
8
B a c k g r o u n d I m a g e s

Adding decorative elements to make our
websites more visually appealing used to

be surprisingly resource- and time-intensive.
Even seemingly simple graphical effects, such as

two background images on the same element, required
a lot of unnecessary markup, and this in turn made
pages slower to render and harder to maintain.

CSS3 introduces a number of new and extended properties that are
aimed at decorating elements much more simply, and the browser mak-
ers have been quick to implement them and to add a number of their own
implementations as well. Over the next few chapters, we’ll take a look at
the new range of features that we can use to prettify our pages, from back-
ground images to decorative borders and new color effects.

I’ll begin by taking you on a walk through the Backgrounds and Borders
Module (http://www.w3.org/TR/css3-background/). Because of high demand
from web developers, the new properties it brings are already well imple-
mented by browsers. Internet Explorer 9 fully implemented the properties

P
X

24

30

www.itbook.store/books/9781593275808

https://itbook.store/books/9781593275808

86 Chapter 8

and changes listed in this chapter, as have—in most cases—all of the other
major modern browsers, so unless otherwise stated in the text you can pre-
sume widespread support.

As the Backgrounds and Borders Module is quite extensive, I’ll break
it over two chapters and start with a look at background image properties.
Background images have been part of CSS for many years, but unlike previ-
ous versions, in CSS3, you can apply multiple images to elements, and you
can resize those images on the fly. Just these two new features alone would
be enough to please most of us, but the specification goes further to pro-
vide more control over image placement and tiling.

updates to existing Background Properties
Many of the other CSS3 modules bring new properties and even whole new
concepts to CSS, but the strength of the Backgrounds and Borders Module
is the way it extends existing properties to make them more powerful and
useful. That’s not to say this module has no novelties—it certainly does, and
I’ll come to them shortly. But the subtleties shine, and in this section, I want
to talk about the extensions and changes to properties you’ll be familiar
with from CSS2.1.

background-position
The background-position property in CSS2.1 accepts two values: either a key-
word for each side of the box (top, right, and so on), or length or percent-
age values that set a position relative to the top-left corner of the element to
which it’s applied. This is okay for many tasks but doesn’t really provide the
fine control that we desire when laying out pages.

In CSS3, the property now accepts up to four values: you can use key-
words to specify a side and then length or percentage values for relative dis-
tance from that side. Take a look at this example code:

.foo { background-position: right 10em bottom 50%; }

The background image on the element .foo will be positioned 10em
from the right and 50% from the bottom. This positioning would have
been very difficult in CSS2.1; you had to know the widths of all the ele-
ments involved and that they didn’t change.

background-attachment
The way that a background image scrolls in the viewport is determined
by the background-attachment property. The permitted values in CSS2.1 are
scroll (the default), which means the image doesn’t scroll with the element
it’s applied to but does scroll with the viewport, and fixed, which means the
image doesn’t scroll with either its element or the viewport.

www.itbook.store/books/9781593275808

https://itbook.store/books/9781593275808

Background Images 87

A new value of local is introduced in CSS3; this value allows an image
to scroll with both its element and the viewport. This is nigh-impossible to
demonstrate in a static book, so I urge you to take a look at example file 8-a
on the book’s companion website (http://thebookofcss3.com/).

The new value is supported in IE9+ and all other major modern desktop
browsers. Mobile browsers, however, tend to use different viewport layout
mechanisms in which fixed elements don’t really work, so you’ll likely get
unexpected (or, no) behavior in those.

background-repeat
In CSS2.1, the background-repeat property accepts one of four possible val-
ues: no-repeat, repeat, repeat-x, and repeat-y. With these values, you can tile
images either horizontally or vertically (or both) across an element, but
they don’t allow for any finer control than that. CSS3, however, extends the
usefulness of the property in two ways: a pair of new properties and a tweak
to the syntax.

The first of the new properties is space, which sets the background
image to repeat across its containing element as many times as possible
without clipping the image. All of the repetitions (except the first and last)
are then equally spaced, so the image is evenly distributed.

The second is round, which likewise sets the background image to repeat
as many times as possible without clipping, but instead of equally spacing
the repetitions, the images scales so a whole number of images fills the con-
taining element.

To compare the difference between the two, I’ve put together an example
in which a different background-repeat value is applied to two elements, using
the following code:

.space { background-repeat: space; }

.round { background-repeat: round; }

Figure 8-1 displays the results. The element on the left is for reference;
it has the default background-repeat value of repeat and shows the behavior
you would currently expect. The element in the middle has a value of space,
and the maximum number of images that can be tiled without clipping or
scaling are displayed with empty space between them. Finally, the element
on the right has a value of round, which calculates the maximum whole num-
ber that can fit in the containing element both horizontally and vertically,
scaling the image as required.

Internet Explorer 9+ and Chrome are currently the only browsers to
implement these keywords correctly. Safari recognizes them but makes them
both behave incorrectly, as if no-repeat were applied. Firefox ignores them
and uses the previous cascaded or inherited value.

www.itbook.store/books/9781593275808

https://itbook.store/books/9781593275808

88 Chapter 8

Figure 8-1: background-repeat values: repeat (left), space (center), and round (right)1

I also mentioned a change to the syntax. You can control tiling on the
two different axes independently, as the property now accepts two values.
The first value controls tiling on the horizontal axis, the second on the
vertical. So if you want a background image to repeat with rounding on
the vertical and spacing on the horizontal, you use this code:

.foo { background-repeat: round space; }

The result is shown in Figure 8-2.

Figure 8-2: Different background-repeat values applied to the horizontal and vertical

Multiple Background images
The first new feature in the Backgrounds and Borders Module isn’t a new
property but an extension of an existing one—or, rather, several existing
ones. Using CSS2.1, you could only apply a single background image to an
element, but in CSS3, (almost all of) the background-* properties now accept
multiple values, so you can add many background images to one element.

1. The bunny image is by Flickr user Andrew Mason (http://www.flickr.com/photos/a_mason/
42744470/) and is used under license.

www.itbook.store/books/9781593275808

http://www.flickr.com/photos/a_mason/42744470/
http://www.flickr.com/photos/a_mason/42744470/
https://itbook.store/books/9781593275808

Background Images 89

To do this, you need just list the values separated by commas. For
 example, here’s the syntax with background-image:

E { background-image: value, value; }

For each background layer you create, you can add appropriate values
to all of the relevant background-* properties. Here’s a real-world example:

h2 {
 background-image: url('monkey.svg'), url('landscape.jpg');
 background-position: 95% 85%, 50% 50%;
 background-repeat: no-repeat;
}

You can see how this looks in Figure 8-3. The layers are created in
reverse order—that is, the first layer in the list becomes the topmost layer,
and so on. In my example code, monkey.svg is a layer above landscape.jpg.
The background-position property follows the same order: The landscape is
positioned at 50% left and 50% top (the horizontal and vertical center) of its
containing element and the monkey at 95% left and 85% top.

Figure 8-3: Two background images on the same element 2

Note that I’ve only given background-repeat one value; if a property has
fewer values than there are background layers, the values will repeat. In this
example that means no-repeat will be applied to all background layers.

You can use multiple values with the background shorthand property; as
with the individual properties, you only need to provide a comma-separated
list. To get the same result seen in Figure 8-3, I can also use this code:

h2 {
 background:
 url('monkey.svg') no-repeat 95% 85%,
 url('landscape.jpg') no-repeat 50% 50%;
}

2. The monkey image is by rachelps on openclipart (https://openclipart.org/detail/2876/
cheeky-monkey-by-rachelps) and is used under license.

www.itbook.store/books/9781593275808

https://itbook.store/books/9781593275808

90 Chapter 8

I mentioned at the start of this section that almost all background prop-
erties can have multiple values. background-color is the exception, however,
as the color layer will always be stacked below all other background layers.
If you want to specify a background color when using the shorthand prop-
erty, you must place it in the last instance of the comma-separated list. In
the case of my example code that would be in the instance with the land-
scape picture:

h2 {
 background:
 url('monkey.svg') no-repeat 95% 85%,
 url('landscape.jpg') no-repeat 50% 50% #000;
}

dynamically Scaled Background images
A new property to CSS3 is background-size. This property, as you can prob-
ably guess, allows you to set the size of the background images. Here’s the
syntax:

E { background-size: value; }

This property’s value can be a pair of lengths or percentages, a single
length or percentage, or a keyword. If a pair is used, the syntax is as follows:

E { background-size: width height; }

To resize a background image to be 100px wide and 200px high, you use:

div { background-size: 100px 200px; }

The length can be any standard unit of measurement. If you use per-
centages, the dimension is based on the containing element, not the back-
ground image. So a width and height of 100%, for example, will stretch the
background image to fill the container. To make the image appear at its
natural size, use the auto keyword.

If you only specify a single value, that value is considered the width, and
the height is then assigned the default value of auto. Therefore, these two
examples are exactly equivalent:

div { background-size: 100px auto; }
div { background-size: 100px; }

www.itbook.store/books/9781593275808

https://itbook.store/books/9781593275808

Background Images 91

You can use your newly learned multiple background method with
background-size as well. For example, let’s revisit Figure 8-3, but repeat the
monkey image a few more times, adding different values to the background-
position and background-size properties. Here’s the code:

h2 {
background:
 url('monkey.svg') no-repeat 95% 85%,
 url('monkey.svg') no-repeat 50% 80%,
 url('monkey.svg') no-repeat 10% 100%,
 url('landscape.jpg') no-repeat 50% 50%;
 background-size: auto 80%, auto 15%, auto 50%, auto;
}

Figure 8-4 shows this method in action. One monkey has a vertical
background-size of 80%, the next 15%, and the last, 50%; in all cases, the
horizontal size has been set to auto to keep the image in proportion.

Figure 8-4: Example of multiple resized background images

As well as length values, two keywords are available: contain and cover.
The contain keyword sets the image to scale (proportionately) as large as
possible, without exceeding either the height or width of the containing ele-
ment; cover sets the image to scale to the size of either the height or width
of the containing element, whichever is larger.

Take a look at the following code to see what I mean:

.monkey-1, .monkey-2 {
 background-image: url('monkey.svg');
 background-position: 50% 50%;
}
.monkey-1 { background-size: contain; }
.monkey-2 { background-size: cover; }

www.itbook.store/books/9781593275808

https://itbook.store/books/9781593275808

92 Chapter 8

I used two elements, with classes of monkey-1 and monkey-2, and set dif-
ferent keyword values for background-size on each. The result is shown in
Figure 8-5.

Figure 8-5: background-size keywords: contain (left) and cover (right)

The box on the left has the contain keyword value, so the background
image fills the box vertically (the shortest length); the box on the right has
the cover keyword value, so the background image fills the box horizontally
(the longest length) and is cropped at the top and bottom.

Background Clip and origin
In CSS2, the position of a background image is defined relative to the outer
limit of its containing element’s padding, and any overflow extends under-
neath its border. CSS3 introduces two new properties that provide more
granular control over this placement.

The first property is background-clip, which sets the section of the box
model that becomes the limit of where the background (either color or
image) is displayed. Here’s the syntax:

E { background-clip: box; }

The box value can be one of three keywords: border-box, content-box, or
padding-box. border-box, the default value, displays the background behind
the border (you can see it if you use a transparent or semi-opaque border
color). A value of padding-box displays the background only up to, and not
behind, the border. content-box means the background stops at the ele-
ment’s padding.

I’ll illustrate the difference using the following code:

h2 {
 background: url('landscape.jpg') no-repeat 50% 50% #EFEFEF;
 border-width: 20px;
 padding: 20px;
}
h2.brdr { background-clip: border-box; }
h2.pddng { background-clip: padding-box; }
h2.cntnt { background-clip: content-box; }

www.itbook.store/books/9781593275808

https://itbook.store/books/9781593275808

Background Images 93

I’ve used three h2 elements with classes of brdr, pdding, and cntnt, respec-
tively. Figure 8-6 illustrates the difference between the values.

Figure 8-6: Showing the effect of different values on the background-clip property:
 border-box (left), padding-box (center), and content-box (right)

I’ve used a semi-opaque border (I’ll explain how in Chapter 10) so you
can see the image paint beneath it in the box on the left, which has the
border-box value. The central box has the padding-box value, and as you can
see, the background stops at the limit of the padding. In the box on the
right, the value is content-box, so the background does not show behind the
padding.

The second property that gives you more granular control is background-
origin. Using background-origin, you can set the point where the background
is calculated to begin. As I mentioned before, CSS2 background positions
are calculated relative to the limit of the padding, but background-origin lets
you change that. Here’s the syntax:

E { background-origin: box; }

The box value accepts the same keywords as you’ve just seen in
 background-clip: border-box, content-box, and padding-box. I’ll explain the
 different results using this code:

h2 { background: url('monkey.svg') no-repeat 0 100%;}
h2.brdr { background-origin: border-box; }
h2.cntnt { background-origin: content-box; }
h2.pddng { background-origin: padding-box; }

The effects of the different values are illustrated in Figure 8-7. As
you can see, the monkey is in a different position in each box because the
background-position is calculated relative to a different point in each box
(I’ve added a background grid to make it a little easier to see).

The background-position is always set at 0 100%, which is the bottom left.
The point from which the bottom left is measured changes depending on
the background-origin value, however. In the first box, the background origi-
nates at the limit of the border; in the second, from the limit of the pad-
ding; and in the third, from the limit of the content box.

www.itbook.store/books/9781593275808

https://itbook.store/books/9781593275808

94 Chapter 8

Figure 8-7: The background-origin property with values of border-box (left), padding-box
(center), and content-box (right)

A couple of things to bear in mind: First, this property has no effect
if the background-position is set to fixed. Second, both background-clip and
background-origin accept multiple values, using the same syntax shown in
“Multiple Background Images” on page 88.

updated Background Shortcut
The background shortcut property has been updated to include values for
the background-size, background-clip, and background-origin properties. Values
for background-size should immediately follow those for background-position
and be separated by a forward slash, like so:

E { background: url('bar.png') no-repeat 50% 50% / 50% auto; }

In this case, the background image, bar.png, will be positioned at the
dead center of the element, with a width set to 50% of the element and an
automatic height.

For background-clip and background-origin, if only one box value
(border-box, padding-box, or content-box) is present, both properties will
be set to that value. If two box values are supplied, the first will be set on
background-origin and the second on background-clip. As an illustration,
take this shorthand code:

E { background: url('bar.png') no-repeat padding-box content-box; }

In this case, the origin of the background image will be the padding
box, and the image will be clipped to the content box.

Summary
The new features introduced in this chapter are a big step toward the stated
aim of CSS: to separate a page’s content from its presentation. More flexibil-
ity with background images means fewer required elements to create the
effects we want, and the more nonessential markup we can remove from
our documents, the easier our pages will be to maintain and the better it
will be for semantics.

www.itbook.store/books/9781593275808

https://itbook.store/books/9781593275808

Background Images 95

In this chapter, I’ve covered only half of what the Backgrounds and
Borders module offers, so in the next chapter I’ll cover the other half—
which, as you can probably guess by the title “Border and Box Effects,”
relates to borders.

Background images: Browser Support

Chrome firefox safari ie

background-position (edge values) Yes Yes Yes Yes
background-attachment Yes Yes Yes IE10

background-repeat (new values) Yes No No* Yes

background-repeat (two values) Yes Yes Yes Yes

Multiple background images Yes Yes Yes Yes
background-size Yes Yes Yes Yes

Updated background property Yes Yes Yes Yes
background-clip Yes Yes Yes Yes
background-origin Yes Yes Yes Yes

* The values are recognized but don’t display correctly .

www.itbook.store/books/9781593275808

https://itbook.store/books/9781593275808

	Book of CSS3, 2nd Edition 108
	Book of CSS3, 2nd Edition 109
	Book of CSS3, 2nd Edition 110
	Book of CSS3, 2nd Edition 111
	Book of CSS3, 2nd Edition 112
	Book of CSS3, 2nd Edition 113
	Book of CSS3, 2nd Edition 114
	Book of CSS3, 2nd Edition 115
	Book of CSS3, 2nd Edition 116
	Book of CSS3, 2nd Edition 117
	Book of CSS3, 2nd Edition 118

