to be able to identify problems.

Discussion
This antipattern also falls into the trap of “something must be better than nothing”.
The idea is that testing against even out of date and unrepresentative data is better
than not testing.

As before, this is an extremely dangerous line of reasoning. Whilst testing against
something (even if it is nothing like PROD data) at scale can reveal flaws and omis‐
sions in the system testing, it provides a false sense of security.

When the system goes live, and the usage patterns fail to conform to the expected
norms that have been anchored by UAT data, the development and ops teams may
well find that they have become complacent due to the warm glow that UAT has pro‐
vided, and are unprepared for the sheer terror that can quickly follow an at-scale pro‐
duction release.

78 | Chapter 4: Performance Testing Patterns and Antipatterns

www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

Resolutions
• Consult data domain experts & invest in a process to migrate PROD data back

into UAT, obfuscating data if necessary.
• Over-prepare for releases with expectation of high volumes of customers or

transactions

Cognitive Biases and Performance Testing
Humans can be bad at forming accurate opinions quickly, even when faced with a
problem that can draw upon past experiences and similar situations.

A cognitive bias is a psychological effect that cause the human
brain to draw incorrect conclusions. They are especially problem‐
atic because the person exhibiting the bias is usually unaware of it
and may believe they are being rational.

Many of the antipatterns that have been explored in this chapter are caused, in whole
or in part, by one or more cognitive biases that are in turn based on an unconscious
assumption.

For example, Blame Donkey is caused by a cognitive bias, because if a component has
caused several recent outages then the team could be expecting the same component
to be the cause of any new performance problem. Any data that’s analysed may be
more likely to be considered credible if it confirms the idea that the Blame Donkey is
responsible. The antipattern combines aspects of the biases known as Confirmation
Bias and Recency Bias.

A single component in Java can behave differently from application
to application depending on how it is optimised at runtime. In
order to remove any pre-existing bias it is important to check the
application is looked at as a whole.

Before we move on, let’s consider a pair of biases that are dual to each other. These
are the biases that assume that the problem is not software related at all and it must
be the infrastructure the software is running on. “This worked fine in UAT so there
must be a problem with the production kit”, or the Works For Me antipattern. The
converse is to assume that every problem must be caused by software, because that’s
the part of the system the developer knows about and can directly affect.

Cognitive Biases and Performance Testing | 79

www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

Reductionist Thinking
This cognitive bias is based on an analytical approach that insists that if broken into
small enough pieces, a system can be understood by understanding the constituent
parts. Understanding each part means a reduction in the chance an assumption is
made. The problem with this view is that in complex systems it just isn’t true. Non-
trivial software (or physical) systems almost always display emergent behaviour,
where the whole is greater than simply aggregating the parts would indicate.

Tuning by Folklore, missing the bigger picture and abuse of microbenchmarks are all
examples of antipatterns that are caused at least in part by the reductionism bias.

Confirmation Bias
Confirmation bias can lead to significant problems when it comes to performance
testing or attempting to look at application subjectively. A confirmation bias is intro‐
duced, usually not intentionally, when a poor test set is selected or results from the
test are not analysed in a statistically sound way. Confirmation bias is quite hard to
counter, because it can be lead by emotions or someone in the team trying to prove a
point.

Consider an anti-pattern such as distracted by shiny, where a team member is looking
to bring in the latest and greatest NoSQL database. They run some tests against data
that isn’t like production, because representing the full schema is too complicated for
evaluation purposes. They quickly prove that on a test set the NoSQL database pro‐
duces superior access times on their local machine. The developer had told everyone
this would be the case, and on seeing the results they proceed with a full implementa‐
tion. There are several anti-patterns at work, all leading to new uproved assumptions
in the new library stack.

Fog of war (Action Bias)
This bias usually manifests itself during outages or situations where the system is not
performing as expected. The most common situations include:

• Changes to infrastructure that the system runs on, perhaps without notification
or realising there would be an impact

• Changes to libraries that our system is dependant on
• A strange bug or race condition the manifests itself on the busiest day of the year

In a well maintained applciation with sufficient logging and monitoring, this should
lead to a clear error message being generated that will lead the support team to the
cause of the problem.

80 | Chapter 4: Performance Testing Patterns and Antipatterns

www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

2 To reuse the phrase made famous by Donald Rumsfeld

However, too many applications have not tested failure scenarios and lack appropri‐
ate logging. Under these circumstances even experienced engineers can fall into the
trap of needing to feel that they’re doing something to resolve the outage, and mistake
motion for velocity, and the “fog of war” descends.

At this time, many of the human elements discussed in this chapter can come into
effect if participants are not systematic about their approach to the problem. For
example, an antipattern such as Blame Donkey may shortcut a full investigation and
lead the production team down a particular path of investigation - often missing the
bigger picture. A similar example may include trying to break the system down into
its constituent parts and look through the code at a low level without first establishing
in which subsystem the problem truly resides.

In the past when dealing with outage scenarios it always pays to use a systematic
approach, leaving anything that did not require a patch to a post mortem. However,
this is the realm of human emotion and it can be very difficult to take the tension out
of the situation, especially during an outage.

Risk bias
Humans are naturally risk averse and resistant to change. Mostly this is because peo‐
ple have seen change and how it can go wrong. This leads a natural stance ot attempt
to avoid that risk. This can be incredibly frustrating when taking small calculated
risks can move the product forward. Risk bias is reduced significantly by having a
robust set of tests, both in terms of unit tests and production regression tests. If either
of these are not trusted change becomes extremely difficult and without control of
the risk factor.

This even manifests by a failure to learn from application problems (even service out‐
ages) and implement appropriate mitigation.

Ellsberg’s Paradox
As an example of how bad humans are at understanding probability, let us consider
Ellsberg’s Paradox. Named for the famous US investigative journalist and whistle‐
blower, Daniel Ellsberg, the paradox deals with the human desire for “known
unknowns” over “unknown unknowns”.2

The usual formulation of Ellsberg’s Paradox is as a simple probablity thought experi‐
ment. Consider a barrel, containing 90 colored balls - 30 are known to be blue, and
the rest are either red or green. The exact distribution of red and green balls is not
known, but the barrel, the balls and therefore the odds are fixed thoroughout.

Cognitive Biases and Performance Testing | 81

www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

The first step of the paradox is expressed as a choice of wagers. The player can choose
either to take either of two bets:

A) The player will win $100 if a ball drawn at random is blue

B) The player will win $100 if a ball drawn at random is red

Most people choose A) as it represents known odds - the likelihood of winning is
exactly 1/3. However, when presented with a second bet (assuming that when a ball is
removed it is placed back in the same barrel and then re-randomized), something
surprising happens:

C) The player will win $100 if a ball drawn at random is blue or green

D) The player will win $100 if a ball drawn at random is red or green

In this situation, bet D corresponds to known odds (2/3 chance of winning), so virtu‐
ally everyone picks this option.

The paradox is that the set of choices A and D is irrational. Choosing A implicitly
expresses an opinion about the distribution of red and green balls - effectively that
“there are more green balls than red balls”. Therefore, if A is chosen, then the logical
strategy is to pair it with C, as this would provide better odds than the safe choice of
D.

When evaluating performance results it is essential to handle the data in an appropri‐
ate manner and avoid falling into unscientific and subjective thinking. In this chapter,
we have met some of the types of test, testing best practices and antipatterns that are
native to performance analysis.

In the next chapter, we’re going to move on to looking at low-level performance
measurements and the pitfalls of microbenchmarks and some statistical techniques
for handling raw results obtained from JVM measurements.

82 | Chapter 4: Performance Testing Patterns and Antipatterns

www.itbook.store/books/9781491933329

https://itbook.store/books/9781491933329

Want to
read more?

You can buy this book at oreilly.com
in print and ebook format.

Buy 2 books, get the 3rd FREE!
Use discount code OPC10

All orders over $29.95 qualify for free shipping within the US.

It’s also available at your favorite book retailer, including
the iBookstore, the Android Marketplace, and Amazon.com.

©2015 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 15055

www.itbook.store/books/9781491933329

http://shop.oreilly.com/product/0636920042983.do
https://itbook.store/books/9781491933329

	Cover
	Copyright
	Table of Contents
	Preface
	Chapter 1. Optimization and Performance Defined
	Java Performance - The Wrong Way
	Performance as an Experimental Science
	A Taxonomy for Performance
	Throughput
	Latency
	Capacity
	Utilisation
	Efficiency
	Scalability
	Degradation
	Connections between the observables

	Reading performance graphs

	Chapter 2. Overview of the JVM
	Overview
	Code Compilation and Bytecode
	Interpreting and Classloading
	Introducing HotSpot
	JVM Memory Management
	Threading and the Java Memory Model
	The JVM and the operating system

	Chapter 3. Hardware & Operating Systems
	Introduction to Modern Hardware
	Memory
	Memory Caches

	Modern Processor Features
	Translation Lookaside Buffer
	Branch Prediction and Speculative Execution
	Hardware Memory Models

	Operating systems
	The Scheduler
	A Question of Time
	Context Switches

	A simple system model
	Basic Detection Strategies
	Context switching
	Garbage Collection
	I/O
	Kernel Bypass I/O
	Mechanical Sympathy

	Virtualisation

	Chapter 4. Performance Testing Patterns and Antipatterns
	Types of Performance Test
	Latency Test
	Throughput Test
	Load Test
	Stress Test
	Endurance Test
	Capacity Planning Test
	Degradation Test

	Best Practices Primer
	Top-Down Performance
	Creating a test environment
	Identifying performance requirements
	Java-specific issues
	Performance testing as part of the SDLC

	Performance Antipatterns
	Boredom
	Resume Padding
	Peer Pressure
	Lack of Understanding
	Misunderstood / Non-Existent Problem
	Distracted By Simple
	Description
	Example Comments
	Reality
	Discussion
	Resolutions
	Distracted By Shiny
	Description
	Example Comment
	Reality
	Discussion
	Resolutions
	Performance Tuning Wizard
	Description
	Example Comment
	Reality
	Discussion
	Resolutions
	Tuning By Folklore
	Description
	Example Comment
	Reality
	Discussion
	Resolutions
	Blame Donkey
	Description
	Example Comment
	Reality
	Discussion
	Resolutions
	Missing the Bigger Picture
	Description
	Example Comments
	Reality
	Discussion
	Resolutions
	UAT Is My Desktop
	Description
	Example Comment
	Reality
	Discussion
	Resolutions
	PROD-like Data Is Hard
	Description
	Example Comment
	Reality
	Discussion
	Resolutions

	Cognitive Biases and Performance Testing
	Reductionist Thinking
	Confirmation Bias
	Fog of war (Action Bias)
	Risk bias
	Ellsberg’s Paradox

	Chapter 5. Microbenchmarking and statistics
	Overview
	Don’t microbenchmark if you can help it - a true story
	Heuristics for when to microbenchmark

	Introduction to measuring Java performance
	Introduction to JMH
	Selecting and Executing Benchmarks

	Statistics for JVM performance
	Systematic Error
	Random Error
	Spurious Correlation

	Non-normal statistics
	Common Problems for homemade benchmarks
	Interpretation of statistics

	Summary

	Chapter 6. Monitoring and Analysis
	VisualVM
	Thermostat
	Illuminate
	New Relic
	Java Flight Recorder

	Chapter 7. Understanding Garbage Collection
	Allocation and lifetime
	Introducing Mark & Sweep
	Garbage Collection Glossary

	Garbage Collection in Hotspot
	Thread-local allocation
	Hemispheric Collection

	The parallel collectors
	The role of allocation
	Summary

	Chapter 8. Garbage Collection Monitoring and Tuning
	Tuning
	Introduction to the collectors

	Parallel
	CMS
	G1
	Other collectors
	Tools
	Censum
	GCViewer
	Heap Dump Analysis
	jHiccup

	Chapter 9. HotSpot JIT Compilation
	Overview of Bytecode Interpretation
	Profile Guided Optimization
	The Code Cache
	JIT Compilation Strategies
	JITwatch

	Chapter 10. Java language performance techniques
	Chapter 11. Profiling
	When to profile (and when not to)
	JProfiler
	VisualVM Profiler
	Honest Profiler
	Mission Control

	Chapter 12. Concurrent Performance Techniques
	Understanding The JMM
	Analysing For Concurrency

	Chapter 13. The Future
	Changes coming in Java 9
	Looking Ahead - Java 10?
	Other trends
	Conclusion

	Index
	About the Authors

