
3
C o n w a y ’ s G a m e o f L i f e

You can use a computer to study a system
by creating a mathematical model for that

system, writing a program to represent the
model, and then letting the model evolve over

time. There are many kinds of computer simulations,
but I’ll focus on a famous one called Conway’s Game
of Life, the work of the British mathematician John Conway. The Game of
Life is an example of a cellular automaton, a collection of colored cells on a
grid that evolve through a number of time steps according to a set of rules
defining the states of neighboring cells.

In this project, you’ll create an N×N grid of cells and simulate the evo-
lution of the system over time by applying the rules of Conway’s Game of
Life. You’ll display the state of the game at each time step and provide ways
to save the output to a file. You’ll set the initial condition of the system to
either a random distribution or a predesigned pattern.

Python Playground: Geeky Projects for the Curious Programmer
© 2015 Mahesh Venkitachalam

www.itbook.store/books/9781593276041

https://itbook.store/books/9781593276041

42 Chapter 3

This simulation consists of the following components:

•	 A property defined in one- or two-dimensional space

•	 A mathematical rule to change this property for each step in the
simulation

•	 A way to display or capture the state of the system as it evolves

The cells in Conway’s Game of Life can be either ON or OFF. The game
starts with an initial condition, in which each cell is assigned one state and
mathematical rules determine how its state will change over time. The
amazing thing about Conway’s Game of Life is that with just four simple
rules the system evolves to produce patterns that behave in incredibly
complex ways, almost as if they were alive. Patterns include “gliders” that
slide across the grid, “blinkers” that flash on and off, and even replicating
patterns.

Of course, the philosophical implications of this game are also signifi-
cant, because they suggest that complex structures can evolve from simple
rules without following any sort of preset pattern.

Here are some of the main concepts covered in this project:

•	 Using matplotlib imshow to represent a 2D grid of data

•	 Using matplotlib for animation

•	 Using the numpy array

•	 Using the % operator for boundary conditions

•	 Setting up a random distribution of values

How It Works
Because the Game of Life is built on a grid of nine squares, every cell has
eight neighboring cells, as shown in Figure 3-1. A given cell (i, j) in the
simulation is accessed on a grid [i][j], where i and j are the row and col-
umn indices, respectively. The value of a given cell at a given instant of time
depends on the state of its neighbors at the previous time step.

Conway’s Game of Life has four rules.

1.	 If a cell is ON and has fewer than two neighbors that are ON, it
turns OFF.

2.	 If a cell is ON and has either two or three neighbors that are ON,
it remains ON.

3.	 If a cell is ON and has more than three neighbors that are ON, it
turns OFF.

4.	 If a cell is OFF and has exactly three neighbors that are ON, it
turns ON.

Python Playground: Geeky Projects for the Curious Programmer
© 2015 Mahesh Venkitachalam

www.itbook.store/books/9781593276041

https://itbook.store/books/9781593276041

Conway’s Game of Life 43

These rules are meant to
mirror some basic ways that a
group of organisms might fare
over time: underpopulation
and overpopulation kill cells
by turning a cell OFF when it
has fewer than two neighbors
or more than three, and cells
stay ON and reproduce by turn-
ing another cell from OFF to
ON when the population is
balanced. But what about cells
at the edge of the grid? Which
cells are their neighbors? To
answer this question, you need
to think about boundary condi-
tions, the rules that govern what
happens to cells at the edges
or boundaries of the grid. I’ll
address this question by using toroidal boundary conditions, meaning that
the square grid wraps around so that its shape is a torus. As shown in
Figure 3-2, the grid is first warped so that its horizontal edges (A and B)
join to form a cylinder, and then the cylinder’s vertical edges (C and D)
are joined to form a torus. Once the torus has been formed, all cells have
neighbors because the whole space has no edge.

A
B

A

BC

D

C

D

A

B

C

D

Figure 3-2: Conceptual visualization of toroidal boundary conditions

(i-1, j-1) (i-1, j) (i-1, j+1)

(i, j-1) (i, j) (i, j+1)

(i+1, j-1) (i+1, j) (i+1, j+1)

Figure 3-1: Eight neighboring cells

Python Playground: Geeky Projects for the Curious Programmer
© 2015 Mahesh Venkitachalam

www.itbook.store/books/9781593276041

https://itbook.store/books/9781593276041

44 Chapter 3

NOTE 	 This is similar to how boundaries work in Pac-Man. If you go off the top of the
screen, you appear on the bottom. If you go off the left side of the screen, you appear
on the right side. This kind of boundary condition is common in 2D simulations.

Here’s a description of the algorithm you’ll use to apply the four rules
and run the simulation:

1.	 Initialize the cells in the grid.

2.	 At each time step in the simulation, for each cell (i, j) in the grid, do
the following:

a.	 Update the value of cell (i, j) based on its neighbors, taking into
account the boundary conditions.

b.	 Update the display of grid values.

Requirements
You’ll use numpy arrays and the matplotlib library to display the simulation
output, and you’ll use the matplotlib animation module to update the simula-
tion. (See Chapter 1 for a review of matplotlib.)

The Code
You’ll develop the code for the simulation bit by bit inside the Python inter-
preter by examining the pieces needed for different parts. To see the full
project code, skip ahead to “The Complete Code” on page 49.

First, import the modules you’ll be using for this project:

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> import matplotlib.animation as animation

Now let’s create the grid.

Representing the Grid
To represent whether a cell is alive (ON) or dead (OFF) on the grid, you’ll
use the values 255 and 0 for ON and OFF, respectively. You’ll display the cur-
rent state of the grid using the imshow() method in matplotlib, which repre-
sents a matrix of numbers as an image. Enter the following:

u >>> x = np.array([[0, 0, 255], [255, 255, 0], [0, 255, 0]])
v >>> plt.imshow(x, interpolation='nearest')

plt.show()

At u, you define a 2D numpy array of shape (3, 3), where each element
of the array is an integer value. You then use the plt.show() method to dis-
play this matrix of values as an image, and you pass in the interpolation
option as 'nearest' at v to get sharp edges for the cells (or they’d be fuzzy).

Python Playground: Geeky Projects for the Curious Programmer
© 2015 Mahesh Venkitachalam

www.itbook.store/books/9781593276041

https://itbook.store/books/9781593276041

Conway’s Game of Life 45

Figure 3-3 shows the output of this code.

Figure 3-3: Displaying a grid of values

Notice that the value of 0 (OFF) is shown in dark gray and 255 (ON) is
shown in light gray, which is the default colormap used in imshow().

Initial Conditions
To begin the simulation, set an initial state for each cell in the 2D grid.
You can use a random distribution of ON and OFF cells and see what kind
of patterns emerge, or you can add some specific patterns and see how they
evolve. You’ll look at both approaches.

To use a random initial state, use the choice() method from the random
module in numpy. Enter the following:

np.random.choice([0, 255], 4*4, p=[0.1, 0.9]).reshape(4, 4)

Here is the output:

array([[255, 255, 255, 255],
 [255, 255, 255, 255],
 [255, 255, 255, 255],
 [255, 255, 255, 0]])

np.random.choice chooses a value from the given list [0, 255], with the
probability of the appearance of each value given in the parameter p=[0.1,
0.9]. Here, you ask for 0 to appear with a probability of 0.1 (or 10 percent)
and for 255 to appear with a probability of 90 percent. (The two values in p
must add up to 1.) Because this choice() method creates a one-dimensional
array of 16 values, you use .reshape to make it a two-dimensional array.

Python Playground: Geeky Projects for the Curious Programmer
© 2015 Mahesh Venkitachalam

www.itbook.store/books/9781593276041

https://itbook.store/books/9781593276041

46 Chapter 3

To set up the initial condition to match a particular pattern instead
of just filling in a random set of values, initialize the two-dimensional grid
to zeros and then use a method to add a pattern at a particular row and col-
umn in the grid, as shown here:

def addGlider(i, j, grid):
 """adds a glider with top left cell at (i, j)"""

u glider = np.array([[0, 0, 255],
 [255, 0, 255],
 [0, 255, 255]])

v grid[i:i+3, j:j+3] = glider
w grid = np.zeros(N*N).reshape(N, N)
x addGlider(1, 1, grid)

At u, you define the glider pattern (an observed pattern that moves
steadily across the grid) using a numpy array of shape (3, 3). At v, you can
see how you use the numpy slice operation to copy this pattern array into the
simulation’s two-dimensional grid, with its top-left corner placed at the
coordinates you specify as i and j. You create an N×N array of zeros at w,
and at x, you call the addGlider() method to initialize the grid with the
glider pattern.

Boundary Conditions
Now we can think about how to implement the toroidal boundary condi-
tions. First, let’s see what happens at the right edge of a grid of size N×N.
The cell at the end of row i is accessed as grid[i][N-1]. Its neighbor to the
right is grid[i][N], but according to the toroidal boundary conditions, the
value accessed as grid[i][N] should be replaced by grid[i][0]. Here’s one
way to do that:

if j == N-1:
 right = grid[i][0]
else:
 right = grid[i][j+1]

Of course, you’d need to apply similar boundary conditions to the
left, top, and bottom sides of the grid, but doing so would require adding
a lot more code because each of the four edges of the grid would need to
be tested. A much more compact way to accomplish this is with Python’s
modulus (%) operator, as shown here:

>>> N = 16
>>> i1 = 14
>>> i2 = 15
>>> (i1+1)%N
15
>>> (i2+1)%N
0

Python Playground: Geeky Projects for the Curious Programmer
© 2015 Mahesh Venkitachalam

www.itbook.store/books/9781593276041

https://itbook.store/books/9781593276041

Conway’s Game of Life 47

As you can see, the % operator gives the remainder for the integer divi-
sion by N. You can use this operator to make the values wrap around at the
edge by rewriting the grid access code like this:

right = grid[i][(j+1)%N]

Now when a cell is on the edge of the grid (in other words, when j = N-1),
asking for the cell to the right with this method will give you (j+1)%N, which
sets j back to 0, making the right side of the grid wrap to the left side. When
you do the same for the bottom of the grid, it wraps around to the top.

Implementing the Rules
The rules of the Game of Life are based on the number of neighboring cells
that are ON or OFF. To simplify the application of these rules, you can cal-
culate the total number of neighboring cells in the ON state. Because the
ON states have a value of 255, you can just sum the values of all the neighbors
and divide by 255 to get the number of ON cells. Here is the relevant code:

 # apply Conway's rules
 if grid[i, j] == ON:

u if (total < 2) or (total > 3):
 newGrid[i, j] = OFF
 else:
 if total == 3:

v newGrid[i, j] = ON

At u, any cell that is ON is turned OFF if it has fewer than two neigh-
bors that are ON or if it has more than three neighbors that are ON. The
code at v applies only to OFF cells: a cell is turned ON if exactly three
neighbors are ON.

Now it’s time to write the complete code for the simulation.

Sending Command Line Arguments to the Program
The following code sends command line arguments to your program:

main() function
def main():
 # command line argumentss are in sys.argv[1], sys.argv[2], ...
 # sys.argv[0] is the script name and can be ignored
 # parse arguments

u parser = argparse.ArgumentParser(description="Runs Conway's Game of Life
 simulation.")
 # add arguments

v parser.add_argument('--grid-size', dest='N', required=False)
w parser.add_argument('--mov-file', dest='movfile', required=False)
x parser.add_argument('--interval', dest='interval', required=False)
y parser.add_argument('--glider', action='store_true', required=False)

 args = parser.parse_args()

Python Playground: Geeky Projects for the Curious Programmer
© 2015 Mahesh Venkitachalam

www.itbook.store/books/9781593276041

https://itbook.store/books/9781593276041

48 Chapter 3

The main() function begins by defining command line parameters for
the program. You use the argparse class at u to add command line options
to the code, and then you add various options to it in the following lines.
At v, you specify the simulation grid size N, and at w, you specify the file-
name for the saved .mov file. At x, you set the animation update interval in
milliseconds, and at y, you start the simulation with a glider pattern.

Initializing the Simulation
Continuing through the code, you come to the following section, which ini-
tializes the simulation:

 # set grid size
 N = 100
 if args.N and int(args.N) > 8:
 N = int(args.N)

 # set animation update interval
 updateInterval = 50
 if args.interval:
 updateInterval = int(args.interval)

 # declare grid
u grid = np.array([])

 # check if "glider" demo flag is specified
 if args.glider:
 grid = np.zeros(N*N).reshape(N, N)
 addGlider(1, 1, grid)
 else:
 # populate grid with random on/off - more off than on
 grid = randomGrid(N)

Still within the main() function, this portion of the code applies any
parameters called at the command line, once the command line options
have been parsed. For example, the lines that follow u set up the initial
conditions, either a random pattern by default or a glider pattern.

Finally, you set up the animation.

 # set up the animation
u fig, ax = plt.subplots()

 img = ax.imshow(grid, interpolation='nearest')
v ani = animation.FuncAnimation(fig, update, fargs=(img, grid, N,),

 frames=10,
 interval=updateInterval,
 save_count=50)

 # number of frames?
 # set the output file
 if args.movfile:
 ani.save(args.movfile, fps=30, extra_args=['-vcodec', 'libx264'])

 plt.show()

Python Playground: Geeky Projects for the Curious Programmer
© 2015 Mahesh Venkitachalam

www.itbook.store/books/9781593276041

https://itbook.store/books/9781593276041

Conway’s Game of Life 49

At u, you configure the matplotlib plot and animation parameters.
At v, animation.FuncAnimation() calls the function update(), defined earlier
in the program, which updates the grid according to the rules of Conway’s
Game of Life using toroidal boundary conditions.

The Complete Code
Here is the complete program for your Game of Life simulation. You can
also download the code for this project from https://github.com/electronut/pp/
blob/master/conway/conway.py.

import sys, argparse
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation

ON = 255
OFF = 0
vals = [ON, OFF]

def randomGrid(N):
 """returns a grid of NxN random values"""
 return np.random.choice(vals, N*N, p=[0.2, 0.8]).reshape(N, N)

def addGlider(i, j, grid):
 """adds a glider with top-left cell at (i, j)"""
 glider = np.array([[0, 0, 255],
 [255, 0, 255],
 [0, 255, 255]])
 grid[i:i+3, j:j+3] = glider

def update(frameNum, img, grid, N):
 # copy grid since we require 8 neighbors for calculation
 # and we go line by line
 newGrid = grid.copy()
 for i in range(N):
 for j in range(N):
 # compute 8-neghbor sum using toroidal boundary conditions
 # x and y wrap around so that the simulation
 # takes place on a toroidal surface
 total = int((grid[i, (j-1)%N] + grid[i, (j+1)%N] +
 grid[(i-1)%N, j] + grid[(i+1)%N, j] +
 grid[(i-1)%N, (j-1)%N] + grid[(i-1)%N, (j+1)%N] +
 grid[(i+1)%N, (j-1)%N] + grid[(i+1)%N, (j+1)%N])/255)
 # apply Conway's rules
 if grid[i, j] == ON:
 if (total < 2) or (total > 3):
 newGrid[i, j] = OFF
 else:
 if total == 3:
 newGrid[i, j] = ON

Python Playground: Geeky Projects for the Curious Programmer
© 2015 Mahesh Venkitachalam

www.itbook.store/books/9781593276041

https://github.com/electronut/pp/blob/master/conway/conway.py
https://github.com/electronut/pp/blob/master/conway/conway.py
https://itbook.store/books/9781593276041

50 Chapter 3

 # update data
 img.set_data(newGrid)
 grid[:] = newGrid[:]
 return img,

main() function
def main():
 # command line arguments are in sys.argv[1], sys.argv[2], ...
 # sys.argv[0] is the script name and can be ignored
 # parse arguments
 parser = argparse.ArgumentParser(description="Runs Conway's Game of Life
 simulation.")
 # add arguments
 parser.add_argument('--grid-size', dest='N', required=False)
 parser.add_argument('--mov-file', dest='movfile', required=False)
 parser.add_argument('--interval', dest='interval', required=False)
 parser.add_argument('--glider', action='store_true', required=False)
 parser.add_argument('--gosper', action='store_true', required=False)
 args = parser.parse_args()

 # set grid size
 N = 100
 if args.N and int(args.N) > 8:
 N = int(args.N)

 # set animation update interval
 updateInterval = 50
 if args.interval:
 updateInterval = int(args.interval)

 # declare grid
 grid = np.array([])
 # check if "glider" demo flag is specified
 if args.glider:
 grid = np.zeros(N*N).reshape(N, N)
 addGlider(1, 1, grid)
 else:
 # populate grid with random on/off - more off than on
 grid = randomGrid(N)

 # set up the animation
 fig, ax = plt.subplots()
 img = ax.imshow(grid, interpolation='nearest')
 ani = animation.FuncAnimation(fig, update, fargs=(img, grid, N,),
 frames=10,
 interval=updateInterval,
 save_count=50)

 # number of frames?
 # set the output file
 if args.movfile:
 ani.save(args.movfile, fps=30, extra_args=['-vcodec', 'libx264'])

 plt.show()

Python Playground: Geeky Projects for the Curious Programmer
© 2015 Mahesh Venkitachalam

www.itbook.store/books/9781593276041

https://itbook.store/books/9781593276041

Conway’s Game of Life 51

call main
if __name__ == '__main__':
 main()

Running the Game of Life Simulation
Now run the code:

$ python3 conway.py

This uses the default parameters for the simulation: a grid of 100×100
cells and an update interval of 50 milliseconds. As you watch the simula-
tion, you’ll see how it progresses to create and sustain various patterns over
time, as in Figure 3-4.

(a) (b)Figure 3-4: Game of Life in progress

Figure 3-5 shows some of the patterns to look for in the simulation.
Besides the glider, look for a three-cell blinker and static patterns such as
a block or loaf shape.

Now change things up a bit by running the simulation with these
parameters:

$ python conway.py --grid-size 32 --interval 500 --glider

This creates a simulation grid of 32×32, updates the animation every
500 milliseconds, and uses the initial glider pattern shown in the bottom
right of Figure 3-5.

Python Playground: Geeky Projects for the Curious Programmer
© 2015 Mahesh Venkitachalam

www.itbook.store/books/9781593276041

https://itbook.store/books/9781593276041

52 Chapter 3

Block Loaf

GliderBlinker (period 2)

Figure 3-5: Patterns in Game of Life

Summary
In this project, you explored Conway’s Game of Life. You learned how to
set up a basic computer simulation based on some rules and how to use
matplotlib to visualize the state of the system as it evolves.

My implementation of Conway’s Game of Life emphasizes simplicity
over performance. You can speed up the computations in Game of Life in
many different ways, and a tremendous amount of research has been done
on how to do this. You’ll find a lot of this research with a quick Internet
search.

Experiments!
Here are some ways to experiment further with Conway’s Game of Life.

1.	 Write an addGosperGun() method to add the pattern shown in Figure 3-6
to the grid. This pattern is called the Gosper Glider Gun. Run the simula-
tion and observe what the gun does.

Figure 3-6: Gosper Glider Gun

Python Playground: Geeky Projects for the Curious Programmer
© 2015 Mahesh Venkitachalam

www.itbook.store/books/9781593276041

https://itbook.store/books/9781593276041

Conway’s Game of Life 53

2.	 Write a readPattern() method that reads in an initial pattern from a text
file and uses it to set the initial conditions for the simulation. Here is a
suggested format for this file:

8
0 0 0 255 ...

The first line of the file defines N, and the rest of the file is just
N×N integers (0 or 255) separated by whitespace. You can use Python
methods such as open and file.read to do this. This exploration will help
you study how any given pattern evolves with the rules of the Game of
Life. Add a --pattern-file command line option to use this file while
running the program.

Python Playground: Geeky Projects for the Curious Programmer
© 2015 Mahesh Venkitachalam

www.itbook.store/books/9781593276041

https://itbook.store/books/9781593276041

