
10
D E P L O Y I N G F W S N O R T

With the theoretical discussion in Chap-
ter 9 on the emulation of Snort rule options

within iptables behind us, we’ll talk in this
chapter about how to get fwsnort to actually do

something! Namely, we’ll discuss the administration of
fwsnort and illustrate how it can be used to instruct
iptables to detect attacks that are associated with the
Snort signature ruleset.

Installing fwsnort

Like psad, fwsnort comes bundled with its own installation program install.pl.
This program handles all aspects of installation, including preserving con-
figurations from a previous installation of fwsnort, the installation of two Perl
modules (Net::IPv4Addr and IPTables::Parse), and the (optional) downloading
of the latest Bleeding Snort signature set from http://www.bleedingsnort.com.
You can also install fwsnort from the RPM if you are running an RPM-based
Linux distribution.

fire_03.book Page 173 Monday, August 27, 2007 3:54 PM

From Linux Firewalls
No Starch Press, Copyright © 2007 by Michael Rash

www.itbook.store/books/9781593271411

https://itbook.store/books/9781593271411

174 Chap te r 10

NOTE As of March 2005, the Snort signature ruleset is only available as part of a for-pay
service. Before that date, the Snort rules were available for free from the Snort website
(http://www.snort.org). Many security applications (including fwsnort) took advan-
tage of the free rules by providing an automatic update feature to synchronize with the
latest Snort rules. While automatically updating in this way is no longer possible,
as of this writing the latest Snort rulesets distributed by the Bleeding Snort project are
still available for (free) download.

The fwsnort installer places the Net::IPvAddr and IPTables::Parse Perl
modules within the directory /usr/lib/fwsnort so as to not clutter the system
Perl library tree. (This is similar to the installation strategy implemented by
psad, as discussed in Chapter 5.)

In order to use fwsnort, you will need to be able to use the iptables
string-matching capability. If you are running kernel version 2.6.14 or later,
string matching may already be compiled into your kernel.

An easy way to check to see if the running kernel supports the string-
matching extension is to attempt to create a string-matching iptables rule
against a nonexistent IP address (so that any real network communications
are not disrupted), like so:

[iptablesfw]# iptables -D INPUT 1 -i lo -d 127.0.0.2 -m string --string
"testing " --algo bm -j ACCEPT

If the error iptables: no chain/target/match by that name is returned, then
the extension is not available in the running kernel. This can be fixed by
enabling the CONFIG_NETFILTER_XT_MATCH_STRING option in the kernel config-
uration file, recompiling, and then booting into the new kernel (see “Kernel
Configuration” on page 14 for recommended iptables kernel compilation
options). If the command above succeeds, then iptables string matching is
compatible with your kernel, and you should delete the new rule:

[iptablesfw]# iptables -D INPUT 1

To install fwsnort-1.0, execute the following commands. (This installer
output is somewhat abbreviated but shows the various files that partition the
original Snort ruleset, such as backdoor.rules and web-cgi.rules.)

[iptablesfw]$ cd /usr/local/src

[iptablesfw]$ wget http://www.cipherdyne.org/fwsnort/download/fwsnort-1.0.tar.bz2
[iptablesfw]$ wget http://www.cipherdyne.org/fwsnort/download/fwsnort-
1.0.tar.bz2.md5

[iptablesfw]$ wget http://www.cipherdyne.org/fwsnort/download/fwsnort-
1.0.tar.bz2.asc

[iptablesfw]$ md5sum -c fwsnort-1.0.tar.bz2.md5

gpg --verify fwsnort-1.0.tar.bz2.asc

gpg: Signature made Sat 21 Apr 2007 09:29:02 AM EDT using DSA key ID A742839F
gpg: Good signature from "Michael Rash <mbr@cipherdyne.org>"

gpg: aka "Michael Rash <mbr@cipherdyne.com>"

fire_03.book Page 174 Monday, August 27, 2007 3:54 PM

From Linux Firewalls
No Starch Press, Copyright © 2007 by Michael Rash

www.itbook.store/books/9781593271411

https://itbook.store/books/9781593271411

Dep loyi ng fwsnort 175

fwsnort-1.0.tar.bz2: OK
[iptablesfw]$ tar xfj fwsnort-1.0.tar.bz2

[iptablesfw]$ su -

Password:

[iptablesfw]# cd /usr/local/src/fwsnort-1.0
[iptablesfw]# ./install.pl

[+] mkdir /etc/fwsnort

[+] mkdir /etc/fwsnort/snort_rules

[+] Installing the Net::IPv4Addr Perl module
[+] Installing the IPTables::Parse Perl module

[+] Would you like to download the latest Snort rules from

 http://www.bleedingsnort.com?

 ([y]/n)? y
--22:01:11-- http://www.bleedingsnort.com/bleeding-all.rules

 => `bleeding-all.rules'

Resolving www.bleedingsnort.com... 69.44.153.29

Connecting to www.bleedingsnort.com[69.44.153.29]:80... connected.
HTTP request sent, awaiting response... 200 OK

Length: 292,192 [text/plain]

100%[======================================>] 292,192 109.94K/s

22:01:17 (109.77 KB/s) - `bleeding-all.rules' saved [292,192/292,192]
[+] Copying all rules files to /etc/fwsnort/snort_rules

[+] Installing snmp.rules

[+] Installing finger.rules

[+] Installing info.rules
[+] Installing ddos.rules

[+] Installing virus.rules

[+] Installing icmp.rules

[+] Installing dns.rules
[+] Installing rpc.rules

[+] Installing backdoor.rules

[+] Installing scan.rules

[+] Installing shellcode.rules
[+] Installing web-client.rules

[+] Installing web-cgi.rules

[+] Installing exploit.rules

[+] Installing attack-responses.rules
[+] Installing web-attacks.rules

[+] Installing fwsnort.8 man page as /usr/share/man/man8/fwsnort.8

[+] Compressing manpage /usr/share/man/man8/fwsnort.8

[+] Copying fwsnort.conf -> /etc/fwsnort/fwsnort.conf
[+] Copying fwsnort -> /usr/sbin/fwsnort

[+] fwsnort will generate an iptables script located at:

 /etc/fwsnort/fwsnort.sh when executed.

[+] fwsnort has been successfully installed!

Running fwsnort

With fwsnort installed on a system that offers string-match support in the
kernel, we can now put fwsnort to work for us. Without further ado, we fire
up fwsnort from the command line. Normally, fwsnort is executed as root

fire_03.book Page 175 Monday, August 27, 2007 3:54 PM

From Linux Firewalls
No Starch Press, Copyright © 2007 by Michael Rash

www.itbook.store/books/9781593271411

https://itbook.store/books/9781593271411

176 Chap te r 10

because by default it queries iptables in order to determine which extensions
are available in the running kernel, and then it tailors the translation process
accordingly1 (some output below is abbreviated):

[iptablesfw]# fwsnort

 Snort Rules File Success Fail Ipt_apply Total

[+] attack-responses.rules 15 2 0 17

[+] backdoor.rules 62 7 1 69
[+] bad-traffic.rules 10 3 0 13

[+] bleeding-all.rules 1076 573 5 1649

[+] exploit.rules 31 43 0 74

[+] web-cgi.rules 286 62 0 348
[+] web-client.rules 7 10 0 17

[+] web-coldfusion.rules 35 0 0 35

[+] web-frontpage.rules 34 1 0 35

[+] web-iis.rules 103 11 0 114
[+] web-misc.rules 265 61 0 326

[+] web-php.rules 78 48 0 126

[+] x11.rules 2 0 0 2

2725 1761 91 4486

[+] Generated iptables rules for 2725 out of 4486 signatures: 60.74%

[+] Found 91 applicable snort rules to your current iptables policy.

[+] Logfile: /var/log/fwsnort.log
[+] Iptables script: /etc/fwsnort/fwsnort.sh

One of the first things to notice about the fwsnort output is that for
each Snort rules file, counters are printed for the number of successfully and
unsuccessfully translated rules (Success and Fail), the number of rules that
are applicable to the running iptables policy (Ipt_apply), and the total number
of Snort rules in the rules file (Total).

At the end of the output above, fwsnort prints the total number of Snort
rules that could be successfully translated (2,725 out of 4,486). The 60 percent
translation rate is obtainable on any Linux system whose kernel has been
compiled with support for the iptables string, length, tos, ttl, and ipv4options
matches.

You’ll also see printed at the end of the fwsnort output the sentence
Found 91 applicable snort rules to your current iptables policy. This message
indicates that fwsnort has parsed the iptables ruleset that is currently running
on the system in order to throw away those Snort rules that iptables would
not allow through in the first place. For example, if the iptables policy
does not allow connections to an internal HTTP server, then it is of little
use to translate Snort rules that deal with inbound HTTP connections initiated
from the external network; hence, fwsnort omits such rules from the transla-
tion process.

1 Note that any non-root user with the CAP_NET_ADMIN capability can also execute iptables
commands.

fire_03.book Page 176 Monday, August 27, 2007 3:54 PM

From Linux Firewalls
No Starch Press, Copyright © 2007 by Michael Rash

www.itbook.store/books/9781593271411

https://itbook.store/books/9781593271411

Dep loyi ng fwsnort 177

NOTE Because the policies constructed by iptables commands can be complex and tricky to
parse, fwsnort may not always correctly determine whether an arbitrary type of traffic
will be allowed through. You can use the fwsnort --no-ipt-sync command-line option
to force the translation of as many Snort rules as possible without referencing the under-
lying iptables policy.

Finally, the fwsnort output displays two file paths: /var/log/fwsnort.log
and /etc/fwsnort/fwsnort.sh.

The fwsnort.log file contains information about the translation process
and can be used to determine the reason for the unsuccessful translation of
particular Snort rules. For example, the Snort rule identified by SID 2003306
within the bleeding-all.rules file contains the Snort pcre option and is there-
fore incompatible with iptables. The incompatibility is noted in a log entry
within the fwsnort.log file:

[-] SID: 2003306 Unsupported option: "pcre" at line: 120. Skipping rule.

NOTE The fwsnort.sh script is the real “meat and potatoes” of fwsnort; it’s a Bourne shell
script generated by fwsnort that is responsible for implementing the necessary iptables
commands to construct the equivalent iptables policy. The internals of this script are
discussed in “Structure of fwsnort.sh” on page 179, and a complete fwsnort.sh script
can be found in Appendix B.

Configuration File for fwsnort

The main configuration file for fwsnort, /etc/fwsnort/fwsnort.conf, defines
networks, port numbers, paths to system binaries (such as the path to iptables),
and other key pieces of information needed for proper execution.

As with psad, the fwsnort.conf file follows a simple key/value format, and
many of the keywords and semantics are identical to those found in Snort’s
own configuration file. For example, both the HOME_NET and EXTERNAL_NET key-
words are defaulted to the wildcard value any, and lists of IP addresses and/or
networks can be enclosed within braces. (Nearly all Snort rules use some com-
bination of the HOME_NET and EXTERNAL_NET keywords.) The notion of variable
resolution is also supported; that is, HTTP_SERVERS maps to $HOME_NET, which in
turn maps to a specific network (or networks) or the wildcard value any, for
example.

You’ll find a complete example fwsnort.conf file below (and at http://
www.cipherdyne.org/LinuxFirewalls), and all fwsnort usage examples in this
book will reference this configuration file. In this case, the network protected
by the iptables firewall on which fwsnort is deployed is the Class C network
192.168.10.0/24 (see Figure 1-2), so we set HOME_NET accordingly.

[iptablesfw]# cat /etc/fwsnort/fwsnort.conf

This is the configuration file for fwsnort. There are some similarities

between this file and the configuration file for Snort.
$Id: fwsnort.conf 356 2007-03-20 01:31:28Z mbr $

fire_03.book Page 177 Monday, August 27, 2007 3:54 PM

From Linux Firewalls
No Starch Press, Copyright © 2007 by Michael Rash

www.itbook.store/books/9781593271411

https://itbook.store/books/9781593271411

178 Chap te r 10

fwsnort treats all traffic directed to / originating from the local
machine as going to / coming from the HOME_NET in Snort rule parlance.

If there is only one interface on the local system, then there will be

no rules processed via the FWSNORT_FORWARD chain because no traffic

would make it into the iptables FORWARD chain.
HOME_NET 192.168.10.0/24;

EXTERNAL_NET any;

List of servers. fwsnort supports the same variable resolution as Snort.

HTTP_SERVERS $HOME_NET;
SMTP_SERVERS $HOME_NET;

DNS_SERVERS $HOME_NET;

SQL_SERVERS $HOME_NET;

TELNET_SERVERS $HOME_NET;
AOL AIM server nets

AIM_SERVERS [64.12.24.0/24, 64.12.25.0/24, 64.12.26.14/24, 64.12.28.0/24,
64.12.29.0/24, 64.12.161.0/24, 64.12.163.0/24, 205.188.5.0/24, 205.188.9.0/24];
Configurable port numbers

SSH_PORTS 22;

HTTP_PORTS 80;

SHELLCODE_PORTS !80;
ORACLE_PORTS 1521;

Define average packet lengths and maximum frame length. This is used

for iptables length match emulation of the Snort dsize option.

� AVG_IP_HEADER_LEN 20; ### IP options are not usually used.
AVG_TCP_HEADER_LEN 40; ### Includes options

MAX_FRAME_LEN 1500;

Use the WHITELIST variable to define a list of hosts/networks that

should be completely ignored by fwsnort. For example, if you want
to whitelist the IP address 192.168.10.1 and the network 10.1.1.0/24,

you will use (note that you can also specify multiple WHITELIST

variables, one per line):

#WHITELIST 192.168.10.1, 10.1.1.0/24;
� WHITELIST NONE;

Use the BLACKLIST variable to define a list of hosts/networks

that for which fwsnort should DROP or REJECT all traffic. For

example, to DROP all traffic from the 192.168.10.0/24 network,
you can use:

BLACKLIST 192.168.10.0/24 DROP;

To have fwsnort REJECT all traffic from 192.168.10.0/24,

you would use:
BLACKLIST 192.168.10.0/24 REJECT;

BLACKLIST NONE;

Define the jump position in the built-in chains to jump to

the fwsnort chains.
� FWSNORT_INPUT_JUMP 1;

FWSNORT_OUTPUT_JUMP 1;

FWSNORT_FORWARD_JUMP 1;

iptables chains (these do not normally need to be changed)
FWSNORT_INPUT FWSNORT_INPUT;

FWSNORT_INPUT_ESTAB FWSNORT_INPUT_ESTAB;

FWSNORT_OUTPUT FWSNORT_OUTPUT;

FWSNORT_OUTPUT_ESTAB FWSNORT_OUTPUT_ESTAB;
FWSNORT_FORWARD FWSNORT_FORWARD;

FWSNORT_FORWARD_ESTAB FWSNORT_FORWARD_ESTAB;

System binaries

fire_03.book Page 178 Monday, August 27, 2007 3:54 PM

From Linux Firewalls
No Starch Press, Copyright © 2007 by Michael Rash

www.itbook.store/books/9781593271411

https://itbook.store/books/9781593271411

Dep loyi ng fwsnort 179

shCmd /bin/sh;
echoCmd /bin/echo;

tarCmd /bin/tar;

wgetCmd /usr/bin/wget;

unameCmd /usr/bin/uname;
ifconfigCmd /sbin/ifconfig;

iptablesCmd /sbin/iptables;

At � above, the fwsnort.conf file sets the average length for the IP and
TCP headers. This is necessary because the iptables length match begins at
the IP header, whereas the Snort dsize option applies only the application
layer data associated with a packet. By specifying the average header lengths,
fwsnort can approximate the dsize option to assist in the translation process.

At � we can add a whitelist and a blacklist; see “Setting Up Whitelists and
Blacklists” on page 191.

At � the position of the jump rule into the fwsnort chains within each
of the built-in chains is defined. By default the jump rule position is the very
first rule within each of these chains, but you can alter this to your liking by
changing these variables around. This is not usually necessary unless you
have an iptables policy that has inspection or filtering requirements that
must be met before fwsnort has a chance to inspect packets.

Structure of fwsnort.sh

The Bourne shell script /etc/fwsnort/fwsnort.sh generated by fwsnort is
divided into five sections. The first section is a header constructed out of
comments that includes a short blurb about the purpose of the fwsnort.sh
script, the command-line arguments given to fwsnort to generate fwsnort.sh,
and the version of fwsnort:

[iptablesfw]# cat /etc/fwsnort/fwsnort.sh

#!/bin/sh

File: /etc/fwsnort/fwsnort.sh

Purpose: This script was auto-generated by fwsnort and implements an
iptables ruleset based upon Snort rules. For more information,

see the fwsnort man page or the documentation available at

http://www.cipherdyne.org/fwsnort.

Generated with: fwsnort –no-ipt-sync

Generated on host: iptablesfw

Generated at: Sun Jul 15 23:12:43 2007

Author: Michael Rash <mbr@cipherdyne.org>

Version: 1.0 (file revision: 381)

The second section of the fwsnort.sh script defines paths to the iptables and
echo system binaries. These paths are inherited from the iptablesCmd and echoCmd
keywords in the fwsnort.conf configuration file, and fwsnort checks to be sure

fire_03.book Page 179 Monday, August 27, 2007 3:54 PM

From Linux Firewalls
No Starch Press, Copyright © 2007 by Michael Rash

www.itbook.store/books/9781593271411

https://itbook.store/books/9781593271411

180 Chap te r 10

that the paths make sense before building fwsnort.sh. However, the fwsnort.sh
script does not necessarily have to be executed on the same system where
fwsnort is installed. In fact, from a security perspective, it is better not to have
Perl or any other highly capable interpreter or compiler installed on a dedicated
firewall device that is not strictly necessary from an operations perspective.2

The configuration section allows the paths to be tweaked easily for the
eventual system on which fwsnort.sh is deployed:

ECHO=/bin/echo
IPTABLES=/sbin/iptables

The third section in fwsnort.sh is responsible for building dedicated
iptables chains for fwsnort rules. All fwsnort rules, with the exception of the
jump rules discussed below, are added to these custom chains to maintain
strict separation from any existing iptables policy.

The names given to fwsnort chains broadly describe the type of traffic
inspection that is performed within each chain. For example, the FWSNORT_INPUT
chain is for the inspection of traffic that is directed at the local system and is
therefore governed by the iptables INPUT chain. Similarly, the FWSNORT_OUTPUT
chain only applies to packets that originate from the firewall system itself
(via the OUTPUT chain), and the FWSNORT_FORWARD chain governs packets that are
destined to be forwarded through the local system (via the FORWARD chain).

TCP Connection States and fwsnort Chains

Because of the relative importance of applying Snort rules to established
TCP sessions through the use of the Snort flow: established option, fwsnort
creates special chains for such rules. The names for these chains simply append
the string _ESTAB to each of the fwsnort chains mentioned previously. Once
all of the fwsnort chains have been created, jump rules are added that use
the iptables state match to send TCP packets that are part of established sessions
to the appropriate _ESTAB chain. For example, packets in the FWSNORT_INPUT chain
are jumped to the FWSNORT_INPUT_ESTAB chain, as shown here:

############ Create fwsnort iptables chains. ############

$IPTABLES -N FWSNORT_INPUT 2> /dev/null
$IPTABLES -F FWSNORT_INPUT

$IPTABLES -N FWSNORT_INPUT_ESTAB 2> /dev/null

$IPTABLES -F FWSNORT_INPUT_ESTAB

$IPTABLES -N FWSNORT_OUTPUT 2> /dev/null
$IPTABLES -F FWSNORT_OUTPUT

$IPTABLES -N FWSNORT_OUTPUT_ESTAB 2> /dev/null

$IPTABLES -F FWSNORT_OUTPUT_ESTAB

$IPTABLES -N FWSNORT_FORWARD 2> /dev/null
$IPTABLES -F FWSNORT_FORWARD

$IPTABLES -N FWSNORT_FORWARD_ESTAB 2> /dev/null

$IPTABLES -F FWSNORT_FORWARD_ESTAB

############ Inspect ESTABLISHED tcp connections. ############

2 For more information on host security issues and hardening strategies, Bastille Linux
(http://www.bastille-linux.org) provides lots of great educational information, along with
the ability to automatically harden various Linux distributions.

fire_03.book Page 180 Monday, August 27, 2007 3:54 PM

From Linux Firewalls
No Starch Press, Copyright © 2007 by Michael Rash

www.itbook.store/books/9781593271411

https://itbook.store/books/9781593271411

Dep loyi ng fwsnort 181

$IPTABLES -A FWSNORT_INPUT -p tcp -m state --state ESTABLISHED -j
FWSNORT_INPUT_ESTAB

$IPTABLES -A FWSNORT_OUTPUT -p tcp -m state --state ESTABLISHED -j
FWSNORT_OUTPUT_ESTAB

$IPTABLES -A FWSNORT_FORWARD -p tcp -m state --state ESTABLISHED -j
FWSNORT_FORWARD_ESTAB

Signature Inspection and Log Generation

The fourth section of fwsnort.sh is where the heavyweight packet inspection
takes place. All of the rules within this section are added to one of the fwsnort
chains mentioned above. Each rule contains elements from the Snort rule
header and rule options such as source and destination IP addresses and
port numbers, and content strings, length, ttl, or tos matches, and so on.

By default, every Snort rule translated by fwsnort results in an iptables
command that uses the LOG target along with a logging prefix that is designed
to communicate signature specifics to the user. The logging prefixes built by
fwsnort contain the rule number within the fwsnort chain and the Snort sig-
nature ID value, and they indicate whether the signature is logged from an
established TCP connection.

For example, the first rule in the FWSNORT_FORWARD_ESTAB chain contains
a logging prefix that is built up from the Volume Serial Number signature
(Snort ID 1292) and looks like this: [1] SID1292 ESTAB.

By default each iptables LOG rule makes use of the comment match to
annotate the rule with the Snort sid, msg, classtype, rev, and reference fields,
and the fwsnort version number. For example, for Snort rule ID 1292, the
associated comment is:

sid:1292; msg:ATTACK-RESPONSES directory listing; classtype: bad-unknown; rev: 9;
FWS:1.0

Below is the signature section of the fwsnort.sh script. (Note that the
iptables rules are organized by the corresponding Snort rules file.)

############ attack-responses.rules ############

$ECHO "[+] Adding attack-responses rules."
alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"ATTACK-RESPONSES
directory listing"; flow:established; content:"Volume Serial Number";
classtype:bad-unknown; sid:1292; rev:9;)
$IPTABLES -A FWSNORT_FORWARD_ESTAB -s 192.168.10.0/24 -p tcp -m string --string
"Volume Serial Number" --algo bm -m comment --comment "sid:1292; msg:
ATTACK-RESPONSES directory listing; classtype: bad-unknown; rev: 9; FWS:1.0;"
-j LOG --log-ip-options --log-tcp-options --log-prefix "[1] SID1292 ESTAB "

$IPTABLES -A FWSNORT_OUTPUT_ESTAB -p tcp -m string --string "Volume Serial
Number" --algo bm -m comment --comment "sid:1291; msg: ATTACK-RESPONSES
directory listing; classtype: bad-unknown; rev: 9; FWS:1.0;" -j LOG
--log-ip-options --log-tcp-options --log-prefix "[1] SID1292 ESTAB "
alert tcp $HTTP_SERVERS $HTTP_PORTS -> $EXTERNAL_NET any (msg:"ATTACK-
RESPONSES command completed"; flow:established; content:"Command completed";
nocase; reference:bugtraq,1806; classtype:bad-unknown; sid:494; rev:10;)

fire_03.book Page 181 Monday, August 27, 2007 3:54 PM

From Linux Firewalls
No Starch Press, Copyright © 2007 by Michael Rash

www.itbook.store/books/9781593271411

https://itbook.store/books/9781593271411

182 Chap te r 10

$IPTABLES -A FWSNORT_FORWARD_ESTAB -s 192.168.10.0/24 -p tcp --sport 80 -m
string --string "Command completed" --algo bm -m comment --comment "sid:494;
msg: ATTACK-RESPONSES command completed; classtype: bad-unknown; reference:
bugtraq,1806; rev: 10; FWS:1.0;" -j LOG --log-ip-options --log-tcp-options
--log-prefix "[2] SID494 ESTAB "

$IPTABLES -A FWSNORT_OUTPUT_ESTAB -p tcp --sport 80 -m string --string "Command
completed" --algo bm -m comment --comment "sid:494; msg: ATTACK-RESPONSES
command completed; classtype: bad-unknown; reference: bugtraq,1806; rev: 10;
FWS:1.0;" -j LOG --log-ip-options --log-tcp-options --log-prefix "[2] SID494
ESTAB "

Activating the fwsnort Chains with Jump Rules

The final section in fwsnort.sh makes the whole ruleset active within the
kernel by directing iptables to send traffic through these rules. All of the
iptables commands executed by fwsnort.sh up until this point simply load
the fwsnort policy into the running kernel.

Because there are not yet any jump rules to send packets from the built-in
iptables chains into the fwsnort chains, we have utilized only kernel memory
so far; none of the rules can yet interact with packets as they flow within the
kernel. This changes with the final six commands, which first delete any
existing fwsnort jump rule3 and then make the very first rule in each of the
INPUT, OUTPUT, and FORWARD chains jump all packets to the respective fwsnort
chain. (The jump rules are the only rules added by fwsnort to any of the
built-in iptables chains.)

$IPTABLES -D FORWARD -i ! lo -j FWSNORT_FORWARD 2> /dev/null
$IPTABLES -I FORWARD 1 -i ! lo -j FWSNORT_FORWARD

$IPTABLES -D INPUT -i ! lo -j FWSNORT_INPUT 2> /dev/null

$IPTABLES -I INPUT 1 -i ! lo -j FWSNORT_INPUT

$IPTABLES -D OUTPUT -o ! lo -j FWSNORT_OUTPUT 2> /dev/null
$IPTABLES -I OUTPUT 1 -o ! lo -j FWSNORT_OUTPUT

NOTE See Appendix B for an example fwsnort.sh script that translates the web-attacks Snort
rules file into an equivalent iptables policy.

Command-Line Options for fwsnort

There are many command-line options for fwsnort that you can use to
influence its execution, and we’ll cover some of the more commonly used
ones here. (You’ll find an exhaustive treatment of all command-line argu-
ments in the fwsnort(8) man page.)

--ipt-drop This option instructs fwsnort to drop packets before they
are forwarded to their intended target, in addition to logging them.
(By default, fwsnort only logs malicious packets.) This grants fwsnort the
authority to actively respond to network attacks.

3 This makes it possible to execute the fwsnort.sh script multiple times and maintain a clean
interface with an existing iptables policy since only one fwsnort jump rule can exist for each
built-in chain. Versions of fwsnort prior to 1.0 had a bug where additional jump rules were
added if the fwsnort.sh script was executed multiple times.

fire_03.book Page 182 Monday, August 27, 2007 3:54 PM

From Linux Firewalls
No Starch Press, Copyright © 2007 by Michael Rash

www.itbook.store/books/9781593271411

https://itbook.store/books/9781593271411

Dep loyi ng fwsnort 183

--ipt-reject This option instructs fwsnort to build an iptables policy
that utilizes the REJECT target to tear down malicious TCP connections
with TCP Reset packets, and to respond against malicious UDP traffic with
an ICMP Port Unreachable message.

--snort-conf path This option instructs fwsnort to read variables such as
HOME_NET, EXTERNAL_NET, HTTP_SERVERS, and so on directly from an existing
Snort configuration file (usually located at /etc/snort/snort.conf). There
is nothing to prevent Snort and fwsnort from running on the same system.
This remains true even when Snort is running in inline mode, because
fwsnort rules are sectioned off within their own chains; packets can be
jumped to these chains before hitting a QUEUE rule within the iptables
policy.

--snort-sid sids This option allows the translation efforts of fwsnort to
be restricted to a specific Snort ID or a list of Snort IDs. This is most use-
ful when a new vulnerability is announced in a piece of software that is
protected by an iptables firewall and a new signature is released by the
Snort community to detect an attack that exploits this vulnerability. By
using fwsnort with the --snort-sid option, we can quickly deploy a new
policy to log and/or drop malicious packets that are associated with this
new attack.

--include-type type This option instructs fwsnort to translate only Snort
rules that are contained within a single rules file. For example, to translate
the rules from the backdoor.rules file, one would use --include-type
backdoor on the fwsnort command line. A comma-separated list of
types is also supported, such as --include-type ftp,mysql.

--ipt-list This option displays all active rules in the various fwsnort
chains. These include FWSNORT_INPUT, FWSNORT_INPUT_ESTAB, FWSNORT_OUTPUT,
FWSNORT_OUTPUT_ESTAB, FWSNORT_FORWARD, and FWSNORT_FORWARD_ESTAB.

--ipt-flush This option flushes all active rules in the fwsnort chains.
This is useful for quickly removing fwsnort rules without removing other
iptables rules associated with an existing policy.

--no-addresses This option forces fwsnort to not reference IP addresses
associated with any interfaces on the firewall system. This option is most
useful if fwsnort is deployed on a bridging firewall that has no IP addresses
assigned to its interfaces.

--no-ipt-sync This option instructs fwsnort to disable all compatibility
checks that are normally run against the local iptables policy. The result-
ing fwsnort policy will not skip any rules that detect traffic that the firewall
is configured to not accept in the first place.

--restrict-intf intf This option restricts fwsnort rules to the specified
interface (or interfaces). By default, fwsnort does not inspect traffic over
the loopback interface but inspects traffic on all other interfaces. To
have fwsnort inspect traffic over, say, the eth0 and eth1 interfaces only,
you would use --restrict-intf eth0,eth1.

fire_03.book Page 183 Monday, August 27, 2007 3:54 PM

From Linux Firewalls
No Starch Press, Copyright © 2007 by Michael Rash

www.itbook.store/books/9781593271411

https://itbook.store/books/9781593271411

184 Chap te r 10

Observing fwsnort in Action

Illustrating fwsnort operations with specific example attacks is a practical way to
see how fwsnort functions and how to put it to good use. In this section we’ll
cover a set of attacks derived from the Snort ruleset, and we’ll see how fwsnort
detects and (optionally) reacts to these attacks. By default, a policy built by
fwsnort behaves like an intrusion detection system in the sense that attacks are
only logged via the LOG target; no attempt is made to drop packets, reset TCP
connections, or generate ICMP error code packets. However, we can quickly
turn this passive stance into an active one by using the --ipt-reject or --ipt-drop
command-line arguments to fwsnort, as we’ll see in the following examples.

Detecting the Trin00 DDoS Tool

Trin00 is a classic tool for mounting a Distributed Denial of Service (DDoS)
attack by sending large quantities of UDP packets against a target in a simul-
taneous flood from multiple attack nodes. Trin00 implements its own methods
for coordinating the efforts of the attack nodes, and the Snort signature set
devotes several signatures to detecting Trin00 administrative communica-
tions. For example, Snort ID 237 looks for the string l44adsl contained within
a UDP packet destined for port 27444 on the home network. This string is
the default password that a Trin00 control node uses to authenticate to an
endpoint node in order to instruct it to perform particular operations, and is
included within Snort rule ID 237:

alert udp $EXTERNAL_NET any -> $HOME_NET 27444 (msg:"DDOS Trin00 Master to
Daemon default password attempt"; content:"l44adsl"; reference:arachnids,197;
classtype:attempted-dos; sid:237; rev:2;)

Using fwsnort, we recast the Snort rule into equivalent iptables rules:

[iptablesfw]# fwsnort --snort-sid 237

[+] Parsing Snort rules files...

[+] Found sid: 237 in ddos.rules
 Successful translation.

Here is the resulting iptables rule in the FWSNORT_FORWARD chain.

$IPTABLES -A FWSNORT_FORWARD -d 192.168.10.0/24 -p udp --dport 27444 -m string
--string "l44adsl" --algo bm -m comment --comment "sid:237; msg: DDOS Trin00
Master to Daemon default password attempt; classtype: attempted-dos; reference:
arachnids,197; rev: 2; FWS:1.0;" -j LOG --log-ip-options --log-prefix "[1]
SID237 "

Because this is a UDP signature, there is no notion of an established con-
nection, and hence the signature belongs in the FWSNORT_FORWARD chain instead
of the FWSNORT_FORWARD_ESTAB chain. In addition, even though the default
policy in this book (see “Default iptables Policy” on page 20) does not accept

fire_03.book Page 184 Monday, August 27, 2007 3:54 PM

From Linux Firewalls
No Starch Press, Copyright © 2007 by Michael Rash

www.itbook.store/books/9781593271411

https://itbook.store/books/9781593271411

Dep loyi ng fwsnort 185

UDP packets destined for port 27444, fwsnort can still detect packets that
match the Trin00 signature because a connection does not have to be estab-
lished before data can be sent (as in the case of TCP signatures). That is, we
don’t need an ACCEPT rule before data can be sent over the UDP socket from
the client. This is a fundamental difference between TCP and UDP sockets.

Now, from the ext_scanner system, we execute the following command
to see if the signature triggers:

[ext_scanner]$ echo "l44adsl" | nc -u 71.157.X.X 27444

The iptables log faithfully reports the signature match:

[iptablesfw]# grep SID237 /var/log/messages | tail -n 1
Jul 19 22:18:24 iptablesfw kernel: [1] SID237 IN=eth0 OUT=
MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=36 TOS=0x00 PREC=0x00 TTL=64 ID=42386 DF PROTO=UDP SPT=54494 DPT=27444
LEN=16

In bold above is the iptables log prefix [1] SID237 from the ext_scanner
system—indeed, fwsnort has detected the (simulated) attack.

Detecting Linux Shellcode Traffic

Because exploit developers sometimes share some of the same shellcode, the
shellcode.rules file in the Snort signature set looks for this common base of
bytes in network traffic. The content field in the following signature shows a
smattering of common shellcode used against Linux systems:

alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any (msg:"SHELLCODE Linux
shellcode"; content:"|90 90 90 E8 C0 FF FF FF|/bin/sh";
reference:arachnids,343; classtype:shellcode-detect; sid:652; rev:9;)

Translating this signature with fwsnort --snort-sid 652 builds the iptables
command below. While the original Snort rule applies to all IP traffic, the
destination port requirement forces iptables to match only on TCP or UDP
packets.

Here is the translated Snort rule applied to TCP traffic:

$IPTABLES -A FWSNORT_FORWARD -d 192.168.10.0/24 -p tcp --sport ! 80 -m string
--hex-string "|90 90 90 E8 C0 FF FF FF|/bin/sh" --algo bm -m comment --comment
"sid:652; msg: SHELLCODE Linux shellcode; classtype: shellcode-detect;
reference: arachnids,343; rev: 9; FWS:1.0;" -j LOG --log-ip-options
--log-tcp-options --log-prefix "[1] SID652 "

To trigger the signature match within iptables, first execute the fwsnort.sh
script on the iptablesfw system, and then execute the Perl command below
from the ext_scanner system. As required by the signature, the source port of

fire_03.book Page 185 Monday, August 27, 2007 3:54 PM

From Linux Firewalls
No Starch Press, Copyright © 2007 by Michael Rash

www.itbook.store/books/9781593271411

https://itbook.store/books/9781593271411

186 Chap te r 10

the TCP session built by Netcat is not port 80, since it chooses a random high
port above 1024 according to how the local TCP stack instantiates a client
TCP socket:

[iptablesfw]# /etc/fwsnort/fwsnort.sh

[+] Adding shellcode rules.

 Rules added: 2

[ext_scanner]$ perl -e 'print "\x90\x90\x90\xE8\xC0\xFF\xFF\xFF/bin/sh"' | nc
71.157.X.X 80

The simulated attack is caught by iptables, and this log message appears:

[iptablesfw]# grep SID652 /var/log/messages | tail -n 1
Jul 19 23:48:18 iptablesfw kernel: [1] SID652 IN=eth0 OUT=eth1 SRC=144.202.X.X
DST=192.168.10.3 LEN=67 TOS=0x00 PREC=0x00 TTL=63 ID=570 DF PROTO=TCP SPT=54629
DPT=80 WINDOW=92 RES=0x00 ACK PSH URGP=0 OPT (0101080A2B3139EFAD325718)

This shows that fwsnort, with guidance from the Snort signature set,
is effective at detecting the simulated attack.

Detecting and Reacting to the Dumador Trojan

In recent years, malware authors have elevated the stakes in computer
security. With a rich target environment provided primarily by unpatched
Windows systems with broadband connectivity to the Internet, the damaging
effects of malware designed specifically to gather financial and other personal
data can be enormous.

The Dumador trojan is malware that contains both a keylogger
(for collecting and transmitting sensitive information typed on a keyboard
back to an attacker), and a backdoor server that listens on ports 9125 and
64972. The Bleeding Snort ruleset contains a signature designed to detect
when the Dumador trojan attempts to send information back to an attacker
via a web session, as shown here:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"BLEEDING-EDGE
TROJAN Dumador Reporting User Activity"; flow:established,to_server;
uricontent:".php?p="; nocase; uricontent:"?machineid="; nocase;
uricontent:"&connection="; nocase; uricontent:"&iplan="; nocase;
classtype:trojan-activity; reference:url,www.norman.com/Virus/
Virus_descriptions/24279/; sid:2002763; rev:2;)

This signature is particularly interesting in the context of fwsnort
because it requires multiple application layer content matches. In order
to translate the signature, we execute the following:

[iptablesfw]# fwsnort --snort-sid 2002763

[+] Parsing Snort rules files...

[+] Found sid: 2002763 in bleeding-all.rules

 Successful translation.

fire_03.book Page 186 Monday, August 27, 2007 3:54 PM

From Linux Firewalls
No Starch Press, Copyright © 2007 by Michael Rash

www.itbook.store/books/9781593271411

https://itbook.store/books/9781593271411

Dep loyi ng fwsnort 187

This results in the lengthy iptables command you see below, which
searches for each of the strings required by the original Bleeding Snort rule
by using the iptables string match four times (as shown in bold):

$IPTABLES -A FWSNORT_FORWARD_ESTAB -s 192.168.10.0/24 -p tcp --dport 80 -m
string --string ".php?p=" --algo bm -m string --string "?machineid=" --algo
bm -m string --string "&connection=" --algo bm -m string --string "&iplan="
--algo bm -m comment --comment "sid:2002763; msg: BLEEDING-EDGE TROJAN
Dumador Reporting User Activity; classtype: trojan-activity; reference:
url,www.norman.com/Virus/Virus_descriptions/24279/; rev: 2; FWS:1.0;" -j LOG
--log-ip-options --log-tcp-options --log-prefix "[1] SID2002763 ESTAB "

Now we make the signature active in the Linux kernel by executing the
fwsnort.sh script:

[iptablesfw]# /etc/fwsnort/fwsnort.sh

[+] Adding bleeding-all rules.

 Rules added: 2

With the signature active, it is time to test it, and for this we refer to the
network diagram in Figure 1-2. On the system labeled lan_client, we execute
the following Perl command (the usage of the A character is optional and just
provides filler data between the separate match criteria) and pipe the output
through Netcat to direct it to the webserver labeled ext_web:

[lan_client]$ perl -e 'print
".php?p=AAAAA?machineid=AAAAA&connection=AAAAA&iplan="' | nc 12.34.X.X 80

On the firewall system, iptables catches the activity and outputs this
succinct log message:

[iptablesfw]# grep SID2002763 /var/log/messages | tail -n 1
Jul 20 01:12:53 iptablesfw kernel: [1] SID2002763 ESTAB IN=eth1 OUT=eth0
SRC=192.168.10.3 DST=12.34.X.X LEN=104 TOS=0x00 PREC=0x00 TTL=63 ID=17247 DF
PROTO=TCP SPT=55040 DPT=80 WINDOW=1460 RES=0x00 ACK PSH URGP=0 OPT
(0101080AAD7FC90A2B44969B)

With a rule in place to detect when the Dumador trojan attempts to call
home with a juicy payload of information, fwsnort can refuse to play nicely by
forcing Dumador’s TCP session to close by using the --ipt-reject command-
line argument:

[iptablesfw]# fwsnort --snort-sid 2002763 --ipt-reject

[+] Parsing Snort rules files...

[+] Found sid: 2002763 in bleeding-all.rules
 Successful translation.

[iptablesfw]# /etc/fwsnort.fwsnort.sh

[+] Adding bleeding-all rules.

 Rules added: 4

fire_03.book Page 187 Monday, August 27, 2007 3:54 PM

From Linux Firewalls
No Starch Press, Copyright © 2007 by Michael Rash

www.itbook.store/books/9781593271411

https://itbook.store/books/9781593271411

188 Chap te r 10

Now, rerunning our simulation results in a different iptables log message.
(The logging prefix [1] REJ SID2002763 indicates that fwsnort took action
against the web session by generating a RST.)

[iptablesfw]# grep SID2002763 /var/log/messages | tail -n 1
Jul 20 01:16:41 iptablesfw kernel: [1] REJ SID2002763 ESTAB IN=eth1 OUT=eth0
SRC=192.168.10.3 DST=12.34.X.X LEN=104 TOS=0x00 PREC=0x00 TTL=63 ID=17507 DF
PROTO=TCP SPT=39786 DPT=80 WINDOW=1460 RES=0x00 ACK PSH URGP=0 OPT
(0101080AAD8346092B4575DD)

In this particular case, if you are running a network of Windows systems
as a part of a financial institution (for example), it might make good sense to
take punitive action like the above against network traffic that matches the
Dumador signature. The risk of tearing down legitimate connections might
be less than the risk of losing important financial data.

Detecting and Reacting to a DNS Cache-Poisoning Attack

In February 2005, it was discovered that the default configuration of Win-
dows NT 4 and 2000 DNS servers and some Symantec Gateway products left
them open to a DNS cache-poisoning attack.4 This vulnerability was exploited
on the Internet by an attack in which a set of rogue DNS servers was used to
advertise false DNS records to vulnerable downstream DNS servers so that
legitimate user requests for some domains could be directed to IP addresses
of the attacker’s choosing.

To make an arbitrary DNS server “downstream” from one of the rogue
DNS servers, the attacker just needed to get the targeted server to issue a DNS
request to the rogue server. This could be accomplished in a variety of ways,
such as sending an email to a bogus user, thus eliciting a non-delivery report
(NDR) to the source domain—this requires a mail server to be running on
the targeted network, or by issuing a request to the malicious server from a
previously installed piece of spyware.

In the bleeding-all.rules file provided by http://www.bleedingsnort.com,
Snort ID 2001842 detects when a system that is part of the internal network
issues a DNS request for one of the malicious domains that took part in the
DNS cache-poisoning attack, 7sir7.com. We can have fwsnort alert us to this
fact by translating the rule into an iptables policy and executing the result-
ing fwsnort.sh script:

[iptablesfw]# fwsnort --snort-sids 2001842

[+] Parsing Snort rules files...
[+] Found sid: 2001842 in bleeding-all.rules

 Successful translation.

[iptablesfw]# /etc/fwsnort/fwsnort.sh

[+] Adding bleeding-all rules.
 Rules added: 2

4 See http://isc.sans.org/presentations/dnspoisoning.php for a comprehensive write-up of the
DNS cache-poisoning attack and the strategy used by the attackers.

fire_03.book Page 188 Monday, August 27, 2007 3:54 PM

From Linux Firewalls
No Starch Press, Copyright © 2007 by Michael Rash

www.itbook.store/books/9781593271411

https://itbook.store/books/9781593271411

Dep loyi ng fwsnort 189

The original Snort rule identified by SID 2001842 and its iptables equiv-
alent appear in the FWSNORT_FORWARD chain to which packets are jumped from
the built-in FORWARD chain:

alert udp $HOME_NET any -> any 53 (msg: "BLEEDING-EDGE Possible DNS Lookup for
DNS Poisoning Domain 7sir7.com"; content:"|05|7sir7|03|com"; nocase;
reference:url,isc.sans.org/diary.php?date=2005-04-07; classtype: misc-
activity; sid:2001842; rev:3;)

$IPTABLES -A FWSNORT_FORWARD -p udp --dport 53 -m string --hex-string " 05|
7sir7|03|com" --algo bm -m comment --comment "sid:2001842; msg:BLEEDING-EDGE
Possible DNS Lookup for DNS Poisoning Domain 7sir7.com; classtype:misc-
activity; reference:url,isc.sans.org/diary.php?date=2005-04-07; rev:3;
FWS:1.0;" -j LOG --log-ip-options --log-prefix "[1] SID2001842 "

In order to show that the fwsnort rule actually works, we simulate the
traffic needed to cause a signature match from an internal host. Again, we
use the network diagram in Figure 1-2 to help illustrate this example.

The dnsserver host simulates a request as if it does not yet have an “A”
record mapping www.7sir7.com to an IP address, and so it must issue a
request that will eventually query the authoritative (malicious) DNS server
for the 7sir7.com domain. We don’t need (or want!) an internal system that
is actually vulnerable to the cache-poisoning attack in order to test whether
our fwsnort ruleset works; it is sufficient to manufacture a UDP packet that
contains the consecutive bytes |05|7sir7|03|com from any system on the
internal network to any external IP address with a destination port of 53.

We can easily craft this packet by using the single Perl command shown
below on the dnsserver system and piping the output to Netcat to send it over
the network to an IP address that represents a malicious DNS server:

[dnsserver]$ perl -e 'print "\x057sir7\x03com"' | nc -u 234.50.X.X 53

On the iptablesfw firewall system, we see that, indeed, iptables has
detected the suspicious packet and has created the following log message
in /var/log/messages (note the [1] SID2001842 logging prefix):

[iptablesfw]# grep SID2001842 /var/log/messages | tail -n 1
Jul 7 22:31:43 iptablesfw kernel: [1] SID2001842 IN=eth1 OUT=eth0
SRC=192.168.10.4 DST=234.50.X.X LEN=38 TOS=0x00 PREC=0x00 TTL=62 ID=36070 DF
PROTO=UDP SPT=16408 DPT=53 LEN=18

Because we did not supply either the --ipt-drop or --ipt-reject command-
line arguments to fwsnort when we translated the cache-poisoning signature,
iptables made no effort to prevent the suspicious packet from exiting the
network. We can confirm this by running a packet trace on the external
interface of the firewall and executing the same Perl command above:

[iptablesfw]# tcpdump -i eth0 -l -nn port 53 and host 234.50.X.X -s 0 -X
tcpdump: verbose output suppressed, use -vv for full protocol decode

listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes

22:41:22.683862 IP 71.157.X.X.16414 > 234.50.X.X.53: [|domain]

fire_03.book Page 189 Monday, August 27, 2007 3:54 PM

From Linux Firewalls
No Starch Press, Copyright © 2007 by Michael Rash

www.itbook.store/books/9781593271411

https://itbook.store/books/9781593271411

190 Chap te r 10

 0x0000: 4500 0026 64fc 4000 3e11 fce1 0000 0000 E..&d.@.>.......
 0x0010: 0000 0000 401e 0035 0012 86e50537 7369 D0..@..5.....7si

 0x0020: 7237 0363 6f6d r7.com \

In the tcpdump output shown in bold above are the hex codes that show
the exact application layer data associated with the cache-poisoning signature.
This proves the packet is forwarded through the iptables firewall.

But fwsnort does not need to remain complacent and just log the DNS
cache-poisoning attack above. In this example, we instruct it to drop the DNS
request to the cache-poisoning domain, redeploy the resulting iptables policy,
simulate the request from the dnsserver system once again, and examine the
iptables log:

[iptablesfw]# fwsnort --snort-sids 2001842 --ipt-drop

[+] Parsing Snort rules files...

[+] Found sid: 2001842 in bleeding-all.rules

 Successful translation.

[iptablesfw]# /etc/fwsnort/fwsnort.sh

[+] Adding bleeding-all rules.

 Rules added: 2

[dnsserver]$ perl -e 'print "\x057sir7\x03com"' | nc -u 234.50.X.X 53
[iptablesfw]# grep SID2001842 /var/log/messages |tail -n 1

Jul 7 22:33:42 fw kernel: [1] DRP SID2001842 IN=eth1 OUT=eth0 SRC=192.168.10.4
DST=234.50.X.X LEN=38 TOS=0x00 PREC=0x00 TTL=62 ID=36070 DF PROTO=UDP SPT=16408
DPT=53 LEN=18

This time, the logging prefix has changed. Instead of just

[1] SID2001842

we now have

[1] DRP SID2001842

The DRP string indicates that iptables has dropped the DNS request in
addition to logging it. This is confirmed by once again running a packet
trace on the external firewall interface and seeing that the request never
makes it through.

NOTE Instead of DROP and REJECT, fwsnort uses DRP and REJ because there is a 29-character
limit imposed by the iptables LOG match for logging prefixes. You’ll find additional
information about what is going on behind the scenes with the --ipt-drop and
--ipt-reject options in Chapter 11.

fire_03.book Page 190 Monday, August 27, 2007 3:54 PM

From Linux Firewalls
No Starch Press, Copyright © 2007 by Michael Rash

www.itbook.store/books/9781593271411

https://itbook.store/books/9781593271411

Dep loyi ng fwsnort 191

Setting Up Whitelists and Blacklists

Any software that can block network communications based on application
layer data should also be able to exclude certain networks or IP addresses
from any blocking actions based on a whitelist. At the same time, it should be
able to force all packets to or from certain networks or IP addresses to be
dropped according to a blacklist.

Whitelists and blacklists are supported by fwsnort with the WHITELIST and
BLACKLIST variables in the /etc/fwsnort/fwsnort.conf file. For example, to
ensure that fwsnort never takes action against communications that originate
from or are destined for the webserver (IP address 192.168.10.3 in Figure 1-2),
and to DROP all packets to or from the IP address 192.168.10.200,5 include the
following lines in fwsnort.conf:

WHITELIST 192.168.10.3;

BLACKLIST 192.168.10.200;

When you use fwsnort to build the fwsnort.sh script, two new sections
are added:

############ Add IP/network WHITELIST rules ############

$IPTABLES -A FWSNORT_FORWARD -s 192.168.10.3 -j RETURN

$IPTABLES -A FWSNORT_FORWARD -d 192.168.10.3 -j RETURN

$IPTABLES -A FWSNORT_INPUT -s 192.168.10.3 -j RETURN

$IPTABLES -A FWSNORT_OUTPUT -d 192.168.10.3 -j RETURN

############ Add IP/network BLACKLIST rules ############

$IPTABLES -A FWSNORT_FORWARD -s 192.168.10.200 -j DROP

$IPTABLES -A FWSNORT_FORWARD -d 192.168.10.200 -j DROP

$IPTABLES -A FWSNORT_INPUT -s 192.168.10.200 -j DROP

$IPTABLES -A FWSNORT_OUTPUT -d 192.168.10.200 -j DROP

The use of the RETURN target from each of the fwsnort chains in the
whitelist short-circuits the signature comparison process as early as possible
in order to minimize CPU resources that are devoted to heavyweight packet
inspection; these rules are added to the fwsnort chains before the signature
rules are added. Similarly, the DROP target for the blacklist rules drops match-
ing packets on the floor before any additional processing is performed.

A summary of packet flow through the built-in FORWARD chain and fwsnort
chains appears in Figure 10-1.

5 This IP address is on the internal network, but sometimes certain systems function as dedicated
resources for internal networks and should never communicate with networks outside the firewall.
In this case, blacklist rules can enforce zero communications with external networks. Another
scenario where blacklist rules would make sense is if the internal system has been compromised
and its communications must therefore be severely curtailed until it can be cleaned.

fire_03.book Page 191 Monday, August 27, 2007 3:54 PM

From Linux Firewalls
No Starch Press, Copyright © 2007 by Michael Rash

www.itbook.store/books/9781593271411

https://itbook.store/books/9781593271411

192 Chap te r 10

o

Figure 10-1: The path through the FORWARD chain and the fwsnort chains

Concluding Thoughts

The Snort community has lit the path toward an effective language for
detecting network attacks, and so it is logical for fwsnort to use the Snort
signature set as its source of attack descriptions. But, iptables is a firewall, and
firewalls are all about control. Consider the scenario where a vulnerability is
found within a piece of mission-critical server software that you are running
on a Linux system. Until an outage window can be scheduled for this server
to be patched, the system is vulnerable to attack. By leveraging the power of
the Snort community, once a signature is developed and released, fwsnort
can tell your Linux kernel how to discard packets that appear to exploit the
vulnerability before they can do any real harm.

Although fwsnort can build iptables rulesets that discard packets, such a
response does not dynamically implement persistent blocking rules against
malicious IP addresses—a userland process is needed for this. We’ll see in
Chapter 11 that fwsnort combined with psad can build time-out–based
blocking rules for application layer attacks.

Incoming Packets (Jumped Immediately
to the FWSNORT_FORWARD Chain

from the FORWARD Chain)

Outgoing
Packets

Whitelist, Non-ESTABLISHED, or
Completed fwsnort Ruleset Inspection

DROP

Blacklist Packets as Early as Possible

FWSNORT_FORWARD_ESTAB

(State Match ESTABLISHED)

FWSNORT_FORWARD

FORWARD

fire_03.book Page 192 Monday, August 27, 2007 3:54 PM

From Linux Firewalls
No Starch Press, Copyright © 2007 by Michael Rash

www.itbook.store/books/9781593271411

https://itbook.store/books/9781593271411

