
Shelley Powers

 Learning
 Node
MOVING TO THE SERVER-SIDE

2nd Edition

www.itbook.store/books/9781491943120

https://itbook.store/books/9781491943120

O’Reilly ebooks.
Your bookshelf on your devices.

When you buy an ebook through oreilly.com you get lifetime access to the
book, and whenever possible we provide it to you in four DRM-free file
formats—PDF, .epub, Kindle-compatible .mobi, and DAISY—that you can
use on the devices of your choice. Our ebook files are fully searchable,
and you can cut-and-paste and print them. We also alert you when we’ve
updated the files with corrections and additions.

Learn more at ebooks.oreilly.com
You can also purchase O’Reilly ebooks through the

iBookstore, the Android Marketplace, and Amazon.com.

©2015 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 15055

ePubPDF Mobi DAISY

www.itbook.store/books/9781491943120

http://www.oreilly.com/
http://shop.oreilly.com/category/ebooks.do
https://play.google.com/store/books?hl=en
http://www.amazon.com/
https://itbook.store/books/9781491943120

978-1-491-94312-0

[LSI]

Learning Node
by Shelley Powers

Copyright © 2016 Shelley Powers. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meg Foley
Production Editor: Shiny Kalapurakkel
Copyeditor: Gillian McGarvey
Proofreader: Rachel Monaghan

Indexer: Judy McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

June 2016: Second Edition

Revision History for the Second Edition
2016-05-23: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491943120 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning Node, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.itbook.store/books/9781491943120

https://itbook.store/books/9781491943120

Table of Contents

Preface. vii

1. The Node Environment. 1
Installing Node 2
Saying Hello to the World with Node 3

A Basic Hello World Application 3
Hello World, Tweaked 6
Node Command-Line Options 10

Node Hosting Environments 11
Hosting Node on Your Server, VPS, or Managed Host 11
Cloud Hosting 11

The Node LTS and Upgrading Node 13
Node’s New Semantic Versioning 13
Upgrading Node 14

Node, V8, and ES6 16
Advanced: Node C/C++ Add-ons 17

2. Node Building Blocks: Global Objects, Events, and Node’s Asynchronous Nature. 19
The global and process Objects 20

The global Object 20
The process Object 21

Buffers, Typed Arrays, and Strings 25
Buffer, JSON, StringDecoder, and UTF-8 Strings 28
Buffer Manipulation 30

Node’s Callback and Asynchronous Event Handling 33
The Event Queue (Loop) 33
Creating an Asynchronous Callback Function 36
EventEmitter 39

iii

www.itbook.store/books/9781491943120

https://itbook.store/books/9781491943120

The Node Event Loop and Timers 43
Nested Callbacks and Exception Handling 46

3. Basics of Node Modules and Node Package Manager (npm). 55
An Overview of the Node Module System 55

How Node Finds and Loads a Module 56
Sandboxing and the VM Module 59

An In-Depth Exploration of NPM 63
Creating and Publishing Your Own Node Module 69

Creating a Module 69
Packaging an Entire Directory 70
Preparing Your Module for Publication 71
Publishing the Module 74

Discovering Node Modules and Three Must-Have Modules 75
Better Callback Management with Async 77
Command-Line Magic with Commander 82
The Ubiquitous Underscore 84

4. Interactive Node with REPL and More on the Console. 87
REPL: First Looks and Undefined Expressions 87
Benefits of REPL: Getting a Closer Understanding of JavaScript Under the

Hood 89
Multiline and More Complex JavaScript 90

REPL Commands 94
REPL and rlwrap 95
Custom REPL 96

Stuff Happens—Save Often 100
The Necessity of the Console 100

Console Message Types, Console Class, and Blocking 100
Formatting the Message, with Help from util.format() and util.inspect() 103
Providing Richer Feedback with console and a Timer 107

5. Node and the Web. 109
The HTTP Module: Server and Client 109
What’s Involved in Creating a Static Web Server 114
Using Apache to Proxy a Node Application 124
Parsing the Query with Query String 125
DNS Resolution 126

6. Node and the Local System. 129
Exploring the Operating System 129
Streams and Pipes 131

iv | Table of Contents

www.itbook.store/books/9781491943120

https://itbook.store/books/9781491943120

A Formal Introduction to the File System 133
The fs.Stats Class 134
The File System Watcher 135
File Read and Write 136
Directory Access and Maintenance 138
File Streams 138

Resource Access with Path 141
Creating a Command-Line Utility 142
Compression/Decompression with ZLib 144
Pipes and ReadLine 148

7. Networking, Sockets, and Security. 151
Servers, Streams, and Sockets 151

Sockets and Streams 151
TCP Sockets and Servers 152
UDP/Datagram Socket 157

Guards at the Gate 159
Setting Up TLS/SSL 159
Working with HTTPS 161
The Crypto Module 163

8. Child Processes. 169
child_process.spawn 169

child_process.exec and child_process.execFile 173
child_process.fork 175

Running a Child Process Application in Windows 176

9. Node and ES6. 179
Strict Mode 179
let and const 181
Arrow Functions 183
Classes 185
Promises with Bluebird 187

10. Full-Stack Node Development. 191
The Express Application Framework 192
MongoDB and Redis Database Systems 197

MongoDB 198
Redis Key/Value Store 201

AngularJS and Other Full-Stack Frameworks 209

Table of Contents | v

www.itbook.store/books/9781491943120

https://itbook.store/books/9781491943120

11. Node in Development and Production. 215
Debugging Node Applications 215

The Node Debugger 215
Node Inspector 220

Unit Testing 224
Unit Testing with Assert 224
Unit Testing with Nodeunit 227
Other Testing Frameworks 229

Keeping Node Up and Running 232
Benchmark and Load Testing with Apache Bench 235

12. Node in New Environments. 239
Samsung IoT and GPIO 239
Windows with Chakra Node 241
Node for Microcontrollers and Microcomputers 243

Fritzing 244
Node and Adruino 249
Node and Raspberry Pi 2 256

Index. 261

vi | Table of Contents

www.itbook.store/books/9781491943120

https://itbook.store/books/9781491943120

CHAPTER 1

The Node Environment

Forget what you’ve heard about Node being a server-side tool only. Node is primarily
used in server applications, true. But Node can be installed on almost any machine
and used for any purpose, including running applications on your PC or even your
tablet, smartphone, or microcomputer.

I have Node installed on my Linux-based server, but I also have it installed on my
Windows 10-based PCs, as well as a microcomputer (Raspberry Pi). I have an extra
Android tablet that I’m thinking of trying Node on, can use Node to program my
Arduino Uno microcontroller, and am currently playing around with incorporating
Node into my smart home setup thanks to IFTTT’s Maker Channel. On my PC, I use
Node as a test environment for JavaScript, as well as an interface to ImageMagick for
batch photo editing. Node is my go-to tool for any batch operation on my PCs or my
server.

And yes, I use Node for server-side processing when I want a web interface that
bypasses my Apache server, or provides a backend server process for a web applica‐
tion.

The point is, the Node environment is rich in functionality and reach. To start explor‐
ing this environment, we have to start at the beginning: installing Node.

IFTTT

IFTTT is a marvelous site that allows you to connect triggers and
actions from a host of companies, services, and products using
simple if-then logic. Each end point of the equation is a channel,
including the aforementioned Maker Channel.

1

www.itbook.store/books/9781491943120

https://itbook.store/books/9781491943120

Installing Node
The best place to start when installing Node is the Node.js Downloads page. From
here, you can download binaries (precompiled executables) for Windows, OS X,
SunOS, Linux, and ARM architectures. The page also provides access to installers for
a specific architecture that can greatly simplify the installation process—particularly
with Windows. If your environment is set up for building, download the source code
and build Node directly. That’s my preference for my Ubuntu server.

You can also install Node using a package installer for your architecture. This is a
helpful option not only for installing Node, but also for keeping it up-to-date (as we’ll
discuss further, in the section “The Node LTS and Upgrading Node” on page 13).

If you decide to compile Node directly on your machine, you’ll need to set up the
proper build environment, and install the proper build tools. For instance, on Ubuntu
(Linux), you’ll need to run the following command to install the tools needed for
Node:

apt-get install make g++ libssl-dev git

There are some differences in behavior when you first install Node in the various
architectures. For instance, when you’re installing Node in Windows, the installer not
only installs Node, but it also creates a Command window you’ll use to access Node
on your machine. Node is a command-line application, and doesn’t have a graphical
UI like the typical Windows application. If you want to use Node to program an
Arduino Uno, you’ll install Node and Johnny-Five, and use both to program the con‐
nected device.

Accept Defaults in Windows World

You’ll want to accept the default location and feature installation
when installing Node in Windows. The installer adds Node to the
PATH variable, which means you can type node without having to
provide the entire Node installation path.

If you’re installing Node on Raspberry Pi, download the appropriate ARM version,
such as ARMv6 for the original Raspberry Pi, and ARMv7 for the newer Raspberry Pi
2. Once downloaded, extract the binary from the compressed tarball, and then move
the application to /usr/local:

wget https://nodejs.org/dist/v4.0.0/node-v4.0.0-linux-armv7l.tar.gz
tar -xvf node-v4.0.0-linux-armv7l.tar.gz

cd node-v4.0.0-linux-armv7l

sudo cp -R * /usr/local/

2 | Chapter 1: The Node Environment

www.itbook.store/books/9781491943120

https://itbook.store/books/9781491943120

You can also set up a build environment and build Node directly.

New Node Environments

Speaking of Node with Arduino and Raspberry Pi, I cover Node in
nontraditional environments, such as the Internet of Things, in
Chapter 12.

Saying Hello to the World with Node
You’ve just installed Node and you naturally want to take it for a spin. There is a tra‐
dition among programmers that the first application in a language is the well-known
“Hello, World” application. The application typically writes out the words “Hello,
World” to whatever is the output stream, demonstrating how an application is cre‐
ated, run, and can process input and output.

The same holds true for Node: it is the application that the Node.js website includes
in the Synopsis in the application’s documentation. And it is the first application we’ll
create in this book, but with a few tweaks.

A Basic Hello World Application
First, let’s take a look at the “Hello, World” application included in the Node docu‐
mentation. To re-create the application, create a text document with the following
JavaScript, using your favorite text editing tool. I use Notepad++ in Windows, and
Vim in Linux.

var http = require('http');

http.createServer(function (request, response) {
 response.writeHead(200, {'Content-Type': 'text/plain'});
 response.end('Hello World\n');
}).listen(8124);

console.log('Server running at http://127.0.0.1:8124/');

Save the file as hello.js. To run the application, open a terminal if you’re using OS X or
Linux, or the Node Command window with Windows. Change to the directory
where your saved file is located and type the following to run the application:

node hello.js

The result is printed out to the command line, via the console.log() function call in
the application:

Server running at http://127.0.0.1:8124/

Now open a browser and type either http://localhost:8124/ or http://

127.0.0.1:8124 into the address bar (or your domain, if you’re hosting Node on

Saying Hello to the World with Node | 3

www.itbook.store/books/9781491943120

https://itbook.store/books/9781491943120

your server). What appears is a simple unadorned web page with “Hello World” in
text at the top, as shown in Figure 1-1.

Figure 1-1. Your first Node application

If you’re running your application in Windows, you’ll most likely receive a Windows
Firewall alert, as shown in Figure 1-2. Uncheck the Public Network option, check the
Private network option, and then click the button to Allow access.

Figure 1-2. Allowing access to Node application in Windows

You won’t have to repeat this process in Windows: the system remembers your
choice.

4 | Chapter 1: The Node Environment

www.itbook.store/books/9781491943120

https://itbook.store/books/9781491943120

To end the program, you can either close the terminal/Command window (just ter‐
minal from this point), or type Ctrl-C. When you ran the application, you did so in
the foreground. This means you can’t type any other command in the terminal. It also
means when you closed the terminal, you stopped the Node process.

Running Node Forever

For now, running Node in the foreground is a good thing. You’re
learning how to use the tool, you don’t yet want your applications
to be externally available to everyone, and you want it to terminate
when you’re finished for the day. In Chapter 11, I’ll cover how you
can create a more robust Node runtime environment.

To return to the Hello World code, JavaScript creates a web server that displays a web
page with the words “Hello World” when accessed via a browser. It demonstrates sev‐
eral key components of a Node application.

First, it includes the module necessary to run a simple HTTP server: the appropri‐
ately named HTTP module. External functionality for Node is incorporated via mod‐
ules that export specific types of functionality that can then be used in an application
(or another module). They’re very similar to the libraries you’ve used in other
languages.

var http = require('http');

Node Modules, Core Modules, and the http Module

The HTTP module is one of Node’s core modules, which are the
primary focus of this book. I’ll cover Node modules and module
management thoroughly in Chapter 3, and the HTTP module in
Chapter 5.

The module is imported using the Node require statement, and the result assigned
to a local variable. Once imported, the local variable can be used to instantiate the
web server, via the http.createServer() function. In the function parameters, we
see one of the fundamental constructs of Node: the callback (Example 1-1). It’s the
anonymous function that’s passing the web request and response into the code to
process the web request and provide a response.

Example 1-1. Hello, World callback function

http.createServer(function (request, response) {
 response.writeHead(200, {'Content-Type': 'text/plain'});
 response.end('Hello World\n');
}).listen(8124);

Saying Hello to the World with Node | 5

www.itbook.store/books/9781491943120

https://itbook.store/books/9781491943120

JavaScript is single-threaded, and the way Node emulates an asynchronous environ‐
ment in a single-threaded environment is via an event loop, with associated callback
functions that are called once a specific event has been triggered. In Example 1-1,
when a web request is received, the callback function is called.

The console.log() message is output to the terminal as soon as the call to create the
server is made. The program doesn’t stop and block, waiting for a web request to be
made.

console.log('Server running at http://127.0.0.1:8124/');

More on the Event Loop and Callback Function

I’ll be covering the Node event loop, its support for asynchronous
programming, and the callback function in more detail in Chap‐
ter 2.

Once the server is created and has received a request, the callback function writes a
plain text header with server status of 200 back to the browser, writes out the Hello
World message, and then ends the response.

Congratulations, you’ve created your first web server in Node in just a few lines of
code. Of course, it’s not particularly useful, unless your only interest is in greeting the
world. Throughout the book you’ll learn how to make more useful Node applications,
but before we leave Hello World, let’s make some modifications to the basic applica‐
tion to make it a little more interesting.

Hello World, Tweaked
Just printing out a static message does demonstrate, first of all, that the application is
working and, second, how to create a simple web server. The basic example also
demonstrated several key elements of a Node application. But it could be just a little
richer, a little more fun to play with. So I tweaked it to provide you a second applica‐
tion you can try out that has a few more moving parts.

The tweaked code is in Example 1-2. In it, I modified the basic application to parse
the incoming request to look for a query string. The name in the string is extracted
and used to determine the type of content returned. Almost any name will return a
personalized response, but if you use name=burningbird as the query, you’ll get an
image. If no query string is used, or no name passed, the name variable is set to
'world‘.

6 | Chapter 1: The Node Environment

www.itbook.store/books/9781491943120

https://itbook.store/books/9781491943120

Example 1-2. Hello World, tweaked

var http = require('http');
var fs = require('fs');

http.createServer(function (req, res) {
 var name = require('url').parse(req.url, true).query.name;

 if (name === undefined) name = 'world';

 if (name == 'burningbird') {
 var file = 'phoenix5a.png';
 fs.stat(file, function (err, stat) {
 if (err) {
 console.error(err);
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end("Sorry, Burningbird isn't around right now \n");
 } else {
 var img = fs.readFileSync(file);
 res.contentType = 'image/png';
 res.contentLength = stat.size;
 res.end(img, 'binary');
 }
 });
 } else {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello ' + name + '\n');
 }
}).listen(8124);

console.log('Server running at port 8124/');

The result of accessing the web-based application with a query string of ?name=bur
ningbird is shown in Figure 1-3.

Saying Hello to the World with Node | 7

www.itbook.store/books/9781491943120

https://itbook.store/books/9781491943120

Figure 1-3. Hello, Burningbird

Not much extra code, but there are several differences between the basic Hello World
application and the tweaked version. From the top, a new module is included in the
application, named fs. This is the File System module, one you will become very
familiar with in the next several chapters. But there’s also another module imported,
but not in the same way as the other two:

var name = require('url').parse(req.url, true).query.name;

Exported module properties can be chained, so we can both import the module and
use its functions in the same line. This frequently happens with the URL module,
whose only purpose is to provide a URL utility.

The response and request parameter variable names are shortened to res and req to
make them easier to access. Once we parse out the request to get the name value, we
first test to see if it’s undefined. If not, the value is set to the fallback result, world. If
name does exist, it’s tested again to see if it’s equal to burningbird. If it isn’t, then the
response is close to what we had in the basic application, except for inserting the sup‐
plied name into the return message.

8 | Chapter 1: The Node Environment

www.itbook.store/books/9781491943120

https://itbook.store/books/9781491943120

If the name is burningbird, though, we’re dealing with an image rather than text. The
fs.stat() method not only verifies that the file exists but also returns an object with
information about the file, including its size. This value is used in creating the content
header.

If the file doesn’t exist, the application handles the situation gracefully: it issues a
friendly message that the bird has flown the coop, but also provides error information
at the console, using the console.error() method this time:

{ [Error: ENOENT: no such file or directory, stat 'phoenix5a.png']
 errno: -2,
 code: 'ENOENT',
 syscall: 'stat',
 path: 'phoenix5a.png' }

If the file does exist, then we’ll read the image into a variable and return it in the
response, adjusting the header values accordingly.

The fs.stats() method uses the standard Node callback function pattern with the
error value as the first parameter—frequently called an errback. However, the part
about reading the image may have you scratching your head. It doesn’t look right, not
like other Node functions you’ve seen in this chapter (and most likely in other online
examples). What’s different is that I’m using a synchronous function, readFile
Sync(), rather than the asynchronous version, readFile().

Node does support both synchronous and asynchronous versions of most File System
functions. Normally, using a synchronous operation in a web request in Node is
taboo, but the capability is there. An asynchronous version of the same bit of code is
used in Example 1-3.

fs.readFile(file, function(err,data) {
 res.contentType = 'image/png';
 res.contentLength = stat.size;
 res.end(data, 'binary');
 });

Why use one over the other? In some circumstances, file I/O may not impact perfor‐
mance regardless of which type of function you use, and the synchronous version can
be cleaner and easier to use. It can also lead to less nested code—a particular problem
with Node’s callback system, and one I’ll cover in more detail in Chapter 2.

Additionally, though I don’t use exception handling in the example, you can use
try...catch with synchronous functions. You can’t use this more traditional error
handling with asynchronous functions (hence the error value as the first parameter to
the anonymous callback function).

The important fact to take away from this second example, though, is that not all
Node I/O is asynchronous.

Saying Hello to the World with Node | 9

www.itbook.store/books/9781491943120

https://itbook.store/books/9781491943120

Filesystem and URL Modules, Buffers, and Aynchronous I/O

I’ll cover the URL module in more detail in Chapter 5, and File
System is explored in Chapter 6. Note, though, that File System is
used all throughout the book. Buffers and asynchronous processing
are covered in Chapter 2.

Node Command-Line Options
In the last two sections, Node is invoked at the command line without the use of any
command-line options. I wanted to briefly introduce some of these options before we
move on. Others will be introduced when needed throughout the book.

To discover all the available options and arguments, use the help option, written as
either -h or --help:

$ node --help

This option will list out all of the options, and provides the syntax to follow when
running the Node application:

Usage: node [options] [-e script | script.js] [arguments]
 node debug script.js [arguments]

To find the version of Node, use the following command:

$ node -v or --version

To check the syntax of a Node application, use the -c option. This checks the syntax
without running the application:

$ node -c or --check script.js

To discover the V8 options, type the following:

$ node --v8-options

This returns several different options, including the --harmony option, used to
enable all completed Harmony JavaScript features. This includes all ES6 functionality
that’s been implemented but not yet staged into either the LTS or Current release.

A favorite Node option of mine is -p or --print, which can evaluate a line of Node
script and print the results. This is especially helpful if you’re checking out the Pro‐
cess environmental properties, discussed more fully in Chapter 2. An example is the
following, which prints out all of the values for the process.env property:

$ node -p "process.env"

10 | Chapter 1: The Node Environment

www.itbook.store/books/9781491943120

https://itbook.store/books/9781491943120

Node Hosting Environments
As you learn Node, you’ll want to become familiar with it in your own local environ‐
ment, be it Windows, OS X, or Linux. When you’re ready to start providing greater
access to your applications, you’ll either need to find an environment where you can
run a Node application, such as a virtual private network (VPN), which is what I use,
or a host that specifically provides for Node application support. The former requires
that you have significant experience running a Internet-faced server, while the latter
may limit what you can or cannot do with your Node application.

Hosting Node on Your Server, VPS, or Managed Host
Hosting Node on the same server as your WordPress weblog is likely going to be a
dead end, because of Node’s requirements. You don’t have to have root or administra‐
tive access to run Node, but you should. In addition, many hosting companies are not
going to be happy with you hosting an application on various ports that may or may
not play havoc with their systems.

Hosting Node on a virtual private server (VPS), like my VPN at Linode, is a simple
matter. You do have root access for your VPS and can pretty much do whatever you
want, as long as you don’t endanger other users who may be on the same machine.
Most companies that provide VPSs ensure that each individual account is isolated
from the others, and that no one account can hog all the available resources either.

The issue, though, with a VPS is the same issue you’d have if you hosted your own
server: you have to maintain the server. This includes setting up an email system and
an alternative web server, most likely Apache or Nginx, to handle firewalls and other
security, email, etc. It’s not trivial.

Still, if you’re comfortable with managing all aspects of a Internet-faced environment,
a VPS can be an affordable option for hosting a Node application. At least until you’re
ready to push it into production, in which case you may want to look at hosting the
application in the cloud.

Cloud Hosting
Nowadays, an application is just as likely to reside in a cloud server as it is on an indi‐
vidual’s or group’s own computers. Node applications are well-suited to cloud-based
implementations.

When you host a Node application in the cloud, what you’re really doing, typically, is
creating the application on your own server or PC, testing it, making sure it’s what
you want, and then pushing the application out to the cloud server. A cloud server for
Node allows you to create the Node application you want to create, using the resour‐
ces of whatever database system or other system you wish, but without having to

Node Hosting Environments | 11

www.itbook.store/books/9781491943120

https://itbook.store/books/9781491943120

manage the server directly. You can focus specifically on the Node application
without having to worry about FTP or email servers, or general server maintenance.

Git and GitHub: Prerequisites for Node Development
If you’ve not used the Git source code control system, you’ll need to install it into
your environments and learn how to use it. Almost all transitioning of Node applica‐
tions, including pushing the applications to a cloud server, happens through Git.

Git is open source, freely available, and easy to install. You can access the software at
the Git website. There’s also an interactive guide you can use to learn the basic Git
commands, at GitHub.

Speaking of Git, where there’s Git, there’s typically GitHub. The Node.js source is
maintained at GitHub, as are most, if not all, of the available Node modules. The
source for the examples for this book is available at GitHub.

GitHub is probably the largest repository of open source code in the world. It’s defi‐
nitely the center of the universe for the Node world. It is a commercial enterprise, but
free to most users. The GitHub organization provides excellent documentation for
how to use the site, and there are books and other tutorials you can access to get up to
speed with both Git and GitHub. Among them is a free, online book on Git, as well as
Loeliger and McCullough’s Version Control with Git (O’Reilly), and Bell and Beer’s
Introducing GitHub (O’Reilly).

The paradigm for hosting a Node application in the cloud is fairly similar across all of
the hosts. First, create the Node application, either locally or on your own server.
When you’re ready to start testing a deployment environment, then it’s time to look
for a cloud server. For most I’m familiar with, you sign up for an account, create a
new project, and specify that it is Node-based if the cloud is capable of hosting many
environments. You may or may not need to specify which other resources are needed,
such as database access.

Once ready to deploy, you’ll push the application to the cloud. You’ll either use Git to
push the application or you may need to use a toolset supplied by the cloud provider.
As an example, Microsoft’s Azure cloud utilizes Git to push the application from your
local environment to the cloud, while Google’s Cloud Platform provides a toolset to
perform the same process.

Finding a Host

Though not completely up-to-date, a good place to start looking
for a Node host is a GitHub page devoted to the topic.

12 | Chapter 1: The Node Environment

www.itbook.store/books/9781491943120

https://itbook.store/books/9781491943120

The Node LTS and Upgrading Node
In 2014, the Node world was stunned (or at least some of us were taken by surprise)
when a group of Node maintainers split from the rest and formed their own fork of
Node.js called io.js. The reason for the split is that the io.js folks felt that Joyent, the
company that had been maintaining Node, wasn’t moving fast enough to open gover‐
nance of Node. The group also felt that Joyent was behind in its support of the latest
V8 engine updates.

Thankfully, I can report that the two groups resolved the issues leading to the split,
merging their efforts back to one product, still named Node.js. Node is now managed
through a governing nonprofit, the Node Foundation, under the auspices of the
Linux Foundation. As a result, the codebase for both groups was combined, and
rather than the first official release of Node being Node 1.0, it became Node 4.0: rep‐
resenting Node’s original slow pace to Node 1.0, and io.js’s faster 3.0 version.

Node’s New Semantic Versioning
One result of the merge is a strict timeline of Node releases, based on semantic ver‐
sioning (Semver), familiar to Linux users. Semver releases features as three groups of
numbers, each with a specific meaning. For instance, as I’m writing this, I’m currently
using Node.js version 4.3.2 on my server. This translates to:

• The major release is 4. This number will only increase when a major, backward-
incompatible change is made to Node.

• The minor release is 3. This number increases when new functionality is added,
but the functionality is still backward compatible.

• The patch release is 2. This number changes when security or other bug fixes
require a new release of the application. It is also backward compatible.

I’m using the Stable release of 5.7.1 on my Windows machine, and tested the code
using the Current release of 6.0.0 on a Linux machine.

The Node Foundation also supports a much more cohesive, albeit somewhat prob‐
lematic, release cycle than the hit-or-miss releases we have become familiar with. It
started with the first LTS (Long-Term Support) release of Node.js v4, which will be
supported until April 2018. The Node Foundation then released its first Stable
release, Node.js v5, at the end of October 2015. Node 5.x.x will only be supported
until April 2016, when it will be replaced by Node.js v6. The strategy is for a new Sta‐
ble (now Current) release every six months, but only every other one goes LTS, like
Node v4.

The Node LTS and Upgrading Node | 13

www.itbook.store/books/9781491943120

https://itbook.store/books/9781491943120

Release of 6.0.0 as Current

In April 2016, Node released 6.0.0, which replaces 5.x, and will
transition into the new LTS in October of 2016. Node also renamed
the Stable designation for the active development branch to Cur‐
rent.

After April 2018, Node v4 enters maintenance mode. In the meantime, there will be
new backward-compatible updates (known as semver-major bumps), as well as bug
and security patches.

What Version Is the Book Covering?

This book covers the long-term stable release of Node.js v4. Anno‐
tations mark differences between v4 and v5/v6, wherever appropri‐
ate.

Regardless of which LTS major release you decide to use, you’ll need to upgrade to
each new bug/security fix as soon as it releases. However you handle each new
semver-major bump is up to you and/or your organization. The upgrade should be
backward compatible, though, with only underlying engine improvements impacted.
Still, you’ll want to incorporate any new release into an upgrade and testing plan.

Which version should you use? In a business or corporate environment, you’ll most
likely want to stick with the LTS release, which is, at this time, Node.js v4. However, if
your environment can more quickly adapt to breaking changes, you can get access to
the latest v8 and other goodies with the latest Node Current release.

The Joys of Testing and Production

I cover Node debugging and testing, as well as other development
process and production procedures, in Chapter 11.

Upgrading Node
With the increased schedule of releases, keeping Node up-to-date is even more criti‐
cal. Thankfully, the upgrade process is painless, and you have alternatives.

You can check your version with the following:

node -v

If you’re using a package installer, then running the package update procedure
updates Node, as well as any other software on your server (sudo is not required in
Windows):

14 | Chapter 1: The Node Environment

www.itbook.store/books/9781491943120

https://itbook.store/books/9781491943120

sudo apt-get update
sudo apt-get upgrade --show-upgraded

If you are using a package installer, follow the instructions associated with it that are
provided at the Node website. Otherwise, you’ll end up out-of-sync with releases.

You can also use npm to upgrade Node, using the following sequence of commands:

sudo npm cache clean -f
sudo npm install -g
sudo n stable

To install the latest version of Node on Windows, OS X, or your Raspberry Pi, grab
the installer from the Node.js downloads and run it. It installs the new version over
the old.

Node Version Manager

In a Linux or OS X environment, you can also use the Node Ver‐
sion Manager (nvm) tool to keep Node up-to-date.

The Node package manager (npm) updates more frequently than Node. To upgrade
just it, run the following command:

sudo npm install npm -g n

This command installs the latest version of the necessary application. You can check
the version using:

npm -v

Be aware, though, that this can cause issues, especially in a team environment. If your
team members are using the version of npm that’s installed with Node, and you’ve
manually upgraded npm to the newer version, you can have inconsistent build results
that may not be easy to discover.

I’ll cover npm in more detail in Chapter 3, but for now, note that you can keep all
Node modules up-to-date with the following command:

sudo npm update -g

The Node LTS and Upgrading Node | 15

www.itbook.store/books/9781491943120

https://itbook.store/books/9781491943120

Node, V8, and ES6
Behind Node is a JavaScript engine. For most implementations, the engine is V8.
Originally created by Google for Chrome, the V8 source code was open-sourced in
2008. The V8 JavaScript engine was created to improve the speed of JavaScript by
incorporating a just-in-time (JIT) compiler that compiles JavaScript to machine code
rather than interpreting it, which had been the norm for JavaScript for years. The V8
engine is written in C++.

Microsoft’s Node.js Fork

Microsoft forked Node to create a version that uses its JavaScript
engine, Chakra, specifically to power its vision for the Internet of
Things (IoT). I’ll cover this fork in more detail in Chapter 12.

When Node v4.0 released, it did so with support for V8 4.5, the same version of the
engine being used by Chrome. The Node maintainers are also committed to support‐
ing upcoming versions of V8 as they’re released. This means that Node now incorpo‐
rates support for many of the new ECMA-262 (ECMAScript 2015 or ES6) features.

Node v6 V8 Support

Node v6 supports V8 version 5.0, and new releases of Node will
support newer versions of V8 accordingly.

In prior versions of Node, to access the new ES6 features, you would have to use the
harmony flag (--harmony) when running the application:

node --harmony app.js

Now, ES6 feature support is based on the following criteria (directly from the Node.js
documentation):

• All shipping features, which V8 considers stable, are turned on by default on
Node.js and do not require any kind of runtime flag.

• Staged features, which are almost-completed features that are not considered sta‐
ble by the V8 team, require a runtime flag: --es_staging (or its synonym, --
harmony).

• In-progress features can be activated individually by their respective harmony flag
(e.g., --harmony_destructuring), although this is highly discouraged unless for
testing purposes.

16 | Chapter 1: The Node Environment

www.itbook.store/books/9781491943120

https://itbook.store/books/9781491943120

I’ll cover the ES6 support in Node and how to effectively use the different features in
Chapter 9. For now, know that the following are some of the ES6 features supported
in Node, straight out of the can:

• Classes
• Promises
• Symbols
• Arrow functions
• Generators
• Collections
• let

• The spread operator

Advanced: Node C/C++ Add-ons
Now that Node is installed and you’ve had a chance to play around with it a bit, you
might be wondering exactly what it is you installed.

Though the language used to create Node applications is based in JavaScript, much of
Node is actually written in C++. Normally this information is behind the scenes in
most applications we use, but if you’re familiar with C or C++, you can choose to
extend Node functionality using C/C++ to create an add-on.

Writing a Node add-on is not the same as writing a more traditional C/C++ applica‐
tion. For one, there are libraries, such as the V8 library, that you’ll typically access.
For another, the Node add-on is not compiled using the tools you would normally
use.

The Node documentation for add-ons provides a Hello World example of an add-on.
You can check out the code for the short example, which should be familiar if you
have programmed with C/C++. Once you’ve written the code, though, you’ll need to
use a tool, node-gyp, to actually compile the add-on into a .node file.

First, a configuration file named binding.gyp is created. It uses a JSON-like format to
provide information about the add-on:

{
 "targets": [
 {
 "target_name": "addon",
 "sources": ["hello.cc"]
 }
]
}

The Node add-on configuration step is performed using the following command:

Advanced: Node C/C++ Add-ons | 17

www.itbook.store/books/9781491943120

https://itbook.store/books/9781491943120

node-gyp configure

It creates the appropriate configuration file (a Makefile for Unix, a vcxproj file in
Windows) and places it in the build/ directory. To build the Node add-on, run the
following command:

node-gyp build

The compiled add-on is installed in the build/release directory, and is now ready to
use. You can import it into your application like you would many of the others
installed with Node (covered in Chapter 3).

Maintaining Native Mode Modules

Though outside the scope of this book, if you’re interested in creat‐
ing native mode modules (the add-ons), you need to be aware of
platform differences. For instance, Microsoft provides special
instructions for native modules in Azure, and the maintainer for
the popular node-serialport native module has detailed the chal‐
lenges he’s faced maintaining the module.

Of course, if you’re not familiar with C/C++, you’ll most likely want to create mod‐
ules using JavaScript, and I’ll cover that in Chapter 3 also. But if you do know these
languages, an add-on can be an effective extension, especially for system-specific
needs.

One thing to be aware of is the rather dramatic changes that have occurred within
Node as it has progressed from v0.8 through the new v6.x. To counter the problems
that can occur, you’ll need to install NAN, or Native Abstractions for Node.js. This
header file helps to smooth out the differences between versions of Node.js.

18 | Chapter 1: The Node Environment

www.itbook.store/books/9781491943120

https://itbook.store/books/9781491943120

Want to
read more?

You can buy this book at oreilly.com
in print and ebook format.

Buy 2 books, get the 3rd FREE!
Use discount code OPC10

All orders over $29.95 qualify for free shipping within the US.

It’s also available at your favorite book retailer, including
the iBookstore, the Android Marketplace, and Amazon.com.

©2015 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 15055

www.itbook.store/books/9781491943120

https://play.google.com/store/books?hl=en
http://www.amazon.com/
http://shop.oreilly.com/product/0636920046936.do
https://itbook.store/books/9781491943120

	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	Book Structure
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. The Node Environment
	Installing Node
	Saying Hello to the World with Node
	A Basic Hello World Application
	Hello World, Tweaked
	Node Command-Line Options

	Node Hosting Environments
	Hosting Node on Your Server, VPS, or Managed Host
	Cloud Hosting

	The Node LTS and Upgrading Node
	Node’s New Semantic Versioning
	Upgrading Node

	Node, V8, and ES6
	Advanced: Node C/C++ Add-ons

	Chapter 2. Node Building Blocks: Global Objects, Events, and Node’s Asynchronous Nature
	The global and process Objects
	The global Object
	The process Object

	Buffers, Typed Arrays, and Strings
	Buffer, JSON, StringDecoder, and UTF-8 Strings
	Buffer Manipulation

	Node’s Callback and Asynchronous Event Handling
	The Event Queue (Loop)
	Creating an Asynchronous Callback Function
	EventEmitter
	The Node Event Loop and Timers

	Nested Callbacks and Exception Handling

	Chapter 3. Basics of Node Modules and Node Package Manager (npm)
	An Overview of the Node Module System
	How Node Finds and Loads a Module
	Sandboxing and the VM Module

	An In-Depth Exploration of NPM
	Creating and Publishing Your Own Node Module
	Creating a Module
	Packaging an Entire Directory
	Preparing Your Module for Publication
	Publishing the Module

	Discovering Node Modules and Three Must-Have Modules
	Better Callback Management with Async
	Command-Line Magic with Commander
	The Ubiquitous Underscore

	Chapter 4. Interactive Node with REPL and More on the Console
	REPL: First Looks and Undefined Expressions
	Benefits of REPL: Getting a Closer Understanding of JavaScript Under the Hood
	Multiline and More Complex JavaScript
	REPL Commands
	REPL and rlwrap
	Custom REPL

	Stuff Happens—Save Often
	The Necessity of the Console
	Console Message Types, Console Class, and Blocking
	Formatting the Message, with Help from util.format() and util.inspect()
	Providing Richer Feedback with console and a Timer

	Chapter 5. Node and the Web
	The HTTP Module: Server and Client
	What’s Involved in Creating a Static Web Server
	Using Apache to Proxy a Node Application
	Parsing the Query with Query String
	DNS Resolution

	Chapter 6. Node and the Local System
	Exploring the Operating System
	Streams and Pipes
	A Formal Introduction to the File System
	The fs.Stats Class
	The File System Watcher
	File Read and Write
	Directory Access and Maintenance
	File Streams

	Resource Access with Path
	Creating a Command-Line Utility
	Compression/Decompression with ZLib
	Pipes and ReadLine

	Chapter 7. Networking, Sockets, and Security
	Servers, Streams, and Sockets
	Sockets and Streams
	TCP Sockets and Servers
	UDP/Datagram Socket

	Guards at the Gate
	Setting Up TLS/SSL
	Working with HTTPS
	The Crypto Module

	Chapter 8. Child Processes
	child_process.spawn
	child_process.exec and child_process.execFile
	child_process.fork

	Running a Child Process Application in Windows

	Chapter 9. Node and ES6
	Strict Mode
	let and const
	Arrow Functions
	Classes
	Promises with Bluebird

	Chapter 10. Full-Stack Node Development
	The Express Application Framework
	MongoDB and Redis Database Systems
	MongoDB
	Redis Key/Value Store

	AngularJS and Other Full-Stack Frameworks

	Chapter 11. Node in Development and Production
	Debugging Node Applications
	The Node Debugger
	Node Inspector

	Unit Testing
	Unit Testing with Assert
	Unit Testing with Nodeunit
	Other Testing Frameworks

	Keeping Node Up and Running
	Benchmark and Load Testing with Apache Bench

	Chapter 12. Node in New Environments
	Samsung IoT and GPIO
	Windows with Chakra Node
	Node for Microcontrollers and Microcomputers
	Fritzing
	Node and Adruino
	Node and Raspberry Pi 2

	Index
	About the Author
	Colophon

