
Caleb Doxsey

Introducing

 Go
BUILD RELIABLE,
SCALABLE PROGRAMS

www.itbook.store/books/9781491941959

https://itbook.store/books/9781491941959

978-1-491-94195-9

[LSI]

Introducing Go
by Caleb Doxsey

Copyright © 2016 Caleb Doxsey. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Brian MacDonald and Meghan Blanchette
Production Editor: Shiny Kalapurakkel
Copyeditor: Jasmine Kwityn
Proofreader: James Fraleigh

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

January 2016: First Edition

Revision History for the First Edition
2016-01-06: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491941959 for release details.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.itbook.store/books/9781491941959

https://itbook.store/books/9781491941959

Table of Contents

Introduction. vii

1. Getting Started. 1
Machine Setup 1

Text Editors 2
The Terminal 2
Environment 2
Go 3

Your First Program 4
How to Read a Go Program 5
Exercises 8

2. Types. 9
Numbers 10

Integers 10
Floating-Point Numbers 10
Example 11

Strings 12
Booleans 13
Exercises 15

3. Variables. 17
How to Name a Variable 20
Scope 20
Constants 21
Defining Multiple Variables 22
An Example Program 22
Exercises 23

iii

www.itbook.store/books/9781491941959

https://itbook.store/books/9781491941959

4. Control Structures. 25
The for Statement 26
The if Statement 27
The switch Statement 29
Exercises 31

5. Arrays, Slices, and Maps. 33
Arrays 33
Slices 36

append 37
copy 37

Maps 38
Exercises 42

6. Functions. 43
Your Second Function 43
Variadic Functions 47
Closure 47
Recursion 48
defer, panic, and recover 49

panic and recover 50
Pointers 51

The * and & operators 51
new 52

Exercises 53

7. Structs and Interfaces. 55
Structs 56

Initialization 56
Fields 57

Methods 57
Embedded Types 58

Interfaces 59
Exercises 62

8. Packages. 63
The Core Packages 63

Strings 64
Input/Output 67
Files and Folders 68
Errors 70
Containers and Sort 70

iv | Table of Contents

www.itbook.store/books/9781491941959

https://itbook.store/books/9781491941959

Hashes and Cryptography 73
Servers 75

TCP 75
HTTP 77

RPC 78
Parsing Command-Line Arguments 79

Creating Packages 79
Documentation 81
Exercises 82

9. Testing. 83
Exercises 86

10. Concurrency. 87
Goroutines 87
Channels 89

Channel Direction 91
Select 91
Buffered Channels 92

An Example 93
Exercises 96

11. Next Steps. 97
Study the Masters 97
Make Something 98
Team Up 98

A. Answers. 99

Index. 109

Table of Contents | v

www.itbook.store/books/9781491941959

https://itbook.store/books/9781491941959

CHAPTER 1

Getting Started

Go is a general-purpose programming language with advanced features and a clean
syntax. Because of its wide availability on a variety of platforms, its robust well-
documented common library, and its focus on good software engineering principles,
Go is a great programming language to learn.

This book assumes no prior knowledge of Go, and is intended to serve as an easy
introduction to the language. All of the language’s core features will be covered in
short, concise chapters that should prepare you to write real Go programs and tackle
some of the more advanced resources available on the language (online documenta‐
tion, books, talks, etc.).

Although this book is suitable for inexperienced programmers, if you have never pro‐
grammed before you will probably find the material too difficult to follow. You may
benefit from consulting a more general programming resource before diving into the
material here, but in all honesty, most students need the kind of hands-on, personal
support that you might find in a classroom setting or one on one with an experienced
developer.

Machine Setup
This book contains many code samples and exercises. For best results, you should try
to run these examples on your own computer as you work your way through each
chapter.

But before you can write your first Go program, there are a few things you will need
to set up.

1

www.itbook.store/books/9781491941959

https://itbook.store/books/9781491941959

Text Editors
Go is a very readable, succinct language and so any text editor will work for editing
files. There are plug-ins that add a few helpful features (like autocomplete and
format-on-save) for many popular editors, but those plug-ins are not necessary to
learn the language. If you’re not sure what to use, I recommend using GitHub’s Atom
—it’s free, cross-platform, and easy to install from the Atom website.

The Terminal
Go is a compiled language, and like many languages, it makes heavy use of the com‐
mand line. If you’re coming from a language that does most things through an IDE
(such as Java or C#), this may be a bit intimidating, but thankfully, the Go tools are
fairly easy to use. As a reminder, here’s how you can get to a terminal:

Windows
On Windows, the terminal (also known as the command prompt) can be brought
up by pressing the Windows key + R (hold down the Windows key, then press
R), typing cmd.exe, and hitting Enter.

OS X
On OS X, the terminal can be reached by navigating to Finder → Applications →
Utilities → Terminal.

Environment
Environment variables are a mechanism provided by your operating system for alter‐
ing the behavior of a program without having to change it. An environment is a col‐
lection of these variables, each of which has a name and a corresponding value. For
example, there is a TEMP environment variable that stores the location of a directory
on your computer where temporary files are stored.

The Go toolset uses an environment variable called GOPATH to find Go source code.
Although you’re welcome to set the GOPATH to anything you want, to make things eas‐
ier we will set it to be the same as your home directory:

Windows
On Windows, user information is typically stored in C:\Users\<USERNAME>,
where <USERNAME> would be replaced with your username (e.g., C:\Users
\alice). Windows comes with a predefined environment variable called USERPRO
FILE, which you can use to set your GOPATH.

Open a new terminal window and enter the following:

setx GOPATH %USERPROFILE%

2 | Chapter 1: Getting Started

www.itbook.store/books/9781491941959

https://itbook.store/books/9781491941959

If you’re using a version of Windows prior to Vista, this command may not work,
so you can also set environment variables by navigating to Control Panel → Sys‐
tem → Advanced → Environment Variables.

OS X
On OS X, user information is typically stored in /Users/<USERNAME>, where
<USERNAME> would be replaced with your username (e.g., /Users/alice). On
OS X, we will set GOPATH using a special initialization file for the terminal
called .bash_profile.

Open a terminal and enter the following:

echo 'export GOPATH=$HOME\n' >> ~/.bash_profile

Close the terminal, reopen it, and enter the following:

env

Among many other environment variables, you should see an entry for GOPATH.

Go
Go is both the name of the programming language and the name for the toolset used
to build and interact with Go programs. Before you begin working with Go, you’ll
need to install the Go toolset.

Download and run the installer for your platform from golang.org/dl.

To confirm everything is working, open a terminal and type the following:

go version

You should see the following (your version number and operating system may be
slightly different):

go version go1.5 windows/amd64

If you get an error about the command not being recognized, try restarting your
computer.

The Go toolset is made up of several different commands and subcommands. You
can pull up a list of those commands by typing:

go help

With Go installed and working, you now have everything you need to write your first
Go program.

Machine Setup | 3

www.itbook.store/books/9781491941959

https://itbook.store/books/9781491941959

Your First Program
Traditionally, the first program you write in any programming language is called a
“Hello, World” program—a program that simply outputs Hello, World to your ter‐
minal. Let’s write one using Go.

First, create a new folder where you can store our “Hello, World” program. Create a
folder named ~/src/golang-book/chapter1. From the terminal, you can do this by
entering the following commands:

On Windows
md src\golang-book\chapter1

On OS X
mkdir -p src/golang-book/chapter1

Open your text editor, create a new file, and enter the following:

package main

import "fmt"

// this is a comment

func main() {
 fmt.Println("Hello, World")
}

Make sure your file is identical to what is shown here and save it as main.go in the
folder we just created. Open up a new terminal and type in the following:

cd src/golang-book/chapter1
go run main.go

You should see Hello, World displayed in your terminal. The go run command
takes the subsequent files (separated by spaces), compiles them into an executable
saved in a temporary directory, and then runs the program. If you didn’t see Hello,
World displayed, you may have made a mistake when typing in the program. The Go
compiler will give you hints about where the mistake lies. Like most compilers, the
Go compiler is extremely pedantic and has no tolerance for mistakes.

4 | Chapter 1: Getting Started

www.itbook.store/books/9781491941959

https://itbook.store/books/9781491941959

1 Files in the fmt package start with package fmt.

How to Read a Go Program
Let’s look at this program in more detail:

package main

import "fmt"

// this is a comment

func main() {
 fmt.Println("Hello, World")
}

Go programs are read top to bottom, left to right (like a book). The first line says this:

package main

This is known as a package declaration, and every Go program must start with it.
Packages are Go’s way of organizing and reusing code. There are two types of Go pro‐
grams: executables and libraries. Executable applications are the kinds of programs
that we can run directly from the terminal (on Windows, they end with .exe). Libra‐
ries are collections of code that we package together so that we can use them in other
programs. We will explore libraries in more detail later; for now, just make sure to
include this line in any program you write.

The next line is blank. Computers represent newlines with a special character (or sev‐
eral characters). Newlines, spaces, and tabs are known as whitespace (because you
can’t see them). Go mostly doesn’t care about whitespace—we use it to make pro‐
grams easier to read (you could remove this line and the program would behave in
exactly the same way).

On the following line, we see this:

import "fmt"

The import keyword is how we include code from other packages to use with our
program. The fmt package (shorthand for format) implements formatting for input
and output. Given what we just learned about packages, what do you think the fmt
package’s files would contain at the top of them?1

Notice that fmt is surrounded by double quotes. The use of double quotes like this is
known as a string literal, which is a type of expression. In Go, strings represent a
sequence of characters (letters, numbers, symbols, etc.) of a definite length. Strings
are described in more detail in the next chapter, but for now the important thing to

How to Read a Go Program | 5

www.itbook.store/books/9781491941959

https://itbook.store/books/9781491941959

keep in mind is that an opening " character must eventually be followed by a closing
" character and anything in between the two is included in the string (the " character
itself is not part of the string).

The line that starts with // is known as a comment. Comments are ignored by the Go
compiler and are there for your own sake (or whoever picks up the source code for
your program). Go supports two different styles of comments: // comments in which
all the text between the // and the end of the line is part of the comment, and /* */
comments where everything between the asterisks is part of the comment (and may
include multiple lines).

After this, you see a function declaration:

func main() {
 fmt.Println("Hello, World")
}

Functions are the building blocks of a Go program. They have inputs, outputs, and a
series of steps called statements that are executed in order. All functions start with the
keyword func followed by the name of the function (main, in this case), a list of zero
or more parameters surrounded by parentheses, an optional return type, and a body
which is surrounded by curly braces. This function has no parameters, doesn’t return
anything, and has only one statement. The name main is special because it’s the func‐
tion that gets called when you execute the program.

The final piece of our program is this line:

fmt.Println("Hello, World")

This statement is made of three components. First, we access another function inside
of the fmt package called Println (that’s the fmt.Println piece); Println means
“print line.” Then we create a new string that contains Hello, World and invoke (also
known as call or execute) that function with the string as the first and only argument.

At this point, you’ve already seen a lot of new terminology. Sometimes it’s helpful to
deliberately read your program out loud. One reading of the program we just wrote
might go like this:

Create a new executable program that references the fmt library and contains one
function called main. That function takes no arguments and doesn’t return anything. It
accesses the Println function contained inside of the fmt package and invokes it using
one argument—the string Hello, World.

The Println function does the real work in this program. You can find out more
about it by typing the following in your terminal:

godoc fmt Println

Among other things, you should see the output shown in Figure 1-1.

6 | Chapter 1: Getting Started

www.itbook.store/books/9781491941959

https://itbook.store/books/9781491941959

Figure 1-1. Output of godoc fmt Println

Println formats using the default formats for its operands and writes to standard out‐
put. Spaces are always added between operands and a newline is appended. It returns
the number of bytes written and any write error encountered.

Go is a very well-documented programming language, but this documentation can be
difficult to understand unless you are already familiar with programming languages.
Nevertheless, the godoc command is extremely useful and a good place to start when‐
ever you have a question.

Back to the function at hand, this documentation is telling you that the Println func‐
tion will send whatever you give to it to standard output (i.e., the output of the termi‐
nal you are working in). This function is what causes Hello, World to be displayed.

In the next chapter, we will explore how Go stores and represents things like Hello,
World by learning about types.

How to Read a Go Program | 7

www.itbook.store/books/9781491941959

https://itbook.store/books/9781491941959

Exercises
1. What is whitespace?
2. What is a comment? What are the two ways of writing a comment?
3. Our program began with package main. What would the files in the fmt package

begin with?
4. We used the Println function defined in the fmt package. If you wanted to use

the Exit function from the os package, what would you need to do?
5. Modify the program we wrote so that instead of printing Hello, World it prints

Hello, my name is followed by your name.

8 | Chapter 1: Getting Started

www.itbook.store/books/9781491941959

https://itbook.store/books/9781491941959

	Copyright
	Table of Contents
	Introduction
	Who Should Read This Book
	Navigating This Book
	Online Resources
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. Getting Started
	Machine Setup
	Text Editors
	The Terminal
	Environment
	Go

	Your First Program
	How to Read a Go Program
	Exercises

	Chapter 2. Types
	Numbers
	Integers
	Floating-Point Numbers
	Example

	Strings
	Booleans
	Exercises

	Chapter 3. Variables
	How to Name a Variable
	Scope
	Constants
	Defining Multiple Variables
	An Example Program
	Exercises

	Chapter 4. Control Structures
	The for Statement
	The if Statement
	The switch Statement
	Exercises

	Chapter 5. Arrays, Slices, and Maps
	Arrays
	Slices
	append
	copy

	Maps
	Exercises

	Chapter 6. Functions
	Your Second Function
	Variadic Functions
	Closure
	Recursion
	defer, panic, and recover
	panic and recover

	Pointers
	The * and & operators
	new

	Exercises

	Chapter 7. Structs and Interfaces
	Structs
	Initialization
	Fields

	Methods
	Embedded Types

	Interfaces
	Exercises

	Chapter 8. Packages
	The Core Packages
	Strings
	Input/Output
	Files and Folders
	Errors
	Containers and Sort
	Hashes and Cryptography

	Servers
	TCP
	HTTP
	RPC
	Parsing Command-Line Arguments

	Creating Packages
	Documentation
	Exercises

	Chapter 9. Testing
	Exercises

	Chapter 10. Concurrency
	Goroutines
	Channels
	Channel Direction
	Select
	Buffered Channels

	An Example
	Exercises

	Chapter 11. Next Steps
	Study the Masters
	Make Something
	Team Up

	Appendix A. Answers
	Index
	About the Author

