
Joost Visser

Building
Maintainable
Software
TEN GUIDELINES FOR FUTURE-PROOF CODE

Java Edition

www.itbook.store/books/9781491953525

https://itbook.store/books/9781491953525

O’Reilly ebooks.
Your bookshelf on your devices.

When you buy an ebook through oreilly.com you get lifetime access to the
book, and whenever possible we provide it to you in four DRM-free file
formats—PDF, .epub, Kindle-compatible .mobi, and DAISY—that you can
use on the devices of your choice. Our ebook files are fully searchable,
and you can cut-and-paste and print them. We also alert you when we’ve
updated the files with corrections and additions.

Learn more at ebooks.oreilly.com
You can also purchase O’Reilly ebooks through the

iBookstore, the Android Marketplace, and Amazon.com.

©2015 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 15055

ePubPDF Mobi DAISY

www.itbook.store/books/9781491953525

http://www.oreilly.com/
http://shop.oreilly.com/category/ebooks.do
https://itbook.store/books/9781491953525

978-1-4919-5352-5

[LSI]

Building Maintainable Software: Ten Guidelines for Future-Proof Code
by Joost Visser

Copyright © 2016 Software Improvement Group, B.V. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Rachel Roumeliotis
Editor: Nan Barber
Production Editor: Matthew Hacker
Copyeditor: Rachel Monaghan
Proofreader: Marta Justak

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

February 2016: First Edition

Revision History for the First Edition
2016-01-25: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491940662 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Building Maintainable Software: Ten
Guidelines for Future-Proof Code, the image of a grey-headed woodpecker, and related trade dress are
trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.itbook.store/books/9781491953525

https://itbook.store/books/9781491953525

Table of Contents

Preface. ix

1. Introduction. 1
1.1 What Is Maintainability? 1
1.2 Why Is Maintainability Important? 3
1.3 Three Principles of the Guidelines in This Book 4
1.4 Misunderstandings About Maintainability 6
1.5 Rating Maintainability 7
1.6 An Overview of the Maintainability Guidelines 9

2. Write Short Units of Code. 11
2.1 Motivation 13
2.2 How to Apply the Guideline 14
2.3 Common Objections to Writing Short Units 21
2.4 See Also 24

3. Write Simple Units of Code. 27
3.1 Motivation 32
3.2 How to Apply the Guideline 33
3.3 Common Objections to Writing Simple Units of Code 37
3.4 See Also 38

4. Write Code Once. 41
4.1 Motivation 45
4.2 How to Apply the Guideline 45
4.3 Common Objections to Avoiding Code Duplication 50
4.4 See Also 53

iii

www.itbook.store/books/9781491953525

https://itbook.store/books/9781491953525

5. Keep Unit Interfaces Small. 55
5.1 Motivation 57
5.2 How to Apply the Guideline 58
5.3 Common Objections to Keeping Unit Interfaces Small 62
5.4 See Also 63

6. Separate Concerns in Modules. 65
6.1 Motivation 69
6.2 How to Apply the Guideline 70
6.3 Common Objections to Separating Concerns 73

7. Couple Architecture Components Loosely. 77
7.1 Motivation 78
7.2 How to Apply the Guideline 82
7.3 Common Objections to Loose Component Coupling 84
7.4 See Also 86

8. Keep Architecture Components Balanced. 89
8.1 Motivation 91
8.2 How to Apply the Guideline 92
8.3 Common Objections to Balancing Components 94
8.4 See Also 94

9. Keep Your Codebase Small. 97
9.1 Motivation 98
9.2 How to Apply the Guideline 101
9.3 Common Objections to Keeping the Codebase Small 103

10. Automate Tests. 107
10.1 Motivation 109
10.2 How to Apply the Guideline 110
10.3 Common Objections to Automating Tests 119
10.4 See Also 121

11. Write Clean Code. 123
11.1 Leave No Trace 123
11.2 How to Apply the Guideline 124
11.3 Common Objections to Writing Clean Code 130

12. Next Steps. 133
12.1 Turning the Guidelines into Practice 133

iv | Table of Contents

www.itbook.store/books/9781491953525

https://itbook.store/books/9781491953525

12.2 Lower-Level (Unit) Guidelines Take Precedence Over Higher-Level
(Component) Guidelines 133

12.3 Remember That Every Commit Counts 134
12.4 Development Process Best Practices Are Discussed in the Follow-Up

Book 134

A. How SIG Measures Maintainability. 135

Index. 139

Table of Contents | v

www.itbook.store/books/9781491953525

https://itbook.store/books/9781491953525

CHAPTER 1

Introduction

Who wrote this piece of code?? I can’t work like this!!
—Any programmer

Being a software developer is great. When someone gives you a problem and require‐
ments, you are able to come up with a solution and translate that solution into a lan‐
guage that a computer understands. These are challenging and rewarding endeavors.
Being a software developer can also be a painstaking job. If you regularly have to
change source code written by others (or even by yourself), you know that it can be
either really easy or really difficult. Sometimes, you can quickly identify the lines of
code to change. The change is nicely isolated, and tests confirm that it works as
intended. At other times, the only solution is to use a hack that creates more prob‐
lems than it solves.

The ease or difficulty with which a software system can be modified is known as its
maintainability. The maintainability of a software system is determined by properties
of its source code. This book discusses these properties and presents 10 guidelines to
help you write source code that is easy to modify.

In this chapter, we explain what we mean when we speak about maintainability. After
that, we discuss why maintainability is important. This sets the stage to introduce the
main topic of this book: how to build software that is maintainable from the start. At
the end of this introduction we discuss common misunderstandings about maintain‐
ability and introduce the principles behind the 10 guidelines presented in this book.

1.1 What Is Maintainability?
Imagine two different software systems that have exactly the same functionality.
Given the same input, both compute exactly the same output. One of these two

1

www.itbook.store/books/9781491953525

https://itbook.store/books/9781491953525

1 Full title: International Standard ISO/IEC 25010. Systems and Software Engineering -- Systems and software
Quality Requirements and Evaluation (SQuaRE) -- System and Software Quality Models. First Edition,
2011-03-01.

systems is fast and user-friendly, and its source code is easy to modify. The other sys‐
tem is slow and difficult to use, and its source code is nearly impossible to under‐
stand, let alone modify. Even though both systems have the same functionality, their
quality clearly differs.

Maintainability (how easily a system can be modified) is one characteristic of soft‐
ware quality. Performance (how slow or fast a system produces its output) is another.

The international standard ISO/IEC 25010:2011 (which we simply call ISO 25010 in
this book1) breaks down software quality into eight characteristics: maintainability,
functional suitability, performance efficiency, compatibility, usability, reliability, secu‐
rity, and portability. This book focuses exclusively on maintainability.

Even though ISO 25010 does not describe how to measure software quality, that does
not mean you cannot measure it. In Appendix A, we present how we measure soft‐
ware quality at the Software Improvement Group (SIG) in accordance with ISO
25010.

The Four Types of Software Maintenance
Software maintenance is not about fixing wear and tear. Software is not physical, and
therefore it does not degrade by itself the way physical things do. Yet most software
systems are modified all the time after they have been delivered. This is what software
maintenance is about. Four types of software maintenance can be distinguished:

• Bugs are discovered and have to be fixed (this is called corrective maintenance).
• The system has to be adapted to changes in the environment in which it

operates—for example, upgrades of the operating system or technologies (this is
called adaptive maintenance).

• Users of the system (and/or other stakeholders) have new or changed require‐
ments (this is called perfective maintenance).

• Ways are identified to increase quality or prevent future bugs from occurring
(this is called preventive maintenance).

2 | Chapter 1: Introduction

www.itbook.store/books/9781491953525

https://itbook.store/books/9781491953525

1.2 Why Is Maintainability Important?
As you have learned, maintainability is only one of the eight characteristics of soft‐
ware product quality identified in ISO 25010. So why is maintainability so important
that it warrants its own, dedicated book? There are two angles to this question:

• Maintainability, or lack thereof, has significant business impact.
• Maintainability is an enabler for other quality characteristics.

Both angles are discussed in the next two sections.

Maintainability Has Significant Business Impact
In software development, the maintenance phase of a software system often spans 10
years or more. During most of this time, there is a continuous stream of issues that
need to be resolved (corrective and adaptive maintenance) and enhancement requests
that have to be met (perfective maintenance). The efficiency and effectiveness with
which issues can be resolved and enhancements can be realized is therefore impor‐
tant for stakeholders.

Maintenance efforts are reduced when issue resolution and enhancements can be
performed quickly and easily. If efficient maintenance leads to less maintenance per‐
sonnel (developers), it also lowers maintenance costs. When the number of develop‐
ers stays the same, with efficient maintenance they have more time for other tasks,
such as building new functionality. Fast enhancements mean shorter time-to-market
of new products and services supported by the system. For both issue resolution and
enhancements, it holds that if they are slow and troublesome, deadlines may not be
met or the system may become unusable.

SIG has collected empirical evidence that issue resolution and enhancements are
twice as fast in systems with above-average maintainability than in systems with
below-average maintainability. A factor of two is a significant quantity in the practice
of enterprise systems. The time it takes to resolve issues and make an enhancement is
on the order of days or weeks. It is not the difference between fixing 5 bugs or 10 in
an hour; it is the difference between being the first one to the market with a new
product, or seeing your competitor months ahead of you.

And that is just the difference between above-average and below-average maintaina‐
bility. At SIG we have seen newly built systems for which the maintainability was so
low that it was no longer possible to effectively modify them—even before the sys‐
tems went into production. Modifications introduced more bugs than they solved.
Development took so long that the business environment (and therefore, user
requirements) had already changed. More modifications were needed, which

1.2 Why Is Maintainability Important? | 3

www.itbook.store/books/9781491953525

https://itbook.store/books/9781491953525

introduced yet more bugs. More often than not, such systems are written off before
they ever see a 1.0 release.

Maintainability Is an Enabler for Other Quality Characteristics
Another reason why maintainability is a special aspect of software quality is that it
acts as an enabler for other quality characteristics. When a system has high maintain‐
ability, it is easier to make improvements in the other quality areas, such as fixing a
security bug. More generally speaking, optimizing a software system requires modifi‐
cations to its source code, whether for performance, functional suitability, security, or
any other of the seven nonmaintainability characteristics defined by ISO 25010.

Sometimes they are small, local modifications. Sometimes they involve more invasive
restructuring. All modifications require finding a specific piece of source code and
analyzing it, understanding its inner logic and its position in the business process that
the system facilitates, analyzing dependencies between different pieces of code and
testing them, and pushing them through the development pipeline. In any case, in a
more maintainable system, these modifications are easier to make, allowing you to
implement quality optimizations faster and more effectively. For example, highly
maintainable code is more stable than unmaintainable code: changes in a highly
maintainable system have fewer unexpected side effects than changes in an entangled
system that is hard to analyze and test.

1.3 Three Principles of the Guidelines in This Book
If maintainability is so important, how can you improve maintainability of the code
that you write? This book presents 10 guidelines that, if followed, lead to code that is
highly maintainable. In the following chapters, each guideline is presented and dis‐
cussed. In the current chapter, we introduce the principles behind these guidelines:

1. Maintainability benefits most from adhering to simple guidelines.
2. Maintainability is not an afterthought, but should be addressed from the very

beginning of a development project. Every individual contribution counts.
3. Some violations are worse than others. The more a software system complies

with the guidelines, the more maintainable it is.

These principles are explained next.

Principle 1: Maintainability Benefits Most from Simple Guidelines
People may think that maintainability requires a “silver bullet”: one technology or
principle that solves maintainability once and for all, automagically. Our principle is
the very opposite: maintainability requires following simple guidelines that are not

4 | Chapter 1: Introduction

www.itbook.store/books/9781491953525

https://itbook.store/books/9781491953525

sophisticated at all. These guidelines guarantee sufficient maintainability, not perfect
maintainability (whatever that may be). Source code that complies with these guide‐
lines can still be made more maintainable. At some point, the additional gains in
maintainability become smaller and smaller, while the costs become higher and
higher.

Principle 2: Maintainability Is Not an Afterthought, and Every
Contribution Counts
Maintainability needs to be addressed from the very start of a development project.
We understand that it is hard to see whether an individual “violation” of the guide‐
lines in this book influences the overall maintainability of the system. That is why all
developers must be disciplined and follow the guidelines to achieve a system that is
maintainable overall. Therefore, your individual contribution is of great importance
to the whole.

Following the guidelines in this book not only results in more maintainable code, but
also sets the right example for your fellow developers. This avoids the “broken win‐
dows effect” in which other developers temporarily relax their discipline and take
shortcuts. Setting the right example is not necessarily about being the most skilled
engineer, but more about retaining discipline during development.

Remember that you are writing code not just for yourself, but also
for less-experienced developers that come after you. This thought
helps you to simplify the solution you are programming.

Principle 3: Some Violations Are Worse Than Others
The guidelines in this book present metric thresholds as an absolute rule. For
instance, in Chapter 2, we tell you to never write methods that have more than 15
lines of code. We are fully aware that in practice, almost always there will be excep‐
tions to the guideline. What if a fragment of source code violates one or more of these
guidelines? Many types of tooling for software quality assume that each and every
violation is bad. The hidden assumption is that all violations should be resolved. In
practice, resolving all violations is neither necessary nor profitable. This all-or-
nothing view on violations may lead developers to ignore the violations altogether.

We take a different approach. To keep the metrics simple but also practical, we deter‐
mine the quality of a complete codebase not by the code’s number of violations but by
its quality profiles. A quality profile divides metrics into distinct categories, ranging
from fully compliant code to severe violations. By using quality profiles, we can dis‐
tinguish moderate violations (for example, a method with 20 lines of code) from

1.3 Three Principles of the Guidelines in This Book | 5

www.itbook.store/books/9781491953525

https://itbook.store/books/9781491953525

severe violations (for example, a method with 200 lines of code). After the next sec‐
tion, which discusses common misunderstandings about maintainability, we explain
how quality profiles are used to measure the maintainability of a system.

1.4 Misunderstandings About Maintainability
In this section, we discuss some misunderstandings about maintainability that are
encountered in practice.

Misunderstanding: Maintainability Is Language-Dependent
“Our system uses a state-of-the-art programming language. Therefore, it is at least as
maintainable as any other system.”

The data we have at SIG does not indicate that the technology (programming lan‐
guage) chosen for a system is the dominant determining factor of maintainability.
Our dataset contains Java systems that are among the most maintainable, but also,
that are among the least maintainable. The average maintainability of all Java systems
in our benchmark is itself average, and the same holds for C#. This shows us that it is
possible to make very maintainable systems in Java (and in C#), but using either of
these languages does not guarantee a system’s maintainability. Apparently, there are
other factors that determine maintainability.

For consistency, we are using Java code snippets throughout the
book. However, the guidelines described in this book are not spe‐
cific to Java. In fact, SIG has benchmarked systems in over a hun‐
dred programming languages based on the guidelines and metrics
in this book.

Misunderstanding: Maintainability Is Industry-Dependent
“My team makes embedded software for the car industry. Maintainability is different
there.”

We believe that the guidelines presented in this book are applicable to all forms of
software development: embedded software, games, scientific software, software com‐
ponents such as compilers and database engines, and administrative software. Of
course, there are differences between these domains. For example, scientific software
often uses a special-purpose programming language, such as R, for statistical analysis.
Yet, in R, it is a good idea to keep units short and simple. Embedded software has to
operate in an environment where performance predictability is essential and resour‐
ces are constrained. So whenever a compromise has to be made between performance
and maintainability, the former wins over the latter. But no matter the domain, the
characteristics defined in ISO 25010 still apply.

6 | Chapter 1: Introduction

www.itbook.store/books/9781491953525

https://itbook.store/books/9781491953525

Misunderstanding: Maintainability Is the Same as the Absence of
Bugs
“You said the system has above-average maintainability. However, it turns out it is full of
bugs!”

According to the ISO 25010 definitions, a system can be highly maintainable and still
be lacking in other quality characteristics. Consequently, a system may have above-
average maintainability and still suffer from problems regarding functional suitabil‐
ity, performance, reliability, and more. Above-average maintainability means nothing
more than that the modifications needed to reduce the number of bugs can be made
at a high degree of efficiency and effectiveness.

Misunderstanding: Maintainability Is a Binary Quantity
“My team repeatedly has been able to fix bugs in this system. Therefore, it has been pro‐
ven that it is maintainable.”

This distinction is important. “Maintain-Ability” is literally the ability to maintain.
According to its definition in ISO 25010, source code maintainability is not a binary
quantity. Instead, maintainability is the degree to which changes can be made effi‐
ciently and effectively. So the right question to ask is not whether changes (such as
bug fixes) have been made, but rather, how much effort did fixing the bug take (effi‐
ciency), and was the bug fixed correctly (effectiveness)?

Given the ISO 25010 definition of maintainability, one could say that a software sys‐
tem is never perfectly maintainable nor perfectly unmaintainable. In practice, we at
SIG have encountered systems that can be considered unmaintainable. These systems
had such a low degree of modification efficiency and effectiveness that the system
owner could not afford to maintain it.

1.5 Rating Maintainability
We know now that maintainability is a quality characteristic on a scale. It signifies
different degrees of being able to maintain a system. But what is “easy to maintain”
and what is “hard to maintain”? Clearly, a complex system is easier to maintain by an
expert than by a less experienced developer. By benchmarking, at SIG we let the met‐
rics in the software industry answer this question. If software metrics for a system
score below average, it is harder than average to maintain. The benchmark is recali‐
brated yearly. As the industry learns to code more efficiently (e.g., with the help of
new technologies), the average for metrics tends to improve over time. What was the
norm in software engineering a few years back, may be subpar now. The benchmark
thus reflects the state of the art in software engineering.

1.5 Rating Maintainability | 7

www.itbook.store/books/9781491953525

https://itbook.store/books/9781491953525

SIG divides the systems in the benchmark by star rating, ranging from 1 star (hardest
to maintain) to 5 stars (easiest to maintain). The distribution of these star ratings
among systems from 1 to 5 stars is 5%-30%-30%-30%-5%. Thus, in the benchmark
the systems that are among the top 5% are rated 5 stars. In these systems, there are
still violations to the guidelines, but much fewer than in systems rated below.

The star ratings serve as a predictor for actual system maintainability. SIG has collec‐
ted empirical evidence that issue resolution and enhancements are twice as fast in
systems with 4 stars than in systems with 2 stars.

The systems in the benchmark are ranked based on their metric quality profiles.
Figure 1-1 shows three examples of unit size quality profiles (print readers can view
full-color figures for this and the other quality profiles that follow in our repository
for this book).

Figure 1-1. Example of three quality profiles

The first chart in Figure 1-1 is a quality profile for unit size based on the source code
of Jenkins version 1.625, a popular open source continuous integration server. The
quality profile tells us that the Jenkins codebase has 64% of its code in methods that
are no longer than 15 lines of code (compliant with the guideline). The profile also
shows that 18% of all the code in the codebase is in methods between 16 and 30 lines
of code, and 12% is in methods between 31 and 60 lines of code. The Jenkins code‐
base is not perfect. It has severe unit size violations: 6% of the codebase is in very long
units (more than 60 lines of code).

The second chart in Figure 1-1 shows the quality profile of a 2-star system. Notice
that over one-third of the codebase is in units that are over 60 lines of code. Doing
maintenance on this system is a very painstaking job.

Finally, the third chart in Figure 1-1 shows the unit size cutoff points for 4 stars.
Compare this chart to the first one. You can tell that Jenkins complies to the unit size
guideline for 4 stars (although not for 5 stars), since the percentages of code in each
category are lower than the 4-star cutoffs.

8 | Chapter 1: Introduction

www.itbook.store/books/9781491953525

https://itbook.store/books/9781491953525

In a sidebar at the end of each guideline chapter, we present the quality profile cate‐
gories for that guideline as we use them at SIG to rate maintainability. Specifically, for
each guideline, we present the cutoff points and the maximum percentage of code in
each category for a rating of 4 stars or higher (top 35% of the benchmark).

1.6 An Overview of the Maintainability Guidelines
In the following chapters, we will present the guidelines one by one, but here we list
all 10 guidelines together to give you a quick overview. We advise you to read this
book starting with Chapter 2 and work your way through sequentially.

Write short units of code (Chapter 2)
Shorter units (that is, methods and constructors) are easier to analyze, test, and
reuse.

Write simple units of code (Chapter 3)
Units with fewer decision points are easier to analyze and test.

Write code once (Chapter 4)
Duplication of source code should be avoided at all times, since changes will need
to be made in each copy. Duplication is also a source of regression bugs.

Keep unit interfaces small (Chapter 5)
Units (methods and constructors) with fewer parameters are easier to test and
reuse.

Separate concerns in modules (Chapter 6)
Modules (classes) that are loosely coupled are easier to modify and lead to a more
modular system.

Couple architecture components loosely (Chapter 7)
Top-level components of a system that are more loosely coupled are easier to
modify and lead to a more modular system.

Keep architecture components balanced (Chapter 8)
A well-balanced architecture, with not too many and not too few components, of
uniform size, is the most modular and enables easy modification through separa‐
tion of concerns.

Keep your codebase small (Chapter 9)
A large system is difficult to maintain, because more code needs to be analyzed,
changed, and tested. Also, maintenance productivity per line of code is lower in a
large system than in a small system.

1.6 An Overview of the Maintainability Guidelines | 9

www.itbook.store/books/9781491953525

https://itbook.store/books/9781491953525

Automate development pipeline and tests (Chapter 10)
Automated tests (that is, tests that can be executed without manual intervention)
enable near-instantaneous feedback on the effectiveness of modifications. Man‐
ual tests do not scale.

Write clean code (Chapter 11)
Having irrelevant artifacts such as TODOs and dead code in your codebase
makes it more difficult for new team members to become productive. Therefore,
it makes maintenance less efficient.

10 | Chapter 1: Introduction

www.itbook.store/books/9781491953525

https://itbook.store/books/9781491953525

Want to
read more?

You can buy this book at oreilly.com
in print and ebook format.

Buy 2 books, get the 3rd FREE!
Use discount code OPC10

All orders over $29.95 qualify for free shipping within the US.

It’s also available at your favorite book retailer, including
the iBookstore, the Android Marketplace, and Amazon.com.

©2015 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 15055

www.itbook.store/books/9781491953525

http://shop.oreilly.com/product/0636920049159.do
https://itbook.store/books/9781491953525

	Copyright
	Table of Contents
	About the Authors
	Preface
	The Topic of This Book: Ten Guidelines for Building Maintainable Software
	Why You Should Read This Book
	Who Should Read This Book
	What This Book Is Not
	The Follow-up Book
	About the Software Improvement Group
	About This Edition
	Related Books
	Conventions Used in This Book
	Generic Names for Elements of Source Code
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	1.1 What Is Maintainability?
	The Four Types of Software Maintenance

	1.2 Why Is Maintainability Important?
	Maintainability Has Significant Business Impact
	Maintainability Is an Enabler for Other Quality Characteristics

	1.3 Three Principles of the Guidelines in This Book
	Principle 1: Maintainability Benefits Most from Simple Guidelines
	Principle 2: Maintainability Is Not an Afterthought, and Every Contribution Counts
	Principle 3: Some Violations Are Worse Than Others

	1.4 Misunderstandings About Maintainability
	Misunderstanding: Maintainability Is Language-Dependent
	Misunderstanding: Maintainability Is Industry-Dependent
	Misunderstanding: Maintainability Is the Same as the Absence of Bugs
	Misunderstanding: Maintainability Is a Binary Quantity

	1.5 Rating Maintainability
	1.6 An Overview of the Maintainability Guidelines

	Chapter 2. Write Short Units of Code
	2.1 Motivation
	Short Units Are Easy to Test
	Short Units Are Easy to Analyze
	Short Units Are Easy to Reuse

	2.2 How to Apply the Guideline
	When Writing a New Unit
	When Extending a Unit with New Functionality
	Using Refactoring Techniques to Apply the Guideline

	2.3 Common Objections to Writing Short Units
	Objection: Having More Units Is Bad for Performance
	Objection: Code Is Harder to Read When Spread Out
	Guideline Encourages Improper Formatting
	This Unit Is Impossible to Split Up
	There Is No Visible Advantage in Splitting Units

	2.4 See Also

	Chapter 3. Write Simple Units of Code
	3.1 Motivation
	Simple Units Are Easier to Modify
	Simple Units Are Easier to Test

	3.2 How to Apply the Guideline
	Dealing with Conditional Chains
	Dealing with Nesting

	3.3 Common Objections to Writing Simple Units of Code
	Objection: High Complexity Cannot Be Avoided
	Objection: Splitting Up Methods Does Not Reduce Complexity

	3.4 See Also

	Chapter 4. Write Code Once
	4.1 Motivation
	Duplicated Code Is Harder to Analyze
	Duplicated Code Is Harder to Modify

	4.2 How to Apply the Guideline
	The Extract Superclass Refactoring Technique

	4.3 Common Objections to Avoiding Code Duplication
	Copying from Another Codebase Should Be Allowed
	Slight Variations, and Hence Duplication, Are Unavoidable
	This Code Will Never Change
	Duplicates of Entire Files Should Be Allowed as Backups
	Unit Tests Are Covering Me
	Duplication in String Literals Is Unavoidable and Harmless

	4.4 See Also

	Chapter 5. Keep Unit Interfaces Small
	5.1 Motivation
	Small Interfaces Are Easier to Understand and Reuse
	Methods with Small Interfaces Are Easier to Modify

	5.2 How to Apply the Guideline
	5.3 Common Objections to Keeping Unit Interfaces Small
	Objection: Parameter Objects with Large Interfaces
	Refactoring Large Interfaces Does Not Improve My Situation
	Frameworks or Libraries Prescribe Interfaces with Long Parameter Lists

	5.4 See Also

	Chapter 6. Separate Concerns in Modules
	6.1 Motivation
	Small, Loosely Coupled Modules Allow Developers to Work on Isolated Parts of the Codebase
	Small, Loosely Coupled Modules Ease Navigation Through the Codebase
	Small, Loosely Coupled Modules Prevent No-Go Areas for New Developers

	6.2 How to Apply the Guideline
	Split Classes to Separate Concerns
	Hide Specialized Implementations Behind Interfaces
	Replace Custom Code with Third-Party Libraries/Frameworks

	6.3 Common Objections to Separating Concerns
	Objection: Loose Coupling Conflicts With Reuse
	Objection: Java Interfaces Are Not Just for Loose Coupling
	Objection: High Fan-in of Utility Classes Is Unavoidable
	Objection: Not All Loose Coupling Solutions Increase Maintainability

	Chapter 7. Couple Architecture Components Loosely
	7.1 Motivation
	Low Component Dependence Allows for Isolated Maintenance
	Low Component Dependence Separates Maintenance Responsibilities
	Low Component Dependence Eases Testing

	7.2 How to Apply the Guideline
	Abstract Factory Design Pattern

	7.3 Common Objections to Loose Component Coupling
	Objection: Component Dependence Cannot Be Fixed Because the Components Are Entangled
	Objection: No Time to Fix
	Objection: Throughput Is a Requirement

	7.4 See Also

	Chapter 8. Keep Architecture Components Balanced
	8.1 Motivation
	A Good Component Balance Eases Finding and Analyzing Code
	A Good Component Balance Better Isolates Maintenance Effects
	A Good Component Balance Separates Maintenance Responsibilities

	8.2 How to Apply the Guideline
	Decide on the Right Conceptual Level for Grouping Functionality into Components
	Clarify the System’s Domains and Apply Those Consistently

	8.3 Common Objections to Balancing Components
	Objection: Component Imbalance Works Just Fine
	Objection: Entanglement Is Impairing Component Balance

	8.4 See Also

	Chapter 9. Keep Your Codebase Small
	9.1 Motivation
	A Project That Sets Out to Build a Large Codebase Is More Likely to Fail
	Large Codebases Are Harder to Maintain
	Large Systems Have Higher Defect Density

	9.2 How to Apply the Guideline
	Functional Measures
	Technical Measures

	9.3 Common Objections to Keeping the Codebase Small
	Objection: Reducing the Codebase Size Is Impeded by Productivity Measures
	Objection: Reducing the Codebase Size is Impeded by the Programming Language
	Objection: System Complexity Forces Code Copying
	Objection: Splitting the Codebase Is Impossible Because of Platform Architecture
	Objection: Splitting the Codebase Leads to Duplication
	Objection: Splitting the Codebase Is Impossible Because of Tight Coupling

	Chapter 10. Automate Tests
	10.1 Motivation
	Automated Testing Makes Testing Repeatable
	Automated Testing Makes Development Efficient
	Automated Testing Makes Code Predictable
	Tests Document the Code That Is Tested
	Writing Tests Make You Write Better Code

	10.2 How to Apply the Guideline
	Getting Started with jUnit Tests
	General Principles for Writing Good Unit Tests
	Measure Coverage to Determine Whether There Are Enough Tests

	10.3 Common Objections to Automating Tests
	Objection: We Still Need Manual Testing
	Objection: I Am Not Allowed to Write Unit Tests
	Objection: Why Should We Invest in Unit Tests When the Current Coverage Is Low?

	10.4 See Also

	Chapter 11. Write Clean Code
	11.1 Leave No Trace
	11.2 How to Apply the Guideline
	Rule 1: Leave No-Unit Level Code Smells Behind
	Rule 2: Leave No Bad Comments Behind
	Rule 3: Leave No Code in Comments Behind
	Rule 4: Leave No Dead Code Behind
	Rule 5: Leave No Long Identifiers Behind
	Rule 6: Leave No Magic Constants Behind
	Rule 7: Leave No Badly Handled Exception Behind

	11.3 Common Objections to Writing Clean Code
	Objection: Comments Are Our Documentation
	Objection: Exception Handling Causes Code Additions
	Objection: Why Only These Coding Guidelines?

	Chapter 12. Next Steps
	12.1 Turning the Guidelines into Practice
	12.2 Lower-Level (Unit) Guidelines Take Precedence Over Higher-Level (Component) Guidelines
	12.3 Remember That Every Commit Counts
	12.4 Development Process Best Practices Are Discussed in the Follow-Up Book

	Appendix A. How SIG Measures Maintainability
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

