
2
V a r I a B l e s a n D

s I m P l e D a t a t y P e s

In this chapter you’ll learn about the dif-
ferent kinds of data you can work with in

your Python programs. You’ll also learn how
to store your data in variables and how to use

those variables in your programs.

what really happens when you run hello_world.py
Let’s take a closer look at what Python does when you run hello_world.py. As
it turns out, Python does a fair amount of work, even when it runs a simple
program:

hello_world.py print("Hello Python world!")

Python Crash Course: A Hands-On, Project-Based Introduction to Programming
© 2015 Eric Matthes

www.itbook.store/books/9781593276034

https://itbook.store/books/9781593276034

20 Chapter 2

When you run this code, you should see this output:

Hello Python world!

When you run the file hello_world.py, the ending .py indicates that
the file is a Python program. Your editor then runs the file through the
Python interpreter, which reads through the program and determines what
each word in the program means. For example, when the interpreter sees
the word print, it prints to the screen whatever is inside the parentheses.

As you write your programs, your editor highlights different parts of
your program in different ways. For example, it recognizes that print is the
name of a function and displays that word in blue. It recognizes that “Hello
Python world!” is not Python code and displays that phrase in orange. This
feature is called syntax highlighting and is quite useful as you start to write
your own programs.

Variables
Let’s try using a variable in hello_world.py. Add a new line at the beginning
of the file, and modify the second line:

message = "Hello Python world!"
print(message)

Run this program to see what happens. You should see the same output
you saw previously:

Hello Python world!

We’ve added a variable named message. Every variable holds a value, which
is the information associated with that variable. In this case the value is the
text “Hello Python world!”

Adding a variable makes a little more work for the Python interpreter.
When it processes the first line, it associates the text “Hello Python world!”
with the variable message. When it reaches the second line, it prints the value
associated with message to the screen.

Let’s expand on this program by modifying hello_world.py to print a sec-
ond message. Add a blank line to hello_world.py, and then add two new lines
of code:

message = "Hello Python world!"
print(message)

message = "Hello Python Crash Course world!"
print(message)

Python Crash Course: A Hands-On, Project-Based Introduction to Programming
© 2015 Eric Matthes

www.itbook.store/books/9781593276034

https://itbook.store/books/9781593276034

Variables and Simple Data Types 21

Now when you run hello_world.py, you should see two lines of output:

Hello Python world!
Hello Python Crash Course world!

You can change the value of a variable in your program at any time,
and Python will always keep track of its current value.

Naming and Using Variables
When you’re using variables in Python, you need to adhere to a few rules
and guidelines. Breaking some of these rules will cause errors; other guide-
lines just help you write code that’s easier to read and understand. Be sure
to keep the following variable rules in mind:

•	 Variable names can contain only letters, numbers, and underscores.
They can start with a letter or an underscore, but not with a number.
For instance, you can call a variable message_1 but not 1_message.

•	 Spaces are not allowed in variable names, but underscores can be used
to separate words in variable names. For example, greeting_message works,
but greeting message will cause errors.

•	 Avoid using Python keywords and function names as variable names;
that is, do not use words that Python has reserved for a particular pro-
grammatic purpose, such as the word print. (See “Python Keywords
and Built-in Functions” on page 489.)

•	 Variable names should be short but descriptive. For example, name is
better than n, student_name is better than s_n, and name_length is better
than length_of_persons_name.

•	 Be careful when using the lowercase letter l and the uppercase letter O
because they could be confused with the numbers 1 and 0.

It can take some practice to learn how to create good variable names,
especially as your programs become more interesting and complicated. As
you write more programs and start to read through other people’s code,
you’ll get better at coming up with meaningful names.

n o t e The Python variables you’re using at this point should be lowercase. You won’t get
errors if you use uppercase letters, but it’s a good idea to avoid using them for now.

Avoiding Name Errors When Using Variables
Every programmer makes mistakes, and most make mistakes every day.
Although good programmers might create errors, they also know how to
respond to those errors efficiently. Let’s look at an error you’re likely to
make early on and learn how to fix it.

Python Crash Course: A Hands-On, Project-Based Introduction to Programming
© 2015 Eric Matthes

www.itbook.store/books/9781593276034

https://itbook.store/books/9781593276034

22 Chapter 2

We’ll write some code that generates an error on purpose. Enter the
following code, including the misspelled word mesage shown in bold:

message = "Hello Python Crash Course reader!"
print(mesage)

When an error occurs in your program, the Python interpreter does its
best to help you figure out where the problem is. The interpreter provides
a traceback when a program cannot run successfully. A traceback is a record
of where the interpreter ran into trouble when trying to execute your code.
Here’s an example of the traceback that Python provides after you’ve acci-
dentally misspelled a variable’s name:

Traceback (most recent call last):
u File "hello_world.py", line 2, in <module>
v print(mesage)
w NameError: name 'mesage' is not defined

The output at u reports that an error occurs in line 2 of the file
hello_world.py. The interpreter shows this line to help us spot the error
quickly v and tells us what kind of error it found w. In this case it found a
name error and reports that the variable being printed, mesage, has not been
defined. Python can’t identify the variable name provided. A name error
usually means we either forgot to set a variable’s value before using it, or
we made a spelling mistake when entering the variable’s name.

Of course, in this example we omitted the letter s in the variable name
message in the second line. The Python interpreter doesn’t spellcheck your
code, but it does ensure that variable names are spelled consistently. For
example, watch what happens when we spell message incorrectly in another
place in the code as well:

mesage = "Hello Python Crash Course reader!"
print(mesage)

In this case, the program runs successfully!

Hello Python Crash Course reader!

Computers are strict, but they disregard good and bad spelling. As a
result, you don’t need to consider English spelling and grammar rules when
you’re trying to create variable names and writing code.

Many programming errors are simple, single-character typos in one
line of a program. If you’re spending a long time searching for one of these
errors, know that you’re in good company. Many experienced and talented
programmers spend hours hunting down these kinds of tiny errors. Try to
laugh about it and move on, knowing it will happen frequently throughout
your programming life.

Python Crash Course: A Hands-On, Project-Based Introduction to Programming
© 2015 Eric Matthes

www.itbook.store/books/9781593276034

https://itbook.store/books/9781593276034

Variables and Simple Data Types 23

n o t e The best way to understand new programming concepts is to try using them in your
programs. If you get stuck while working on an exercise in this book, try doing some-
thing else for a while. If you’re still stuck, review the relevant part of that chapter. If
you still need help, see the suggestions in Appendix C.

t ry I t yourse l f

Write a separate program to accomplish each of these exercises . Save
each program with a filename that follows standard Python conventions,
using lowercase letters and underscores, such as simple_message.py and
simple_messages.py .

2-1. Simple Message: Store a message in a variable, and then print that
message .

2-2. Simple Messages: Store a message in a variable, and print that message .
Then change the value of your variable to a new message, and print the new
message .

strings
Because most programs define and gather some sort of data, and then do
something useful with it, it helps to classify different types of data. The first
data type we’ll look at is the string. Strings are quite simple at first glance,
but you can use them in many different ways.

A string is simply a series of characters. Anything inside quotes is con-
sidered a string in Python, and you can use single or double quotes around
your strings like this:

"This is a string."
'This is also a string.'

This flexibility allows you to use quotes and apostrophes within your
strings:

'I told my friend, "Python is my favorite language!"'
"The language 'Python' is named after Monty Python, not the snake."
"One of Python's strengths is its diverse and supportive community."

Let’s explore some of the ways you can use strings.

Python Crash Course: A Hands-On, Project-Based Introduction to Programming
© 2015 Eric Matthes

www.itbook.store/books/9781593276034

https://itbook.store/books/9781593276034

24 Chapter 2

Changing Case in a String with Methods
One of the simplest tasks you can do with strings is change the case of the
words in a string. Look at the following code, and try to determine what’s
happening:

 name.py name = "ada lovelace"
print(name.title())

Save this file as name.py, and then run it. You should see this output:

Ada Lovelace

In this example, the lowercase string "ada lovelace" is stored in the vari-
able name. The method title() appears after the variable in the print() state-
ment. A method is an action that Python can perform on a piece of data. The
dot (.) after name in name.title() tells Python to make the title() method
act on the variable name. Every method is followed by a set of parentheses,
because methods often need additional information to do their work.
That information is provided inside the parentheses. The title() function
doesn’t need any additional information, so its parentheses are empty.

title() displays each word in titlecase, where each word begins with a
capital letter. This is useful because you’ll often want to think of a name as a
piece of information. For example, you might want your program to recog-
nize the input values Ada, ADA, and ada as the same name, and display all of
them as Ada.

Several other useful methods are available for dealing with case as well.
For example, you can change a string to all uppercase or all lowercase letters
like this:

name = "Ada Lovelace"
print(name.upper())
print(name.lower())

This will display the following:

ADA LOVELACE
ada lovelace

The lower() method is particularly useful for storing data. Many times
you won’t want to trust the capitalization that your users provide, so you’ll
convert strings to lowercase before storing them. Then when you want to
display the information, you’ll use the case that makes the most sense for
each string.

Python Crash Course: A Hands-On, Project-Based Introduction to Programming
© 2015 Eric Matthes

www.itbook.store/books/9781593276034

https://itbook.store/books/9781593276034

Variables and Simple Data Types 25

Combining or Concatenating Strings
It’s often useful to combine strings. For example, you might want to store
a first name and a last name in separate variables, and then combine them
when you want to display someone’s full name:

first_name = "ada"
last_name = "lovelace"

u full_name = first_name + " " + last_name

print(full_name)

Python uses the plus symbol (+) to combine strings. In this example,
we use + to create a full name by combining a first_name, a space, and a
last_name u, giving this result:

ada lovelace

This method of combining strings is called concatenation. You can use
concatenation to compose complete messages using the information you’ve
stored in a variable. Let’s look at an example:

first_name = "ada"
last_name = "lovelace"
full_name = first_name + " " + last_name

u print("Hello, " + full_name.title() + "!")

Here, the full name is used at u in a sentence that greets the user, and
the title() method is used to format the name appropriately. This code
returns a simple but nicely formatted greeting:

Hello, Ada Lovelace!

You can use concatenation to compose a message and then store the
entire message in a variable:

first_name = "ada"
last_name = "lovelace"
full_name = first_name + " " + last_name

u message = "Hello, " + full_name.title() + "!"
v print(message)

This code displays the message “Hello, Ada Lovelace!” as well, but stor-
ing the message in a variable at u makes the final print statement at v
much simpler.

Python Crash Course: A Hands-On, Project-Based Introduction to Programming
© 2015 Eric Matthes

www.itbook.store/books/9781593276034

https://itbook.store/books/9781593276034

26 Chapter 2

Adding Whitespace to Strings with Tabs or Newlines
In programming, whitespace refers to any nonprinting character, such as
spaces, tabs, and end-of-line symbols. You can use whitespace to organize
your output so it’s easier for users to read.

To add a tab to your text, use the character combination \t as shown
at u:

>>> print("Python")
Python

u >>> print("\tPython")
 Python

To add a newline in a string, use the character combination \n:

>>> print("Languages:\nPython\nC\nJavaScript")
Languages:
Python
C
JavaScript

You can also combine tabs and newlines in a single string. The string
"\n\t" tells Python to move to a new line, and start the next line with a tab.
The following example shows how you can use a one-line string to generate
four lines of output:

>>> print("Languages:\n\tPython\n\tC\n\tJavaScript")
Languages:
 Python
 C
 JavaScript

Newlines and tabs will be very useful in the next two chapters when you
start to produce many lines of output from just a few lines of code.

Stripping Whitespace
Extra whitespace can be confusing in your programs. To programmers
'python' and 'python ' look pretty much the same. But to a program, they
are two different strings. Python detects the extra space in 'python ' and
considers it significant unless you tell it otherwise.

It’s important to think about whitespace, because often you’ll want to
compare two strings to determine whether they are the same. For example,
one important instance might involve checking people’s usernames when
they log in to a website. Extra whitespace can be confusing in much simpler
situations as well. Fortunately, Python makes it easy to eliminate extraneous
whitespace from data that people enter.

Python can look for extra whitespace on the right and left sides of a
string. To ensure that no whitespace exists at the right end of a string, use
the rstrip() method.

Python Crash Course: A Hands-On, Project-Based Introduction to Programming
© 2015 Eric Matthes

www.itbook.store/books/9781593276034

https://itbook.store/books/9781593276034

Variables and Simple Data Types 27

u >>> favorite_language = 'python '
v >>> favorite_language

'python '
w >>> favorite_language.rstrip()

'python'
x >>> favorite_language

'python '

The value stored in favorite_language at u contains extra whitespace
at the end of the string. When you ask Python for this value in a terminal
session, you can see the space at the end of the value v. When the rstrip()
method acts on the variable favorite_language at w, this extra space is
removed. However, it is only removed temporarily. If you ask for the value
of favorite_language again, you can see that the string looks the same as
when it was entered, including the extra whitespace x.

To remove the whitespace from the string permanently, you have to
store the stripped value back into the variable:

>>> favorite_language = 'python '
u >>> favorite_language = favorite_language.rstrip()

>>> favorite_language
'python'

To remove the whitespace from the string, you strip the whitespace
from the right side of the string and then store that value back in the origi-
nal variable, as shown at u. Changing a variable’s value and then storing
the new value back in the original variable is done often in programming.
This is how a variable’s value can change as a program is executed or in
response to user input.

You can also strip whitespace from the left side of a string using the
lstrip() method or strip whitespace from both sides at once using strip():

u >>> favorite_language = ' python '
v >>> favorite_language.rstrip()

' python'
w >>> favorite_language.lstrip()

'python '
x >>> favorite_language.strip()

'python'

In this example, we start with a value that has whitespace at the begin-
ning and the end u. We then remove the extra space from the right side
at v, from the left side at w, and from both sides at x. Experimenting with
these stripping functions can help you become familiar with manipulating
strings. In the real world, these stripping functions are used most often to
clean up user input before it’s stored in a program.

Python Crash Course: A Hands-On, Project-Based Introduction to Programming
© 2015 Eric Matthes

www.itbook.store/books/9781593276034

https://itbook.store/books/9781593276034

28 Chapter 2

Avoiding Syntax Errors with Strings
One kind of error that you might see with some regularity is a syntax error.
A syntax error occurs when Python doesn’t recognize a section of your pro-
gram as valid Python code. For example, if you use an apostrophe within
single quotes, you’ll produce an error. This happens because Python inter-
prets everything between the first single quote and the apostrophe as a
string. It then tries to interpret the rest of the text as Python code, which
causes errors.

Here’s how to use single and double quotes correctly. Save this program
as apostrophe.py and then run it:

 apostrophe.py message = "One of Python's strengths is its diverse community."
print(message)

The apostrophe appears inside a set of double quotes, so the Python
interpreter has no trouble reading the string correctly:

One of Python's strengths is its diverse community.

However, if you use single quotes, Python can’t identify where the string
should end:

message = 'One of Python's strengths is its diverse community.'
print(message)

You’ll see the following output:

 File "apostrophe.py", line 1
 message = 'One of Python's strengths is its diverse community.'
 ^u
SyntaxError: invalid syntax

In the output you can see that the error occurs at u right after the
second single quote. This syntax error indicates that the interpreter doesn’t
recognize something in the code as valid Python code. Errors can come
from a variety of sources, and I’ll point out some common ones as they arise.
You might see syntax errors often as you learn to write proper Python code.
Syntax errors are also the least specific kind of error, so they can be difficult
and frustrating to identify and correct. If you get stuck on a particularly stub-
born error, see the suggestions in Appendix C.

n o t e Your editor’s syntax highlighting feature should help you spot some syntax errors
quickly as you write your programs. If you see Python code highlighted as if it’s
English or English highlighted as if it’s Python code, you probably have a mis-
matched quotation mark somewhere in your file.

Python Crash Course: A Hands-On, Project-Based Introduction to Programming
© 2015 Eric Matthes

www.itbook.store/books/9781593276034

https://itbook.store/books/9781593276034

Variables and Simple Data Types 29

Printing in Python 2
The print statement has a slightly different syntax in Python 2:

>>> python2.7
>>> print "Hello Python 2.7 world!"
Hello Python 2.7 world!

Parentheses are not needed around the phrase you want to print
in Python 2. Technically, print is a function in Python 3, which is why it
needs parentheses. Some Python 2 print statements do include paren-
theses, but the behavior can be a little different than what you’ll see in
Python 3. Basically, when you’re looking at code written in Python 2,
expect to see some print statements with parentheses and some without.

t ry I t yourse l f

Save each of the following exercises as a separate file with a name like
name_cases.py . If you get stuck, take a break or see the suggestions in
Appendix C .

2-3. Personal Message: Store a person’s name in a variable, and print a mes-
sage to that person . Your message should be simple, such as, “Hello Eric,
would you like to learn some Python today?”

2-4. Name Cases: Store a person’s name in a variable, and then print that per-
son’s name in lowercase, uppercase, and titlecase .

2-5. Famous Quote: Find a quote from a famous person you admire . Print the
quote and the name of its author . Your output should look something like the
following, including the quotation marks:

Albert Einstein once said, “A person who never made a
mistake never tried anything new.”

2-6. Famous Quote 2: Repeat Exercise 2-5, but this time store the famous per-
son’s name in a variable called famous_person . Then compose your message
and store it in a new variable called message . Print your message .

2-7. Stripping Names: Store a person’s name, and include some whitespace
characters at the beginning and end of the name . Make sure you use each
character combination, "\t" and "\n", at least once .

Print the name once, so the whitespace around the name is displayed .
Then print the name using each of the three stripping functions, lstrip(),
rstrip(), and strip() .

Python Crash Course: A Hands-On, Project-Based Introduction to Programming
© 2015 Eric Matthes

www.itbook.store/books/9781593276034

https://itbook.store/books/9781593276034

30 Chapter 2

numbers
Numbers are used quite often in programming to keep score in games, rep-
resent data in visualizations, store information in web applications, and so
on. Python treats numbers in several different ways, depending on how they
are being used. Let’s first look at how Python manages integers, because
they are the simplest to work with.

Integers
You can add (+), subtract (-), multiply (*), and divide (/) integers in Python.

>>> 2 + 3
5
>>> 3 - 2
1
>>> 2 * 3
6
>>> 3 / 2
1.5

In a terminal session, Python simply returns the result of the operation.
Python uses two multiplication symbols to represent exponents:

>>> 3 ** 2
9
>>> 3 ** 3
27
>>> 10 ** 6
1000000

Python supports the order of operations too, so you can use multiple
operations in one expression. You can also use parentheses to modify the
order of operations so Python can evaluate your expression in the order
you specify. For example:

>>> 2 + 3*4
14
>>> (2 + 3) * 4
20

The spacing in these examples has no effect on how Python evaluates
the expressions; it simply helps you more quickly spot the operations that
have priority when you’re reading through the code.

Floats
Python calls any number with a decimal point a float. This term is used in
most programming languages, and it refers to the fact that a decimal point
can appear at any position in a number. Every programming language must

Python Crash Course: A Hands-On, Project-Based Introduction to Programming
© 2015 Eric Matthes

www.itbook.store/books/9781593276034

https://itbook.store/books/9781593276034

Variables and Simple Data Types 31

be carefully designed to properly manage decimal numbers so numbers
behave appropriately no matter where the decimal point appears.

For the most part, you can use decimals without worrying about how
they behave. Simply enter the numbers you want to use, and Python will
most likely do what you expect:

>>> 0.1 + 0.1
0.2
>>> 0.2 + 0.2
0.4
>>> 2 * 0.1
0.2
>>> 2 * 0.2
0.4

But be aware that you can sometimes get an arbitrary number of deci-
mal places in your answer:

>>> 0.2 + 0.1
0.30000000000000004
>>> 3 * 0.1
0.30000000000000004

This happens in all languages and is of little concern. Python tries to
find a way to represent the result as precisely as possible, which is sometimes
difficult given how computers have to represent numbers internally. Just
ignore the extra decimal places for now; you’ll learn ways to deal with the
extra places when you need to in the projects in Part II.

Avoiding Type Errors with the str() Function
Often, you’ll want to use a variable’s value within a message. For example,
say you want to wish someone a happy birthday. You might write code
like this:

 birthday.py age = 23
message = "Happy " + age + "rd Birthday!"

print(message)

You might expect this code to print the simple birthday greeting, Happy
23rd birthday! But if you run this code, you’ll see that it generates an error:

Traceback (most recent call last):
 File "birthday.py", line 2, in <module>
 message = "Happy " + age + "rd Birthday!"

u TypeError: Can't convert 'int' object to str implicitly

This is a type error. It means Python can’t recognize the kind of informa-
tion you’re using. In this example Python sees at u that you’re using a vari-
able that has an integer value (int), but it’s not sure how to interpret that

Python Crash Course: A Hands-On, Project-Based Introduction to Programming
© 2015 Eric Matthes

www.itbook.store/books/9781593276034

https://itbook.store/books/9781593276034

32 Chapter 2

value. Python knows that the variable could represent either the numerical
value 23 or the characters 2 and 3. When you use integers within strings
like this, you need to specify explicitly that you want Python to use the inte-
ger as a string of characters. You can do this by wrapping the variable in the
str() function, which tells Python to represent non-string values as strings:

age = 23
message = "Happy " + str(age) + "rd Birthday!"

print(message)

Python now knows that you want to convert the numerical value 23 to
a string and display the characters 2 and 3 as part of the birthday message.
Now you get the message you were expecting, without any errors:

Happy 23rd Birthday!

Working with numbers in Python is straightforward most of the time.
If you’re getting unexpected results, check whether Python is interpreting
your numbers the way you want it to, either as a numerical value or as a
string value.

Integers in Python 2
Python 2 returns a slightly different result when you divide two integers:

>>> python2.7
>>> 3 / 2
1

Instead of 1.5, Python returns 1. Division of integers in Python 2 results
in an integer with the remainder truncated. Note that the result is not a
rounded integer; the remainder is simply omitted.

To avoid this behavior in Python 2, make sure that at least one of the
numbers is a float. By doing so, the result will be a float as well:

>>> 3 / 2
1
>>> 3.0 / 2
1.5
>>> 3 / 2.0
1.5
>>> 3.0 / 2.0
1.5

This division behavior is a common source of confusion when people
who are used to Python 3 start using Python 2, or vice versa. If you use or
create code that mixes integers and floats, watch out for irregular behavior.

Python Crash Course: A Hands-On, Project-Based Introduction to Programming
© 2015 Eric Matthes

www.itbook.store/books/9781593276034

https://itbook.store/books/9781593276034

Variables and Simple Data Types 33

t ry I t yourse l f

2-8. Number Eight: Write addition, subtraction, multiplication, and division
operations that each result in the number 8 . Be sure to enclose your operations
in print statements to see the results . You should create four lines that look
like this:

print(5 + 3)

Your output should simply be four lines with the number 8 appearing once
on each line .

2-9. Favorite Number: Store your favorite number in a variable . Then, using
that variable, create a message that reveals your favorite number . Print that
message .

Comments
Comments are an extremely useful feature in most programming languages.
Everything you’ve written in your programs so far is Python code. As your
programs become longer and more complicated, you should add notes within
your programs that describe your overall approach to the problem you’re
solving. A comment allows you to write notes in English within your programs.

How Do You Write Comments?
In Python, the hash mark (#) indicates a comment. Anything following a
hash mark in your code is ignored by the Python interpreter. For example:

 comment.py # Say hello to everyone.
print("Hello Python people!")

Python ignores the first line and executes the second line.

Hello Python people!

What Kind of Comments Should You Write?
The main reason to write comments is to explain what your code is sup-
posed to do and how you are making it work. When you’re in the middle of
working on a project, you understand how all of the pieces fit together. But
when you return to a project after some time away, you’ll likely have forgot-
ten some of the details. You can always study your code for a while and fig-
ure out how segments were supposed to work, but writing good comments
can save you time by summarizing your overall approach in clear English.

Python Crash Course: A Hands-On, Project-Based Introduction to Programming
© 2015 Eric Matthes

www.itbook.store/books/9781593276034

https://itbook.store/books/9781593276034

34 Chapter 2

If you want to become a professional programmer or collaborate with
other programmers, you should write meaningful comments. Today, most
software is written collaboratively, whether by a group of employees at one
company or a group of people working together on an open source project.
Skilled programmers expect to see comments in code, so it’s best to start
adding descriptive comments to your programs now. Writing clear, concise
comments in your code is one of the most beneficial habits you can form as
a new programmer.

When you’re determining whether to write a comment, ask yourself if
you had to consider several approaches before coming up with a reasonable
way to make something work; if so, write a comment about your solution.
It’s much easier to delete extra comments later on than it is to go back
and write comments for a sparsely commented program. From now on, I’ll
use comments in examples throughout this book to help explain sections
of code.

t ry I t yourse l f

2-10. Adding Comments: Choose two of the programs you’ve written, and
add at least one comment to each . If you don’t have anything specific to write
because your programs are too simple at this point, just add your name and
the current date at the top of each program file . Then write one sentence
describing what the program does .

the zen of Python
For a long time, the programming language Perl was the mainstay of the
Internet. Most interactive websites in the early days were powered by Perl
scripts. The Perl community’s motto at the time was, “There’s more than
one way to do it.” People liked this mind-set for a while, because the flex-
ibility written into the language made it possible to solve most problems
in a variety of ways. This approach was acceptable while working on your
own projects, but eventually people realized that the emphasis on flexibility
made it difficult to maintain large projects over long periods of time. It was
difficult, tedious, and time-consuming to review code and try to figure out
what someone else was thinking when they were solving a complex problem.

Experienced Python programmers will encourage you to avoid com-
plexity and aim for simplicity whenever possible. The Python community’s
philosophy is contained in “The Zen of Python” by Tim Peters. You can
access this brief set of principles for writing good Python code by enter-
ing import this into your interpreter. I won’t reproduce the entire “Zen of

Python Crash Course: A Hands-On, Project-Based Introduction to Programming
© 2015 Eric Matthes

www.itbook.store/books/9781593276034

https://itbook.store/books/9781593276034

Variables and Simple Data Types 35

Python” here, but I’ll share a few lines to help you understand why they
should be important to you as a beginning Python programmer.

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Python programmers embrace the notion that code can be beautiful
and elegant. In programming, people solve problems. Programmers have
always respected well-designed, efficient, and even beautiful solutions to
problems. As you learn more about Python and use it to write more code,
someone might look over your shoulder one day and say, “Wow, that’s some
beautiful code!”

Simple is better than complex.

If you have a choice between a simple and a complex solution, and both
work, use the simple solution. Your code will be easier to maintain, and it
will be easier for you and others to build on that code later on.

Complex is better than complicated.

Real life is messy, and sometimes a simple solution to a problem is unat-
tainable. In that case, use the simplest solution that works.

Readability counts.

Even when your code is complex, aim to make it readable. When you’re
working on a project that involves complex coding, focus on writing infor-
mative comments for that code.

There should be one-- and preferably only one --obvious way to do it.

If two Python programmers are asked to solve the same problem, they
should come up with fairly compatible solutions. This is not to say there’s
no room for creativity in programming. On the contrary! But much of pro-
gramming consists of using small, common approaches to simple situations
within a larger, more creative project. The nuts and bolts of your programs
should make sense to other Python programmers.

Now is better than never.

You could spend the rest of your life learning all the intricacies of
Python and of programming in general, but then you’d never complete any
projects. Don’t try to write perfect code; write code that works, and then
decide whether to improve your code for that project or move on to some-
thing new.

Python Crash Course: A Hands-On, Project-Based Introduction to Programming
© 2015 Eric Matthes

www.itbook.store/books/9781593276034

https://itbook.store/books/9781593276034

36 Chapter 2

As you continue to the next chapter and start digging into more
involved topics, try to keep this philosophy of simplicity and clarity in
mind. Experienced programmers will respect your code more and will
be happy to give you feedback and collaborate with you on interesting
projects.

t ry I t yourse l f

2-11. Zen of Python: Enter import this into a Python terminal session and skim
through the additional principles .

summary
In this chapter you learned to work with variables. You learned to use
descriptive variable names and how to resolve name errors and syn-
tax errors when they arise. You learned what strings are and how to
display strings using lowercase, uppercase, and titlecase. You started
using whitespace to organize output neatly, and you learned to strip
unneeded whitespace from different parts of a string. You started working
with integers and floats, and you read about some unexpected behavior
to watch out for when working with numerical data. You also learned to
write explanatory comments to make your code easier for you and others
to read. Finally, you read about the philosophy of keeping your code as
simple as possible, whenever possible.

In Chapter 3 you’ll learn to store collections of information in variables
called lists. You’ll learn to work through a list, manipulating any informa-
tion in that list.

Python Crash Course: A Hands-On, Project-Based Introduction to Programming
© 2015 Eric Matthes

www.itbook.store/books/9781593276034

https://itbook.store/books/9781593276034

