
4
W O R K I N G W I T H F O R M S

Forms are how your users talk to your
scripts. To get the most out of PHP, you

must master forms. The first thing you need
to understand is that although PHP makes it easy

to access form data, you must be careful of how you
work with the data.

Security Measures: Forms Are Not Trustworthy

A common mistake that novices make is to trust the data provided by an HTML
form. If you have a drop-down menu that only allows the user to enter one
of three values, you must still check those values. As mentioned in Chapter 3,
you also cannot rely on JavaScript to stop people from sending whatever they
like to your server.

Your site’s users can write their own form in HTML to use against your
server; users can also bypass the browser entirely and use automatic tools to
interact with web scripts. You should assume that people will mess around

wcphp_02.book Page 45 Wednesday, January 16, 2008 5:21 PM

www.itbook.store/books/9781593271732

https://itbook.store/books/9781593271732

46 Chapter 4

with parameters when you put a script on the Web, because they might
be trying to discover an easier way to use your site (though they could be
attempting something altogether less beneficial).

To ensure that your server is safe, you must verify all data that your
scripts receive.

Verification Strategies

There are two approaches to checking form data: blacklisting and whitelisting.
Blacklisting is the process of trying to filter out all bad data by assuming

that form submissions are valid and then explicitly seeking out bad data. In
general, this technique is ineffective and inefficient. For example, let’s say
that you’re trying to eliminate all “bad” characters from a string, such as
quotes. You might search for and replace quotation marks, but the problem
is that there will always be bad characters you didn’t think of. In general,
blacklisting assumes that most of the data you receive is friendly.

A better assumption to make about form data you’re receiving is that it’s
inherently malicious; thus, you should filter your data in order to accept only
valid data submissions. This technique is called whitelisting. For example, if a
string should consist of only alphanumeric characters, then you can check it
against a regular expression that matches only an entire string of A-Za-z0-9.
Whitelisting may also include forcing data to a known range of values or
changing the type of a value. Here is an overview of a few specific tactics:

� If the value should be a number, use the is_numeric() function to verify
the value. You can force a value to an integer using the intval() function.
If the value should be an array, use is_array().

� If the value should be a string, use is_string(). To force it, use strval().

� If the value should be null, use is_null().

� If the value should be defined, use isset().

l

W H I T E L I S T I N G I N T E G E R S

Here’s a typical example of how you might whitelist for a numeric value. If the data
is not numeric, then you use a default value of zero (of course, this assumes that
zero is an acceptable value):

if (! is_numeric($data)) {
 // Use a default of 0.
 $data = 0;
}

In the case of integers, there is an alternative if you know that all integer values
are safe. Using $data = intval($data); forces $data to its integral value. This
technique is called typecasting.

wcphp_02.book Page 46 Wednesday, January 16, 2008 5:21 PM

www.itbook.store/books/9781593271732

https://itbook.store/books/9781593271732

Working w ith Forms 47

Using $_POST, $_GET, $_REQUEST, and $_FILES to Access
Form Data

In Chapter 2, we showed you how to turn off the register_globals setting
that automatically sets global variables based on form data.

To shut down this dangerous setting, refer to “#14: Turning Off
Registered Global Variables” on page 25. How do you use $_POST, $_FILES,
and $_GET to retrieve form data? Read on.

#25: Fetching Form Variables Consistently and Safely
You should pull form data from predefined server variables. All data passed on to
your web page via a posted form is automatically stored in a large array called
$_POST, and all GET data is stored in a large array called $_GET. File upload
information is stored in a special array called $_FILES (see “#54: Uploading
Images to a Directory” on page 97 for more information on files). In addition,
there is a combined variable called $_REQUEST.

To access the username field from a POST method form, use
$_POST['username']. Use $_GET['username'] if the username is in the URL.
If you don’t care where the value came from, use $_REQUEST['username'].

<?php

$post_value = $_POST['post_value'];
$get_value = $_GET['get_value'];
$some_variable = $_REQUEST['some_value'];

?>

$_REQUEST is a union of the $_GET, $_POST, and $_COOKIE arrays. If you have
two or more values of the same parameter name, be careful of which one PHP
uses. The default order is cookie, POST, then GET.

There has been some debate on how safe $_REQUEST is, but there shouldn’t
be. Because all of its sources come from the outside world (the user’s browser),
you need to verify everything in this array that you plan to use, just as you
would with the other predefined arrays. The only problems you might have
are confusing bugs that might pop up as a result of cookies being included.

#26: Trimming Excess Whitespace
Excess whitespace is a constant problem when working with form data. The
trim() function is usually the first tool a programmer turns to, because it
removes any excess spaces from the beginning or end of a string. For example,
“ Wicked Cool PHP ” becomes “Wicked Cool PHP.” In fact, it’s so
handy that you may find yourself using it on almost every available piece
of user-inputted, non-array data:

$user_input = trim($user_input);

wcphp_02.book Page 47 Wednesday, January 16, 2008 5:21 PM

www.itbook.store/books/9781593271732

https://itbook.store/books/9781593271732

48 Chapter 4

But sometimes you have excessive whitespace inside a string—when
someone may be cutting and copying information from an email, for instance.
In that case, you can replace multiple spaces and other whitespace with a
single space by using the preg_replace() function. The reg stands for regular
expression, a powerful form of pattern matching that you will see several times
in this chapter.

<?php

function remove_whitespace($string) {

 $string = preg_replace('/\s+/', ' ', $string);

 $string = trim($string);
 return $string;

}

?>

You’ll find many uses for this script outside of form verification. It’s great
for cleaning up data that comes from other external sources.

#27: Importing Form Variables into an Array

One of the handiest tricks you can use in PHP is not actually a PHP trick
but an HTML trick. When a user fills out a form, you’ll frequently check
the values of several checkboxes. For example, let’s say you’re taking a
survey to see what sorts of movies your site’s visitors like, and you’d like to
automatically insert those values into a database called customer_preferences.
The hard way to do that is to give each checkbox a separate name on the
HTML form, as shown here:

<p>What movies do you like?</p>

<input type="checkbox" name="action" value="yes"> Action

<input type="checkbox" name="drama" value="yes"> Drama

<input type="checkbox" name="comedy" value="yes"> Comedy
<input type="checkbox" name="romance" value="yes"> Romance

Unfortunately, when you process the form on the next page, you’ll need
a series of if/then loops to check the data—one loop to check the value of
$action, one to check the value of $drama, and so forth. Adding a new checkbox
to the HTML form results in yet another if/then loop to the processing page.

A great way to simplify this procedure is to store all of the checkbox values
in a single array by adding [] after the name, like this (see Figure 4-1):

<form action="process.php" method="post">
<p>What is your name?</p>

<p><input type="text" name="customer_name"></p>

<p>What movies do you like?</p>
<p><input type="checkbox" name="movie_type[]" value="action"> Action

<input type="checkbox" name="movie_type[]" value="drama"> Drama

wcphp04_02.fm Page 48 Wednesday, July 23, 2008 1:24 PM

www.itbook.store/books/9781593271732

https://itbook.store/books/9781593271732

Working w ith Forms 49

<input type="checkbox" name="movie_type[]" value="comedy"> Comedy
<input type="checkbox" name="movie_type[]" value="romance"> Romance</p>

<input type="submit">

</form>

Figure 4-1: A form with an array of checkboxes

When PHP gets the data from a form like this, it stores the checked values
in a single array. You can loop through the array this way:

<?php
$movie_type = $_POST["movie_type"];

$customer_name = strval($_POST["customer_name"]);

if (is_array($movie_type)) {
 foreach ($movie_type as $key => $value) {

 print "$customer_name likes $value movies.
";

 }

}

?>

Not only does this technique work for checkboxes, but it’s extremely
handy for processing arbitrary numbers of rows. For example, let’s say we have
a shopping menu where we want to show all the items in a given category.
Although we may not know how many items will be in a category, the customer
should be able to enter a quantity into a text box for all items he wants to
buy and add all of the items with a single click.

Let’s access product name and ID data in the product_info MySQL table
described in the appendix to build the form as follows:

<?php

/* Insert code for connecting to $db here. */

$category = "shoes";
/* Retrieve products from the database. */

$sql = "SELECT product_name, product_id

 FROM product_info

 WHERE category = '$category'";

$result = @mysql_query($sql, $db) or die;

wcphp04_02.fm Page 49 Wednesday, July 23, 2008 1:24 PM

www.itbook.store/books/9781593271732

https://itbook.store/books/9781593271732

50 Chapter 4

/* Initialize variables. */
$order_form = ""; /* Will contain product form data */

$i = 1;

print '<form action="addtocart.php" method="post">';

while($row = mysql_fetch_array($result)) {

 // Loop through the results from the MySQL query.

 $product_name = stripslashes($row['product_name']);
 $product_id = $row['product_id'];

 // Add the row to the order form.

 print "<input type=\"hidden\" name=\"product_id[$i]\" value=\"$product_id\
">";

 print "<input type=\"text\" name=\"quantity[$i]\"

 size=\"2\" value=\"0\"> $product_name
";

 $i++;

}

print '<input type="submit" name="add" value="Add to Cart"></form>';

?>

To process the form, you need to examine the two arrays passed to the
processing script—one array containing all of the product IDs ($product_id)
and another containing the corresponding values from the quantity text boxes
($quantity). It doesn’t matter how many items are displayed on the page;
$product_id[123] contains the product ID for the 123rd item displayed and
$quantity[123] holds the number the customer entered into the corresponding
text box.

The processing script addtocart.php is as follows:

<?php

$product_id = $_POST["product_id"];

$quantity = $_POST["quantity"];

if (is_array($quantity)) {
 foreach ($quantity as $key => $item_qty) {

 $item_qty = intval($item_qty);

 if ($item_qty > 0) {

 $id = $product_id[$key];
 print "You added $item_qty of Product ID $id.
";

 }

 }

}

?>

As you can see, this script depends wholly on using the index from the
$quantity array ($key) for the $product_id array.

wcphp_02.book Page 50 Wednesday, January 16, 2008 5:21 PM

www.itbook.store/books/9781593271732

https://itbook.store/books/9781593271732

Working w ith Forms 51

#28: Making Sure a Response Is One of a Set of Given Values
As I told you earlier, you can never assume that the data passed on by a form is
safe. Let’s look at this simple form item:

<SELECT NAME="card_type">
<OPTION value="visa">Visa</OPTION>
<OPTION value="amex">American Express</OPTION>
<OPTION value="mastercard">MasterCard</OPTION>
</SELECT>

How do you ensure that the data you’re looking at is really Visa, American
Express, or MasterCard? Simple: You store the data in array keys and then look
at the array to make sure that there’s an exact match. Here’s an example:

<?php

$credit_cards = array(
 "amex" => true,
 "visa" => true,
 "mastercard" => true,
);
$card_type = $_POST["card_type"];
if ($credit_cards[$card_type]) {
 print "$card_type is a valid credit card.";
} else {
 print "$card_type is not a valid credit card.";
}

Hacking the Script
One advantage of this method of data storage is that you can temporarily
disable an item by changing its value to false. You can also alter the script
slightly to provide both verbose values and data values. For example, you may
store American Express cards in your database as amex, but when the name of
the card is displayed on the screen you want it to show up as American Express.

In that case, you can use a map to remember what’s what by storing the
database value as the key in the array and the display name as the value. The
following example demonstrates that technique.

<?php
$credit_cards = array(
 "amex" => "American Express",
 "visa" => "Visa",
 "mastercard" => "MasterCard",
);
$card_type = $_POST["card_type"];
if (count($credit_cards[$credit_card_type]) > 0) {
 print "Your payment type: $credit_cards[$card_type].";
} else {
 print "Invalid card type.";
}

wcphp_02.book Page 51 Wednesday, January 16, 2008 5:21 PM

www.itbook.store/books/9781593271732

https://itbook.store/books/9781593271732

52 Chapter 4

NOTE The previous example is extremely useful information to store in a central configura-
tion file.

#29: Using Multiple Submit Buttons

Occasionally you want a form that does two separate things depending
on which button a user clicks—one button updates a post while the other
button deletes it. You can put two forms on one page that will send the user
to two separate pages, but then you have to worry about inserting redundant
information into both forms, not to mention that this would be unbearable
to the user.

In HTML, buttons also have values, and you can read those values.
Construct your form as follows:

<form action="process.php" method="post">

<input name="postid" type="hidden" value="1234">

<input name="action" type="submit" value="Update">
<input name="action" type="submit" value="Delete">

</form>

Now, in process.php, access $_POST['action'] to get the button the user
clicked.

#30: Validating a Credit Card

Here’s a brief overview of how online credit card transactions work. First,
you need to find a merchant solution (an online provider, such as Authorize.net
or Secpay.com) that provides you with a merchant account. This account is like
a bank account, except that it allows you to process charges for credit card
transactions. The merchant provider typically charges a per-transaction fee
for each credit card action.

If you have a physical store that accepts credit cards, you almost certainly
have a merchant solution. However, not all merchant solutions offer online
transactions. The ones that do offer online transactions give you access to a
payment gateway, a secure server for processing credit card charges. Usually,
the transactions occur via an XML datastream. You can use cURL to exchange
XML with the payment gateway (see Chapter 11 for more details).

However, you can do some preliminary form validation work before
talking to the payment gateway to save on transactions and transaction fees
and possibly speed things for the user if they typed their credit card number
incorrectly. It turns out that you can weed out completely incorrect credit
card numbers with an easy algorithm. Furthermore, you can even determine
a credit card type from a valid number. Keep in mind, though, that passing
these tests is no guarantee that a card isn’t stolen or canceled or that it
belongs to a different person.

wcphp_02.book Page 52 Wednesday, January 16, 2008 5:21 PM

www.itbook.store/books/9781593271732

https://itbook.store/books/9781593271732

Working w ith Forms 53

<?php

function validate_cc_number($cc_number) {

 /* Validate; return value is card type if valid. */

 $false = false;

 $card_type = "";

 $card_regexes = array(

 "/^4\d{12}(\d\d\d){0,1}$/" => "visa",

 "/^5[12345]\d{14}$/" => "mastercard",

 "/^3[47]\d{13}$/" => "amex",

 "/^6011\d{12}$/" => "discover",

 "/^30[012345]\d{11}$/" => "diners",

 "/^3[68]\d{12}$/" => "diners",

);

 foreach ($card_regexes as $regex => $type) {

 if (preg_match($regex, $cc_number)) {

 $card_type = $type;

 break;

 }

 }

 if (!$card_type) {

 return $false;

 }

 /* mod 10 checksum algorithm */

 $revcode = strrev($cc_number);

 $checksum = 0;

 for ($i = 0; $i < strlen($revcode); $i++) {

 $current_num = intval($revcode[$i]);

 if ($i & 1) { /* Odd position */

 $current_num *= 2;

 }

 /* Split digits and add. */

 $checksum += $current_num % 10;

 if ($current_num > 9) {

 $checksum += 1;

 }

 }

 if ($checksum % 10 == 0) {

 return $card_type;

 } else {

 return $false;

 }

}

?>

wcphp_02.book Page 53 Wednesday, January 16, 2008 5:21 PM

www.itbook.store/books/9781593271732

https://itbook.store/books/9781593271732

54 Chapter 4

This function has two main stages. The first determines card type, and
the second determines whether the card checksum is correct. If the card
passes both tests, the return value is the card type as a string. If a card is
invalid, you get false (you can change this return value to whatever you like
with the $false variable).

The first stage is where the big trick comes in, where we determine the
card type and confirm the prefix in one quick step. Credit card numbers
follow a certain format. For example, all Visas start with 4 and have 13 or
16 digits, all MasterCards start with 51 through 55 and have 16 digits, and all
American Express cards start with 34 or 37 and have 15 digits. These rules are
easily expressed in a few regular expressions, and because they are unique
rules, we can map the regular expressions to card types in an array called
$card_regexes. To check for a valid format, we just cycle through the regular
expressions until one matches. When we get a match, we set $card_type and
move to the next stage. If no expressions match, we return failure.

The checksum test for the credit card number uses a mod 10 algorithm,
a reasonably simple-to-implement check that does the following:

� It starts with a checksum value of 0.

� It runs through the credit card number digit-by-digit from right to left.

� If the current digit has an odd index (that is, every other digit, starting at
index 0), the digit is doubled. If the value of the doubled digit is over 9,
the two numbers are added together and added to the checksum (so an
8 becomes 16, which becomes 1 + 6, which becomes 7). Otherwise the
current (doubled if on an odd index) digit is added to the checksum.

� After running through all the digits, the final checksum must be divisible
by 10. If not, the number fails the test.

There are several ways to code this algorithm; the implementation here
is on the compact side, but easy enough to follow.

Using the Script

Just feed a string with a number to validate_cc_number() and check the return
value. The only thing you should be careful about is nondigits in the string;
you should take care of this with preg_replace() before running the function.
Here is a snippet that runs the function on several test numbers:

$nums = array(

 "3721 0000 0000 000",

 "340000000000009",

 "5500 0000 0000 0004",
 "4111 1111 1111 1111",

 "4222 2222 22222",

 "4007000000027",

 "30000000000004",
 "6011000000000004",

);

wcphp_02.book Page 54 Wednesday, January 16, 2008 5:21 PM

www.itbook.store/books/9781593271732

https://itbook.store/books/9781593271732

Working w ith Forms 55

foreach ($nums as $num) {
 /* Remove all non-digits in card number. */

 $num = ereg_replace("[^0-9]", "", $num);

 $t = validate_cc_number($num);
 if ($t) {

 print "$num valid (type: $t).\n";

 } else {

 print "$num invalid.\n";
 }

}

Hacking the Script

You can add other major credit cards if you know their format. An excellent
resource for other cards is http://www.sitepoint.com/print/card-validation-
class-php.

#31: Double-Checking a Credit Card’s Expiration Date

When you accept a credit card, you’ll need to know whether it has expired.
In your HTML, it’s best to create a drop-down menu that allows customers to
choose their card’s expiration date in order to avoid ambiguity in date formats:

<select name="cc_month">

<option value="01" >01 : January</option>

 <option value="02" >02 : February</option>

 <option value="03" >03 : March</option>
 <option value="04" >04 : April</option>

 <option value="05" >05 : May</option>

 <option value="06" >06 : June</option>

 <option value="07" >07 : July</option>
 <option value="08" >08 : August</option>

 <option value="09" >09 : September</option>

 <option value="10" >10 : October</option>

 <option value="11" >11 : November</option>
 <option value="12" >12 : December</option>

 </select>

<select name="cc_year">

<?php
 /* Create options for all years up to six years from now. */

 $y = intval(date("Y"));

 for ($i = $y; $i <= $y + 10; $i++) {

 print "<option value=\"$i\">$i</option>\n";
 }

?>

</select>

Now that you have a form for entering an expiration date, you need to
validate the data sent by it.

wcphp_02.book Page 55 Wednesday, January 16, 2008 5:21 PM

www.itbook.store/books/9781593271732

https://itbook.store/books/9781593271732

56 Chapter 4

<?php
function check_exp_date($month, $year) {
 /* Get timestamp of midnight on day after expiration month. */
 $exp_ts = mktime(0, 0, 0, $month + 1, 1, $year);

 $cur_ts = time();
 /* Don't validate for dates more than 10 years in future. */
 $max_ts = $cur_ts + (10 * 365 * 24 * 60 * 60);

 if ($exp_ts > $cur_ts && $exp_ts < $max_ts) {
 return true;
 } else {
 return false;
}
?>

To check a credit card expiration date, all you have to do is make sure
that the date falls between the current date and some date in the future (this
function uses 10 years). The best tools for that task are described in Chapter 6,
so consider this a sneak preview.

The only trick here is that a credit card becomes invalid after the last day
of the month in its expiration date. That is, if a card’s expiration date was
06/2005, it actually stopped working on July 1, 2005. Thus, we have to add a
month to the given date. This can be a pain because it can also set the actual
target date ahead a year, but as you will learn in Chapter 6, the mktime() func-
tion that we’re using here to compute the expiration timestamp automatically
compensates for month numbers that are out of range. After computing the
expiration timestamp, all you need are the current and maximum timestamps,
and validating the expiration time boils down to a pair of simple comparisons.

Using the Script

if (check_exp_date($cc_month, $cc_year)) {
 // Approve the card.
} else {
 // The card has expired.
}

#32: Checking Valid Email Addresses
Customers enter all sorts of weird data into email form fields. The script in
this section verifies that an email address mostly follows the rules outlined
in RFC 2822. This won’t prevent someone from entering a false (but RFC-
compliant) email address such as leavemealone@nonexistentdomain.com,
but it will catch some typos.

NOTE If having a valid email address is critical, you need to require user accounts that are
activated by links sent only via email. You’ll see how to do this in “#65: Using Email to
Verify User Accounts” on page 124. This is a fairly extreme measure; if you want more
people to share their addresses with you, simply tell users that you won’t spam them
(and make good on that promise).

wcphp_02.book Page 56 Wednesday, January 16, 2008 5:21 PM

www.itbook.store/books/9781593271732

https://itbook.store/books/9781593271732

Working w ith Forms 57

<?php

function is_email($email) {

// Checks for proper email format

 if (! preg_match('/^[A-Za-z0-9!#$%&\'*+-/=?^_`{|}~]+@[A-Za-z0-9-]+(\.[A-
Za-z0-9-]+)+[A-Za-z]$/', $email)) {
 return false;

 } else {

 return true;

 }
}

?>

This script utilizes a regular expression to check whether the given email
uses proper email characters (alphabetical, dots, dashes, slashes, and so on),
an @ sign in the middle, and at least one dot-something on the end. You can
read more on regular expressions in “#39: Regular Expressions” on page 69.

#33: Checking American Phone Numbers

As with email addresses, there’s no way to make sure a telephone number is
valid outside of making a real telephone call. However, you can validate the
number of digits and put it into standard format. The following function
returns a pure 10-digit phone number if the number given is 10 digits or
11 digits starting with 1. If the number does not conform, the return value
is false.

<?php

function is_phone($phone) {
 $phone = preg_replace('/[^\d]+/', '', $phone);

 $num_digits = strlen($phone);

 if ($num_digits == 11 && $phone[0] == "1") {

 return substr($phone, 1);
 } else if ($num_digits == 10) {

 return $phone;

 } else {

 return false;
 }

}

?>

This script shows the power of regular expressions combined with standard
string functions. The key is to first throw out any character that’s not a digit—a
perfect task for the preg_replace() function. Once you know that you have
nothing but digits in a string, you can simply examine the string length to
determine the number of digits, and the rest practically writes itself.

wcphp_02.book Page 57 Wednesday, January 16, 2008 5:21 PM

www.itbook.store/books/9781593271732

https://itbook.store/books/9781593271732

