
Vandad Nahavandipoor

iOS 9 Swift
 Programming
 Cookbook
SOLUTIONS & EXAMPLES FOR IOS APPS

Covers Swift 2

and Xcode 7

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

978-1-491-93669-6

[LSI]

iOS 9 Swift Programming Cookbook
by Vandad Nahavandipoor

Copyright © 2016 Vandad Nahavandipoor. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Rachel Roumeliotis and Andy Oram
Production Editor: Nicole Shelby
Copyeditor: Kim Cofer
Proofreader: James Fraleigh

Indexer: Judy McConville
Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Rebecca Demarest

December 2015: First Edition

Revision History for the First Edition
2015-12-08: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491936696 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. iOS 9 Swift Programming Cookbook, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

Table of Contents

Preface. iii

1. Swift 2.0, Xcode 7, and Interface Builder. 1
1.1 Handling Errors in Swift 1
1.2 Specifying Preconditions for Methods 3
1.3 Ensuring the Execution of Code Blocks Before Exiting Methods 4
1.4 Checking for API Availability 6
1.5 Categorizing and Downloading Assets to Get Smaller Binaries 7
1.6 Exporting Device-Specific Binaries 11
1.7 Linking Separate Storyboards Together 12
1.8 Adding Multiple Buttons to the Navigation Bar 13
1.9 Optimizing Your Swift Code 14
1.10 Showing the Header View of Your Swift Classes 18
1.11 Creating Your Own Set Types 19
1.12 Conditionally Extending a Type 20
1.13 Building Equality Functionality into Your Own Types 22
1.14 Looping Conditionally Through a Collection 24
1.15 Designing Interactive Interface Objects in Playgrounds 25
1.16 Grouping Switch Statement Cases Together 28
1.17 Bundling and Reading Data in Your Apps 28

2. Apple Watch. 33
2.1 Downloading Files onto the Apple Watch 35
2.2 Noticing Changes in Pairing State Between the iOS and Watch Apps 39
2.3 Transferring Small Pieces of Data to and from the Watch 42
2.4 Transferring Dictionaries in Queues to and from the Watch 52
2.5 Transferring Files to and from the Watch 56
2.6 Communicating Interactively Between iOS and watchOS 60

ix

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

2.7 Setting Up Apple Watch for Custom Complications 69
2.8 Constructing Small Complications with Text and Images 76
2.9 Displaying Time Offsets in Complications 87
2.10 Displaying Dates in Complications 94
2.11 Displaying Times in Complications 100
2.12 Displaying Time Intervals in Complications 106
2.13 Recording Audio in Your Watch App 112
2.14 Playing Local and Remote Audio and Video in Your Watch App 115

3. The User Interface. 119
3.1 Arranging Your Components Horizontally or Vertically 119
3.2 Customizing Stack Views for Different Screen Sizes 121
3.3 Creating Anchored Constraints in Code 125
3.4 Allowing Users to Enter Text in Response to Local and Remote

Notifications 130
3.5 Dealing with Stacked Views in Code 134
3.6 Showing Web Content in Safari View Controller 136
3.7 Laying Out Text-Based Content on Your Views 137
3.8 Improving Touch Rates for Smoother UI Interactions 138
3.9 Supporting Right-to-Left Languages 141
3.10 Associating Keyboard Shortcuts with View Controllers 146
3.11 Recording the Screen and Sharing the Video 147

4. Contacts. 155
4.1 Creating Contacts 156
4.2 Searching for Contacts 161
4.3 Updating Contacts 166
4.4 Deleting Contacts 168
4.5 Formatting Contact Data 170
4.6 Picking Contacts with the Prebuilt System UI 174
4.7 Creating Contacts with a Prebuilt System UI 180
4.8 Displaying Contacts with a Prebuilt System UI 182

5. Extensions. 185
5.1 Creating Safari Content Blockers 185
5.2 Creating Shared Links for Safari 190
5.3 Maintaining Your App’s Indexed Content 193

6. Web and Search. 199
6.1 Making Your App’s Content Searchable 199
6.2 Making User Activities Searchable 203
6.3 Deleting Your App’s Searchable Content 206

x | Table of Contents

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

7. Multitasking. 209
7.1 Adding Picture in Picture Playback Functionality 209
7.2 Handling Low Power Mode and Providing Alternatives 215

8. Maps and Location. 219
8.1 Requesting the User’s Location a Single Time 219
8.2 Requesting the User’s Location in Background 221
8.3 Customizing the Tint Color of Pins on the Map 222
8.4 Providing Detailed Pin Information with Custom Views 225
8.5 Displaying Traffic, Scale, and Compass Indicators on the Map 227
8.6 Providing an ETA for Transit Transport Type 229
8.7 Launching the iOS Maps App in Transit Mode 232
8.8 Showing Maps in Flyover Mode 233

9. UI Testing. 235
9.1 Preparing Your Project for UI Testing 235
9.2 Automating UI Test Scripts 238
9.3 Testing Text Fields, Buttons, and Labels 241
9.4 Finding UI Components 243
9.5 Long-Pressing on UI Elements 246
9.6 Typing Inside Text Fields 248
9.7 Swiping on UI Elements 250
9.8 Tapping UI Elements 251

10. Core Motion. 253
10.1 Querying Pace and Cadence Information 254
10.2 Recording and Reading Accelerometer Data 255

11. Security. 257
11.1 Protecting Your Network Connections with ATS 257
11.2 Binding Keychain Items to Passcode and Touch ID 259
11.3 Opening URLs Safely 261
11.4 Authenticating the User with Touch ID and Timeout 262

12. Multimedia. 265
12.1 Reading Out Text with the Default Siri Alex Voice 265
12.2 Downloading and Preparing Remote Media for Playback 267
12.3 Enabling Spoken Audio Sessions 269

13. UI Dynamics. 273
13.1 Adding a Radial Gravity Field to Your UI 273
13.2 Creating a Linear Gravity Field on Your UI 278

Table of Contents | xi

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

13.3 Creating Turbulence Effects with Animations 281
13.4 Adding Animated Noise Effects to Your UI 283
13.5 Creating a Magnetic Effect Between UI Components 285
13.6 Designing a Velocity Field on Your UI 288
13.7 Handling Nonrectangular Views 290

Index. 297

xii | Table of Contents

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

CHAPTER 1

Swift 2.0, Xcode 7, and Interface Builder

In this chapter, we are going to have a look at some of the updates to Swift (Swift 2.0),
Xcode, and Interface Builder. We will start with Swift and some of the really exciting
features that have been added to it since you read the iOS 8 Swift Programming
Cookbook.

1.1 Handling Errors in Swift
Problem
You want to know how to throw and handle exceptions in Swift.

I’ll be using errors and exceptions interchangeably in this book.
When an error occurrs in our app, we usually catch it, as you will
soon see, and handle it in a way that is pleasant and understandable
to the user.

Solution
To throw an exception, use the throw syntax. To catch exceptions, use the do, try,
catch syntax.

Discussion
Let’s say that you want to create a method that takes in a first name and last name as
two arguments and returns a full name. The first name and the last name have to
each at least be one character long for this method to work. If one or both have 0
lengths, we are going to want to throw an exception.

1

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

The first thing that we have to do is to define our errors of type ErrorType:

 enum Errors : ErrorType{
 case EmptyFirstName
 case EmptyLastName
 }

And then we are going to define our method to take in a first and last name and join
them together with a space in between:

 func fullNameFromFirstName(firstName: String,
 lastName: String) throws -> String{

 if firstName.characters.count == 0{
 throw Errors.EmptyFirstName
 }

 if lastName.characters.count == 0{
 throw Errors.EmptyLastName
 }

 return firstName + " " + lastName

 }

The interesting part is really how to call this method. We use the do statement like so:

do{
 let fullName = try fullNameFromFirstName("Foo", lastName: "Bar")
 print(fullName)
} catch {
 print("An error occurred")
}

The catch clause of the do statement allows us to trap errors in a fine-grained man‐
ner. Let’s say that you want to trap errors in the Errors enum differently from instan‐
ces of NSException. Separate your catch clauses like this:

do{
 let fullName = try fullNameFromFirstName("Foo", lastName: "Bar")
 print(fullName)
}
catch let err as Errors{
 //handle this specific type of error here
 print(err)
}
catch let ex as NSException{
 //handle exceptions here
 print(ex)
}
catch {
 //otherwise, do this
}

2 | Chapter 1: Swift 2.0, Xcode 7, and Interface Builder

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

See Also
 Recipe 1.3

1.2 Specifying Preconditions for Methods
Problem
You want to make sure a set of conditions are met before continuing with the flow of
your method.

Solution
Use the guard syntax.

Discussion
The guard syntax allows you to:

1. Specify a set of conditions for your methods.
2. Bind variables to optionals and use those variables in the rest of your method’s

body.

Let’s have a look at a method that takes an optional piece of data as the NSData type
and turns it into a String only if the string has some characters in it and is not
empty:

 func stringFromData(data: NSData?) -> String?{

 guard let data = data,
 let str = NSString(data: data, encoding: NSUTF8StringEncoding)
 where data.length > 0 else{
 return nil
 }

 return String(str)

 }

And then we are going to use it like so:

if let _ = stringFromData(nil){
 print("Got the string")
} else {
 print("No string came back")
}

We pass nil to this method for now and trigger the failure block (“No string came
back”). What if we passed valid data? And to have more fun with this, let’s create our

1.2 Specifying Preconditions for Methods | 3

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

NSData instance this time with a guard. Because the NSString constructor we are
about to use returns an optional value, we put a guard statement before it to ensure
that the value that goes into the data variable is in fact a value, and not nil:

guard let data = NSString(string: "Foo")
 .dataUsingEncoding(NSUTF8StringEncoding) where data.length > 0 else{
 return
}

if let str = stringFromData(data){
 print("Got the string \(str)")
} else {
 print("No string came back")
}

So we can mix guard and where in the same statement. How about multiple let state‐
ments inside a guard? Can we do that? You betcha:

 func example3(firstName firstName: String?, lastName: String?, age: UInt8?){

 guard let firstName = firstName, let lastName = lastName , _ = age where
 firstName.characters.count > 0 && lastName.characters.count > 0 else{
 return
 }

 print(firstName, " ", lastName)

 }

See Also
Recipe 1.1

1.3 Ensuring the Execution of Code Blocks Before Exiting
Methods
Problem
You have various conditions in your method that can exit the method early. But
before you do that, you want to ensure that some code always gets executed, for
instance to do some cleanup.

Solution
Use the defer syntax.

4 | Chapter 1: Swift 2.0, Xcode 7, and Interface Builder

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

Discussion
Anything that you put inside a defer block inside a method is guaranteed to get exe‐
cuted before your method returns to the caller. However, this block of code will get
executed after the return call in your method. The code is also called when your
method throws an exception.

Let’s say that you want to define a method that takes in a string and renders it inside a
new image context with a given size. Now if the string is empty, you want to throw an
exception. However, before you do that, we want to make sure that we have ended
our image context. Let’s define our error first:

 enum Errors : ErrorType{
 case EmptyString
 }

Then we move onto our actual method that uses the defer syntax:

 func imageForString(str: String, size: CGSize) throws -> UIImage{

 defer{
 UIGraphicsEndImageContext()
 }

 UIGraphicsBeginImageContextWithOptions(size, true, 0)

 if str.characters.count == 0{
 throw Errors.EmptyString
 }

 //draw the string here...

 return UIGraphicsGetImageFromCurrentImageContext()

 }

I don’t want to put print() statements everywhere in the code because it makes the
code really ugly. So to see whether this really works, I suggest that you paste this code
into your Xcode—or even better, grab the source code for this book’s example code
from GitHub, where I have already placed breakpoints in the defer and the return
statements so that you can see that they are working properly.

You can of course then call this method like so:

 do{
 let i = try imageForString("Foo", size: CGSize(width: 100, height: 50))
 print(i)
 } catch let excep{
 print(excep)
 }

1.3 Ensuring the Execution of Code Blocks Before Exiting Methods | 5

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

See Also
Recipe 1.2

1.4 Checking for API Availability
Problem
You want to check whether a specific API is available on the host device running your
code.

Solution
Use the #available syntax.

Discussion
We’ve all been waiting for this for a very long time. The days of having to call the
respondsToSelector: method are over (hopefully). Now we can just use the #avail
able syntax to make sure a specific iOS version is available before making a call to a
method.

Let’s say that we want to write a method that can read an array of bytes from an
NSDataobject. NSData offers a handy getBytes: method to do this, but Apple decided
to deprecate it in iOS 8.1 and replace it with the better getBytes:length: version
that minimizes the risk of buffer overflows. So assuming that one of our deployment
targets is iOS 8 or older, we want to ensure that we call this new method if we are on
iOS 8.1 or higher and the older method if we are on iOS 8.0 or older:

 enum Errors : ErrorType{
 case EmptyData
 }

 func bytesFromData(data: NSData) throws -> [UInt8]{

 if (data.length == 0){
 throw Errors.EmptyData
 }

 var buffer = [UInt8](count: data.length, repeatedValue: 0)

 if #available(iOS 8.1, *){
 data.getBytes(&buffer, length: data.length)
 } else {
 data.getBytes(&buffer)
 }

 return buffer

6 | Chapter 1: Swift 2.0, Xcode 7, and Interface Builder

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

 }

And then we go ahead and call this method:

 func example1(){

 guard let data = "Foo".dataUsingEncoding(NSUTF8StringEncoding) else {
 return
 }

 do{
 let bytes = try bytesFromData(data)
 print("Data = \(bytes)")
 } catch {
 print("Failed to get bytes")
 }

 }

See Also
Recipe 1.1

1.5 Categorizing and Downloading Assets to Get
Smaller Binaries
Problem
You have many assets in your app for various circumstances, and want to save storage
space and network usage on each user’s device by shipping the app without the
optional assets. Instead, you would want to dynamically download them and use
them whenever needed.

Solution
Use Xcode to tag your assets and then use the NSBundleResourceRequest class to
download them.

Discussion
For this recipe, I will create three packs of assets, each with three images in them. One
pack may run for x3 screen scales, another for iPhone 6, and the last for iPhone 6+,
for instance. I am taking very tiny clips of screenshots of my desktop to create these
images—nothing special. The first pack will be called “level1,” the second “level2,” and
the third “level3.”

1.5 Categorizing and Downloading Assets to Get Smaller Binaries | 7

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

Use the GitHub repo of this book for a quick download of the said
resources. Also, for the sake of simplicity, I am assuming that we
are going to run this only on x3 scale screens such as iPhone 6+.

Place all nine images (three packs of three images) inside your Assets.xcassets file and
name them as shown in Figure 1-1. Then select all the images in your first asset pack
and open the Attributes inspector. In the “On Demand Resource Tags” section of the
inspector, enter level1 and do the same thing for other levels—but of course bump
the number up for each pack.

Figure 1-1. Name your assets as shown

Now, in your UI, place three buttons and three image views, hook the buttons’
actions to the code, and hook the image view references to the code:

 @IBOutlet var img1: UIImageView!
 @IBOutlet var img2: UIImageView!
 @IBOutlet var img3: UIImageView!

 var imageViews: [UIImageView]{
 return [self.img1, self.img2, self.img3]
 }

To find out whether the resource pack that you need has already been downloaded,
call the conditionallyBeginAccessingResourcesWithCompletionHandler function
on your resource request. Don’t blame me! I didn’t name this function. This will
return a Boolean of true or false to tell you whether you have or don’t have access to
the resource. If you don’t have access, you can simply download the resources with a

8 | Chapter 1: Swift 2.0, Xcode 7, and Interface Builder

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

call to the beginAccessingResourcesWithCompletionHandler function. This will
return an error if one happens, or nil if everything goes well.

We keep a reference to the request that we send for our asset pack
so that the next time our buttons are tapped, we don’t have to check
their availability again, but release the previously downloaded
resources using the endAccessingResources function.

 var currentResourcePack: NSBundleResourceRequest?

 func displayImagesForResourceTag(tag: String){
 NSOperationQueue.mainQueue().addOperationWithBlock{
 for n in 0..<self.imageViews.count{
 self.imageViews[n].image = UIImage(named: tag + "-\(n+1)")
 }
 }
 }

 func useLevel(lvl: UInt32){

 let imageViews = [img1, img2, img3]

 for img in imageViews{
 img.image = nil
 }

 let tag = "level\(lvl)"

 if let req = currentResourcePack{
 req.endAccessingResources()
 }

 currentResourcePack = NSBundleResourceRequest(tags: [tag])

 guard let req = currentResourcePack else {
 return
 }

 req.conditionallyBeginAccessingResourcesWithCompletionHandler{available in
 if available{
 self.displayImagesForResourceTag(tag)
 } else {
 req.beginAccessingResourcesWithCompletionHandler{error in
 guard error == nil else{
 //TODO: you can handle the error here
 return
 }
 self.displayImagesForResourceTag(tag)
 }
 }

1.5 Categorizing and Downloading Assets to Get Smaller Binaries | 9

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

 }

 }

 @IBAction func useLevel3(sender: AnyObject) {
 useLevel(3)
 }

 @IBAction func useLevel2(sender: AnyObject) {
 useLevel(2)
 }

 @IBAction func useLevel1(sender: AnyObject) {
 useLevel(1)
 }

Run the code now in your simulator. When Xcode opens, go to the Debug Navigator
(Command-6 key) and then click the Disk section. You will see something like that
shown in Figure 1-2.

Figure 1-2. Xcode displaying all our On Demand Resources and status of whether or not
they are downloaded locally

Note how none of the asset packs are in use. Now in your UI, click the first button to
get the first asset pack and watch how the first asset pack’s status will change to “In
Use.” Once you switch from that pack to another, the previously chosen pack will be
set to “Downloaded” and be ready to be purged.

See Also
Recipe 1.6

10 | Chapter 1: Swift 2.0, Xcode 7, and Interface Builder

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

1.6 Exporting Device-Specific Binaries
Problem
You want to extract your app’s binary for a specific device architecture to find out
how big your binary will be on that device when the user downloads your app.

Solution
Follow these steps:

1. Archive your app in Xcode.
2. In the Archives screen, click the Export button.
3. Choose the “Save for Ad Hoc Deployment” option in the new screen and click

Next.
4. In the new window, choose “Export for specific device” and then choose your

device from the list.
5. Once you are done, click the Next button and save your file to disk.

Discussion
With iOS 9, Apple introduced bitcode. This is Apple’s way of specifying how the
binary that you submit to the App Store will be downloaded on target devices. For
instance, if you have an asset catalogue with some images for the iPad and iPhone
and a second set of images for the iPhone 6 and 6+ specifically, users on iPhone 5
should not get the second set of assets. You don’t have to do anything really to enable
this functionality in Xcode 7. It is enabled by default. If you are working on an old
project, you can enable bitcode from Build Settings in Xcode.

If you are writing an app that has a lot of images and assets for various devices, I sug‐
gest that you use this method, before submitting your app to the store, to ensure that
the required images and assets are indeed included in your final build. Remember, if
bitcode is enabled in your project, Apple will detect the host device that is download‐
ing your app from the store and will serve the right binary to that device. You don’t
have to separate your binaries when submitting to Apple. You submit a big fat juicy
binary and Apple will take care of the rest.

See Also
Recipe 1.5

1.6 Exporting Device-Specific Binaries | 11

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

1.7 Linking Separate Storyboards Together
Problem
You have a messy storyboard, so you would like to place some view controllers in
their own storyboard and still be able to cross-reference them in your other story‐
boards.

Solution
Use IB’s new “Refactor to Storyboard” feature under the Editor menu.

Discussion
I remember working on a project where we had a really messy storyboard and we had
to separate the view controllers. What we ended up doing was putting the controllers
on separate storyboards manually, after which we had to write code to link our but‐
tons and other actions to the view controllers, instantiate them manually, and then
show them. Well, none of that anymore. Apple has taken care of that for us!

As an exercise, create a single-view controller project in Xcode and then open your
main storyboard. Then choose the Editor menu, then Embed In, and then Navigation
Controller. Now your view controller has a navigation controller. Place a button on
your view controller and then place another view controller on your storyboard.
Select the button on the first view controller, hold down the Control button on your
keyboard, drag the line over to the second view controller, and then choose the Show
option. This will ensure that when the user taps your button, the system will push the
second view controller onto the screen, as Figure 1-3 shows.

Figure 1-3. We need to create a show segue ensuring that pressing our button will show
the second view controller

12 | Chapter 1: Swift 2.0, Xcode 7, and Interface Builder

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

Now select your second view controller and then, from the Editor menu, choose the
“Refactor to Storyboard” item. In the dialog, enter Second.storyboard as the file
name and save. That’s really it. Now run your app and see the results if you want.

If you prefer to do some of this stuff manually instead of embedding things like this,
you can always drag the new item called Storyboard Reference from the Object
Library onto your storyboard and set up the name of the storyboard manually. Xcode
will give you a drop-down box so that you don’t have to write the name of the story‐
board all by yourself. You will also be able to specify an identifier for your storyboard.
This identifier will then be useful when working with the segue. You of course have to
set up this ID for your view controller in advance.

See Also
Recipe 3.5

1.8 Adding Multiple Buttons to the Navigation Bar
Problem
You want to add multiple instances of UIBarButtonItem to your navigation bar.

Solution
In Xcode 7, you can now add multiple bar button items to your navigation bar. Sim‐
ply open the Object Library and search for “bar button.” Once you find the buttons,
drag and drop them onto your navigation bar and then simply reference them in your
code if you have to. For instance, Figure 1-4 shows two bar buttons on the right-hand
side of the navigation bar. In previous versions of Xcode, we could add only one but‐
ton to each side. If we wanted more buttons, we had to write code to add them.

1.8 Adding Multiple Buttons to the Navigation Bar | 13

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

Figure 1-4. Two buttons on the same side of the navigation bar

Discussion
Prior to Xcode 7 you could not place multiple bar button items next to each other on
your navigation bar. Well, now you can. You can also access these buttons just as you
would expect, by creating a reference to them in your code. And you can always find
them using the barButtonItems property of your navigation bar.

See Also
Recipe 1.7

1.9 Optimizing Your Swift Code
Problem
You want to adopt some simple practices that can make your Swift code run much
faster than before.

Solution
Use the following techniques:

1. Enable whole module optimization on your code.
2. Use value types (such as structs) instead of reference types where possible.
3. Consider using final for classes, methods, and variables that aren’t going to be

overridden.
4. Use the CFAbsoluteTimeGetCurrent function to profile your app inside your

code.

14 | Chapter 1: Swift 2.0, Xcode 7, and Interface Builder

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

5. Always use Instruments to profile your code and find bottlenecks.

Discussion
Let’s have a look at an example. Let’s say that we have a Person class like so:

class Person{
 let name: String
 let age: Int
 init(name: String, age: Int){
 self.name = name
 self.age = age
 }
}

Now we will write a method that will generate 100,000 instances of this class, place
them inside a mutable array, and then enumerate the array. We will time this opera‐
tion using the CFAbsoluteTimeGetCurrent function. We’ll then be able to tell how
many milliseconds this took:

 func example1(){

 var x = CFAbsoluteTimeGetCurrent()

 var array = [Person]()

 for _ in 0..<100000{
 array.append(Person(name: "Foo", age: 30))
 }

 //go through the items as well
 for n in 0..<array.count{
 let _ = array[n]
 }

 x = (CFAbsoluteTimeGetCurrent() - x) * 1000.0

 print("Took \(x) milliseconds")

 }

When I ran this code, it took 41.28 milliseconds to complete; it will probably be dif‐
ferent in your computer. Now let’s create a struct similar to the class we created before
but without an initializer, because we get that for free. Then do the same that we did
before and time it:

 struct PersonStruct{
 let name: String
 let age: Int
 }

1.9 Optimizing Your Swift Code | 15

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

 func example2(){

 var x = CFAbsoluteTimeGetCurrent()

 var array = [PersonStruct]()

 for _ in 0..<100000{
 array.append(PersonStruct(name: "Foo", age: 30))
 }

 //go through the items as well
 for n in 0..<array.count{
 let _ = array[n]
 }

 x = (CFAbsoluteTimeGetCurrent() - x) * 1000.0

 print("Took \(x) milliseconds")

 }

Don’t suffix your struct names with “Struct” like I did. This is for
demo purposes only, to differentiate between the class and the
struct.

When I run this code, it takes only 35.53 milliseconds. A simple optimization brought
some good savings. Also notice that in the release version these times will be mas‐
sively improved, because your binary will have no debug information. I have tested
the same code without the debugging, and the times are more around 4 milliseconds.
Also note that I am testing these on the simulator, not on a real device. The profiling
will definitely report different times on a device, but the ratio should be quite the
same.

Another thing that you will want to do is think about which parts of your code are
final and mark them with the final keyword. This will tell the compiler that you are
not intending to override those properties, classes, or methods and will help Swift
optimize the dispatch process. For instance, let’s say we have this class hierarchy:

 class Animal{
 func move(){
 if "Foo".characters.count > 0{
 //some code
 }
 }
 }

 class Dog : Animal{

16 | Chapter 1: Swift 2.0, Xcode 7, and Interface Builder

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

 }

And we create instances of the Dog class and then call the move function on them:

 func example3(){
 var x = CFAbsoluteTimeGetCurrent()
 var array = [Dog]()
 for n in 0..<100000{
 array.append(Dog())
 array[n].move()
 }
 x = (CFAbsoluteTimeGetCurrent() - x) * 1000.0
 print("Took \(x) milliseconds")
 }

When we run this, the runtime will first have to detect whether the move function is
on the super class or the subclass and then call the appropriate class based on this
decision. This checking takes time. For instance, if you know that the move function
won’t be overridden in the subclasses, mark it as final:

 class AnimalOptimized{
 final func move(){
 if "Foo".characters.count > 0{
 //some code
 }
 }
 }

 class DogOptimized : AnimalOptimized{

 }

 func example4(){
 var x = CFAbsoluteTimeGetCurrent()
 var array = [DogOptimized]()
 for n in 0..<100000{
 array.append(DogOptimized())
 array[n].move()
 }
 x = (CFAbsoluteTimeGetCurrent() - x) * 1000.0
 print("Took \(x) milliseconds")
 }

When I run these on the simulator, I get 90.26 milliseconds for the non-optimized
version and 88.95 milliseconds for the optimized version. Not that bad.

I also recommend that you turn on whole module optimization for your release code.
Just go to your Build Settings and under the optimization for your release builds (App
Store scheme), simply choose “Fast” with Whole Module Optimization, and you are
good to go.

1.9 Optimizing Your Swift Code | 17

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

See Also
Recipe 1.1 and Recipe 1.2

1.10 Showing the Header View of Your Swift Classes
Problem
You want to get an overview of what your Swift class’s interface looks like.

Solution
Use Xcode’s new Generated Interface Assistant Editor. This is how you do it. Open
your Swift file first and then, in Xcode, use Show Assistant Editor, which you can find
in the Help menu if you just type that name. After you open the assistant, you will get
a split screen of your current view. Then in the second editor that opened, on top,
instead of Counterparts (which is the default selection), choose Generated Interface.
You’ll see your code as shown in Figure 1-5.

Figure 1-5. Code shown in Xcode assistant

Discussion
I find the Generated Interface functionality of the assistant editor quite handy if you
want to get an overview of how clean your code is. It probably won’t be day-to-day

18 | Chapter 1: Swift 2.0, Xcode 7, and Interface Builder

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

functionality that you use all the time, but I cannot be sure. Maybe you will love it so
much that you will dedicate a whole new monitor just to see your generated interface
all the time. By the way, there is a shortcut to the assistant editor in Xcode 7:
Command-Alt-Enter. To get rid of the editor, press Command-Enter.

See Also
Recipe 1.7

1.11 Creating Your Own Set Types
Problem
You want to create a type in Swift that can allow all operators that normal sets allow,
such as the contain function.

Solution
Conform to the OptionSetType protocol. As a bonus, you can also conform to the
CustomDebugStringConvertible protocol, as I will do in this recipe, in order to set
custom debug descriptions that the print function can use during debugging of your
sets.

Discussion
Let’s say that I have a structure that keeps track of iPhone models. I want to be able to
create a set of this structure’s values so that I can say that I have an iPhone 6, iPhone
6+, and iPhone 5s (fancy me!). Here is the way I would do that:

 struct IphoneModels : OptionSetType, CustomDebugStringConvertible{

 let rawValue: Int
 init(rawValue: Int){
 self.rawValue = rawValue
 }

 static let Six = IphoneModels(rawValue: 0)
 static let SixPlus = IphoneModels(rawValue: 1)
 static let Five = IphoneModels(rawValue: 2)
 static let FiveS = IphoneModels(rawValue: 3)

 var debugDescription: String{
 switch self{
 case IphoneModels.Six:
 return "iPhone 6"
 case IphoneModels.SixPlus:
 return "iPhone 6+"

1.11 Creating Your Own Set Types | 19

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

 case IphoneModels.Five:
 return "iPhone 5"
 case IphoneModels.FiveS:
 return "iPhone 5s"
 default:
 return "Unknown iPhone"
 }
 }

 }

And then I can use it like so:

 func example1(){

 let myIphones: [IphoneModels] = [.Six, .SixPlus]

 if myIphones.contains(.FiveS){
 print("You own an iPhone 5s")
 } else {
 print("You don't seem to have an iPhone 5s but you have these:")
 for i in myIphones{
 print(i)
 }
 }

 }

Note how I could create a set of my new type and then use the contains function on
it just as I would on a normal set. Use your imagination—this is some really cool
stuff.

See Also
Recipe 1.1, Recipe 1.2, and Recipe 1.3

1.12 Conditionally Extending a Type
Problem
You want to be able to extend existing data types that pass a certain test.

Solution
Use protocol extensions. Swift 2.0 allows protocol extensions to contain code.

20 | Chapter 1: Swift 2.0, Xcode 7, and Interface Builder

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

Discussion
Let’s say that you want to add a method on any array in Swift where the items are
integers. In your extension, you want to provide a method called canFind that can
find a specific item in the array and return yes if it could be found. I know that we
can do this with other system methods. I am offering this simple example to demon‐
strate how protocol extensions work:

extension SequenceType where
 Generator.Element : IntegerArithmeticType{
 public func canFind(value: Generator.Element) -> Bool{
 for (_, v) in self.enumerate(){
 if v == value{
 return true
 }
 }
 return false
 }
}

Then you can go ahead and use this method like so:

 func example1(){

 if [1, 3, 5, 7].canFind(5){
 print("Found it")
 } else {
 print("Could not find it")
 }

 }

As another example, let’s imagine that you want to extend all array types in Swift
(SequenceType) that have items that are either double or floating point. It doesn’t
matter which method you add to this extension. I am going to add an empty method
for now:

extension SequenceType where Generator.Element : FloatingPointType{
 //write your code here
 func doSomething(){
 //TODO: code this
 }
}

And you can, of course, use it like so:

 func example2(){

 [1.1, 2.2, 3.3].doSomething()

 }

1.12 Conditionally Extending a Type | 21

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

However, if you try to call this method on an array that contains non–floating-point
data, you will get a compilation error.

Let me show you another example. Let’s say that you want to extend all arrays that
contain only strings, and you want to add a method to this array that can find the
longest string. This is how you would do that:

extension SequenceType where Generator.Element : StringLiteralConvertible{
 func longestString() -> String{
 var s = ""
 for (_, v) in self.enumerate(){
 if let temp = v as? String
 where temp.characters.count > s.characters.count{
 s = temp
 }
 }
 return s
 }
}

Calling it is as simple as:

 func example3(){

 print(["Foo", "Bar", "Vandad"].longestString())

 }

See Also
Recipe 1.6

1.13 Building Equality Functionality into Your Own Types
Problem
You have your own structs and classes and you want to build equality-checking func‐
tionality into them.

Solution
Build your equality functionality into the protocols to which your types conform.
This is the way to go!

Discussion
Let me give you an example. Let’s say that we have a protocol called Named:

22 | Chapter 1: Swift 2.0, Xcode 7, and Interface Builder

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

protocol Named{
 var name: String {get}
}

We can build the equality functionality into this protocol. We can check the name
property and if the name is the same on both sides, then we are equal:

func ==(lhs : Named, rhs: Named) -> Bool{
 return lhs.name == rhs.name
}

Now let’s define two types, a car and a motorcycle, and make them conform to this
protocol:

struct Car{}
struct Motorcycle{}

extension Car : Named{
 var name: String{
 return "Car"
 }
}

extension Motorcycle : Named{
 var name: String{
 return "Motorcycle"
 }
}

That was it, really. You can see that I didn’t have to build the equality functionality
into Car and into Motorcycle separately. I built it into the protocol to which both
types conform. And then we can use it like so:

 func example1(){

 let v1: Named = Car()
 let v2: Named = Motorcycle()

 if v1 == v2{
 print("They are equal")
 } else {
 print("They are not equal")
 }

 }

This example will say that the two constants are not equal because one is a car and the
other one is a motorcycle, but what if we compared two cars?

 func example2(){

 let v1: Named = Car()
 let v2: Named = Car()

1.13 Building Equality Functionality into Your Own Types | 23

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

 if v1 == v2{
 print("They are equal")
 } else {
 print("They are not equal")
 }

 }

Bingo. Now they are equal. So instead of building the equality functionality into your
types, build them into the protocols that your types conform to and you are good to
go.

See Also
Recipe 1.12

1.14 Looping Conditionally Through a Collection
Problem
You want to go through the objects inside a collection conditionally and state your
conditions right inside the loop’s statement.

Solution
Use the new for x in y where syntax, specifying a where clause right in your for
loop. For instance, here I will go through all the keys and values inside a dictionary
and only get the values that are integers:

 let dic = [
 "name" : "Foo",
 "lastName" : "Bar",
 "age" : 30,
 "sex" : 1,
]

 for (k, v) in dic where v is Int{
 print("The key \(k) contains an integer value of \(v)")
 }

Discussion
Prior to Swift 2.0, you’d have to create your conditions before you got to the loop
statement—or even worse, if that wasn’t possible and your conditions depended on
the items inside the array, you’d have to write the conditions inside the loop. Well, no
more.

24 | Chapter 1: Swift 2.0, Xcode 7, and Interface Builder

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

Here is another example. Let’s say that you want to find all the numbers that are divis‐
ible by 8, inside the range of 0 to 1000, inclusively:

 let nums = 0..<1000
 let divisibleBy8 = {$0 % 8 == 0}
 for n in nums where divisibleBy8(n){
 print("\(n) is divisible by 8")
 }

And of course you can have multiple conditions for a single loop:

 let dic = [
 "name" : "Foo",
 "lastName" : "Bar",
 "age" : 30,
 "sex" : 1,
]

 for (k, v) in dic where v is Int && v as! Int > 10{
 print("The key \(k) contains the value of \(v) that is larger than 10")
 }

See Also
Recipe 1.11

1.15 Designing Interactive Interface Objects in
Playgrounds
Problem
You want to design a view the way you want, but don’t want to compile your app
every time you make a change.

Solution
Use storyboards while designing your UI, and after you are done, put your code
inside an actual class. In IB, you can detach a view so that it is always visible in your
playground while you are working on it, and any changes you make will immediately
be shown.

Discussion
Create a single-view app and add a new playground to your project, as shown in
Figure 1-6.

1.15 Designing Interactive Interface Objects in Playgrounds | 25

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

Figure 1-6. Add a new playground to your project

Write code similar to this to create your view:

import UIKit

var view = UIView(frame: CGRect(x: 0, y: 0, width: 300, height: 300))
view.backgroundColor = UIColor.greenColor()

Now on the right hand side of the last line of code that you wrote, you should see a +
button. Click that (see Figure 1-7).

Figure 1-7. Click the little + button to get your view right onto your playground

By clicking that button, you will get a live preview of your view inside your play‐
ground. Now you can continue changing your view’s properties and once you are
done, add a new preview of your view, so that you can compare the previous and the
new states (see Figure 1-8). The first view shown has only the properties you assigned

26 | Chapter 1: Swift 2.0, Xcode 7, and Interface Builder

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

to it up to the point that view was drawn. The second view has more properties, such
as the border width and color, even though it is the same view instance in memory.
However, because it is drawn at a different time inside IB, it shows different results.
This helps you compare how your views look before and after modifications.

Figure 1-8. Two versions of a view

See Also
Recipe 1.7

1.15 Designing Interactive Interface Objects in Playgrounds | 27

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

1.16 Grouping Switch Statement Cases Together
Problem
You want to design your cases in a switch statement so that some of them fall
through to the others.

Solution
Use the fallthrough syntax. Here is an example:

 let age = 30

 switch age{
 case 1...10:
 fallthrough
 case 20...30:
 print("Either 1 to 10 or 20 to 30")
 default:
 print(age)
 }

This is just an example. There are better ways of writing this code
than to use fallthrough. You can indeed batch these two cases
together into one case statement.

Discussion
In Swift, if you want one case statement to fall through to the next, you have to
explicitly state the fallthrough command. This is more for the programmers to look
at than the compiler, because in many languages the compiler is able to fall through to
the next case statement if you just leave out the break statement. However, this is a
bit tricky because the developer might have just forgotten to place the break state‐
ment at the end of the case and all of a sudden her app will start behaving really
strangely. Swift now makes you request fall-through explicity, which is safer.

1.17 Bundling and Reading Data in Your Apps
Problem
You want to bundle device-specific data into your app. At runtime, you want to easily
load the relevant device’s data and use it without having to manually distinguish
between devices at runtime.

28 | Chapter 1: Swift 2.0, Xcode 7, and Interface Builder

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

Solution
Follow these steps:

1. In your asset catalogue, tap the + button and create a new Data Set (see
Figure 1-9).

Figure 1-9. Data sets contain our raw device-specific data

2. In the Attributes inspector of your data set, specify for which devices you want to
provide data (see Figure 1-10).

1.17 Bundling and Reading Data in Your Apps | 29

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

Figure 1-10. I have chosen to provide data for the iPad and iPhone in this example

3. Drag and drop your actual raw data file into place in IB
4. In your asset list, rename your asset to something that you wish to refer it to by

later (see Figure 1-11).

Figure 1-11. I have placed two RTF files into this data asset: one for iPhone and another
for iPad

30 | Chapter 1: Swift 2.0, Xcode 7, and Interface Builder

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

In the iPhone RTF I’ve written “iPhone Says Hello,” and the iPad
one says “iPad Says Hello”; the words iPhone and iPad are bold
(attributed texts). I am then going to load these as attributed strings
and show them on the user interface (see Figure 1-13).

5. In your code, load the asset with the NSDataAsset class’s initializer.
6. Once done, use the data property of your asset to access the data.

Discussion
Place a label on your UI and hook it up to your code under the name lbl (see
Figure 1-12).

Figure 1-12. Place a label on your user interface and add all the constraints to it (Xcode
can do this for you). Hook it up to your code as well.

Then create an intermediate property that can set your label’s text for you:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var lbl: UILabel!

 var status = ""{
 didSet{lbl.text = status}
 }

 ...

When the view is loaded, attempt to load the custom data set:

 guard let asset = NSDataAsset(name: "rtf") else {
 status = "Could not find the data"
 return
 }

1.17 Bundling and Reading Data in Your Apps | 31

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

The name of the data asset is specified in the asset catalogue (see
Figure 1-11).

Because data assets can be of any type (raw data, game levels, etc.), when loading an
attributed string, we need to specify what type of data we are loading in. We do that
using an options dictionary that we pass to NSAttributedString’s constructor. The
important key in this dictionary is NSDocumentTypeDocumentAttribute, whose value
in this case should be NSRTFTextDocumentType. We can also specify the encoding of
our data with the NSCharacterEncodingDocumentAttribute key:

 let options = [
 NSDocumentTypeDocumentAttribute : NSRTFTextDocumentType,
 NSCharacterEncodingDocumentAttribute : NSUTF8StringEncoding
] as [String : AnyObject]

Last but not least, load the data into our string and show it (see Figure 1-13):

 do{
 let str = try NSAttributedString(data: asset.data, options: options,
 documentAttributes: nil)
 lbl.attributedText = str
 } catch let err{
 status = "Error = \(err)"
 }

Figure 1-13. This is how my string looked when I saved it in RTF format and now it is
loaded into the user interface of my app

See Also
Recipe 1.6

32 | Chapter 1: Swift 2.0, Xcode 7, and Interface Builder

www.itbook.store/books/9781491936696

https://itbook.store/books/9781491936696

	Copyright
	Preface
	Audience
	Organization of This Book
	Additional Resources
	Using Code Examples
	Acknowledgments

	Table of Contents
	Chapter 1. Swift 2.0, Xcode 7, and Interface Builder
	1.1 Handling Errors in Swift
	Problem
	Solution
	Discussion
	See Also

	1.2 Specifying Preconditions for Methods
	Problem
	Solution
	Discussion
	See Also

	1.3 Ensuring the Execution of Code Blocks Before Exiting Methods
	Problem
	Solution
	Discussion
	See Also

	1.4 Checking for API Availability
	Problem
	Solution
	Discussion
	See Also

	1.5 Categorizing and Downloading Assets to Get Smaller Binaries
	Problem
	Solution
	Discussion
	See Also

	1.6 Exporting Device-Specific Binaries
	Problem
	Solution
	Discussion
	See Also

	1.7 Linking Separate Storyboards Together
	Problem
	Solution
	Discussion
	See Also

	1.8 Adding Multiple Buttons to the Navigation Bar
	Problem
	Solution
	Discussion
	See Also

	1.9 Optimizing Your Swift Code
	Problem
	Solution
	Discussion
	See Also

	1.10 Showing the Header View of Your Swift Classes
	Problem
	Solution
	Discussion
	See Also

	1.11 Creating Your Own Set Types
	Problem
	Solution
	Discussion
	See Also

	1.12 Conditionally Extending a Type
	Problem
	Solution
	Discussion
	See Also

	1.13 Building Equality Functionality into Your Own Types
	Problem
	Solution
	Discussion
	See Also

	1.14 Looping Conditionally Through a Collection
	Problem
	Solution
	Discussion
	See Also

	1.15 Designing Interactive Interface Objects in Playgrounds
	Problem
	Solution
	Discussion
	See Also

	1.16 Grouping Switch Statement Cases Together
	Problem
	Solution
	Discussion

	1.17 Bundling and Reading Data in Your Apps
	Problem
	Solution
	Discussion
	See Also

	Chapter 2. Apple Watch
	2.1 Downloading Files onto the Apple Watch
	Problem
	Solution
	Discussion
	See Also

	2.2 Noticing Changes in Pairing State Between the iOS and Watch Apps
	Problem
	Solution
	Discussion
	See Also

	2.3 Transferring Small Pieces of Data to and from the Watch
	Problem
	Solution
	Discussion
	See Also

	2.4 Transferring Dictionaries in Queues to and from the Watch
	Problem
	Solution
	Discussion
	See Also

	2.5 Transferring Files to and from the Watch
	Problem
	Solution
	Discussion
	See Also

	2.6 Communicating Interactively Between iOS and watchOS
	Problem
	Solution
	Discussion
	See Also

	2.7 Setting Up Apple Watch for Custom Complications
	Problem
	Solution
	Discussion
	See Also

	2.8 Constructing Small Complications with Text and Images
	Problem
	Solution
	Discussion
	See Also

	2.9 Displaying Time Offsets in Complications
	Problem
	Solution
	Discussion
	See Also

	2.10 Displaying Dates in Complications
	Problem
	Solution
	Discussion
	See Also

	2.11 Displaying Times in Complications
	Problem
	Solution
	Discussion
	See Also

	2.12 Displaying Time Intervals in Complications
	Problem
	Solution
	Discussion
	See Also

	2.13 Recording Audio in Your Watch App
	Problem
	Solution
	Discussion
	See Also

	2.14 Playing Local and Remote Audio and Video in Your Watch App
	Problem
	Solution
	Discussion
	See Also

	Chapter 3. The User Interface
	3.1 Arranging Your Components Horizontally or Vertically
	Problem
	Solution
	Discussion
	See Also

	3.2 Customizing Stack Views for Different Screen Sizes
	Problem
	Solution
	Discussion
	See Also

	3.3 Creating Anchored Constraints in Code
	Problem
	Solution
	Discussion
	See Also

	3.4 Allowing Users to Enter Text in Response to Local and Remote Notifications
	Problem
	Solution
	Discussion
	See Also

	3.5 Dealing with Stacked Views in Code
	Problem
	Solution
	Discussion
	See Also

	3.6 Showing Web Content in Safari View Controller
	Problem
	Solution
	Discussion
	See Also

	3.7 Laying Out Text-Based Content on Your Views
	Problem
	Solution
	Discussion
	See Also

	3.8 Improving Touch Rates for Smoother UI Interactions
	Problem
	Solution
	Discussion
	See Also

	3.9 Supporting Right-to-Left Languages
	Problem
	Solution
	Discussion

	3.10 Associating Keyboard Shortcuts with View Controllers
	Problem
	Solution
	Discussion

	3.11 Recording the Screen and Sharing the Video
	Problem
	Solution
	Discussion
	See Also

	Chapter 4. Contacts
	4.1 Creating Contacts
	Problem
	Solution
	Discussion

	4.2 Searching for Contacts
	Problem
	Solution
	Discussion
	See Also

	4.3 Updating Contacts
	Problem
	Solution
	Discussion
	See Also

	4.4 Deleting Contacts
	Problem
	Solution
	Discussion
	See Also

	4.5 Formatting Contact Data
	Problem
	Solution
	Discussion
	See Also

	4.6 Picking Contacts with the Prebuilt System UI
	Problem
	Solution
	Discussion
	See Also

	4.7 Creating Contacts with a Prebuilt System UI
	Problem
	Solution
	Discussion
	See Also

	4.8 Displaying Contacts with a Prebuilt System UI
	Problem
	Solution
	Discussion
	See Also

	Chapter 5. Extensions
	5.1 Creating Safari Content Blockers
	Problem
	Solution
	Discussion
	See Also

	5.2 Creating Shared Links for Safari
	Problem
	Solution
	Discussion

	5.3 Maintaining Your App’s Indexed Content
	Problem
	Solution
	Discussion
	See Also

	Chapter 6. Web and Search
	6.1 Making Your App’s Content Searchable
	Problem
	Solution
	Discussion
	See Also

	6.2 Making User Activities Searchable
	Problem
	Solution
	Discussion
	See Also

	6.3 Deleting Your App’s Searchable Content
	Problem
	Solution
	Discussion
	See Also

	Chapter 7. Multitasking
	7.1 Adding Picture in Picture Playback Functionality
	Problem
	Solution
	Discussion
	See Also

	7.2 Handling Low Power Mode and Providing Alternatives
	Problem
	Solution
	Discussion

	Chapter 8. Maps and Location
	8.1 Requesting the User’s Location a Single Time
	Problem
	Solution
	Discussion
	See Also

	8.2 Requesting the User’s Location in Background
	Problem
	Solution
	Discussion
	See Also

	8.3 Customizing the Tint Color of Pins on the Map
	Problem
	Solution
	Discussion
	See Also

	8.4 Providing Detailed Pin Information with Custom Views
	Problem
	Solution
	Discussion
	See Also

	8.5 Displaying Traffic, Scale, and Compass Indicators on the Map
	Problem
	Solution
	Discussion
	See Also

	8.6 Providing an ETA for Transit Transport Type
	Problem
	Solution
	Discussion
	See Also

	8.7 Launching the iOS Maps App in Transit Mode
	Problem
	Solution
	Discussion
	See Also

	8.8 Showing Maps in Flyover Mode
	Problem
	Solution
	Discussion
	See Also

	Chapter 9. UI Testing
	9.1 Preparing Your Project for UI Testing
	Problem
	Solution
	Discussion

	9.2 Automating UI Test Scripts
	Problem
	Solution
	Discussion

	9.3 Testing Text Fields, Buttons, and Labels
	Problem
	Solution
	Discussion
	See Also

	9.4 Finding UI Components
	Problem
	Solution
	Discussion
	See Also

	9.5 Long-Pressing on UI Elements
	Problem
	Solution
	Discussion
	See Also

	9.6 Typing Inside Text Fields
	Problem
	Solution
	Discussion
	See Also

	9.7 Swiping on UI Elements
	Problem
	Solution
	Discussion
	See Also

	9.8 Tapping UI Elements
	Problem
	Solution
	Discussion
	See Also

	Chapter 10. Core Motion
	10.1 Querying Pace and Cadence Information
	Problem
	Solution
	Discussion

	10.2 Recording and Reading Accelerometer Data
	Problem
	Solution
	Discussion

	Chapter 11. Security
	11.1 Protecting Your Network Connections with ATS
	Problem
	Solution
	Discussion
	See Also

	11.2 Binding Keychain Items to Passcode and Touch ID
	Problem
	Solution
	Discussion

	11.3 Opening URLs Safely
	Problem
	Solution
	Discussion

	11.4 Authenticating the User with Touch ID and Timeout
	Problem
	Solution
	Discussion
	See Also

	Chapter 12. Multimedia
	12.1 Reading Out Text with the Default Siri Alex Voice
	Problem
	Solution
	Discussion
	See Also

	12.2 Downloading and Preparing Remote Media for Playback
	Problem
	Solution
	Discussion

	12.3 Enabling Spoken Audio Sessions
	Problem
	Solution
	Discussion
	See Also

	Chapter 13. UI Dynamics
	13.1 Adding a Radial Gravity Field to Your UI
	Problem
	Solution
	Discussion
	See Also

	13.2 Creating a Linear Gravity Field on Your UI
	Problem
	Solution
	Discussion
	See Also

	13.3 Creating Turbulence Effects with Animations
	Problem
	Solution
	Discussion
	See Also

	13.4 Adding Animated Noise Effects to Your UI
	Problem
	Solution
	Discussion
	See Also

	13.5 Creating a Magnetic Effect Between UI Components
	Problem
	Solution
	Discussion
	See Also

	13.6 Designing a Velocity Field on Your UI
	Problem
	Solution
	Discussion
	See Also

	13.7 Handling Nonrectangular Views
	Problem
	Solution
	Discussion

	Index
	About the Author

