
You’ve experienced the shiny, point-and-click surface
of your Linux computer—now dive below and explore
its depths with the power of the command line.

The Linux Command Line takes you from your very first
terminal keystrokes to writing full programs in Bash, the
most popular Linux shell. Along the way you’ll learn
the timeless skills handed down by generations of
gray-bearded, mouse-shunning gurus: file navigation,
environment configuration, command chaining, pattern
matching with regular expressions, and more.

In addition to that practical knowledge, author William
Shotts reveals the philosophy behind these tools and
the rich heritage that your desktop Linux machine has
inherited from Unix supercomputers of yore.

As you make your way through the book’s short, easily
digestible chapters, you’ll learn how to:

• Create and delete files, directories, and symlinks

• Administer your system, including networking,
package installation, and process management

B A N I S H Y O U R
M O U S E

B A N I S H Y O U R
M O U S E

• Use standard input and output, redirection, and
pipelines

• Edit files with Vi, the world’s most popular text editor

• Write shell scripts to automate common or boring tasks

• Slice and dice text files with cut, paste, grep, patch,
and sed

Once you overcome your initial “shell shock,” you’ll
find that the command line is a natural and expressive
way to communicate with your computer. Just don’t be
surprised if your mouse starts to gather dust.

A B O U T T H E A U T H O R

William E. Shotts, Jr., has been a software professional
and avid Linux user for more than 15 years. He has an
extensive background in software development, including
technical support, quality assurance, and documentation.
He is also the creator of LinuxCommand.org, a Linux
education and advocacy site featuring news, reviews,
and extensive support for using the Linux command line.

SHELVE IN
:

COM
PUTERS/LINUX

$49.95 ($52.95 CDN)

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

FSC LOGO

 “ I L I E F LAT .”

Th is book uses RepKover — a durab le b ind ing that won’t snap shut.

A C O M P L E T E I N T R O D U C T I O N

T H E L I N U X
CO M M A N D L I N E

T H E L I N U X
CO M M A N D L I N E

W I L L I A M E . S H O T T S , J R .

T
H

E
 L

IN
U

X
 C

O
M

M
A

N
D

 L
IN

E
T

H
E

 L
IN

U
X

 C
O

M
M

A
N

D
 L

IN
E

S
H

O
T

T
S

www.itbook.store/books/9781593273897

https://itbook.store/books/9781593273897

R E D I R E C T I O N

In this lesson we are going to unleash what may be
the coolest feature of the command line: I/O redirec-
tion. The I/O stands for input/output, and with this
facility you can redirect the input and output of
commands to and from files, as well as connect multiple commands to
make powerful command pipelines. To show off this facility, we will intro-
duce the following commands:

cat—Concatenate files.

sort—Sort lines of text.

uniq—Report or omit repeated lines.

wc—Print newline, word, and byte counts for each file.

grep—Print lines matching a pattern.

head—Output the first part of a file.

tail—Output the last part of a file.

tee—Read from standard input and write to standard output and files.

The Linux Command Line
© 2012 William E. Shotts, Jr.

www.itbook.store/books/9781593273897

https://itbook.store/books/9781593273897

Standard Input, Output, and Error
Many of the programs that we have used so far produce output of some
kind. This output often consists of two types. First, we have the program’s
results; that is, the data the program is designed to produce. Second, we
have status and error messages that tell us how the program is getting along.
If we look at a command like ls, we can see that it displays its results and its
error messages on the screen.

Keeping with the Unix theme of “everything is a file,” programs such
as ls actually send their results to a special file called standard output (often
expressed as stdout) and their status messages to another file called standard
error (stderr). By default, both standard output and standard error are linked
to the screen and not saved into a disk file.

In addition, many programs take input from a facility called standard
input (stdin), which is, by default, attached to the keyboard.

I/O redirection allows us to change where output goes and where input
comes from. Normally, output goes to the screen and input comes from the
keyboard, but with I/O redirection we can change that.

Redirecting Standard Output
I/O redirection allows us to redefine where standard output goes. To
redirect standard output to another file instead of the screen, we use the >
redirection operator followed by the name of the file. Why would we want
to do this? It’s often useful to store the output of a command in a file. For
example, we could tell the shell to send the output of the ls command to
the file ls-output.txt instead of the screen:

[me@linuxbox ~]$ ls -l /usr/bin > ls-output.txt

Here, we created a long listing of the /usr/bin directory and sent the
results to the file ls-output.txt. Let’s examine the redirected output of the
command:

[me@linuxbox ~]$ ls -l ls-output.txt
-rw-rw-r-- 1 me me 167878 2012-02-01 15:07 ls-output.txt

Good—a nice, large, text file. If we look at the file with less, we will
see that the file ls-output.txt does indeed contain the results from our ls
command:

[me@linuxbox ~]$ less ls-output.txt

Now, let’s repeat our redirection test but this time with a twist. We’ll
change the name of the directory to one that does not exist:

[me@linuxbox ~]$ ls -l /bin/usr > ls-output.txt
ls: cannot access /bin/usr: No such file or directory

50 Chapter 6
The Linux Command Line

© 2012 William E. Shotts, Jr.
www.itbook.store/books/9781593273897

https://itbook.store/books/9781593273897

We received an error message. This makes sense because we specified
the nonexistent directory /bin/usr, but why was the error message displayed
on the screen rather than being redirected to the file ls-output.txt ? The answer
is that the ls program does not send its error messages to standard output.
Instead, like most well-written Unix programs, it sends its error messages to
standard error. Since we redirected only standard output and not standard
error, the error message was still sent to the screen. We’ll see how to redirect
standard error in just a minute, but first, let’s look at what happened to our
output file:

[me@linuxbox ~]$ ls -l ls-output.txt
-rw-rw-r-- 1 me me 0 2012-02-01 15:08 ls-output.txt

The file now has zero length! This is because, when we redirect output
with the > redirection operator, the destination file is always rewritten from
the beginning. Since our ls command generated no results and only an
error message, the redirection operation started to rewrite the file and then
stopped because of the error, resulting in its truncation. In fact, if we ever
need to actually truncate a file (or create a new, empty file) we can use a
trick like this:

[me@linuxbox ~]$ > ls-output.txt

Simply using the redirection operator with no command preceding it
will truncate an existing file or create a new, empty file.

So, how can we append redirected output to a file instead of overwriting
the file from the beginning? For that, we use the >> redirection operator,
like so:

[me@linuxbox ~]$ ls -l /usr/bin >> ls-output.txt

Using the >> operator will result in the output being appended to the
file. If the file does not already exist, it is created just as though the > oper-
ator had been used. Let’s put it to the test:

[me@linuxbox ~]$ ls -l /usr/bin >> ls-output.txt
[me@linuxbox ~]$ ls -l /usr/bin >> ls-output.txt
[me@linuxbox ~]$ ls -l /usr/bin >> ls-output.txt
[me@linuxbox ~]$ ls -l ls-output.txt
-rw-rw-r-- 1 me me 503634 2012-02-01 15:45 ls-output.txt

We repeated the command three times, resulting in an output file three
times as large.

Redirecting Standard Error
edirecting standard error lacks the ease of using a dedicated redirection
operator. To redirect standard error we must refer to its file descriptor. A pro-
gram can produce output on any of several numbered file streams. While

Redirection 51
The Linux Command Line

© 2012 William E. Shotts, Jr.
www.itbook.store/books/9781593273897

https://itbook.store/books/9781593273897

we have referred to the first three of these file streams as standard input,
output, and error, the shell references them internally as file descriptors
0, 1, and 2, respectively. The shell provides a notation for redirecting files
using the file descriptor number. Since standard error is the same as file
descriptor 2, we can redirect standard error with this notation:

[me@linuxbox ~]$ ls -l /bin/usr 2> ls-error.txt

The file descriptor 2 is placed immediately before the redirection oper-
ator to perform the redirection of standard error to the file ls-error.txt.

Redirecting Standard Output and Standard Error to One File
There are cases in which we may wish to capture all of the output of a com-
mand to a single file. To do this, we must redirect both standard output and
standard error at the same time. There are two ways to do this. First, here is
the traditional way, which works with old versions of the shell:

[me@linuxbox ~]$ ls -l /bin/usr > ls-output.txt 2>&1

Using this method, we perform two redirections. First we redirect
standard output to the file ls-output.txt, and then we redirect file descriptor
2 (standard error) to file descriptor 1 (standard output) using the nota-
tion 2>&1.

Note: Notice that the order of the redirections is significant. The redirection of standard error
must always occur after redirecting standard output or it doesn’t work. In the example
above, > ls-output.txt 2>&1 redirects standard error to the file ls-output.txt, but if
the order is changed to 2>&1 > ls-output.txt, standard error is directed to the screen.

Recent versions of bash provide a second, more streamlined method for
performing this combined redirection:

[me@linuxbox ~]$ ls -l /bin/usr &> ls-output.txt

In this example, we use the single notation &> to redirect both standard
output and standard error to the file ls-output.txt.

Disposing of Unwanted Output
Sometimes silence really is golden, and we don’t want output from a com-
mand—we just want to throw it away. This applies particularly to error and
status messages. The system provides a way to do this by redirecting output
to a special file called /dev/null. This file is a system device called a bit bucket,
which accepts input and does nothing with it. To suppress error messages
from a command, we do this:

[me@linuxbox ~]$ ls -l /bin/usr 2> /dev/null

52 Chapter 6
The Linux Command Line

© 2012 William E. Shotts, Jr.
www.itbook.store/books/9781593273897

https://itbook.store/books/9781593273897

/ D E V / N U L L I N U N I X C U L T U R E

The bit bucket is an ancient Unix concept, and due to its universality it has
appeared in many parts of Unix culture. So when someone says he is send-
ing your comments to “dev null,” now you know what it means. For more
examples, see the Wikipedia article at http://en.wikipedia.org/wiki/Dev/null.

Redirecting Standard Input
Up to now, we haven’t encountered any commands that make use of stand-
ard input (actually we have, but we’ll reveal that surprise a little bit later), so
we need to introduce one.

cat—Concatenate Files
The cat command reads one or more files and copies them to standard out-
put like so:

cat [file...]

In most cases, you can think of cat as being analogous to the TYPE com-
mand in DOS. You can use it to display files without paging. For example,

[me@linuxbox ~]$ cat ls-output.txt

will display the contents of the file ls-output.txt. cat is often used to display
short text files. Since cat can accept more than one file as an argument, it can
also be used to join files together. Say we have downloaded a large file that
has been split into multiple parts (multimedia files are often split this way on
Usenet), and we want to join them back together. If the files were named

movie.mpeg.001 movie.mpeg.002 ... movie.mpeg.099

we could rejoin them with this command:

[me@linuxbox ~]$ cat movie.mpeg.0* > movie.mpeg

Since wildcards always expand in sorted order, the arguments will be
arranged in the correct order.

This is all well and good, but what does this have to do with standard
input? Nothing yet, but let’s try something else. What happens if we enter
cat with no arguments?

[me@linuxbox ~]$ cat

Nothing happens—it just sits there like it’s hung. It may seem that way,
but it’s really doing exactly what it’s supposed to.

If cat is not given any arguments, it reads from standard input, and
since standard input is, by default, attached to the keyboard, it’s waiting
for us to type something!

Redirection 53
The Linux Command Line

© 2012 William E. Shotts, Jr.
www.itbook.store/books/9781593273897

https://itbook.store/books/9781593273897

Try this:

[me@linuxbox ~]$ cat
The quick brown fox jumped over the lazy dog.

Next, type CTRL-D (i.e., hold down the CTRL key and press D) to tell cat
that it has reached end-of-file (EOF) on standard input:

[me@linuxbox ~]$ cat
The quick brown fox jumped over the lazy dog.
The quick brown fox jumped over the lazy dog.

In the absence of filename arguments, cat copies standard input to
standard output, so we see our line of text repeated. We can use this beha-
vior to create short text files. Let’s say that we wanted to create a file called
lazy_dog.txt containing the text in our example. We would do this:

[me@linuxbox ~]$ cat > lazy_dog.txt
The quick brown fox jumped over the lazy dog.

Enter the command followed by the text we want to place in the file.
Remember to type CTRL-D at the end. Using the command line, we have
implemented the world’s dumbest word processor! To see our results, we
can use cat to copy the file to standard output again:

[me@linuxbox ~]$ cat lazy_dog.txt
The quick brown fox jumped over the lazy dog.

Now that we know how cat accepts standard input in addition to file-
name arguments, let’s try redirecting standard input:

[me@linuxbox ~]$ cat < lazy_dog.txt
The quick brown fox jumped over the lazy dog.

Using the < redirection operator, we change the source of standard
input from the keyboard to the file lazy_dog.txt. We see that the result is the
same as passing a single filename argument. This is not particularly useful
compared to passing a filename argument, but it serves to demonstrate
using a file as a source of standard input. Other commands make better
use of standard input, as we shall soon see.

Before we move on, check out the man page for cat, as it has several
interesting options.

Pipelines
The ability of commands to read data from standard input and send to
standard output is utilized by a shell feature called pipelines. Using the pipe
operator | (vertical bar), the standard output of one command can be piped
into the standard input of another.

command1 | command2

54 Chapter 6
The Linux Command Line

© 2012 William E. Shotts, Jr.
www.itbook.store/books/9781593273897

https://itbook.store/books/9781593273897

To fully demonstrate this, we are going to need some commands.
Remember how we said there was one we already knew that accepts stand-
ard input? It’s less. We can use less to display, page by page, the output of
any command that sends its results to standard output:

[me@linuxbox ~]$ ls -l /usr/bin | less

This is extremely handy! Using this technique, we can conveniently
examine the output of any command that produces standard output.

Filters
Pipelines are often used to perform complex operations on data. It is pos-
sible to put several commands together into a pipeline. Frequently, the com-
mands used this way are referred to as filters. Filters take input, change it
somehow, and then output it. The first one we will try is sort. Imagine we
want to make a combined list of all of the executable programs in /bin and
/usr/bin, put them in sorted order, and then view the list:

[me@linuxbox ~]$ ls /bin /usr/bin | sort | less

Since we specified two directories (/bin and /usr/bin), the output of ls
would have consisted of two sorted lists, one for each directory. By including
sort in our pipeline, we changed the data to produce a single, sorted list.

uniq—Report or Omit Repeated Lines
The uniq command is often used in conjunction with sort. uniq accepts a
sorted list of data from either standard input or a single filename argument
(see the uniq man page for details) and, by default, removes any duplicates
from the list. So, to make sure our list has no duplicates (that is, any pro-
grams of the same name that appear in both the /bin and /usr/bin director-
ies) we will add uniq to our pipeline:

[me@linuxbox ~]$ ls /bin /usr/bin | sort | uniq | less

In this example, we use uniq to remove any duplicates from the output
of the sort command. If we want to see the list of duplicates instead, we add
the -d option to uniq like so:

[me@linuxbox ~]$ ls /bin /usr/bin | sort | uniq -d | less

wc—Print Line, Word, and Byte Counts
The wc (word count) command is used to display the number of lines,
words, and bytes contained in files. For example:

[me@linuxbox ~]$ wc ls-output.txt
 7902 64566 503634 ls-output.txt

Redirection 55
The Linux Command Line

© 2012 William E. Shotts, Jr.
www.itbook.store/books/9781593273897

https://itbook.store/books/9781593273897

In this case it prints out three numbers: lines, words, and bytes con-
tained in ls-output.txt. Like our previous commands, if executed without
command-line arguments, wc accepts standard input. The -l option limits
its output to only report lines. Adding it to a pipeline is a handy way to
count things. To see the number of items we have in our sorted list, we
can do this:

[me@linuxbox ~]$ ls /bin /usr/bin | sort | uniq | wc -l
2728

grep—Print Lines Matching a Pattern
grep is a powerful program used to find text patterns within files, like this:

grep pattern [file...]

When grep encounters a “pattern” in the file, it prints out the lines con-
taining it. The patterns that grep can match can be very complex, but for
now we will concentrate on simple text matches. We’ll cover the advanced
patterns, called regular expressions, in Chapter 19.

Let’s say we want to find all the files in our list of programs that have the
word zip in the name. Such a search might give us an idea of which programs
on our system have something to do with file compression. We would do this:

[me@linuxbox ~]$ ls /bin /usr/bin | sort | uniq | grep zip
bunzip2
bzip2
gunzip
gzip
unzip
zip
zipcloak
zipgrep
zipinfo
zipnote
zipsplit

There are a couple of handy options for grep: -i, which causes grep to
ignore case when performing the search (normally searches are case sensit-
ive) and -v, which tells grep to print only lines that do not match the pattern.

head/tail—Print First/Last Part of Files
Sometimes you don’t want all the output from a command. You may want
only the first few lines or the last few lines. The head command prints the
first 10 lines of a file, and the tail command prints the last 10 lines. By
default, both commands print 10 lines of text, but this can be adjusted
with the -n option:

[me@linuxbox ~]$ head -n 5 ls-output.txt
total 343496
-rwxr-xr-x 1 root root 31316 2011-12-05 08:58 [

56 Chapter 6
The Linux Command Line

© 2012 William E. Shotts, Jr.
www.itbook.store/books/9781593273897

https://itbook.store/books/9781593273897

-rwxr-xr-x 1 root root 8240 2011-12-09 13:39 411toppm
-rwxr-xr-x 1 root root 111276 2011-11-26 14:27 a2p
-rwxr-xr-x 1 root root 25368 2010-10-06 20:16 a52dec
[me@linuxbox ~]$ tail -n 5 ls-output.txt
-rwxr-xr-x 1 root root 5234 2011-06-27 10:56 znew
-rwxr-xr-x 1 root root 691 2009-09-10 04:21 zonetab2pot.py
-rw-r--r-- 1 root root 930 2011-11-01 12:23 zonetab2pot.pyc
-rw-r--r-- 1 root root 930 2011-11-01 12:23 zonetab2pot.pyo
lrwxrwxrwx 1 root root 6 2012-01-31 05:22 zsoelim -> soelim

These can be used in pipelines as well:

[me@linuxbox ~]$ ls /usr/bin | tail -n 5
znew
zonetab2pot.py
zonetab2pot.pyc
zonetab2pot.pyo
zsoelim

tail has an option that allows you to view files in real time. This is use-
ful for watching the progress of log files as they are being written. In the
following example, we will look at the messages file in /var/log. Superuser
privileges are required to do this on some Linux distributions, because the
/var/log/messages file may contain security information.

[me@linuxbox ~]$ tail -f /var/log/messages
Feb 8 13:40:05 twin4 dhclient: DHCPACK from 192.168.1.1
Feb 8 13:40:05 twin4 dhclient: bound to 192.168.1.4 -- renewal in 1652
seconds.
Feb 8 13:55:32 twin4 mountd[3953]: /var/NFSv4/musicbox exported to both
192.168.1.0/24 and twin7.localdomain in 192.168.1.0/24,twin7.localdomain
Feb 8 14:07:37 twin4 dhclient: DHCPREQUEST on eth0 to 192.168.1.1 port 67
Feb 8 14:07:37 twin4 dhclient: DHCPACK from 192.168.1.1
Feb 8 14:07:37 twin4 dhclient: bound to 192.168.1.4 -- renewal in 1771
seconds.
Feb 8 14:09:56 twin4 smartd[3468]: Device: /dev/hda, SMART Prefailure
Attribute: 8 Seek_Time_Performance changed from 237 to 236
Feb 8 14:10:37 twin4 mountd[3953]: /var/NFSv4/musicbox exported to both
192.168.1.0/24 and twin7.localdomain in 192.168.1.0/24,twin7.localdomain
Feb 8 14:25:07 twin4 sshd(pam_unix)[29234]: session opened for user me by
(uid=0)
Feb 8 14:25:36 twin4 su(pam_unix)[29279]: session opened for user root by
me(uid=500)

Using the -f option, tail continues to monitor the file and when new
lines are appended, they immediately appear on the display. This continues
until you type CTRL-C.

tee—Read from Stdin and Output to Stdout and Files
In keeping with our plumbing analogy, Linux provides a command called
tee which creates a “T” fitting on our pipe. The tee program reads standard
input and copies it to both standard output (allowing the data to continue
down the pipeline) and to one or more files. This is useful for capturing a
pipeline’s contents at an intermediate stage of processing. Here we repeat

Redirection 57
The Linux Command Line

© 2012 William E. Shotts, Jr.
www.itbook.store/books/9781593273897

https://itbook.store/books/9781593273897

one of our earlier examples, this time including tee to capture the entire
directory listing to the file ls.txt before grep filters the pipeline’s contents:

[me@linuxbox ~]$ ls /usr/bin | tee ls.txt | grep zip
bunzip2
bzip2
gunzip
gzip
unzip
zip
zipcloak
zipgrep
zipinfo
zipnote
zipsplit

Final Note
As always, check out the documentation of each of the commands we have
covered in this chapter. We have seen only their most basic usage, and they
all have a number of interesting options. As we gain Linux experience, we
will see that the redirection feature of the command line is extremely useful
for solving specialized problems. Many commands make use of standard
input and output, and almost all command-line programs use standard
error to display their informative messages.

L I N U X I S A B O U T I M A G I N A T I O N
When I am asked to explain the difference between Windows and Linux, I
often use a toy analogy.

Windows is like a Game Boy. You go to the store and buy one all shiny new
in the box. You take it home, turn it on, and play with it. Pretty graphics, cute
sounds. After a while, though, you get tired of the game that came with it, so
you go back to the store and buy another one. This cycle repeats over and over.
Finally, you go back to the store and say to the person behind the counter, “I
want a game that does this!” only to be told that no such game exists because
there is no “market demand” for it. Then you say, “But I only need to change
this one thing!” The person behind the counter says you can’t change it. The
games are all sealed up in their cartridges. You discover that your toy is limited
to the games that others have decided that you need and no more.

Linux, on the other hand, is like the world’s largest Erector Set. You open
it up, and it’s just a huge collection of parts—a lot of steel struts, screws, nuts,
gears, pulleys, and motors and a few suggestions on what to build. So you start
to play with it. You build one of the suggestions and then another. After a while
you discover that you have your own ideas of what to make. You don’t ever have
to go back to the store, because you already have everything you need. The
Erector Set takes on the shape of your imagination. It does what you want.

Your choice of toys is, of course, a personal thing, so which toy would you
find more satisfying?

58 Chapter 6
The Linux Command Line

© 2012 William E. Shotts, Jr.
www.itbook.store/books/9781593273897

https://itbook.store/books/9781593273897

